JP3163374B2 - Catalyst for methanol synthesis - Google Patents

Catalyst for methanol synthesis

Info

Publication number
JP3163374B2
JP3163374B2 JP33131592A JP33131592A JP3163374B2 JP 3163374 B2 JP3163374 B2 JP 3163374B2 JP 33131592 A JP33131592 A JP 33131592A JP 33131592 A JP33131592 A JP 33131592A JP 3163374 B2 JP3163374 B2 JP 3163374B2
Authority
JP
Japan
Prior art keywords
catalyst
aqueous solution
methanol
distilled water
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33131592A
Other languages
Japanese (ja)
Other versions
JPH06312138A (en
Inventor
昌弘 斉藤
忠博 藤谷
義之 佐々木
健一 富永
大器 渡辺
基益 河井
正己 武内
勇樹 金井
圭子 守屋
輝充 角本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Mitsui Chemicals Inc
Research Institute of Innovative Technology for Earth
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Osaka Gas Co Ltd
Kawasaki Motors Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Mitsui Chemicals Inc
Research Institute of Innovative Technology for Earth
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Osaka Gas Co Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Mitsui Chemicals Inc, Research Institute of Innovative Technology for Earth, Kobe Steel Ltd, Kansai Coke and Chemicals Co Ltd, Osaka Gas Co Ltd, Kawasaki Jukogyo KK filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP33131592A priority Critical patent/JP3163374B2/en
Publication of JPH06312138A publication Critical patent/JPH06312138A/en
Application granted granted Critical
Publication of JP3163374B2 publication Critical patent/JP3163374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化炭素(COおよび
/またはCO2 )の接触水素化によりメタノールを合成
するために使用する銅系触媒の性能を改善する技術に関
する。
The present invention relates to a technique for improving the performance of a copper-based catalyst used for synthesizing methanol by catalytic hydrogenation of carbon oxide (CO and / or CO 2 ).

【0002】[0002]

【従来技術とその問題点】従来合成ガス(COとH2
の混合ガス)を主原料とするメタノールの合成反応は、
例えば、銅/亜鉛/アルミニウムの酸化物からなる触媒
或いは銅/亜鉛/クロムの酸化物からなる触媒を用い
て、250〜350℃、50〜150気圧の条件下で工
業的に実施されている(触媒講座第7巻、触媒学会編、
講談社発行(1985))。
2. Description of the Related Art Conventionally, a synthesis reaction of methanol using a synthesis gas (a mixed gas of CO and H 2 ) as a main raw material is as follows.
For example, using a catalyst composed of an oxide of copper / zinc / aluminum or a catalyst composed of an oxide of copper / zinc / chromium, it is industrially carried out under the conditions of 250 to 350 ° C. and 50 to 150 atm. Catalyst Course, Volume 7, Catalysis Society,
Published by Kodansha (1985).

【0003】一方、CO2 と水素を主原料とするメタノ
ール合成は、炭素資源の循環再利用および地球環境問題
の観点から、最近注目されてきている。CO2 を主成分
とするガスを触媒上で水素と反応させてメタノールを合
成する場合には、反応の熱力学的平衡から、上記の合成
ガスからのメタノール合成で採用されているよりも低い
温度で反応を行なう必要がある。従って、合成ガスから
のメタノール合成で使用されている触媒よりもさらに高
活性の触媒が必要とされているが、現在のところ、低温
で十分な高活性を示す触媒は存在しない。
On the other hand, methanol synthesis using CO 2 and hydrogen as main raw materials has recently attracted attention from the viewpoint of recycling and recycling of carbon resources and global environmental problems. When methanol is synthesized by reacting a gas containing CO 2 as a main component with hydrogen on a catalyst, a temperature lower than that employed in methanol synthesis from the above-described synthesis gas is obtained from the thermodynamic equilibrium of the reaction. It is necessary to carry out the reaction. Therefore, there is a need for a catalyst with higher activity than that used in the synthesis of methanol from synthesis gas, but at present, there is no catalyst that exhibits sufficiently high activity at low temperatures.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明は、酸
化炭素を水素と反応させてメタノールを合成するに際
し、低温で高活性を発揮する触媒を提供することを主な
目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a catalyst which exhibits high activity at a low temperature when methanol is synthesized by reacting carbon oxide with hydrogen.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記のよう
な技術の現状に鑑みて研究を進めた結果、酸化銅および
/または銅を主成分とする触媒にガリウムを配合するこ
とにより、その目的を達成し得ることを見出した。
Means for Solving the Problems The present inventor has conducted research in view of the state of the art as described above, and as a result, by adding gallium to copper oxide and / or a catalyst containing copper as a main component, It has been found that the purpose can be achieved.

【0006】[0006]

【0007】即ち、本発明は、下記の触媒を提供するも
のである; 1.二酸化炭素および水素を含む混合ガスを反応原料と
するメタノール合成用触媒において、酸化銅および/ま
たは銅並びにガリウムを配合したことを特徴とする触
媒。2.酸化銅および/または銅並びにガリウムを活性成分
とする上記1に記載のメタノール合成用触媒。 3.さらに、酸化亜鉛、酸化アルミニウム、酸化ジルコ
ニウム、酸化クロムおよびパラジウムからなる群から選
択される少なくとも一種を活性成分とする上記1または
2に記載のメタノール合成用触媒。
That is, the present invention provides the following catalysts: A mixed gas containing carbon dioxide and hydrogen
Copper oxide and / or copper oxide
Or a catalyst containing copper or gallium. 2. Copper oxide and / or copper and gallium as active ingredients
The catalyst for methanol synthesis according to 1 above, wherein 3. In addition, zinc oxide, aluminum oxide, zirconium oxide
Selected from the group consisting of
The above 1 or 2 wherein at least one selected is an active ingredient
3. The catalyst for methanol synthesis according to 2.

【0008】[0008]

【0009】以下、本願発明(以下 本願第1発明 とい
うことがある)について詳細に説明する。
[0009] In the following, the present invention (hereinafter referred to as "the first feature of the present invention" Toi
Will be described in detail.

【0010】(1)本願第1発明 本願第1発明による触媒は、酸化銅として10〜70重
量%および酸化ガリウム0.1〜70重量%を含有する
ものである。本願第1発明による触媒には、必要なら
ば、さらに酸化亜鉛、酸化アルミニウム、酸化ジルコニ
ウム、酸化クロム、パラジウムなどの成分を含有させる
ことにより、その活性をさらに改善することができる。
(1) First invention of the present application The catalyst according to the first invention of the present application contains 10 to 70% by weight of copper oxide and 0.1 to 70% by weight of gallium oxide. The activity of the catalyst according to the first aspect of the present invention can be further improved by adding components such as zinc oxide, aluminum oxide, zirconium oxide, chromium oxide and palladium, if necessary.

【0011】本願第1発明による触媒は、共沈法、含浸
法、混合法、逐次沈殿法などの公知の方法により、或い
はこれらの方法を組合わせることにより、製造できる。
即ち、得られた触媒が上記の組成範囲で酸化銅および/
または銅と酸化ガリウムとを含有している限り、製造方
法は特に制限されない。
The catalyst according to the first invention of the present application can be produced by a known method such as a coprecipitation method, an impregnation method, a mixing method, a sequential precipitation method, or a combination of these methods.
That is, the obtained catalyst is copper oxide and / or
Alternatively, the production method is not particularly limited as long as it contains copper and gallium oxide.

【0012】例えば、共沈法により本願第1発明の触媒
を製造する場合の1例を挙げると、先ず、触媒金属成分
である銅の水溶性塩(硝酸塩、塩化物、硫酸塩、酢酸塩
など)とガリウムの水溶性塩(硝酸塩、塩化物、硫酸
塩、酢酸塩、など)とを溶解する溶液(水溶液A)を調
製する。銅およびガリウムの水溶性塩としては、硝酸塩
がより好ましい。この様な水溶液における各触媒金属成
分の濃度は、金属成分の組合せ、触媒が使用される条件
などにより異なり得るが、通常0.1〜5mol/l程度で
ある。両原料の割合は、最終的に得られる触媒において
求められる両者の割合に応じて適宜定めれば良い。本願
第一発明の触媒における銅:ガリウムの配合比は、広い
範囲で変わり得るが、通常1:0.00147〜7程度
(重量比)、好ましくは1:0.016〜3程度、より
好ましくは1:0.05〜2程度である。
For example, in the case of producing the catalyst of the first invention of the present application by a coprecipitation method, first, a water-soluble salt of copper as a catalytic metal component (nitrate, chloride, sulfate, acetate, etc.) ) And a water-soluble salt of gallium (a nitrate, chloride, sulfate, acetate, etc.) (solution A) is prepared. As the water-soluble salts of copper and gallium, nitrates are more preferred. The concentration of each catalyst metal component in such an aqueous solution may vary depending on the combination of the metal components, the conditions under which the catalyst is used, and the like, but is usually about 0.1 to 5 mol / l. The ratio between the two raw materials may be appropriately determined according to the ratio of the both materials required in the finally obtained catalyst. The mixing ratio of copper: gallium in the catalyst of the first invention of the present application can vary in a wide range, but is usually about 1: 0.00147 to 7 (weight ratio), preferably about 1: 0.016 to 3, and more preferably 1: about 0.05 to 2.

【0013】本願第1発明の触媒にさらに上記の任意の
第三成分を含有させる場合にも、共沈法、含浸法、混合
法、逐次沈殿法などの公知の方法により、或いはこれら
の方法を組合わせることにより、触媒を製造することが
できる。共沈法による場合には、触媒金属第三成分とな
る金属の水溶性塩(硝酸塩、塩化物、硫酸塩、酢酸塩な
ど)を上記水溶液Aに併せて溶解させておくか(水溶液
B)、或いはこれらの金属の水溶性塩を溶解させた溶液
(水溶液C)を別に調整する。第三成分の水溶性塩とし
ても、硝酸塩がより好ましい。この様な水溶液における
第三成分の濃度も、成分の組合わせ、触媒が使用される
条件などにより異なり得るが、通常0.1〜5mol/
l程度である。触媒金属第三成分の反応時の使用割合
も、最終的に得られる触媒において求められる第三成分
の割合に応じて適宜定めれば良い。本願第一発明の触媒
において、触媒金属第三成分を使用する場合の銅:第三
成分の配合比も、広い範囲で変わり得るが、通常1:
0.00147〜7程度(重量比)、好ましくは1:
0.016〜3程度、より好ましくは1:0.05〜2
程度である。
In the case where the catalyst of the first invention of the present application further contains the above-mentioned optional third component, a known method such as a coprecipitation method, an impregnation method, a mixing method, a sequential precipitation method, or these methods may be used. By combining these, a catalyst can be produced. In the case of the coprecipitation method, a water-soluble salt (nitrate, chloride, sulfate, acetate, etc.) of the metal as the third component of the catalyst metal is dissolved together with the aqueous solution A (aqueous solution B), Alternatively, a solution in which a water-soluble salt of these metals is dissolved (aqueous solution C) is separately prepared. As the water-soluble salt of the third component, nitrate is more preferable. The concentration of the third component in such an aqueous solution can also vary depending on the combination of components, conditions under which the catalyst is used, and the like, but is usually 0.1 to 5 mol / mol.
It is about l. The proportion of the third component of the catalytic metal used during the reaction may be appropriately determined according to the proportion of the third component required in the finally obtained catalyst. In the catalyst of the first invention of the present application, when the third component of the catalyst metal is used, the mixing ratio of copper: third component can also vary within a wide range, but usually is 1:
About 0.00147 to 7 (weight ratio), preferably 1:
About 0.016 to 3, more preferably 1: 0.05 to 2
It is about.

【0014】次いで、上記水溶液AまたはBを攪拌下に
アルカリ溶液と混合して、沈澱を形成させるか、或いは
水溶液Aと水溶液Cとを同時または順次アルカリ溶液と
混合して、沈澱を形成させる。触媒金属成分の水溶液と
アルカリ溶液との混合は、前者を後者に滴下する、或い
は後者を前者に滴下する、或いは蒸留水に両者を滴下す
るなどの任意の方法により、行なうことができる。アル
カリ溶液は、触媒金属成分を析出させるために使用する
ものであり、Na2 CO3 、NaHCO3 、NaOH、
2 CO3 、NH3 などのアルカリ物質の水溶液が使用
できるが、Na2 CO3 がより好ましい。アルカリ溶液
の濃度も、特に限定されるものではないが、通常0.1
〜5mol/l 程度である。
Next, the aqueous solution A or B is mixed with an alkaline solution with stirring to form a precipitate, or the aqueous solution A and the aqueous solution C are simultaneously or sequentially mixed with an alkaline solution to form a precipitate. The mixing of the aqueous solution of the catalytic metal component and the alkali solution can be performed by any method such as dripping the former into the latter, dripping the latter into the former, or dripping both into distilled water. The alkaline solution is used for precipitating a catalytic metal component, and includes Na 2 CO 3 , NaHCO 3 , NaOH,
An aqueous solution of an alkaline substance such as K 2 CO 3 or NH 3 can be used, but Na 2 CO 3 is more preferable. The concentration of the alkaline solution is not particularly limited, but is usually 0.1%.
About 5 mol / l.

【0015】触媒金属成分の水溶液とアルカリ溶液との
混合は、温度0〜90℃程度で行なうことが好ましい。
滴下による混合時の条件は、沈殿物中で触媒金属成分が
相互にイオンとして均一に分散した状態で析出する様に
行なえば良く、特に限定されない。沈澱の生成後には、
生成物の安定化を計るためには、常法に従って反応温度
乃至その近傍の温度で1〜24時間程度保持して、生成
物の熟成を行なうことができる。
The mixing of the aqueous solution of the catalytic metal component with the alkaline solution is preferably carried out at a temperature of about 0 to 90 ° C.
The conditions for mixing by dropping are not particularly limited as long as the catalyst metal components are precipitated in a state in which the catalyst metal components are uniformly dispersed as ions in each other. After the formation of a precipitate,
In order to stabilize the product, the product can be aged at a reaction temperature or a temperature close to the reaction temperature for about 1 to 24 hours according to a conventional method.

【0016】生成沈殿物は、アルカリ物質に由来するア
ルカリ金属、アルカリ物質および触媒金属源に由来する
陰イオンなどを含んでいるので、これらを洗浄除去した
後、空気中300〜600℃で焼成して複合酸化物の形
態とする。焼成温度がこの温度域よりも低いか或いは高
い場合には、触媒としての活性が不十分となる。
The resulting precipitate contains an alkali metal derived from an alkali substance, an anion derived from the alkali substance and a catalytic metal source, etc., and after washing and removing these, it is calcined at 300 to 600 ° C. in air. To form a composite oxide. If the firing temperature is lower or higher than this temperature range, the activity as a catalyst will be insufficient.

【0017】かくして、銅およびガリウムを必須成分と
する、本願第一発明のメタノール合成用触媒が得られ
る。この触媒は、そのまま用いても良く、必要ならば、
常法に従って、加圧成型、押し出し成型などの方法によ
り成型した成形体の形状で、或いは成型後粉砕した粒状
物の形態で、使用しても良い。成型触媒および粒状触媒
の粒子径、形状などは、特に限定されず、反応方式(気
相または液相)、反応器の形状などに応じて適宜選択す
ることができる。
Thus, the catalyst for methanol synthesis according to the first aspect of the present invention, which contains copper and gallium as essential components, is obtained. This catalyst may be used as it is, and if necessary,
It may be used in the form of a molded article molded by a method such as pressure molding or extrusion molding according to a conventional method, or in the form of a granulated substance crushed after molding. The particle size and shape of the molded catalyst and the granular catalyst are not particularly limited, and can be appropriately selected according to the reaction method (gas phase or liquid phase), the shape of the reactor, and the like.

【0018】また、上記の触媒は、使用に先立って水素
により還元しても良い。但し、この還元を行なわない場
合にも、水素を原料の一部として使用するメタノール合
成反応時に自然に還元されるので、事前の還元操作は必
須ではない。
The above catalyst may be reduced with hydrogen before use. However, even when this reduction is not performed, prior reduction is not essential because hydrogen is naturally reduced during the methanol synthesis reaction using hydrogen as a part of the raw material.

【0019】本願第1発明による触媒は、気相でのメタ
ノール合成反応においても、触媒を液体中に懸濁して行
なうメタノール合成反応においても、有用である。
The catalyst according to the first invention of the present application is useful both in a methanol synthesis reaction in the gas phase and in a methanol synthesis reaction carried out by suspending the catalyst in a liquid.

【0020】[0020]

【0021】[0021]

【0022】[0022]

【0023】[0023]

【0024】[0024]

【0025】[0025]

【0026】[0026]

【発明の効果】本発明によれば、酸化炭素を接触水素化
してメタノールを合成するに際し、250℃以下という
低温においても高活性を発揮する銅系触媒が得られる。
According to the present invention, a copper-based catalyst which exhibits high activity even at a low temperature of 250 ° C. or less when catalytically hydrogenating carbon oxide to synthesize methanol can be obtained.

【0027】より具体的には、本発明による触媒は、酸
化炭素の接触水素化によるメタノール合成に際して、低
温度域での酸化炭素の転化率およびメタノール選択率に
優れているので、メタノール収率を大幅に高めることが
できる。
More specifically, the catalyst according to the present invention is excellent in the conversion of methanol and the selectivity of methanol in a low temperature range in the synthesis of methanol by catalytic hydrogenation of carbon oxide. Can be greatly increased.

【0028】[0028]

【実施例】以下に実施例を示し、本発明の特徴とすると
ころをより一層明確にする。
EXAMPLES Examples are shown below to further clarify the features of the present invention.

【0029】実施例1 硝酸銅三水和物72.0g、硝酸ガリウム水和物68.
7gを蒸留水に溶解して、水溶液500mlを得た(水
溶液a−1)。一方、無水炭酸ナトリウム70.1gを
蒸留水に溶解して、水溶液500mlを得た(水溶液b
−1)。
Example 1 72.0 g of copper nitrate trihydrate, gallium nitrate hydrate
7 g was dissolved in distilled water to obtain 500 ml of an aqueous solution (aqueous solution a-1). On the other hand, 70.1 g of anhydrous sodium carbonate was dissolved in distilled water to obtain 500 ml of an aqueous solution (aqueous solution b).
-1).

【0030】次いで、蒸留水400mlに激しい攪拌下
に水溶液a−1および水溶液b−1をそれぞれ3ml/
分の速度で滴下し、得られた沈殿物を蒸留水で洗浄し、
110℃で乾燥し、空気中350℃で2時間焼成した
後、200kg/cm2 で加圧成型し、次いで成型物を
粉砕して、60〜80メッシュの粒状触媒を得た。
Then, an aqueous solution a-1 and an aqueous solution b-1 were each added to 400 ml of distilled water with vigorous stirring at a rate of 3 ml / water.
Minutes, the resulting precipitate is washed with distilled water,
After drying at 110 ° C. and calcining at 350 ° C. for 2 hours in the air, pressure molding was performed at 200 kg / cm 2 , and then the molded product was pulverized to obtain a 60-80 mesh granular catalyst.

【0031】得られた触媒成形体の組成は、CuO 5
5.6重量%およびGa2 3 44.4重量%であっ
た。
The composition of the obtained molded catalyst is CuO 5
5.6% by weight and 44.4% by weight of Ga 2 O 3 .

【0032】得られた触媒3mlを反応管に充填し、2
50℃で2時間水素還元した後(還元後の触媒体積2.
4ml)、CO2 25容量%とH2 75容量%の混
合ガスを触媒層に通して、圧力50kg/cm2 ・G、
混合ガス流量300ml/分、温度200℃または25
0℃の条件下に上記混合ガスを反応させた。
3 ml of the obtained catalyst was filled in a reaction tube, and 2
After hydrogen reduction at 50 ° C. for 2 hours (catalyst volume after reduction 2.
4 ml), a mixed gas of 25% by volume of CO 2 and 75% by volume of H 2 was passed through the catalyst layer, and the pressure was 50 kg / cm 2 · G.
Mixed gas flow rate 300ml / min, temperature 200 ℃ or 25
The mixed gas was reacted under the condition of 0 ° C.

【0033】反応生成ガスをガスクロマトグラフにより
分析し、CO2 転化率、メタノール選択率およびメタノ
ール空時収量を調べた。結果を表1に示す。
The reaction product gas was analyzed by gas chromatography, and the CO 2 conversion, methanol selectivity, and methanol space-time yield were examined. Table 1 shows the results.

【0034】メタノール以外の生成物は、主にCOであ
り、痕跡量のメタン、ジメチルエーテル、ギ酸メチルの
生成が認められた。
The products other than methanol were mainly CO, and the production of trace amounts of methane, dimethyl ether and methyl formate was observed.

【0035】比較例1 硝酸銅三水和物120.8gを蒸留水に溶解して、水溶
液500mlを得た(水溶液a−2)。一方、無水炭酸
ナトリウム58.3gを蒸留水に溶解して、水溶液50
0mlを得た(水溶液b−2)。
Comparative Example 1 120.8 g of copper nitrate trihydrate was dissolved in distilled water to obtain 500 ml of an aqueous solution (aqueous solution a-2). On the other hand, 58.3 g of anhydrous sodium carbonate was dissolved in distilled water to obtain an aqueous solution of 50%.
0 ml was obtained (aqueous solution b-2).

【0036】次いで、蒸留水400mlに激しい攪拌下
に水溶液a−2および水溶液b−2をそれぞれ3ml/
分の速度で滴下し、得られた沈殿物を蒸留水で洗浄し、
110℃で乾燥し、空気中350℃で2時間焼成した
後、200kg/cm2 で加圧成型し、次いで成型物を
粉砕して、60〜80メッシュの粒状触媒を得た。
Next, an aqueous solution a-2 and an aqueous solution b-2 were each added to 400 ml of distilled water under vigorous stirring at 3 ml / water.
Minutes, the resulting precipitate is washed with distilled water,
After drying at 110 ° C. and calcining at 350 ° C. for 2 hours in the air, pressure molding was performed at 200 kg / cm 2 , and then the molded product was pulverized to obtain a 60-80 mesh granular catalyst.

【0037】得られた触媒成形体の組成は、CuO 1
00重量%であった。
The composition of the obtained molded catalyst was CuO 1
00% by weight.

【0038】得られた触媒3mlを反応管に充填し、2
50℃で2時間水素還元した後(還元後の触媒体積1.
5ml)、CO2 25容量%とH2 75容量%の混
合ガスを触媒層に通して、圧力50kg/cm2 ・G、
混合ガス流量300ml/分、温度250℃の条件下に
上記混合ガスを反応させた。
3 ml of the obtained catalyst was charged into a reaction tube, and 2
After hydrogen reduction at 50 ° C. for 2 hours (catalyst volume after reduction 1.
5 ml), a mixed gas of 25% by volume of CO 2 and 75% by volume of H 2 was passed through the catalyst layer, and the pressure was 50 kg / cm 2 · G.
The mixed gas was reacted under the conditions of a mixed gas flow rate of 300 ml / min and a temperature of 250 ° C.

【0039】反応生成ガスをガスクロマトグラフにより
分析し、CO2 転化率、メタノール選択率およびメタノ
ール空時収量を調べた。結果を表1に示す。
The reaction product gas was analyzed by gas chromatography, and the CO 2 conversion, methanol selectivity, and methanol space-time yield were examined. Table 1 shows the results.

【0040】メタノール以外の生成物は、主にCOであ
り、痕跡量のメタン、ジメチルエーテル、ギ酸メチルの
生成が認められた。
The products other than methanol were mainly CO, and the formation of trace amounts of methane, dimethyl ether and methyl formate was observed.

【0041】実施例2 硝酸銅三水和物69.9g、硝酸亜鉛六水和物26.3
gおよび硝酸ガリウム水和物33.7gを蒸留水に溶解
して、水溶液500mlを得た(水溶液a−3)。一
方、無水炭酸ナトリウム55.4gを蒸留水に溶解し
て、水溶液500mlを得た(水溶液b−3)。
Example 2 69.9 g of copper nitrate trihydrate and 26.3 of zinc nitrate hexahydrate
g and 33.7 g of gallium nitrate hydrate were dissolved in distilled water to obtain 500 ml of an aqueous solution (aqueous solution a-3). On the other hand, 55.4 g of anhydrous sodium carbonate was dissolved in distilled water to obtain 500 ml of an aqueous solution (aqueous solution b-3).

【0042】次いで、蒸留水400mlに激しい攪拌下
に水溶液a−3および水溶液b−3をそれぞれ3ml/
分の速度で滴下し、得られた沈殿物を蒸留水で洗浄し、
110℃で乾燥し、空気中350℃で2時間焼成した
後、200kg/cm2 で加圧成型し、次いで成型物を
粉砕して、60〜80メッシュの粒状触媒を得た。
Then, an aqueous solution a-3 and an aqueous solution b-3 were each added to 400 ml of distilled water under vigorous stirring at 3 ml / water.
Minutes, the resulting precipitate is washed with distilled water,
After drying at 110 ° C. and calcining at 350 ° C. for 2 hours in the air, pressure molding was performed at 200 kg / cm 2 , and then the molded product was pulverized to obtain a 60-80 mesh granular catalyst.

【0043】得られた粒状触媒の組成は、CuO 6
0.1重量%、ZnO 18.9重量%およびGa2
3 21.0重量%であった。
The composition of the obtained granular catalyst was CuO 6
0.1% by weight, 18.9% by weight of ZnO and Ga 2 O
3 21.0% by weight.

【0044】得られた触媒3mlを実施例1と同様にし
て還元した後、実施例1と同様の条件下にCO2 25
容量%とH2 75容量%の混合ガスを反応させた。
After reducing 3 ml of the obtained catalyst in the same manner as in Example 1, CO 2 25 was added under the same conditions as in Example 1.
A mixed gas containing 75% by volume of H 2 and 75% by volume of H 2 was reacted.

【0045】反応生成ガスをガスクロマトグラフにより
分析し、CO2 転化率、メタノール選択率およびメタノ
ール空時収量を調べた。結果を表1に示す。
The reaction product gas was analyzed by gas chromatography, and the CO 2 conversion, methanol selectivity, and methanol space-time yield were examined. Table 1 shows the results.

【0046】メタノール以外の生成物は、主にCOであ
り、痕跡量のメタン、ジメチルエーテル、ギ酸メチルの
生成が認められた。
The products other than methanol were mainly CO, and the formation of trace amounts of methane, dimethyl ether and methyl formate was observed.

【0047】比較例2 硝酸銅三水和物67.8gおよび硝酸亜鉛六水和物6
5.2gを蒸留水に溶解して、水溶液500mlを得た
(水溶液a−4)。一方、無水炭酸ナトリウム55.4
gを蒸留水に溶解して、水溶液500mlを得た(水溶
液b−4)。
Comparative Example 2 67.8 g of copper nitrate trihydrate and zinc nitrate hexahydrate 6
5.2 g was dissolved in distilled water to obtain 500 ml of an aqueous solution (aqueous solution a-4). On the other hand, anhydrous sodium carbonate 55.4
g was dissolved in distilled water to obtain 500 ml of an aqueous solution (aqueous solution b-4).

【0048】次いで、蒸留水400mlに激しい攪拌下
に水溶液a−4および水溶液b−4をそれぞれ3ml/
分の速度で滴下し、得られた沈殿物を蒸留水で洗浄し、
110℃で乾燥し、空気中350℃で2時間焼成した
後、200kg/cm2 で加圧成型し、次いで成型物を
粉砕して、60〜80メッシュの粒状触媒を得た。
Next, the aqueous solution a-4 and the aqueous solution b-4 were each added to 400 ml of distilled water under vigorous stirring at 3 ml / water.
Minutes, the resulting precipitate is washed with distilled water,
After drying at 110 ° C. and calcining at 350 ° C. for 2 hours in the air, pressure molding was performed at 200 kg / cm 2 , and then the molded product was pulverized to obtain a 60-80 mesh granular catalyst.

【0049】得られた粒状触媒の組成は、CuO 5
5.6重量%およびZnO 44.4重量%であった。
The composition of the obtained granular catalyst was CuO 5
It was 5.6% by weight and 44.4% by weight of ZnO.

【0050】得られた触媒3mlを反応管に充填し、実
施例1と同様にして還元した後、実施例1と同様の条件
下にCO 25容量%とH 75 容量%の混合ガ
スを反応させた。
After 3 ml of the obtained catalyst was filled in a reaction tube and reduced in the same manner as in Example 1, a mixed gas of 25% by volume of CO 2 and 75% by volume of H 2 was added under the same conditions as in Example 1. Reacted.

【0051】反応生成ガスをガスクロマトグラフにより
分析し、CO2 転化率、メタノール選択率およびメタノ
ール空時収量を調べた。結果を表1に示す。
The reaction product gas was analyzed by gas chromatography, and the CO 2 conversion, methanol selectivity, and methanol space-time yield were examined. Table 1 shows the results.

【0052】メタノール以外の生成物は、主にCOであ
り、痕跡量のメタン、ジメチルエーテル、ギ酸メチルの
生成が認められた。
The products other than methanol were mainly CO, and the production of trace amounts of methane, dimethyl ether and methyl formate was observed.

【0053】実施例3 硝酸銅三水和物72.6g、硝酸亜鉛六水和物34.8
g、オキシ硝酸ジルコニウム16.6gおよび硝酸ガリ
ウム水和物8.1gを蒸留水に溶解して、水溶液500
mlを得た(水溶液a−5)。一方、無水炭酸ナトリウ
ム55.9gを蒸留水に溶解して、水溶液500mlを
得た(水溶液b−5)。
Example 3 72.6 g of copper nitrate trihydrate, 34.8 g of zinc nitrate hexahydrate
g, 16.6 g of zirconium oxynitrate and 8.1 g of gallium nitrate hydrate were dissolved in distilled water to obtain an aqueous solution of 500 g.
ml was obtained (aqueous solution a-5). On the other hand, 55.9 g of anhydrous sodium carbonate was dissolved in distilled water to obtain 500 ml of an aqueous solution (aqueous solution b-5).

【0054】次いで、蒸留水400mlに激しい攪拌下
に水溶液a−5および水溶液b−5をそれぞれ3ml/
分の速度で滴下し、得られた沈殿物を蒸留水で洗浄し、
110℃で乾燥し、空気中350℃で2時間焼成した
後、200kg/cm2 で加圧成型し、次いで成型物を
粉砕して、60〜80メッシュの粒状触媒を得た。
Then, an aqueous solution a-5 and an aqueous solution b-5 were each added to 400 ml of distilled water with vigorous stirring at a rate of 3 ml / water.
Minutes, the resulting precipitate is washed with distilled water,
After drying at 110 ° C. and calcining at 350 ° C. for 2 hours in the air, pressure molding was performed at 200 kg / cm 2 , and then the molded product was pulverized to obtain a 60-80 mesh granular catalyst.

【0055】得られた粒状触媒の組成は、CuO 5
5.6重量%、ZnO 22.2重量%、ZrO2
7.8重量%およびGa2 3 4.4重量%であっ
た。
The composition of the obtained granular catalyst was CuO 5
5.6% by weight, ZnO 22.2% by weight, ZrO 2 1
7.8% by weight and 4.4% by weight of Ga 2 O 3 .

【0056】得られた触媒3mlを実施例1と同様にし
て還元した後、実施例1と同様の条件下にCO2 25
容量%とH2 75容量%の混合ガスを反応させた。
After reducing 3 ml of the obtained catalyst in the same manner as in Example 1, CO 2 25 was added under the same conditions as in Example 1.
A mixed gas containing 75% by volume of H 2 and 75% by volume of H 2 was reacted.

【0057】反応生成ガスをガスクロマトグラフにより
分析し、CO2 転化率、メタノール選択率およびメタノ
ール空時収量を調べた。結果を表1に示す。
The reaction product gas was analyzed by gas chromatography, and the CO 2 conversion, methanol selectivity, and methanol space-time yield were examined. Table 1 shows the results.

【0058】メタノール以外の生成物は、主にCOであ
り、痕跡量のメタン、ジメチルエーテル、ギ酸メチルの
生成が認められた。
The products other than methanol were mainly CO, and the production of trace amounts of methane, dimethyl ether and methyl formate was observed.

【0059】比較例3 硝酸銅三水和物146.6g、硝酸亜鉛六水和物70.
4gおよびオキシ硝酸ジルコニウム41.9gを蒸留水
に溶解して、水溶液1000mlを得た(水溶液a−
6)。一方、無水炭酸ナトリウム116.6gを蒸留水
に溶解して、水溶液1000mlを得た(水溶液b−
6)。
COMPARATIVE EXAMPLE 3 146.6 g of copper nitrate trihydrate, zinc nitrate hexahydrate
4 g and 41.9 g of zirconium oxynitrate were dissolved in distilled water to obtain 1000 ml of an aqueous solution (aqueous solution a-
6). On the other hand, 116.6 g of anhydrous sodium carbonate was dissolved in distilled water to obtain 1000 ml of an aqueous solution (aqueous solution b-
6).

【0060】次いで、蒸留水400mlに激しい攪拌下
に水溶液a−6および水溶液b−6をそれぞれ3ml/
分の速度で滴下し、得られた沈殿物を蒸留水で洗浄し、
110℃で乾燥し、空気中350℃で2時間焼成した
後、200kg/cm2 で加圧成型し、次いで成型物を
粉砕して、60〜80メッシュの粒状触媒を得た。
Next, the aqueous solution a-6 and the aqueous solution b-6 were each added to 400 ml of distilled water under vigorous stirring at 3 ml / water.
Minutes, the resulting precipitate is washed with distilled water,
After drying at 110 ° C. and calcining at 350 ° C. for 2 hours in the air, pressure molding was performed at 200 kg / cm 2 , and then the molded product was pulverized to obtain a 60-80 mesh granular catalyst.

【0061】得られた粒状触媒の組成は、CuO 5
5.6重量%,ZnO 22.2重量%およびZrO2
22.2重量%であった。
The composition of the obtained granular catalyst was CuO 5
5.6% by weight, 22.2% by weight of ZnO and ZrO 2
22.2% by weight.

【0062】得られた触媒3mlを実施例1と同様にし
て還元した後、実施例1と同様の条件下にCO2 25
容量%とH2 75容量%との混合ガスを反応させた。
After reducing 3 ml of the obtained catalyst in the same manner as in Example 1, CO 2 25 was added under the same conditions as in Example 1.
A mixed gas of volume% and 75 volume% of H 2 was reacted.

【0063】反応生成ガスをガスクロマトグラフにより
分析し、CO2 転化率、メタノール選択率およびメタノ
ール空時収量を調べた。結果を表1に示す。
The reaction product gas was analyzed by gas chromatography to examine the CO 2 conversion, methanol selectivity, and methanol space-time yield. Table 1 shows the results.

【0064】メタノール以外の生成物は、主にCOであ
り、痕跡量のメタン、ジメチルエーテル、ギ酸メチルの
生成が認められた。
The products other than methanol were mainly CO, and the production of trace amounts of methane, dimethyl ether and methyl formate was observed.

【0065】[0065]

【表1】 [Table 1]

【0066】表1に示す結果から、COの水素化によ
るメタノールの合成に際し使用される酸化銅および/ま
たは銅を含む触媒において、Gaの存在がCO
転化率およびメタノール転化率を高め、その結果メタノ
ールの収量を大幅に増大させていることが明らかであ
る。
From the results shown in Table 1, in the copper oxide and / or copper-containing catalyst used in the synthesis of methanol by hydrogenation of CO 2 , the presence of Ga 2 O 3 indicates that CO 2 is present.
It is evident that the conversion and methanol conversion were increased, resulting in a significant increase in methanol yield.

【0067】実施例4 実施例3で得られたと同様の触媒1mlを反応管に充填
し、250℃で2時間水素還元した後(還元後の触媒体
積2.4ml)、CO2 25容量%、CO6.2容量
%およびH2 68.8容量%の混合ガスを触媒層に通
して、圧力50kg/cm2 ・G、混合ガス流量300
ml/分、温度250℃の条件下に上記混合ガスを反応
させた。
[0067] charged to the reaction tube the same catalyst 1ml and obtained in Example 3, was 2 hours hydrogen reduction at 250 ° C. (catalyst volume 2.4ml after reduction), CO 2 25% by volume, A mixed gas of 6.2% by volume of CO and 68.8% by volume of H 2 was passed through the catalyst layer, and the pressure was 50 kg / cm 2 · G, and the mixed gas flow rate was 300.
The mixed gas was reacted under the conditions of ml / min and a temperature of 250 ° C.

【0068】反応生成ガスをガスクロマトグラフにより
分析し、(CO2 +CO)転化率、メタノール選択率お
よびメタノール空時収量を調べた。結果を表2に示す。
The reaction product gas was analyzed by gas chromatography, and the (CO 2 + CO) conversion, methanol selectivity, and methanol space-time yield were examined. Table 2 shows the results.

【0069】メタノール以外の生成物は、痕跡量のメタ
ン、ジメチルエーテル、ギ酸メチルであった。
The products other than methanol were traces of methane, dimethyl ether and methyl formate.

【0070】比較例4 比較例3で得られたと同様の触媒1mlを実施例4と同
様にして還元した後、実施例4と同様の条件下にCO
25容量%、CO 6.2容量%およびH68.8
容量%の混合ガスを反応させた。
COMPARATIVE EXAMPLE 4 1 ml of the same catalyst as obtained in Comparative Example 3 was reduced in the same manner as in Example 4, and CO 2 was reduced under the same conditions as in Example 4.
25% by volume, 6.2% by volume of CO 2 and 68.8 of H 2
A volume% of the mixed gas was reacted.

【0071】反応生成ガスをガスクロマトグラフにより
分析し、(CO2 +CO)転化率、メタノール選択率お
よびメタノール空時収量を調べた。結果を表2に示す。
The reaction product gas was analyzed by gas chromatography, and the (CO 2 + CO) conversion, methanol selectivity and methanol space-time yield were examined. Table 2 shows the results.

【0072】メタノール以外の生成物は、痕跡量のメタ
ン、ジメチルエーテル、ギ酸メチルであった。
The products other than methanol were traces of methane, dimethyl ether and methyl formate.

【0073】[0073]

【表2】 [Table 2]

【0074】また、メタノールがCO2 の水素化により
合成されること(K.C.Waugh,Catalysis Today 15,51(19
92) )から当然のことであるが、COを含む混合ガスの
水素化によるメタノール合成に際しても、酸化銅および
/または銅を含む触媒において、Ga2 3 の存在が
(CO+CO2 )転化率およびメタノール転化率を高
め、その結果メタノールの収量を大幅に増大させている
ことが明らかである。
Further, methanol is synthesized by hydrogenation of CO 2 (KC Waugh, Catalysis Today 15, 51 (19)
As a matter of course from 92)), in the synthesis of methanol by hydrogenation of a mixed gas containing CO, the presence of Ga 2 O 3 in the catalyst containing copper oxide and / or copper shows the (CO + CO 2 ) conversion and It is evident that the methanol conversion has been increased, thereby significantly increasing the methanol yield.

【0075】参考例1 硝酸銅三水和物146.6g、硝酸亜鉛六水和物70.
4gおよびオキシ硝酸ジルコニウム41.9gを蒸留水
に溶解して、水溶液1000mlを得た(水溶液a−
7)。一方、無水炭酸ナトリウム116.6gを蒸留水
に溶解して、水溶液1000mlを得た(水溶液b−
7)。
Reference Example 1 146.6 g of copper nitrate trihydrate, zinc nitrate hexahydrate
4 g and 41.9 g of zirconium oxynitrate were dissolved in distilled water to obtain 1000 ml of an aqueous solution (aqueous solution a-
7). On the other hand, 116.6 g of anhydrous sodium carbonate was dissolved in distilled water to obtain 1000 ml of an aqueous solution (aqueous solution b-
7).

【0076】次いで、蒸留水400mlに激しい攪拌下
に水溶液a−7および水溶液b−7をそれぞれ3ml/
分の速度で滴下し、得られた沈殿物を蒸留水で洗浄し、
110℃で乾燥し、空気中350℃で2時間焼成した。
Then, an aqueous solution a-7 and an aqueous solution b-7 were each added to 400 ml of distilled water under vigorous stirring at 3 ml / water.
Minutes, the resulting precipitate is washed with distilled water,
It was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours.

【0077】次いで、この様にして得られた焼成物2g
にメタバナジン酸アンモニウム0.08gを溶解した水
溶液5mlを加え、乾燥し、空気中350℃で2時間焼
成した。
Then, 2 g of the fired product thus obtained was obtained.
Then, 5 ml of an aqueous solution in which 0.08 g of ammonium metavanadate was dissolved was added, dried, and calcined at 350 ° C. for 2 hours in the air.

【0078】得られた粒状触媒の組成は、CuO 5
3.9重量%、ZnO 21.5重量%、ZrO2
1.5重量%およびV2 5 3.0重量%であった。
The composition of the obtained granular catalyst was CuO 5
3.9% by weight, ZnO 21.5% by weight, ZrO 2 2
1.5% by weight and 3.0% by weight of V 2 O 5 .

【0079】得られた触媒1mlを管状反応器に充填
し、250℃で2時間水素還元した後、CO2 25容
量%とH2 75容量%の混合ガスを触媒層に通して、
圧力50kg/cm2 ・G、混合ガス流量300ml/
分、温度200℃または250℃の条件下に反応を行な
った。
After filling 1 ml of the obtained catalyst in a tubular reactor and reducing it with hydrogen at 250 ° C. for 2 hours, a mixed gas of 25% by volume of CO 2 and 75% by volume of H 2 was passed through the catalyst layer.
Pressure 50kg / cm 2 · G, mixed gas flow rate 300ml /
The reaction was carried out at a temperature of 200 ° C. or 250 ° C. for one minute.

【0080】反応生成ガスをガスクロマトグラフにより
分析し、CO2 転化率、メタノール選択率およびメタノ
ール空時収量を調べた。結果を表3に示す。
The reaction product gas was analyzed by gas chromatography, and the CO 2 conversion, methanol selectivity, and methanol space-time yield were examined. Table 3 shows the results.

【0081】メタノール以外の生成物は、主にCOであ
り、痕跡量のメタン、ジメチルエーテル、ギ酸メチルの
生成が認められた。
The products other than methanol were mainly CO, and the production of trace amounts of methane, dimethyl ether and methyl formate was observed.

【0082】比較例5 硝酸銅三水和物146.6g、硝酸亜鉛六水和物70.
4gおよびオキシ硝酸ジルコニウム41.9gを蒸留水
に溶解して、水溶液1000mlを得た(水溶液a−
8)。一方、無水炭酸ナトリウム116.6gを蒸留水
に溶解して、水溶液1000mlを得た(水溶液b−
8)。
Comparative Example 5 146.6 g of copper nitrate trihydrate, zinc nitrate hexahydrate
4 g and 41.9 g of zirconium oxynitrate were dissolved in distilled water to obtain 1000 ml of an aqueous solution (aqueous solution a-
8). On the other hand, 116.6 g of anhydrous sodium carbonate was dissolved in distilled water to obtain 1000 ml of an aqueous solution (aqueous solution b-
8).

【0083】次いで、蒸留水400mlに激しい攪拌下
に水溶液a−8および水溶液b−8をそれぞれ3ml/
分の速度で滴下し、得られた沈殿物を蒸留水で洗浄し、
110℃で乾燥し、空気中350℃で2時間焼成した。
Next, an aqueous solution a-8 and an aqueous solution b-8 were added to 400 ml of distilled water under vigorous stirring at a rate of 3 ml / water.
Minutes, the resulting precipitate is washed with distilled water,
It was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours.

【0084】得られた粒状触媒の組成は、CuO 5
5.6重量%、ZnO 22.2重量%およびZrO2
22.2重量%であった。
The composition of the obtained granular catalyst was CuO 5
5.6% by weight, 22.2% by weight of ZnO and ZrO 2
22.2% by weight.

【0085】得られた触媒1mlを実施例5と同様にし
て還元した後、実施例5と同様の条件下にCO2 25
容量%とH2 75容量%との混合ガスを反応させた。
After 1 ml of the obtained catalyst was reduced in the same manner as in Example 5, CO 2 25 was added under the same conditions as in Example 5.
A mixed gas of volume% and 75 volume% of H 2 was reacted.

【0086】反応生成ガスをガスクロマトグラフにより
分析し、CO2 転化率、メタノール選択率およびメタノ
ール空時収量を調べた。結果を表3に示す。
The reaction product gas was analyzed by gas chromatography, and the CO 2 conversion, methanol selectivity, and methanol space-time yield were examined. Table 3 shows the results.

【0087】メタノール以外の生成物は、主にCOであ
り、痕跡量のメタン、ジメチルエーテル、ギ酸メチルの
生成が認められた。
The products other than methanol were mainly CO, and the production of trace amounts of methane, dimethyl ether and methyl formate was observed.

【0088】参考例2 硝酸銅三水和物146.6g、硝酸亜鉛六水和物70.
4gおよびオキシ硝酸ジルコニウム41.9gを蒸留水
に溶解して、水溶液1000mlを得た(水溶液a−
9)。一方、無水炭酸ナトリウム116.6gを蒸留水
に溶解して、水溶液1000mlを得た(水溶液b−
9)。
Reference Example 2 146.6 g of copper nitrate trihydrate, zinc nitrate hexahydrate
4 g and 41.9 g of zirconium oxynitrate were dissolved in distilled water to obtain 1000 ml of an aqueous solution (aqueous solution a-
9). On the other hand, 116.6 g of anhydrous sodium carbonate was dissolved in distilled water to obtain 1000 ml of an aqueous solution (aqueous solution b-
9).

【0089】次いで、蒸留水400mlに激しい攪拌下
に水溶液a−9および水溶液b−9をそれぞれ3ml/
分の速度で滴下し、得られた沈殿物を蒸留水で洗浄し、
110℃で乾燥し、空気中350℃で2時間焼成した。
Next, an aqueous solution a-9 and an aqueous solution b-9 were added to 400 ml of distilled water with vigorous stirring at a rate of 3 ml / water.
Minutes, the resulting precipitate is washed with distilled water,
It was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours.

【0090】次いで、この様にして得られた焼成物2g
にモリブデン酸アンモニウム0.075gを溶解した水
溶液5mlを加え、乾燥し、空気中350℃で2時間焼
成した。
Next, 2 g of the fired product thus obtained was obtained.
Then, 5 ml of an aqueous solution in which 0.075 g of ammonium molybdate was dissolved was added, dried, and calcined at 350 ° C. for 2 hours in the air.

【0091】得られた粒状触媒の組成は、CuO 5
3.9重量%、ZnO 21.5重量%、ZrO2
1.5重量%およびMoO3 3.0重量%であった。
The composition of the obtained granular catalyst was CuO 5
3.9% by weight, ZnO 21.5% by weight, ZrO 2 2
1.5% by weight and 3.0% by weight of MoO 3 .

【0092】得られた触媒1mlを実施例5と同様にし
て還元した後、実施例5と同様な条件下にCO2 25
容量%とH2 75容量%の混合ガスを反応させた。
After 1 ml of the obtained catalyst was reduced in the same manner as in Example 5, CO 2 25 was reduced under the same conditions as in Example 5.
A mixed gas containing 75% by volume of H 2 and 75% by volume of H 2 was reacted.

【0093】反応生成ガスをガスクロマトグラフにより
分析し、CO2 転化率、メタノール選択率およびメタノ
ール空時収量を調べた。結果を表3に示す。
The reaction product gas was analyzed by gas chromatography to examine the CO 2 conversion, methanol selectivity, and methanol space-time yield. Table 3 shows the results.

【0094】メタノール以外の生成物は、主にCOであ
り、痕跡量のメタン、ジメチルエーテル、ギ酸メチルの
生成が認められた。
The products other than methanol were mainly CO, and the production of trace amounts of methane, dimethyl ether and methyl formate was observed.

【0095】参考例3 硝酸銅三水和物146.6g、硝酸亜鉛六水和物70.
4gおよびオキシ硝酸ジルコニウム41.9gを蒸留水
に溶解して、水溶液1000mlを得た(水溶液a−1
0)。一方、無水炭酸ナトリウム116.6gを蒸留水
に溶解して、水溶液1000mlを得た(水溶液b−1
0)。
Reference Example 3 146.6 g of copper nitrate trihydrate, zinc nitrate hexahydrate
4 g and 41.9 g of zirconium oxynitrate were dissolved in distilled water to obtain 1000 ml of an aqueous solution (aqueous solution a-1).
0). On the other hand, 116.6 g of anhydrous sodium carbonate was dissolved in distilled water to obtain 1000 ml of an aqueous solution (aqueous solution b-1).
0).

【0096】次いで、蒸留水400mlに激しい攪拌下
に水溶液a−10および水溶液b−10をそれぞれ3m
l/分の速度で滴下し、得られた沈殿物を蒸留水で洗浄
し、110℃で乾燥し、空気中350℃で2時間焼成し
た。
Next, the aqueous solution a-10 and the aqueous solution b-10 were each mixed with 400 ml of distilled water under vigorous stirring for 3 m.
The resulting precipitate was washed with distilled water, dried at 110 ° C., and calcined in air at 350 ° C. for 2 hours.

【0097】次いで、この様にして得られた焼成物2g
にパラタングステン酸アンモニウム0.068gを溶解
した水溶液5mlを加え、乾燥し、空気中350℃で2
時間焼成した。
Next, 2 g of the fired product thus obtained was obtained.
Was added with 5 ml of an aqueous solution in which 0.068 g of ammonium paratungstate was dissolved, and the mixture was dried.
Fired for hours.

【0098】得られた粒状触媒の組成は、CuO 5
3.9重量%、ZnO 21.5重量%、ZrO2
1.5重量%およびWO3 3.0重量%であった。
The composition of the obtained granular catalyst was CuO 5
3.9% by weight, ZnO 21.5% by weight, ZrO 2 2
It was 1.5% by weight and WO 3 3.0% by weight.

【0099】得られた触媒1mlを実施例5と同様にし
て還元した後、実施例5と同様な条件下にCO2 25
容量%とH2 75容量%の混合ガスを反応させた。
After reducing 1 ml of the obtained catalyst in the same manner as in Example 5, CO 2 25 was added under the same conditions as in Example 5.
A mixed gas containing 75% by volume of H 2 and 75% by volume of H 2 was reacted.

【0100】反応生成ガスをガスクロマトグラフにより
分析し、CO2 転化率、メタノール選択率およびメタノ
ール空時収量を調べた。結果を表3に示す。
The reaction product gas was analyzed by gas chromatography to examine the CO 2 conversion, methanol selectivity, and methanol space-time yield. Table 3 shows the results.

【0101】メタノール以外の生成物は、主にCOであ
り、痕跡量のメタン、ジメチルエーテル、ギ酸メチルの
生成が認められた。
The products other than methanol were mainly CO, and the production of trace amounts of methane, dimethyl ether and methyl formate was observed.

【0102】[0102]

【表3】 [Table 3]

【0103】表3に示す結果から、CO2 の接触水素化
によるメタノール合成用の酸化銅および/または銅と酸
化亜鉛とを含む触媒においても、V2 5 、MoO3
よびWO3 の少なくとも1種の存在がCO2 転化率およ
びメタノール転化率を高め、その結果メタノールの収量
を大幅に増大させていることが明らかである。
From the results shown in Table 3, at least one of V 2 O 5 , MoO 3 and WO 3 was found to be present in the catalyst containing methanol and copper oxide and / or copper and zinc oxide for the catalytic hydrogenation of CO 2. It is evident that the presence of the species increases the CO 2 conversion and the methanol conversion, thereby greatly increasing the methanol yield.

フロントページの続き (73)特許権者 000000974 川崎重工業株式会社 兵庫県神戸市中央区東川崎町3丁目1番 1号 (73)特許権者 000156961 関西熱化学株式会社 兵庫県尼崎市大浜町2丁目23番地 (73)特許権者 000001199 株式会社神戸製鋼所 兵庫県神戸市中央区脇浜町1丁目3番18 号 (73)特許権者 000183303 住友金属鉱山株式会社 東京都港区新橋5丁目11番3号 (73)特許権者 000005887 三井化学株式会社 東京都千代田区霞が関三丁目2番5号 (74)上記6名の代理人 100065215 弁理士 三枝 英二 (外4名) (72)発明者 斉藤 昌弘 茨城県つくば市小野川16−3 工業技術 院資源環境技術総合研究所内 (72)発明者 藤谷 忠博 茨城県つくば市小野川16−3 工業技術 院資源環境技術総合研究所内 (72)発明者 佐々木 義之 茨城県つくば市小野川16−3 工業技術 院資源環境技術総合研究所内 (72)発明者 富永 健一 茨城県つくば市小野川16−3 工業技術 院資源環境技術総合研究所内 (72)発明者 渡辺 大器 東京都港区西新橋2−8−11 財団法人 地球環境産業技術研究機構内 (72)発明者 河井 基益 東京都港区西新橋2−8−11 財団法人 地球環境産業技術研究機構内 (72)発明者 武内 正己 東京都港区西新橋2−8−11 財団法人 地球環境産業技術研究機構内 (72)発明者 金井 勇樹 東京都港区西新橋2−8−11 財団法人 地球環境産業技術研究機構内 (72)発明者 守屋 圭子 東京都港区西新橋2−8−11 財団法人 地球環境産業技術研究機構内 (72)発明者 角本 輝充 東京都港区西新橋2−8−11 財団法人 地球環境産業技術研究機構内 審査官 関 美祝 (56)参考文献 特開 昭57−130547(JP,A) 特開 昭64−27645(JP,A) 特開 昭59−98024(JP,A) 特開 昭60−197633(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 C07B 61/00 300 Continuation of the front page (73) Patent holder 000000974 Kawasaki Heavy Industries, Ltd. 3-1-1, Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo (73) Patent holder 000156961 Kansai Thermochemical Co., Ltd. 2-23 Ohamacho, Amagasaki-shi, Hyogo Address (73) Patent holder 000001199 Kobe Steel, Ltd. 1-3-18, Wakihama-cho, Chuo-ku, Kobe-shi, Hyogo (73) Patent holder 000183303 Sumitomo Metal Mining Co., Ltd. 5-113, Shimbashi, Minato-ku, Tokyo, Japan (73) Patent holder 000005887 Mitsui Chemicals, Inc. 3-5-2 Kasumigaseki, Chiyoda-ku, Tokyo (74) The above six agents 100065215 Patent Attorney Eiji Saegusa (four others) (72) Inventor Masahiro Saito Ibaraki 16-3 Onogawa, Tsukuba City, National Institute of Advanced Industrial Science and Technology (72) Inventor Tadahiro Fujitani 16-3, Onogawa, Tsukuba City, Ibaraki Prefecture Inside the National Institute of Advanced Industrial Science and Technology (72) Inventor Yoshiyuki Sasaki Tsukuba, Ibaraki 16-3 Onogawa Research Institute of Industrial Technology In-house (72) Inventor Kenichi Tominaga 16-3 Onogawa, Tsukuba, Ibaraki Pref. National Institute of Advanced Industrial Science and Technology (72) Inventor Daiki Watanabe 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo Global Environmental Industrial Technology Within the Research Organization (72) Inventor Motoi Kawai 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo Within the National Institute for Global Environmental Technology (72) Inventor Masami Takeuchi 2-8-11, Nishi-Shimbashi, Minato-ku, Tokyo Foundation Inside the Research Institute of Innovative Technology for the Earth (72) Inventor Yuki Kanai 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo Inside the Research Institute for Innovative Technology for the Earth (72) Keiko Moriya 2--Nishi-Shimbashi, Minato-ku, Tokyo 8-11 Inside the Research Institute of Innovative Technology for the Earth (72) Inventor Terumitsu Kadomoto 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo Examiner in the Research Institute of Innovative Technology for the Environment Yoshihisa Seki (56) References JP-A-57-130547 (JP, A) JP-A-64-27645 (JP, A) JP-A-59-9924 (JP, A) 60-197633 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01J 21/00-38/74 C07B 61/00 300

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二酸化炭素および水素を含む混合ガスを反
応原料とするメタノール合成用触媒において、酸化銅お
よび/または銅並びにガリウムを配合したことを特徴と
する触媒。
1. A catalyst for methanol synthesis using a mixed gas containing carbon dioxide and hydrogen as a reaction raw material, wherein copper oxide and / or copper and gallium are blended.
【請求項2】酸化銅および/または銅並びにガリウムを
活性成分とする請求項1に記載のメタノール合成用触
媒。
2. The catalyst for methanol synthesis according to claim 1, comprising copper oxide and / or copper and gallium as active components.
【請求項3】さらに、酸化亜鉛、酸化アルミニウム、酸
化ジルコニウム、酸化クロムおよびパラジウムからなる
群から選択される少なくとも一種を活性成分とする請求
項1または2に記載のメタノール合成用触媒。
3. The catalyst for methanol synthesis according to claim 1, further comprising at least one selected from the group consisting of zinc oxide, aluminum oxide, zirconium oxide, chromium oxide and palladium as an active ingredient.
JP33131592A 1992-12-11 1992-12-11 Catalyst for methanol synthesis Expired - Lifetime JP3163374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33131592A JP3163374B2 (en) 1992-12-11 1992-12-11 Catalyst for methanol synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33131592A JP3163374B2 (en) 1992-12-11 1992-12-11 Catalyst for methanol synthesis

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP32686198A Division JP3376380B2 (en) 1998-11-17 1998-11-17 Catalyst for methanol synthesis

Publications (2)

Publication Number Publication Date
JPH06312138A JPH06312138A (en) 1994-11-08
JP3163374B2 true JP3163374B2 (en) 2001-05-08

Family

ID=18242315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33131592A Expired - Lifetime JP3163374B2 (en) 1992-12-11 1992-12-11 Catalyst for methanol synthesis

Country Status (1)

Country Link
JP (1) JP3163374B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69808983T2 (en) * 1997-03-31 2003-08-07 Director General Of Agency Of Industrial Science And Technology, Tokio/Tokyo Methanol synthesis and reforming catalyst consisting of copper, zinc and aluminum
SG173804A1 (en) 2009-02-23 2011-09-29 Mitsui Chemicals Inc Copper-based catalyst manufacturing method, copper-based catalyst, and pretreatment method for same
JP5716669B2 (en) 2009-10-23 2015-05-13 三菱瓦斯化学株式会社 Methanol synthesis catalyst
JPWO2012067222A1 (en) 2010-11-19 2014-05-19 三井化学株式会社 Method for producing methanol
JP5628016B2 (en) * 2010-12-08 2014-11-19 三井化学株式会社 Method for producing copper catalyst and method for aging copper catalyst precursor
EP2857095B1 (en) 2012-06-04 2023-11-08 Mitsui Chemicals, Inc. Catalyst for methanol production, method for producing same, and method for producing methanol
WO2020110151A1 (en) 2018-11-29 2020-06-04 Jawaharlal Nehru Centre For Advanced Scientific Research Catalyst, its process of preparation, and applications towards carbon dioxide to chemicals
JP7332871B2 (en) * 2019-08-29 2023-08-24 日本製鉄株式会社 Methanol production method and methanol production catalyst

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130547A (en) * 1981-02-06 1982-08-13 Mitsubishi Gas Chem Co Inc Catalyst for methanol synthesis

Also Published As

Publication number Publication date
JPH06312138A (en) 1994-11-08

Similar Documents

Publication Publication Date Title
JP3232326B2 (en) Copper-based catalyst and method for producing the same
JP2557959B2 (en) Process for producing alcohols and olefins from H 2) and CO 2) using iron carbide based catalysts
CA2066528C (en) Process for the preparation of a catalyst or catalyst precursor
US5140049A (en) Method for producing olefins from H2 and CO2 using an iron carbide based catalyst
DE69312598T2 (en) Process for converting synthesis gas into hydrocarbons based on cobalt-based catalyst
JP3118565B2 (en) Catalyst for synthesizing methanol and method for synthesizing methanol
US3971735A (en) Methanol production catalyst and process for preparing the same
US5118715A (en) Selective fixed-bed fischer-tropsch synthesis with high surface area Cu and K promoted, iron/manganese spinels
EP0261288B1 (en) High surface area dual promoted iron/manganese spinel compositions and their use for catalyzing conversion of co/h2 mixtures to alpha olefins
JP3163374B2 (en) Catalyst for methanol synthesis
EP0110357B1 (en) Process for the production of mixed alcohols
CN104646049A (en) Preparation method of catalyst for directly synthesizing dimethyl ether from synthesis gas
NZ212290A (en) Catalysts and preparation of dimethyl ether from carbon monoxide and hydrogen
CN105408006A (en) Nitrous oxide decomposition catalyst
JPH0739755A (en) Methanol synthesis catalyst and manufacture thereof
JP3530937B2 (en) Catalyst for methanol synthesis
JP2001070793A (en) Dimethyl ether synthesis catalyst and synthesis method
US3935128A (en) Copper chromite catalyst and the process for producing it
JPS647974B2 (en)
JP2713684B2 (en) Methanol synthesis method
JP3376380B2 (en) Catalyst for methanol synthesis
JP2545734B2 (en) Hydrocarbon producing catalyst and hydrocarbon producing method
JP2802415B2 (en) Catalyst for methanol synthesis
JP3837520B2 (en) Catalyst for CO shift reaction
JPH06254414A (en) Preparation of catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term