JP2713684B2 - Methanol synthesis method - Google Patents

Methanol synthesis method

Info

Publication number
JP2713684B2
JP2713684B2 JP4233613A JP23361392A JP2713684B2 JP 2713684 B2 JP2713684 B2 JP 2713684B2 JP 4233613 A JP4233613 A JP 4233613A JP 23361392 A JP23361392 A JP 23361392A JP 2713684 B2 JP2713684 B2 JP 2713684B2
Authority
JP
Japan
Prior art keywords
catalyst
ether
reaction
oxide
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4233613A
Other languages
Japanese (ja)
Other versions
JPH06179632A (en
Inventor
大器 渡辺
基益 河井
正巳 武内
勇樹 金井
圭子 守屋
輝充 角本
昌弘 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Research Institute of Innovative Technology for Earth
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Osaka Gas Co Ltd
Kawasaki Motors Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Research Institute of Innovative Technology for Earth
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Osaka Gas Co Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Research Institute of Innovative Technology for Earth, Kobe Steel Ltd, Kansai Coke and Chemicals Co Ltd, Osaka Gas Co Ltd, Kawasaki Jukogyo KK filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP4233613A priority Critical patent/JP2713684B2/en
Publication of JPH06179632A publication Critical patent/JPH06179632A/en
Application granted granted Critical
Publication of JP2713684B2 publication Critical patent/JP2713684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/82Cores or mandrels
    • B29C53/821Mandrels especially adapted for winding and joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0003Discharging moulded articles from the mould
    • B29C37/0017Discharging moulded articles from the mould by stripping articles from mould cores

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶媒中で、触媒の存在
下に二酸化炭素の水素化によりメタノールを合成する方
法に関する。
The present invention relates to a method for synthesizing methanol by hydrogenating carbon dioxide in a solvent in the presence of a catalyst.

【0002】[0002]

【従来の技術】従来、メタノールは合成ガス(一酸化炭
素と水素の混合ガス)を原料として、気相プロセスによ
り銅−亜鉛系触媒を用いて250〜350℃、50〜1
50気圧の条件下にて工業的に合成され、主に化学原料
に使用されている。しかし、従来の気相プロセスは、反
応熱の効率的な除去が難しいため、1パス当たりの反応
転化率を下げて大量の未反応ガスをリサイクルしたり、
エネルギー効率の向上に努めたり、種々の工夫がなされ
てきたが、プラント規模の大型化やエネルギー効率の飛
躍的向上が現状以上にはもはや困難になっている。
2. Description of the Related Art Conventionally, methanol is produced from a synthesis gas (mixed gas of carbon monoxide and hydrogen) as a raw material by a gas-phase process using a copper-zinc catalyst at 250-350 ° C., 50-1
It is industrially synthesized under the conditions of 50 atm and is mainly used as a chemical raw material. However, in the conventional gas phase process, it is difficult to efficiently remove the heat of reaction, so that a large amount of unreacted gas can be recycled by reducing the reaction conversion rate per pass,
Although efforts have been made to improve energy efficiency and various measures have been taken, it has become more difficult than ever to increase the size of a plant or to dramatically improve energy efficiency.

【0003】そのため、液相プロセスを用いて熱容量の
大きな溶媒によって反応熱を効率的に除去することによ
りプロセスの大型化やエネルギー効率の向上を計ること
が検討され、かかる液相プロセスの例として、250
℃,50〜100気圧で合成するChem System プロセス
や、より低温(100℃)で合成する米国ブルックヘブ
ン国立研究所のBNLプロセスが提案されている。
For this reason, it has been studied to use a liquid phase process to efficiently remove heat of reaction with a solvent having a large heat capacity to increase the size of the process and improve energy efficiency. As an example of such a liquid phase process, 250
A Chem System process for synthesis at 50 to 100 atm and a BNL process of Brookhaven National Laboratory in the United States for synthesis at lower temperature (100 ° C) have been proposed.

【0004】一方、二酸化炭素を原料としたメタノール
合成法(CO2 +3H2 →CH3 OH+H2 O)が、炭
素資源の循環再利用と地球環境問題解決の観点から、最
近注目されてきている。この際には、反応により目的成
分であるメタノールが生成すると同時に等モルの水が生
成するが、液相プロセスにおいては、この水の存在が、
触媒上で熱力学的平衡の妨げとなったり、BNLプロセ
スにて用いられている均一系触媒をこの反応に用いる
と、水が被毒作用を及ぼしたりするため、触媒の充分な
反応活性が得られずメタノールを高収率で生成するに至
っていない。
On the other hand, a methanol synthesis method using carbon dioxide as a raw material (CO 2 + 3H 2 → CH 3 OH + H 2 O) has recently been receiving attention from the viewpoint of recycling and recycling of carbon resources and solving global environmental problems. At this time, the reaction produces the target component methanol and at the same time produces equimolar water, but in the liquid phase process, the presence of this water is
If the catalyst disturbs the thermodynamic equilibrium, or if a homogeneous catalyst used in the BNL process is used in this reaction, water will cause poisoning, and sufficient reaction activity of the catalyst will be obtained. And methanol was not produced in high yield.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、二酸
化炭素を原料として、接触水素化反応によりメタノール
を液相プロセスで合成するに際して、高活性触媒を用い
て高いメタノール収率の得られる合成方法を提供するこ
とにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing methanol by a catalytic hydrogenation reaction in a liquid phase process using carbon dioxide as a raw material and obtaining a high methanol yield using a highly active catalyst. It is to provide a method.

【0006】[0006]

【課題を解決するための手段】本発明によれば、二酸化
炭素を原料として、接触水素化反応によりメタノールを
液相プロセスを用いて合成する方法において、二酸化炭
素と水素とを親水性溶媒中に懸濁した触媒と接触させる
ことを特徴とする方法が提供される。
According to the present invention, there is provided a method for synthesizing methanol by a catalytic hydrogenation reaction using a liquid phase process using carbon dioxide as a raw material, wherein carbon dioxide and hydrogen are mixed in a hydrophilic solvent. A method is provided that comprises contacting with a suspended catalyst.

【0007】使用する親水性溶媒としては極性の高い親
水性の有機溶媒が適当であるが、例えばエチレングリコ
ールなどのアルコール類は、本発明を実施するための適
当な温度である200℃程度でも容易に熱分解を起こす
ため、親水性のあるエーテル類を用いるのが好ましい。
このような好ましいエーテルの例としては、ジエチレン
グリコールジエチルエーテル、ジエチレングリコールジ
メチルエーテル、ジエチレングリコールモノエチルエー
テル、ジエチレングリコールモノブチルエーテル、ジエ
チレングリコールモノメチルエーテル、イソアミルエー
テル、フェニルエーテル、ベンジルエーテル、テトラヒ
ドロフラン、ジオキサンなどがある。特にジエチレング
リコールジメチルエーテル、テトラヒドロフランおよび
ジオキサンが好ましい。
As the hydrophilic solvent to be used, a hydrophilic organic solvent having a high polarity is suitable. For example, alcohols such as ethylene glycol can easily be used even at about 200 ° C. which is a suitable temperature for carrying out the present invention. In order to cause thermal decomposition, it is preferable to use hydrophilic ethers.
Examples of such preferred ethers include diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monomethyl ether, isoamyl ether, phenyl ether, benzyl ether, tetrahydrofuran, dioxane, and the like. Particularly, diethylene glycol dimethyl ether, tetrahydrofuran and dioxane are preferred.

【0008】本発明で用いる触媒としては銅およびまた
は酸化銅と酸化亜鉛を含有するもの、銅およびまたは酸
化銅と酸化亜鉛とともに酸化ジルコニウムおよび酸化ア
ルミニウムのうち少なくとも1つを含有するものが好ま
しく、触媒中の銅およびまたは酸化銅の含有量は30〜
70重量%、酸化亜鉛の含有量は5〜65重量%が適当
であり、それ以上でもそれ以下でも触媒性能が低下傾向
を示す。また、酸化ジルコニウムおよびまたは酸化アル
ミニウムの含有量は5〜65重量%が適当である。これ
らの含有量は、反応原料ガスの組成、反応温度、あるい
は反応圧力などの条件によって適当な量を定めることに
より最高の触媒性能を得ることができる。
The catalyst used in the present invention is preferably a catalyst containing copper and / or copper oxide and zinc oxide, and a catalyst containing at least one of zirconium oxide and aluminum oxide together with copper and / or copper oxide and zinc oxide. The content of copper and / or copper oxide is 30 to
It is appropriate that the content of zinc oxide is 70% by weight and the content of zinc oxide is 5 to 65% by weight. The content of zirconium oxide and / or aluminum oxide is suitably from 5 to 65% by weight. The best catalyst performance can be obtained by determining appropriate amounts of these contents depending on conditions such as the composition of the reaction raw material gas, the reaction temperature, and the reaction pressure.

【0009】触媒の調製法はそれぞれの触媒成分の塩を
出発原料として、従来公知の共沈法、アンモニアガス沈
殿法あるいは含浸法いずれの方法を採用してもよいが、
これらの方法で調製したのち、空気中で300〜600
℃で焼成して酸化物の状態にする。焼成しないかあるい
は600℃を越える温度で焼成すると、触媒性能が低下
傾向を示す。
The method for preparing the catalyst may be any of the conventionally known coprecipitation method, ammonia gas precipitation method or impregnation method using the salt of each catalyst component as a starting material.
After being prepared by these methods, 300 to 600 in air
Firing at 0 ° C. to form an oxide. If not calcined or calcined at a temperature exceeding 600 ° C., the catalyst performance tends to decrease.

【0010】この触媒を本発明のメタノール合成反応に
用いるに際しては、このまま反応に用いてもよいし、触
媒を水素で予め処理して触媒中の酸化銅成分を還元して
から用いてもよい。要は、この触媒を細かく、粉砕して
前記親水性溶媒中に懸濁・分散させて反応ガスと接触し
ながら反応を行わせる状態にして用いればよく、また、
反応ガスとの接触方法については、予め反応容器中に反
応ガスを入れておき回分方式で行ってもよいし、系外よ
り反応容器中へ反応ガスを連続的に供給する流通方式の
いずれで行っても有効であるが、回分方式で反応を行う
には触媒の分散をよくし、また触媒と反応ガスとの充分
な接触を計るため、親水性溶媒中に懸濁した触媒を、好
ましくは100rpm以上、特に好ましくは300rp
m以上の攪拌下に保ちながら反応させる。
When this catalyst is used in the methanol synthesis reaction of the present invention, it may be used as it is or may be used after previously treating the catalyst with hydrogen to reduce the copper oxide component in the catalyst. In short, this catalyst may be used in a state in which the catalyst is finely ground, suspended and dispersed in the hydrophilic solvent and allowed to react while being brought into contact with the reaction gas,
Regarding the method of contacting with the reaction gas, the reaction gas may be put in a reaction vessel in advance and may be carried out in a batch system, or may be carried out by a flow system in which the reaction gas is continuously supplied from outside the system into the reaction vessel. However, in order to carry out the reaction in a batch mode, the catalyst suspended in a hydrophilic solvent is preferably used at 100 rpm to improve the dispersion of the catalyst and to ensure sufficient contact between the catalyst and the reaction gas. Above, particularly preferably 300 rpm
The reaction is carried out while keeping the stirring at least m.

【0011】触媒は、公知の方法で成型したものを用い
てもよい。触媒の粒子径、形状は、反応の方式、反応器
の形状によって任意に選択し得るが、望ましくは、20
0メッシュ以下に微粉砕して用いるのがよい。
As the catalyst, a catalyst molded by a known method may be used. The particle size and shape of the catalyst can be arbitrarily selected depending on the type of reaction and the shape of the reactor.
It is preferable to use it after pulverizing it to 0 mesh or less.

【0012】反応によりメタノールを合成するに際し
て、高収率にメタノールを得るためには、反応温度とし
ては100〜350℃が好ましく、特に好ましくは15
0〜250℃である。反応圧力は高いほどよいが、20
気圧以上とするのが好ましい。また、原料として用いる
水素と二酸化炭素の混合比は任意の値をとることができ
るが、水素/二酸化炭素のモル比を2以上とすることが
好ましい。なお、前記回分方式で反応を行う際の反応時
間は10分以上とすることが好ましい。
In the synthesis of methanol by the reaction, the reaction temperature is preferably 100 to 350 ° C., particularly preferably 15 to obtain high yield of methanol.
0-250 ° C. The higher the reaction pressure, the better, but 20
The pressure is preferably at least atmospheric pressure. The mixing ratio of hydrogen and carbon dioxide used as a raw material can take any value, but the molar ratio of hydrogen / carbon dioxide is preferably 2 or more. In addition, it is preferable that the reaction time at the time of performing the reaction in the batch mode be 10 minutes or more.

【0013】[0013]

【実施例】以下本発明を実施例によりさらに詳細に説明
する。
The present invention will be described in more detail with reference to the following examples.

【0014】実施例1 硝酸銅三水和物61.2g、硝酸亜鉛六水和物44.3
gおよびオキシ硝酸ジルコニウム26.2gを蒸留水に
溶解して500mlの水溶液を調製しA液とした。ま
た、別に炭酸ナトリウム十水和物254.2gを蒸留水
に溶解して500mlの水溶液を調製しB液とした。激
しく攪拌した200mlの蒸留水中に、A液とB液を共
に5ml/minの速度で滴下し沈殿を生成させた。得
られた沈殿物を蒸留水で洗浄後、110℃で乾燥し、4
00℃にて空気中で2時間焼成した。この触媒の組成
は、CuO43.6wt%,ZnO26.1wt%,Z
rO226.1wt%であった。この触媒1gおよびジ
エチレングリコールジメチルエーテル50mlをオート
クレーブに入れ密閉した後、内部の空気を真空ポンプに
て排除し、CO2 25容量%とH2 75容量%の混合ガ
スにて約60kg/cm 2 Gに加圧した。攪拌速度46
5rpmで攪拌しながら200℃に昇温して反応を行っ
た。反応時間5時間後に、反応生成ガスおよび溶媒中の
メタノール、水などの生成物をガスクロマトグラフを用
いて分析したところ、CO2 転化率およびメタノール選
択率は表1に示すとおりであった。なお、その他の生成
物としては、主にCOであり、メタン、ジメチルエーテ
ル、蟻酸メチルは痕跡量生成したにすぎなかった。
Example 1 Copper nitrate trihydrate 61.2 g, zinc nitrate hexahydrate 44.3
g and 26.2 g of zirconium oxynitrate in distilled water
After dissolution, 500 ml of an aqueous solution was prepared and used as solution A. Ma
Separately, 254.2 g of sodium carbonate decahydrate was added to distilled water.
To prepare a 500 ml aqueous solution, which was designated as solution B. Intense
Solution A and Solution B are mixed in 200 ml of distilled water
At a rate of 5 ml / min to form a precipitate. Profit
The precipitate obtained is washed with distilled water, dried at 110 ° C.
It was calcined at 00 ° C. in air for 2 hours. Composition of this catalyst
Are CuO 43.6 wt%, ZnO 26.1 wt%, Z
rOTwoIt was 26.1% by weight. 1 g of this catalyst and
Ethylene glycol dimethyl ether 50ml is auto
After sealing in a clave, the air inside is pumped by a vacuum pump.
To eliminate COTwo 25% by volume and HTwo 75% by volume mixed gas
About 60kg / cm Two G was applied. Stirring speed 46
The reaction was performed by raising the temperature to 200 ° C. while stirring at 5 rpm.
Was. After a reaction time of 5 hours, the reaction product gas and the solvent
Use products such as methanol and water by gas chromatography
AnalysisTwo Conversion and methanol selection
The selectivity was as shown in Table 1. In addition, other generation
The main products are CO, methane and dimethyl ether.
Only trace amounts of methyl formate were produced.

【0015】実施例2 硝酸銅三水和物48.0g、硝酸亜鉛六水和物34.7
gおよび硝酸アルミニウム九水和物69.4gを蒸留水
に溶解して500mlの水溶液を調製しA液とした。ま
た、別に炭酸ナトリウム十水和物267.9gを蒸留水
に溶解して500mlの水溶液を調製しB液とした。激
しく攪拌した200mlの蒸留水中に、A液とB液を共
に5ml/minの速度で滴下し沈殿を生成させた。得
られた沈殿物を蒸留水で洗浄後、110℃で乾燥し、4
00℃にて空気中で2時間焼成した。この触媒の組成
は、CuO43.6wt%,ZnO26.1wt%,A
23 26.1wt%であった。この触媒を用いて実
施例1と同様に反応を行った。反応生成ガスおよび溶媒
中のメタノール、水などの生成物をガスクロマトグラフ
を用いて分析したところ、CO2 転化率およびメタノー
ル選択率は表1に示すとおりであった。なお、その他の
生成物としては、主にCOであり、メタン、ジメチルエ
ーテル、蟻酸メチルは痕跡量生成したにすぎなかった。
Example 2 Copper nitrate trihydrate 48.0 g, zinc nitrate hexahydrate 34.7
g and 69.4 g of aluminum nitrate nonahydrate were dissolved in distilled water to prepare 500 ml of an aqueous solution, which was used as solution A. Separately, 267.9 g of sodium carbonate decahydrate was dissolved in distilled water to prepare a 500 ml aqueous solution, which was used as solution B. The solution A and the solution B were dropped at a rate of 5 ml / min into 200 ml of distilled water which was vigorously stirred to form a precipitate. The obtained precipitate is washed with distilled water, dried at 110 ° C.,
It was calcined at 00 ° C. in air for 2 hours. The composition of this catalyst was 43.6 wt% of CuO, 26.1 wt% of ZnO,
l 2 O 3 was 26.1% by weight. A reaction was carried out in the same manner as in Example 1 using this catalyst. When the products such as methanol and water in the reaction product gas and the solvent were analyzed using a gas chromatograph, the CO 2 conversion and the methanol selectivity were as shown in Table 1. The other products were mainly CO, and only trace amounts of methane, dimethyl ether and methyl formate were formed.

【0016】実施例3 実施例1と同様に調製した触媒1gおよびジオキサン5
0mlを用いて実施例1と同様の反応を行ったところ、
表1に示す結果を得た。
Example 3 1 g of catalyst prepared in the same manner as in Example 1 and dioxane 5
When the same reaction as in Example 1 was performed using 0 ml,
The results shown in Table 1 were obtained.

【0017】比較例1 実施例2と同様に調製した触媒1gと水を全く溶解しな
い溶媒(疎水性溶媒)である鉱油(商品名スモイル4
0)を用いて実施例1と同様の反応を行ったところ、表
2に示す結果を得た。
Comparative Example 1 1 g of the catalyst prepared in the same manner as in Example 2 and a mineral oil (trade name: Smoyl 4) which is a solvent (hydrophobic solvent) that does not dissolve water at all
0) and the same reaction as in Example 1 was performed, and the results shown in Table 2 were obtained.

【0018】比較例2 実施例2と同様に調製した触媒1gと水を全く溶解しな
い溶媒(疎水性溶媒)であるデカリンを用いて実施例1
と同様の反応を行ったところ、表2に示す結果を得た。
Comparative Example 2 Example 1 was carried out using 1 g of the catalyst prepared in the same manner as in Example 2 and decalin which is a solvent (hydrophobic solvent) that does not dissolve water at all.
When the same reaction was carried out, the results shown in Table 2 were obtained.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 000156961 関西熱化学株式会社 兵庫県尼崎市大浜町2丁目23番地 (73)特許権者 000183303 住友金属鉱山株式会社 東京都港区新橋5丁目11番3号 (73)特許権者 000001199 株式会社神戸製鋼所 兵庫県神戸市中央区脇浜町1丁目3番18 号 (73)特許権者 000000284 大阪瓦斯株式会社 大阪府大阪市中央区平野町四丁目1番2 号 (74)上記7名の代理人 弁理士 若林 忠 (72)発明者 渡辺 大器 東京都港区西新橋2−8−11 第7東洋 海事ビル8階財団法人地球環境産業技術 研究機構内 (72)発明者 河井 基益 東京都港区西新橋2−8−11 第7東洋 海事ビル8階財団法人地球環境産業技術 研究機構内 (72)発明者 武内 正巳 東京都港区西新橋2−8−11 第7東洋 海事ビル8階財団法人地球環境産業技術 研究機構内 (72)発明者 金井 勇樹 東京都港区西新橋2−8−11 第7東洋 海事ビル8階財団法人地球環境産業技術 研究機構内 (72)発明者 守屋 圭子 東京都港区西新橋2−8−11 第7東洋 海事ビル8階財団法人地球環境産業技術 研究機構内 (72)発明者 角本 輝充 東京都港区西新橋2−8−11 第7東洋 海事ビル8階財団法人地球環境産業技術 研究機構内 (72)発明者 斉藤 昌弘 茨城県筑波市小野川16−3 工業技術院 資源環境技術総合研究所内 審査官 渡辺 陽子 (56)参考文献 特開 平3−258738(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (73) Patent holder 000156961 Kansai Thermochemical Co., Ltd. 2--23 Ohama-cho, Amagasaki-shi, Hyogo (73) Patent holder 000183303 Sumitomo Metal Mining Co., Ltd. 5--11 Shimbashi, Minato-ku, Tokyo, Japan No. 3 (73) Patent holder 000001199 Kobe Steel, Ltd. 1-318, Wakihama-cho, Chuo-ku, Kobe-shi, Hyogo (73) Patent holder 000000284 Osaka Gas Co., Ltd. 4-1-1, Hirano-cho, Chuo-ku, Osaka-shi, Osaka No. 2 (74) The above seven agents Patent Attorney Tadashi Wakabayashi (72) Inventor Daiki Watanabe 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Toyo Maritime Building 8th floor (72) Inventor Kawai Kiyoshi 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Oriental Maritime Building 8F Inside the Research Institute of Innovative Technology for the Earth (72) Inventor Masami Takeuchi Higashi 8th floor of the 7th Toyo Maritime Building, 2-8-11 Nishi-Shimbashi, Minato-ku, Japan (72) Inventor Yuki Kanai 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Toyo Maritime Building 8 (72) Inventor Keiko Moriya 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Toyo Maritime Building 8th Floor Inside the Global Environmental Industry Research Institute (72) Inventor Corner Terumitsu Hon 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Oriental Maritime Building 8F Inside the Research Institute of Innovative Technology for the Earth (72) Inventor Masahiro Saito 16-3 Onogawa, Tsukuba, Ibaraki Pref. Examiner in the Research Institute Yoko Watanabe (56) References JP-A-3-258738 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二酸化炭素を原料として、接触水素化反
応によりメタノールを液相プロセスを用いて合成する方
法において、二酸化炭素と水素とをジエチレングリコー
ルジエチルエーテル、ジエチレングリコールジメチルエ
ーテル、ジエチレングリコールモノエチルエーテル、ジ
エチレングリコールモノブチルエーテル、ジエチレング
リコールモノメチルエーテル、イソアミルエーテル、フ
ェニルエーテル、ベンジルエーテル、テトラヒドロフラ
ンおよびジオキサンよりなる群のいずれか1つの親水性
溶媒中に懸濁した触媒と接触させることを特徴とするメ
タノールの合成方法。
1. A method for synthesizing methanol by a catalytic hydrogenation reaction using carbon dioxide as a raw material using a liquid phase process, wherein carbon dioxide and hydrogen are combined with diethylene glycol.
Diethyl ether, diethylene glycol dimethyl ether
-Tel, diethylene glycol monoethyl ether, di
Ethylene glycol monobutyl ether, diethylene glycol
Recall monomethyl ether, isoamyl ether,
Phenyl ether, benzyl ether, tetrahydrofura
A method for synthesizing methanol, comprising contacting a catalyst suspended in a hydrophilic solvent selected from the group consisting of benzene and dioxane .
【請求項2】 前記触媒が銅およびまたは酸化銅と酸化
亜鉛を含有するものである請求項1に記載のメタノール
の合成方法。
2. The method for synthesizing methanol according to claim 1, wherein the catalyst contains copper and / or copper oxide and zinc oxide.
【請求項3】 前記触媒がさらに酸化ジルコニウムおよ
び酸化アルミニウムのうち少なくとも1つを含有する請
求項2に記載のメタノールの合成方法。
3. The method according to claim 2, wherein the catalyst further contains at least one of zirconium oxide and aluminum oxide.
【請求項4】 前記触媒中の銅およびまたは酸化銅の含
有量が30〜70重量%、酸化亜鉛の含有量が5〜65
重量%である請求項2に記載のメタノールの合成方法。
4. The catalyst has a copper and / or copper oxide content of 30 to 70% by weight and a zinc oxide content of 5 to 65%.
3. The method for synthesizing methanol according to claim 2, wherein the amount is methanol.
【請求項5】 前記触媒がさらに酸化ジルコニウムおよ
び酸化アルミニウムのうち少なくとも1つを5〜65重
量%含有する請求項4に記載のメタノールの合成方法。
5. The method according to claim 4, wherein the catalyst further contains at least one of zirconium oxide and aluminum oxide in an amount of 5 to 65% by weight.
JP4233613A 1992-09-01 1992-09-01 Methanol synthesis method Expired - Lifetime JP2713684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4233613A JP2713684B2 (en) 1992-09-01 1992-09-01 Methanol synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4233613A JP2713684B2 (en) 1992-09-01 1992-09-01 Methanol synthesis method

Publications (2)

Publication Number Publication Date
JPH06179632A JPH06179632A (en) 1994-06-28
JP2713684B2 true JP2713684B2 (en) 1998-02-16

Family

ID=16957795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4233613A Expired - Lifetime JP2713684B2 (en) 1992-09-01 1992-09-01 Methanol synthesis method

Country Status (1)

Country Link
JP (1) JP2713684B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11655421B2 (en) 2016-12-23 2023-05-23 Carbon Engineering Ltd. Method and system for synthesizing fuel from dilute carbon dioxide source

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254666A (en) * 2009-03-30 2010-11-11 Tokyo Electric Power Co Inc:The Method of methanol synthesis using microwave
JP5590320B2 (en) * 2010-09-28 2014-09-17 東京電力株式会社 Slurry bed type carbon dioxide fixation reactor
KR101372237B1 (en) * 2012-02-28 2014-03-11 한국에너지기술연구원 Method for preparing complex metal oxide catalysts for methanol synthesis from CO₂, method of methanol production using complex metal oxide catalysts
JP2014231504A (en) * 2013-05-30 2014-12-11 民朗 金辺 Method for producing carbon compound
CN109772342A (en) * 2019-03-06 2019-05-21 南京工业大学 A kind of preparation method of hydrogenation of carbon dioxide methanol catalyst

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2764114B2 (en) * 1990-03-08 1998-06-11 三井化学株式会社 Method for producing methanol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11655421B2 (en) 2016-12-23 2023-05-23 Carbon Engineering Ltd. Method and system for synthesizing fuel from dilute carbon dioxide source

Also Published As

Publication number Publication date
JPH06179632A (en) 1994-06-28

Similar Documents

Publication Publication Date Title
EP0406896B1 (en) Catalyst for reforming hydrocarbon with steam
US7847134B2 (en) Process of producing monohydric alcohols from monocarboxylic acids or derivatives thereof
JP2557959B2 (en) Process for producing alcohols and olefins from H 2) and CO 2) using iron carbide based catalysts
US5140049A (en) Method for producing olefins from H2 and CO2 using an iron carbide based catalyst
CN101310856A (en) Catalyst for directly synthesizing high carbon primary alcohol using CO hydrogenation and preparation method thereof
EA028834B1 (en) Method for producing ethanol and coproducing methanol
JP2713684B2 (en) Methanol synthesis method
US5610202A (en) Catalyst system and process for the liquid-phase production of methanol from synthesis gas
Lee et al. Modified Cu/ZnO/Al 2 O 3 catalysts for methanol synthesis from CO 2/H 2 and CO/H 2
JPH0739755A (en) Methanol synthesis catalyst and manufacture thereof
JP3163374B2 (en) Catalyst for methanol synthesis
US4508846A (en) Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas
CN110256198B (en) Production method of 1, 4-pentanediol
JP2545734B2 (en) Hydrocarbon producing catalyst and hydrocarbon producing method
Kuznetsov et al. Novel Technological Paradigm of the Application of Carbon Dioxide as a C1 Synthon in Organic Chemistry: I. Synthesis of Hydroxybenzoic Acids, Methanol, and Formic Acid
JP3365657B2 (en) Catalyst for steam reforming of hydrocarbons
CN111423398A (en) Method for preparing gamma-valerolactone from levulinic acid
CN107597116B (en) Method for preparing 1, 4-pentanediol by directly hydrogenating levulinic acid by using copper-based catalyst
US4393144A (en) Method for producing methanol
JPS647974B2 (en)
AU595853B2 (en) Improved syngas conversion catalyst, production and use thereof
JP2764114B2 (en) Method for producing methanol
US4943551A (en) Catalyst for synthesis of mixtures of methanol and higher alcohols
JPH09221437A (en) Production of ethanol
US5707920A (en) Isobutanol synthesis catalyst

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
EXPY Cancellation because of completion of term