JPH07106652A - Multilayer electrostriction effect device - Google Patents

Multilayer electrostriction effect device

Info

Publication number
JPH07106652A
JPH07106652A JP5243423A JP24342393A JPH07106652A JP H07106652 A JPH07106652 A JP H07106652A JP 5243423 A JP5243423 A JP 5243423A JP 24342393 A JP24342393 A JP 24342393A JP H07106652 A JPH07106652 A JP H07106652A
Authority
JP
Japan
Prior art keywords
layer
insulator layer
electrode layer
effect element
electrostrictive effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5243423A
Other languages
Japanese (ja)
Other versions
JP2748830B2 (en
Inventor
Takayuki Inoi
隆之 猪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5243423A priority Critical patent/JP2748830B2/en
Publication of JPH07106652A publication Critical patent/JPH07106652A/en
Application granted granted Critical
Publication of JP2748830B2 publication Critical patent/JP2748830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To provide a while surface electrode type multilayer electrostriction effect device in which deterioration of the mechanical strength and electrical characteristics of the device due to formation of the insulator layer on the side face by selective removing method is eliminated while reducing the cost as compared with a device where the insulator layer is formed selectively. CONSTITUTION:An insulator layer 51A for insulating the part of an inner electrode layer 2 exposed to the side of laminate and an outer electrode layer 31A for connecting every other inner electrode layer 2 are formed by screen printing. The insulator layer 51A is formed into a continuous stripe so that the exposed parts of all inner electrode layer 2 are insulated by one insulator layer 51A. The outer electrode layer 31A is formed such that the part being connected with the exposed part of the inner electrode layer 2 projects pectinately from the stripe insulator layer 51A. Reliability of the device is enhanced furthermore when a recess being described by a continuous line is provided at a part surrounded by the pectinated part in the side of the insulator layer 51A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は積層型電歪効果素子に関
し、特に、電歪効果を示すセラミック層の平面形状と内
部電極層の平面形状とが同一の、全面電極型の積層型電
歪効果素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated electrostrictive effect element, and more particularly to a full surface electrode type laminated electrostrictive element in which the planar shape of a ceramic layer and the internal electrode layer exhibiting the electrostrictive effect are the same. Regarding the effect element.

【0002】[0002]

【従来の技術】積層型の電歪効果素子は、図6にその斜
視図を示すように、電歪効果によってひずみを発生する
セラミックの薄層と、外部の電源回路(図示せず)から
加えられる駆動電圧に応じた電界をこのセラミック層1
に与えるための内部電極の薄層とが、互いに上下になる
ように交互に繰り返し積層された構造をもっている。内
部電極層2は一層置きに同電位になるように二つのグル
ープに分けられ、それぞれのグループごとに、素子の対
向する側面のそれぞれに一つずつ設けられた外部電極層
3A,3B(左側面上の外部電極層3Bは、隠れて見え
ない)に接続される。このような構造で、二つの外部電
極層3A,3Bの間に外部に置かれた電源回路から駆動
電圧を加えると、それぞれのセラミック層1を挟む内部
電極層2どうしの間に駆動電圧が掛かりセラミック層1
に電界が加わるので、各セラミック層1に駆動電圧に応
じたひずみが発生する。
2. Description of the Related Art As shown in a perspective view of FIG. 6, a laminated type electrostrictive effect element has a ceramic thin layer which generates strain due to the electrostrictive effect and an external power supply circuit (not shown). The ceramic layer 1 generates an electric field according to the driving voltage applied.
And a thin layer of an internal electrode for applying to the electrode are alternately and repeatedly stacked so as to be on top of each other. The internal electrode layers 2 are divided into two groups so that they have the same electric potential every other layer, and the external electrode layers 3A and 3B (left side surface) provided on each of the opposite side surfaces of the element for each group. The upper external electrode layer 3B is hidden and invisible). With such a structure, when a driving voltage is applied from the power supply circuit placed outside between the two external electrode layers 3A and 3B, the driving voltage is applied between the internal electrode layers 2 sandwiching the respective ceramic layers 1. Ceramic layer 1
Since an electric field is applied to each of the ceramic layers 1, strain is generated in each ceramic layer 1 according to the driving voltage.

【0003】尚、外部から加えられる電界に応じてひず
みを生じる現象としては、電歪効果の他に圧電効果が知
られている。以下の説明は電歪効果を利用した電歪効果
素子について行うが、圧電効果と電歪効果との違いは、
発生するひずみの大きさが電界に比例する(圧電効果)
か、又は電界の二乗に比例する(電歪効果)かの違いだ
けであるので、以下の説明中、「電歪」は全て「圧電」
に読み替えることができる。本発明において電歪効果素
子とは、外部から加えられた電界に応じてひずみを生じ
る素子をいい、電歪効果を用いた素子及び圧電効果を用
いた素子の両方を含むものと定義する。
A piezoelectric effect is known in addition to the electrostrictive effect as a phenomenon that causes distortion in response to an electric field applied from the outside. The following description will be made about the electrostrictive effect element using the electrostrictive effect, but the difference between the piezoelectric effect and the electrostrictive effect is
The generated strain is proportional to the electric field (piezoelectric effect)
Or only proportional to the square of the electric field (electrostrictive effect), so in the following description, "electrostrictive" is all "piezoelectric".
Can be read as In the present invention, the electrostrictive effect element refers to an element that causes a strain in accordance with an electric field applied from the outside, and is defined to include both an element using the electrostrictive effect and an element using the piezoelectric effect.

【0004】上記の構造の電歪効果素子では、それぞれ
ひずみを発生するセラミック層1の厚さが例えば100
μm程度と薄く、しかもこれらセラミック層1をその発
生するひずみが直列になるように積層しているので、素
子全体としては、低い駆動電圧でもその両端面間に矢印
で示す方向に大きな変位を発生することができるという
特徴をもつ。なかでも、本発明の対象となる全面電極型
の積層型電歪効果素子は、セラミック層1の平面形状と
内部電極層2の平面形状とを同一形状にして、各セラミ
ック層1の全域に亘って均一な電界が加わるようにして
いることから、発生変位の大きさ及び繰返し使用したと
きの信頼性の点で優れている。
In the electrostrictive effect element having the above-mentioned structure, the thickness of the ceramic layer 1 in which strain is generated is, for example, 100.
Since the ceramic layers 1 are as thin as about μm and the strains generated are laminated in series, a large displacement is generated between both end faces of the device as a whole even in the case of a low driving voltage. It has the feature of being able to do. In particular, in the full surface electrode type laminated electrostrictive effect element which is the object of the present invention, the planar shape of the ceramic layer 1 and the planar shape of the internal electrode layer 2 are the same, and the entire surface of each ceramic layer 1 is covered. Since a uniform electric field is applied to the substrate, it is excellent in the magnitude of the generated displacement and the reliability when it is repeatedly used.

【0005】上述の構造から明かなように、一般に積層
型電歪効果素子では、内部電極層を一層置きに電気的に
接続する技術が必須となる。このような技術として、例
えば多層印刷配線板などで用いられているスルーホール
或いはビアホールの技術を応用することができる。この
方法によれば、図7に積層体の断面図を示すように、セ
ラミック層1に貫通孔を開けてこの貫通孔に接続導体4
を形成し、上下の内部電極層を順次一層置きに接続する
ことができる。しかしこの場合、例えば奇数番目の内部
電極層接続用の貫通孔に対して、偶数番目の内部電極層
には、接続導体4との接触を避けるためにその貫通孔の
周囲に絶縁用の空間を設けなければならない。このた
め、各セラミック層1の貫通孔周辺部分には電界が掛か
らないことになって、ひずみが生じなくなる。その結
果、駆動電圧を印加したときに、一つのセラミック層内
にひずみが発生する部分と発生しない部分とが生じそれ
らの境界部分に大きな応力が発生してしまうので、素子
の発生変位が減少すると共に信頼性が損なわれることに
なる。従って、全面電極型の電歪効果素子においては、
このようなスルーホール(又はビアホール)の技術、換
言すれば、積層体内部で内部電極層どうしを接続する技
術は適用困難であり、どうしても、一例として図6に示
すように積層体外部で内部電極層どうしを一層置きに接
続しなくてはならない。
As is clear from the above-mentioned structure, generally, in the laminated electrostrictive effect element, the technique of electrically connecting the internal electrode layers every other layer is essential. As such a technique, for example, a technique of a through hole or a via hole used in a multilayer printed wiring board or the like can be applied. According to this method, as shown in the sectional view of the laminated body in FIG. 7, a through hole is opened in the ceramic layer 1 and the connecting conductor 4 is formed in this through hole.
Can be formed, and the upper and lower internal electrode layers can be sequentially connected to each other. However, in this case, for example, with respect to the through holes for connecting the odd-numbered internal electrode layers, an insulating space is provided around the through holes in the even-numbered internal electrode layers in order to avoid contact with the connection conductor 4. Must be provided. Therefore, the electric field is not applied to the peripheral portion of the through hole of each ceramic layer 1, and the strain is not generated. As a result, when a drive voltage is applied, a portion where strain is generated and a portion where strain is not generated occur in one ceramic layer, and a large stress is generated at the boundary portion thereof, so the displacement generated by the element is reduced. At the same time, reliability will be impaired. Therefore, in the full surface electrode type electrostrictive effect element,
Such a through-hole (or via-hole) technique, in other words, a technique of connecting internal electrode layers inside a laminated body is difficult to apply, and by way of example, as shown in FIG. The layers must be connected one after the other.

【0006】再び図6を参照すると、この図に示す全面
電極型の積層型電歪効果素子では、積層体の右側面上
に、奇数番目(紙面上側から)の内部電極層の露出部を
絶縁する複数の絶縁体層5Aが形成されている。更にそ
の上に、外部電極層3Aが帯状に形成されている。従っ
て、内部電極層2のうち偶数番目(同)の内部電極層は
それぞれ、積層体の右側面に露出した部分で外部電極層
3Aに電気的に接続し、全て同電位となる。一方、これ
ら絶縁体層5A及び外部電極層3Aが形成されている側
面に対向する左側面上には、偶数番目の内部電極層の露
出部を絶縁する絶縁物層5Bと、奇数番目の内部電極層
の露出部を接続する外部電極層3B(隠れて見えない)
とが形成されている。
Referring again to FIG. 6, in the full-surface electrode type laminated electrostrictive effect element shown in this figure, the exposed portion of the odd-numbered (from the upper side of the drawing) internal electrode layer is insulated on the right side surface of the laminated body. A plurality of insulating layers 5A are formed. Further, an external electrode layer 3A is formed in a band shape on the external electrode layer 3A. Therefore, even-numbered (same) internal electrode layers of the internal electrode layers 2 are electrically connected to the external electrode layers 3A at the portions exposed on the right side surface of the stacked body, and all have the same potential. On the other hand, on the left side surface facing the side surface where the insulator layer 5A and the external electrode layer 3A are formed, an insulator layer 5B for insulating exposed portions of the even-numbered internal electrode layers and odd-numbered internal electrodes are provided. External electrode layer 3B that connects exposed parts of the layer (hidden and invisible)
And are formed.

【0007】本発明との関連において、図6に示す従来
の電歪効果素子に特徴的なのは、内部電極層2の積層体
の側面への露出部を覆って内部電極層2と外部電極層3
A、3Bとを絶縁する絶縁体層5A,5Bが、それぞれ
の内部電極層ごとに独立して形成されていることであ
る。このようにそれぞれ独立した複数の絶縁体層を形成
するには、所定部分に選択的に形成する方法と、全体的
に絶縁体層を形成したのち所定部分上の絶縁体層だけを
残して選択的に除去する方法とがある。
In the context of the present invention, what is characteristic of the conventional electrostrictive effect element shown in FIG. 6 is that the internal electrode layer 2 and the external electrode layer 3 cover the exposed portions of the internal electrode layer 2 on the side surfaces of the laminate.
That is, the insulator layers 5A and 5B that insulate A and 3B are formed independently for each internal electrode layer. In order to form a plurality of independent insulating layers as described above, a method of selectively forming the insulating layer on a predetermined portion and a method of forming the insulating layer entirely and then leaving only the insulating layer on the predetermined portion selected There is a method to remove it.

【0008】選択的形成方法としては、特公昭63ー1
7354号公報(特願昭57ー78444号公報。以
下、第1の公報と記す))に開示されているように、ス
クリーン印刷法を用いる方法がある。又、特開昭59ー
115579号公報(特願昭57ー225169号公
報。以下、第2の公報と記す)には、選択的絶縁体層形
成の他の方法として、電気泳動法により絶縁体層を形成
したのち焼成する技術が開示されている。
As a selective forming method, Japanese Patent Publication Sho 63-1
As disclosed in Japanese Patent Application No. 7354 (Japanese Patent Application No. 57-78444, hereinafter referred to as the first publication), there is a method using a screen printing method. In addition, Japanese Patent Application Laid-Open No. 59-115579 (Japanese Patent Application No. 57-225169, hereinafter referred to as a second publication) describes an insulator by an electrophoretic method as another method for forming a selective insulator layer. A technique of forming a layer and then firing is disclosed.

【0009】一方、選択的除去による絶縁体層形成方法
としては、特開昭63ー84174号公報(特願昭61
ー228464号公報。以下、第3の公報と記す)に開
示された方法がある。この方法では、先ず積層体の側面
の全面にスクリーン印刷やはけ塗りで絶縁材料を塗布し
焼成した後、例えばレーザ加工やウォータジェット加工
などの精密加工により不用部分の絶縁材料を除去して、
内部電極層を一層置きに露出させる。
On the other hand, as an insulating layer forming method by selective removal, Japanese Patent Application Laid-Open No. 63-84174 (Japanese Patent Application No. 61-84174) is available.
-228464 publication. Hereinafter, there is a method disclosed in the third publication). In this method, first, the insulating material is applied to the entire side surface of the laminate by screen printing or brush coating and baked, and then the insulating material in the unnecessary portion is removed by precision processing such as laser processing or water jet processing,
The internal electrode layers are exposed every other layer.

【0010】前述したように、積層型電歪効果素子の大
きな特徴の一つは、セラミック層1の厚さが例えば数1
00μm程度以下と薄いことである。これに伴って絶縁
体層5A,5Bの積層方向(図6中に矢印で示す、素子
の変位方向)の幅も100μm前後と非常に狭い。従っ
て、特に全面電極型の積層型電歪効果素子では、内部電
極層と外部電極層とを確実に接続し又絶縁するために、
厚さ50μm程度、幅100μm程度の良質な絶縁体層
5A,5Bを、寸法精度良くしかも正確な位置に形成す
る技術が不可欠である。上記公報はいずれも、このよう
な技術的課題を解決しようとするものである。
As described above, one of the major characteristics of the laminated electrostrictive effect element is that the thickness of the ceramic layer 1 is, for example,
It is as thin as about 100 μm or less. Along with this, the width of the insulating layers 5A and 5B in the stacking direction (the element displacement direction shown by the arrow in FIG. 6) is also very narrow, around 100 μm. Therefore, in particular, in the case of the whole-surface electrode type laminated electrostrictive effect element, in order to reliably connect and insulate the internal electrode layer and the external electrode layer,
A technique for forming high-quality insulator layers 5A and 5B having a thickness of about 50 μm and a width of about 100 μm at dimensional accuracy and at accurate positions is indispensable. Each of the above publications is intended to solve such a technical problem.

【0011】[0011]

【発明が解決しようとする課題】上述したように、従来
の全面電極型の積層型電歪効果素子ではいずれも、素子
側面に形成される絶縁体層が、各内部電極層の露出部ご
とに独立した複数の部分からなる。上記第1の公報及び
第2の公報では、このような絶縁体層をスクリーン印刷
や或いは電気泳動により選択的に形成している。又、第
3の公報では、全面的に形成した後選択的に除去するこ
とによって形成している。
As described above, in all of the conventional full-surface electrode type laminated electrostrictive effect elements, the insulator layer formed on the side surface of the element is different for each exposed portion of each internal electrode layer. It consists of multiple independent parts. In the above-mentioned first and second publications, such an insulator layer is selectively formed by screen printing or electrophoresis. In the third publication, it is formed by forming it on the entire surface and then selectively removing it.

【0012】しかしながら、この種の積層型電歪効果素
子の特徴、すなわち、セラミック層を薄くして上下から
内部電極層で挟む構造とすることによって、低駆動電圧
でも高い電界をセラミック層に与えることができるとい
う特徴を十分に発揮させようとすると、従来の技術によ
る素子では、低コスト化が困難となりまた場合によって
は素子の信頼性が犠牲になるなどの悪影響が生じること
がある。以下にその説明を行う。
However, a characteristic of this type of laminated electrostrictive effect element, that is, by providing a structure in which the ceramic layer is thin and sandwiched between the internal electrode layers from above and below, a high electric field is applied to the ceramic layer even at a low driving voltage. In order to fully exert the feature of being able to achieve the above, it may be difficult to reduce the cost of the element according to the conventional technique, and in some cases, the reliability of the element may be sacrificed. The description will be given below.

【0013】先ず、上記第3の公報記載の電歪効果素子
においては、積層体の長手方向(積層方向)に連続する
絶縁体層を形成した後、この絶縁層体を一層置きにレー
ザ加工のような熱的加工法やウオータジェット加工など
の機械的加工法で選択的に除去するが、熱的加工法を用
いる場合は、加工時の発熱によるサーマルクラックの発
生など、熱的悪影響がセラミック層や絶縁体層に誘起さ
れ、素子の機械的強度や電気的信頼性が低下する可能性
がある。更には、絶縁体層が有機材料である場合は、そ
の絶縁材料の燃焼に伴って発生するカーボンの付着によ
り、素子の電気的特性劣化が起ることがある。一方、機
械的加工法は、加工時にマイクロクラックのようなメカ
ニカルクラックを発生させ、熱的加工法の場合と同様
に、素子駆動時の機械的強度劣化や信頼性低下を引き起
すことがある。更には、このような選択的除去による絶
縁体層の形成は、絶縁体層を形成する工程に加えてこれ
を部分的に除去するという工程が余計に必要である上
に、その除去工程では、絶縁体層の全不用部分を一度で
除去することは困難で不用部分を順次個別に除去して行
かなければならないことから、加工に多大の時間を要し
コストの面で非常に不利である。これらのような影響
は、素子の特性向上のために積層数を多くするほど顕著
になってくる。
First, in the electrostrictive effect element described in the above-mentioned third publication, after forming an insulating layer continuous in the longitudinal direction (laminating direction) of the laminated body, laser processing is performed with this insulating layer body placed every other layer. Although it is selectively removed by a thermal processing method or a mechanical processing method such as water jet processing, when the thermal processing method is used, the thermal adverse effect such as the generation of thermal cracks due to the heat generated during processing may cause a bad influence on the ceramic layer. Or induced in the insulating layer, the mechanical strength and electrical reliability of the device may decrease. Furthermore, when the insulating layer is an organic material, the electrical characteristics of the element may be deteriorated due to the adhesion of carbon that accompanies the combustion of the insulating material. On the other hand, the mechanical processing method may generate mechanical cracks such as micro cracks during processing, and like the thermal processing method, may cause deterioration of mechanical strength and reliability during element driving. Furthermore, the formation of the insulator layer by such selective removal requires an additional step of partially removing the insulator layer in addition to the step of forming the insulator layer. It is difficult to remove all the unnecessary portions of the insulating layer at once, and the unnecessary portions must be sequentially removed individually, which requires a lot of processing time and is very disadvantageous in terms of cost. These effects become more remarkable as the number of stacked layers is increased to improve the characteristics of the device.

【0014】これに対して、第1の公報や第2の公報に
記載されている、絶縁体層を選択的に形成する方法で
は、第3の公報記載の素子におけるような熱的・機械的
ストレスに起因する機械的・電気的性能の劣化や信頼性
の低下などの問題はない。しかしながら一方で、狭い領
域に選択的に絶縁体層を形成しなければならないことか
ら、絶縁体層に十分な絶縁耐力を持たせようとすると、
セラミック層の薄膜化に制限が加わったり、又、コスト
低減が困難になるなどの問題が起る。
On the other hand, in the method for selectively forming the insulator layer described in the first and second publications, the thermal / mechanical method as in the device described in the third publication is used. There is no problem such as deterioration of mechanical or electrical performance or deterioration of reliability due to stress. However, on the other hand, since it is necessary to selectively form the insulating layer in a narrow area, if the insulating layer is to have sufficient dielectric strength,
There are problems that the thinning of the ceramic layer is limited, and that it becomes difficult to reduce the cost.

【0015】例えば、セラミック層に加える実用的な電
界強度として、約1.5kV/mm程度を想定する。
又、絶縁体層としてガラス(絶縁破壊の強さ:約50k
V/mm程度以下)を用いるものとし、駆動電圧の過渡
現象や素子の長期信頼性を考慮して、ガラスの絶縁破壊
の強さを上記値の1/10と見積るものとする。このと
き、理論的には、ガラス絶縁体層の厚さが30μm程度
で必要な絶縁耐力が得られることになる。
For example, it is assumed that the practical electric field strength applied to the ceramic layer is about 1.5 kV / mm.
In addition, as an insulator layer, glass (dielectric breakdown strength: about 50k
V / mm or less) is used, and the strength of the dielectric breakdown of the glass is estimated to be 1/10 of the above value in consideration of the transient phenomenon of the driving voltage and the long-term reliability of the element. At this time, theoretically, the required dielectric strength can be obtained when the thickness of the glass insulator layer is about 30 μm.

【0016】ここで、第1の公報のように、絶縁体層形
成にスクリーン印刷を用いた場合には、形成された実際
の絶縁体層にはどうしても欠陥部分の発生が避けられな
いので、絶縁体層として実用に供するには最低50μm
程度の厚さが必要である。この絶縁体層の厚さ50μm
が内部電極層と内部電極層との間の最小距離、すなわち
セラミック層の最低の厚さになる。この程度の厚さのセ
ラミック層は、積層セラミックコンデンサの積層技術の
発展により、現状でも安定して量産することが可能であ
り、もっと薄膜化することも十分できる。しかしながら
一方で、現状のスクリーン印刷における位置合せの精度
やパターンの寸法精度を考慮すると、各絶縁体層の両側
にそれぞれ50μm程度の空間が必要で、セラミック層
の厚さを最低100μm程度にしなくてはならない。こ
のようにして、各セラミック層の厚さ100μm、各絶
縁体層の厚さ50μm、積層方向の幅100μmで、駆
動電圧が150Vの素子が得られる。これを要するに、
ガラス絶縁体層の形成にスクリーン印刷を用いる素子の
場合、セラミック層の厚さはガラス絶縁体層の形成技術
の限界に制限されて十分に薄膜化できず、駆動電界はこ
れ以上強くできないと言える。
Here, as in the first publication, when screen printing is used to form the insulator layer, it is unavoidable that a defective portion is generated in the actual insulator layer formed, so that insulation is not possible. At least 50 μm for practical use as a body layer
It needs a certain thickness. The thickness of this insulator layer is 50 μm
Is the minimum distance between the internal electrode layers, that is, the minimum thickness of the ceramic layer. A ceramic layer having such a thickness can be stably mass-produced even under the present circumstances due to the development of the laminated technology of the laminated ceramic capacitor, and it can be sufficiently thinned. On the other hand, in consideration of the alignment accuracy and the pattern dimensional accuracy in the current screen printing, a space of about 50 μm is required on each side of each insulator layer, and the thickness of the ceramic layer must be at least about 100 μm. Don't In this way, an element having a thickness of each ceramic layer of 100 μm, a thickness of each insulator layer of 50 μm, a width in the stacking direction of 100 μm, and a driving voltage of 150 V is obtained. In short,
In the case of an element that uses screen printing to form the glass insulator layer, the thickness of the ceramic layer is limited by the limit of the technology for forming the glass insulator layer and cannot be made sufficiently thin, and it can be said that the driving electric field cannot be further increased. .

【0017】一方、第2の公報に開示された電気泳動法
による絶縁体層形成技術は、その形成原理からして絶縁
体層が内部電極層に対して位置ずれを起さないので、ス
クリーン印刷による絶縁体層形成に比べて細密で良質な
ガラス絶縁体層を形成するのに適している。しかしこの
技術を適用した電歪効果素子では、電気泳動のためだけ
に、仮電極を形成する工程と、内部電極層の露出部をマ
スクする工程と、電着する工程とが、それぞれ積層体の
一面ずつ計二回ずつ必要である。しかも、形成される絶
縁体層の電気的特性は絶縁体層の電着状態に影響され、
この電着状態は電泳浴の温度、濃度に敏感で、その厚さ
や形状などが電着の際の電圧や時間に左右されやすいの
で、実際の製造工程においては、これら電着条件の管理
を非常に厳密に行なわないと良品率が低下してしまう。
このように、電気泳動により絶縁体層を形成する電歪効
果素子では、製造工程が複雑であること、製造条件の管
理が難しいこと及び良品率がばらつきやすいことなどか
ら、製造コストを下げるのが容易ではない。
On the other hand, in the insulator layer forming technique by the electrophoretic method disclosed in the second publication, the insulator layer does not cause a positional deviation with respect to the internal electrode layers due to its forming principle. It is suitable for forming a fine and high-quality glass insulating layer as compared with the insulating layer forming by. However, in the electrostrictive effect element to which this technique is applied, the step of forming the temporary electrode, the step of masking the exposed portion of the internal electrode layer, and the step of electrodeposition are each performed only for electrophoresis. It is necessary to make a total of twice, one for each side. Moreover, the electrical characteristics of the formed insulator layer are affected by the electrodeposition state of the insulator layer,
This electrodeposition state is sensitive to the temperature and concentration of the swimming bath, and its thickness and shape are easily influenced by the voltage and time during electrodeposition.Therefore, it is very important to control these electrodeposition conditions in the actual manufacturing process. If not strictly done, the rate of non-defective products will decrease.
As described above, in the electrostrictive effect element in which the insulator layer is formed by electrophoresis, the manufacturing process is complicated, the management of the manufacturing conditions is difficult, and the non-defective rate easily varies. It's not easy.

【0018】従って、本発明は、全面電極型の積層型電
歪効果素子において、積層体側面の絶縁体層を選択的除
去法によって形成することに起因する素子の機械的強度
の低下及び電気的特性の劣化がなく、しかも絶縁体層を
選択的に形成する素子よりも製造コストの低減を図るこ
とができる積層型電歪効果素子を提供することを目的と
するものである。
Therefore, according to the present invention, in the laminated electrostrictive effect element of the whole surface electrode type, the mechanical strength of the element is lowered and the electrical strength is reduced due to the formation of the insulating layer on the side surface of the laminated body by the selective removal method. It is an object of the present invention to provide a laminated electrostrictive effect element which does not deteriorate in characteristics and can be manufactured at a lower cost than an element in which an insulating layer is selectively formed.

【0019】[0019]

【課題を解決するための手段】本発明の積層型電歪効果
素子は、電歪効果を示すセラミック層と前記セラミック
層の平面形状と同一な平面形状をもつ内部電極層とを交
互に積層してなる積層体の積層方向に沿う軸に平行な第
1の側面上に、前記積層方向に帯状に連続し前記内部電
極層の前記第1の側面への露出部を部分的に覆う第1の
絶縁体層と、前記第1の絶縁体層上に設けられ、前記内
部電極層のうち一層おきに配置された第1の内部電極層
の前記第1の側面への露出部を電気的に接続する第1の
外部電極層を設け、前記積層体の前記積層方向に沿う軸
に平行な第2の側面上には、前記積層方向に帯状に連続
し前記内部電極層の前記第2の側面への露出部を部分的
に覆う第2の絶縁体層と、前記第2の絶縁体層上に設け
られ、前記内部電極層のうち前記第1の内部電極層とは
異なる第2の内部電極層の前記第2の側面への露出部を
電気的に接続する第2の外部電極層を設け、前記第1の
外部電極層及び前記第2の外部電極層の平面形状を、各
内部電極層と接続する部分が各絶縁体層から櫛歯状に突
出した形状にした構造を備えた積層型電歪効果素子であ
る。
In the laminated electrostrictive effect element of the present invention, ceramic layers exhibiting an electrostrictive effect and internal electrode layers having the same planar shape as the ceramic layers are alternately laminated. On the first side surface parallel to the axis along the stacking direction of the laminated body formed by the above, and continuously covering the exposed portion of the internal electrode layer to the first side surface, which is continuous in the stacking direction in a strip shape. An insulating layer is electrically connected to an exposed portion of the first internal electrode layer provided on the first insulating layer and arranged every other layer of the internal electrode layer to the first side surface. A first external electrode layer is provided, and on the second side surface parallel to the axis along the stacking direction of the stacked body, the strip-like continuous shape is formed in the stacking direction to the second side surface of the internal electrode layer. A second insulator layer that partially covers the exposed part of the internal insulator, and the internal insulator that is provided on the second insulator layer. A second outer electrode layer electrically connecting an exposed portion of the second inner electrode layer different from the first inner electrode layer to the second side surface of the layer, and the first outer electrode A laminated electrostrictive effect element having a structure in which a planar shape of the layer and the second external electrode layer is formed in a shape in which a portion connected to each internal electrode layer protrudes in a comb shape from each insulator layer.

【0020】又、本発明の積層型電歪効果素子は、 前
記第1の絶縁体層及び前記第2の絶縁体層の平面形状
を、前記積層方向に平行な辺の前記第1の外部電極層及
び前記第2の外部電極層の前記櫛歯状の突出部に挟まれ
た部分に、連続する線で描かれる凹みを有する形状とし
たことを特徴とする積層型電歪効果素子である。
In the laminated electrostrictive effect element of the present invention, the planar shape of the first insulator layer and the second insulator layer is the first external electrode on a side parallel to the stacking direction. The laminated electrostrictive effect element is characterized in that a layer and a portion of the second external electrode layer sandwiched between the comb-teeth shaped protrusions have a shape having a recess drawn by a continuous line.

【0021】[0021]

【実施例】次に、本発明の好適な実施例について、図面
を参照して説明する。図1は、本発明の第1の実施例の
斜視図である。図1及び図6を参照すると、本実施例が
従来の全面電極型の積層型電歪効果素子と異るのは、絶
縁体層51A,51B(絶縁体層51Bは、積層体の隠
れている側の側面に形成されているので、図には表われ
ていない)の構造と、外部電極層31A,31B(同)
の構造、特に素子側面に垂直な方向から見たときの平面
形状である。本実施例における絶縁体層は、従来の素子
の絶縁体層5A,5Bが、各内部電極層ごとにその露出
部とその周辺だけを覆う孤立性の部分からなっていたの
に対して、積層方向に帯状に連続した形状をもってい
る。又、本実施例の外部電極層31A(31B)は、上
記の絶縁体層51A(51B)上に帯状に設けられてい
る。そして、内部電極層2の露出部と接続する部分だけ
は、絶縁体層51A(51B)から櫛歯状に飛び出して
奇数(偶数)番目の内部電極層2を電気的に接続してい
る。絶縁体層及び外部電極層は、後述するように、スク
リーン印刷法により形成する。セラミック層1の厚さは
110μmである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of the first embodiment of the present invention. Referring to FIGS. 1 and 6, the present embodiment is different from the conventional full-surface electrode type laminated electrostrictive effect element in that the insulator layers 51A and 51B (the insulator layer 51B is hidden in the laminate). (Not shown in the figure because it is formed on the side surface on the side) and the external electrode layers 31A and 31B (same)
2 is a plane shape when viewed from a direction perpendicular to the side surface of the element. The insulator layers in the present embodiment are laminated while the conventional insulator layers 5A and 5B of each element are composed of an exposed portion of each internal electrode layer and an isolated portion covering only the periphery thereof. It has a continuous strip shape in the direction. Further, the external electrode layer 31A (31B) of this embodiment is provided in a strip shape on the above-mentioned insulator layer 51A (51B). Only the portion of the internal electrode layer 2 that is connected to the exposed portion protrudes from the insulator layer 51A (51B) like a comb and electrically connects the odd-numbered (even number) internal electrode layers 2. The insulator layer and the external electrode layer are formed by a screen printing method as described later. The thickness of the ceramic layer 1 is 110 μm.

【0022】本発明者は、本実施例を以下に述べるよう
にして作製した。先ず、例えば、Pb(Zr、Ti)O
のようなペロブスカイト結晶構造をもつ多成分固溶体セ
ラミック粉末に、有機バインダーとしてポリビニル・ブ
チラール樹脂の粉末を混合しグリーンシートを作る。そ
して、その上に内部電極層となる銀ーパラジウムのペー
ストを全面にスクリーン印刷し乾燥した後、これを80
層積層し1000℃以上で高温焼結することによって積
層焼結体を形成する。
The present inventor produced this embodiment as described below. First, for example, Pb (Zr, Ti) O
A multi-component solid solution ceramic powder having a perovskite crystal structure as described above is mixed with polyvinyl butyral resin powder as an organic binder to form a green sheet. Then, a silver-palladium paste to be the internal electrode layer is screen-printed on the entire surface and dried, and then 80
A laminated sintered body is formed by stacking layers and sintering at a temperature of 1000 ° C. or higher.

【0023】次に、この積層焼結体の対向する側面のう
ち、先ず右側面に、絶縁体層51Aとなるガラスペース
トをスクリーン印刷して乾燥する。このとき、図1に示
すような帯状のパターンを用いる。この帯状ガラスペー
ストは、厚さが50μm以上で、幅(内部電極層の露出
部に沿う方向の幅)が積層焼結体の幅(同)の1/3で
ある。続いて対向する左側面にも、同様にして、絶縁体
層51B(隠れて見えない)となるガラスペーストをス
クリーン印刷し乾燥した後、温度650℃で両面のガラ
スペーストを同時に焼成してガラス絶縁体層51A、5
1B(同)を形成する。
Next, of the opposing side surfaces of the laminated sintered body, first, the right side surface is screen-printed with a glass paste to be the insulator layer 51A and dried. At this time, a band-shaped pattern as shown in FIG. 1 is used. This band-shaped glass paste has a thickness of 50 μm or more, and the width (width in the direction along the exposed portion of the internal electrode layer) is ⅓ of the width (same) of the laminated sintered body. Similarly, glass paste to be the insulating layer 51B (which is hidden and invisible) is screen-printed on the opposite left side surface in the same manner and dried, and then the glass pastes on both sides are simultaneously fired at a temperature of 650 ° C. for glass insulation. Body layers 51A, 5
1B (the same) is formed.

【0024】次いで、ガラス絶縁体層51Aを形成した
側面に対して、外部電極層31Aとなる銀ペーストをス
クリーン印刷し乾燥する。この銀ペーストの印刷パター
ンは図1に示すように、絶縁体層51A上に帯状に連続
し、一部がこの帯状部分に対して直角方向に櫛歯状に飛
び出し奇数番目(紙面上部側から)の内部電極層2の露
出部に接続するパターンである。同様にして、ガラス絶
縁体層51Bを形成した側面上に、外部電極層31B
(隠れて見えない)となる銀ペーストをスクリーン印刷
する。この銀ペーストの印刷パターンは、内部電極層の
うち偶数番目(紙面上部側から)の内部電極層の露出部
に接続するパターンである。この後、温度650℃で両
面同時に焼成して外部電極層31A、31Bを同時形成
する。これら外部電極層は、厚さが10μm、内部電極
層と電気的に接触する櫛歯状部分の積層方向の幅が30
μmであり、ガラス絶縁体層上の帯状部分の幅(内部電
極層の露出部に沿う方向の幅)は、ガラス絶縁体層の幅
(同)の2/3である。
Next, a silver paste to be the external electrode layer 31A is screen-printed and dried on the side surface on which the glass insulator layer 51A is formed. As shown in FIG. 1, the print pattern of this silver paste is continuous in a strip shape on the insulator layer 51A, and a part of the print pattern protrudes like a comb in the direction perpendicular to the strip portion. 2 is a pattern connected to the exposed portion of the internal electrode layer 2 of FIG. Similarly, the external electrode layer 31B is formed on the side surface on which the glass insulator layer 51B is formed.
Screen-print the silver paste that becomes (hidden and invisible). The print pattern of this silver paste is a pattern to be connected to the exposed portion of the even-numbered internal electrode layers (from the upper side of the paper) of the internal electrode layers. After that, both surfaces are simultaneously fired at a temperature of 650 ° C. to simultaneously form the external electrode layers 31A and 31B. Each of these external electrode layers has a thickness of 10 μm and has a width in the stacking direction of the comb-teeth portion that makes electrical contact with the internal electrode layers.
The width of the strip-shaped portion on the glass insulator layer (width in the direction along the exposed portion of the internal electrode layer) is 2/3 of the width of the glass insulator layer (the same).

【0025】この後、外部電極層31A、31Bに対し
て、外部の駆動用電源回路(図示せず)との接続用のリ
ード線(同)をはんだ付けして本実施例を完成する。
After that, lead wires (the same) for connecting to an external driving power supply circuit (not shown) are soldered to the external electrode layers 31A and 31B to complete this embodiment.

【0026】本実施例においては、内部電極層2の露出
部と導通を取るための外部電極層の櫛歯状突出部の積層
方向の幅を30μmとしているが、この幅は必要以上に
広くする必要はない。これは電歪効果素子が、基本的
に、電流駆動型の素子ではなく電圧駆動型の素子である
からである。すなわち、電歪効果素子では、内部電極層
の露出部と外部電極層との接触は、極論すれば、ただ電
気的に接触して電圧だけを伝達すればよい。従って、内
部電極層と外部電極層との間の接触抵抗による電圧降下
や外部電極層の抵抗成分による電圧降下などを考慮し
て、接触面積を広くしておく必要がない。これに対して
第1の公報記載の電歪効果素子では、セラミック層に掛
かる電界、言い換えればガラス絶縁体層を挟んで内部電
極層と外部電極層との間に掛かる電界の強さに応じて、
ガラス絶縁体層の幅を或る程度以上確保しなければなら
ないので、これによってセラミック層の厚さが制限され
てしまう。
In this embodiment, the width of the external electrode layers in the stacking direction of the comb-teeth-shaped protrusions for establishing electrical continuity with the exposed portions of the internal electrode layers 2 is 30 μm, but this width is made wider than necessary. No need. This is because the electrostrictive effect element is basically a voltage drive type element rather than a current drive type element. That is, in the electrostrictive effect element, contact between the exposed portion of the internal electrode layer and the external electrode layer only needs to be in electrical contact and to transmit only the voltage. Therefore, it is not necessary to increase the contact area in consideration of the voltage drop due to the contact resistance between the internal electrode layer and the external electrode layer and the voltage drop due to the resistance component of the external electrode layer. On the other hand, in the electrostrictive effect element described in the first publication, according to the strength of the electric field applied to the ceramic layer, in other words, the electric field applied between the internal electrode layer and the external electrode layer with the glass insulator layer interposed therebetween. ,
This limits the thickness of the ceramic layer, since the glass insulator layer must have a certain width or more.

【0027】今、内部電極層ごとに独立した絶縁体層を
形成する従来の電歪効果素子の側面の要部を拡大して示
す図2(a)を参照して、各セラミック層1の厚さをt
C1、絶縁体層5Aの幅をw1 とし、絶縁体層5Aが内部
電極層2n+1 に対して、正常な位置(図中、実線で示
す)から距離dだけずれたとする(同、破線で示す)。
このとき、絶縁体層5Aが隣りの内部電極層2n を覆っ
てはいけないので、 (1/2)w1 +d<tC1 でなくてはならない。一方、内部電極層2n+1 と外部電
極層との間の絶縁耐力を確保しなくてはならないので、 (1/2)w1 −d≧tBD を満足しなくてはならない(但し、tBDは、必要な絶縁
耐力を得るための絶縁体層5Aの厚さ)。
Now, referring to FIG. 2 (a), which is an enlarged view of a main portion of a side surface of a conventional electrostrictive effect element in which an independent insulator layer is formed for each internal electrode layer, the thickness of each ceramic layer 1 is referred to. Sa t
It is assumed that C1 and the width of the insulator layer 5A are w 1 and that the insulator layer 5A is displaced from the normal position (shown by the solid line in the figure) by a distance d with respect to the internal electrode layer 2 n + 1 (the same, Shown with a broken line).
At this time, since the insulator layer 5A should not cover the adjacent internal electrode layer 2 n , (1/2) w 1 + d <t C1 must be satisfied. On the other hand, since the dielectric strength between the internal electrode layer 2 n + 1 and the external electrode layer must be ensured, (1/2) w 1 −d ≧ t BD must be satisfied (however, t BD is the thickness of the insulator layer 5A for obtaining the necessary dielectric strength).

【0028】従って、セラミック層1の厚さの最小値t
C1min は、式と式とから、 tC1min >tBD+2d で表わされる。
Therefore, the minimum value t of the thickness of the ceramic layer 1 is
From the equations, C1min is represented by t C1min > t BD + 2d.

【0029】これに対して、本実施例の素子側面要部を
拡大して示す図2(b)を参照して、各セラミック層1
の厚さをtC2、外部電極層31Aの櫛歯状部分の幅をw
2 、外部電極層31Aの内部電極層2n+1 に対する位置
ずれ量をdとすると、位置ずれを起した外部電極層31
A(図中、破線で示す)が、内部電極層2n に接触せず
且つ内部電極層2n+1 とは接触を保たなければならない
ことから、各セラミック層1の厚さtC2は、 (1/2)w2 +d<tC2 及び、 (1/2)w2 −d>0 を満足しなければならない。
On the other hand, referring to FIG. 2 (b) which is an enlarged view of the essential parts of the element side surface of this embodiment, each ceramic layer 1
Is t C2 , and the width of the comb-teeth portion of the external electrode layer 31A is w.
2 , where the amount of positional displacement of the external electrode layer 31A with respect to the internal electrode layer 2 n + 1 is d, the external electrode layer 31 that has caused positional displacement
(Shown by a broken line) A is from having to keep the contact with the internal electrode layer 2 n + 1 and not contacting the internal electrode layer 2 n, the thickness t C2 of each ceramic layer 1 , (1/2) w 2 + d <t C2 and (1/2) w 2 −d> 0.

【0030】従って、本実施例におけるセラミック層1
の厚さの最小値tC2min は、式と式とから、 tC2≧2d ここで、式と式とを比較すると、各内部電極層ごと
に絶縁体層を独立して形成する従来の電歪効果素子で
は、たとえ絶縁体層形成の精度が向上した場合でも、セ
ラミック層の薄膜化には絶縁体層の絶縁耐力に伴なう制
限が加わるのに対して、本実施例では、スクリーン印刷
の精度を向上させることによって、セラミック層の厚さ
を薄くすることができることが分る。特に、本実施例と
同様に絶縁体層の形成にスクリーン印刷を用いる第1の
公報記載の電歪効果素子では、本実施例との効果の差は
顕著である。
Therefore, the ceramic layer 1 in this embodiment
The minimum value of the thickness t C2min is t C2 ≧ 2d based on the equation and the equation. Here, comparing the equation with the equation, the conventional electrostriction in which an insulator layer is independently formed for each internal electrode layer is used. In the effect element, even if the accuracy of the insulating layer formation is improved, the thinning of the ceramic layer is limited by the dielectric strength of the insulating layer. It can be seen that the ceramic layer can be made thinner by increasing the accuracy. Particularly, in the electrostrictive effect element described in the first publication in which screen printing is used for forming the insulating layer as in the case of this example, the difference in effect from this example is remarkable.

【0031】しかも、本実施例では、絶縁体層及び外部
電極層をスクリーン印刷で形成しているので、第2の公
報記載の電歪効果素子とは異なって、絶縁体層形成のた
めに何ら新しい技術、製造工程を必要としないし、勿
論、そのための製造装置及び複雑な製造条件管理も必要
ない。従って、本実施例は第2の公報記載の電歪効果素
子に比べて、製造コストを大きく低減できる。本実施例
では、一例として、1000個当りの加工工数を電気泳
動法による場合の1/3にできた。
Moreover, in this embodiment, since the insulator layer and the external electrode layer are formed by screen printing, unlike the electrostrictive effect element described in the second publication, there is no need for forming the insulator layer. No new technology or manufacturing process is required, and of course, manufacturing equipment and complicated manufacturing condition management for it are not required. Therefore, this embodiment can greatly reduce the manufacturing cost as compared with the electrostrictive effect element described in the second publication. In this example, as an example, the processing man-hours per 1000 pieces could be reduced to 1/3 of the case of the electrophoresis method.

【0032】又、第3の公報記載の電歪効果素子におけ
るような、絶縁体層を選択的に除去することに起因する
熱的・電気的特性の低下及び信頼性の劣化も勿論起らな
い。
Further, as in the electrostrictive effect element described in the third publication, the thermal / electrical characteristics are not deteriorated and the reliability is not deteriorated due to the selective removal of the insulating layer. .

【0033】本実施例では、絶縁体層51A(51B)
の平面形状が連続した帯状をしているので、既に知られ
ているように、この帯状無機絶縁体層がセラミック層の
ひずみ発生を素子側面で拘束することによる発生変位量
の低下及び、繰り返し変位を発生させたときに絶縁体層
に加わるストレスに起因する故障発生の点で、上記第1
の公報及び第2の公報記載の電歪効果素子に比べて多少
不利である。しかしながら、近年、この種の電歪効果素
子の用途が広まってきているので、例えば、半導体製造
装置に用いられるマスフローコントローラ(精密ガス流
量制御装置)や、光ファイバの位置決め用或いは光学機
器におけるミラーの位置制御用など、変位量が10μm
程度以下と比較的小さい用途、頻繁に変位を繰り返さな
いDCサーボ的な動作をするような用途、更には、故障
した場合の交換が容易な場合などには、その低コスト性
という利点を発揮することができる。
In this embodiment, the insulator layer 51A (51B)
Since the planar shape of is a continuous strip, it is already known that the strip-shaped inorganic insulator layer restrains the strain generation of the ceramic layer on the side surface of the element, resulting in a decrease in displacement and repeated displacement. In the point of failure occurrence due to stress applied to the insulating layer when the
It is somewhat disadvantageous as compared with the electrostrictive effect element described in the above publication and the second publication. However, since the use of this type of electrostrictive effect element has become widespread in recent years, for example, a mass flow controller (precision gas flow rate control device) used in a semiconductor manufacturing apparatus, a positioning device for an optical fiber, or a mirror for an optical device is used. Displacement of 10 μm for position control, etc.
It has the advantage of low cost in applications that are relatively small (less than or equal to a certain level), applications that perform a DC servo operation that does not repeat displacement frequently, and further that replacement is easy when a failure occurs. be able to.

【0034】ここで、上記の帯状無機絶縁体層による発
生変位量低下及び故障発生を軽減するには、第2の公報
に記載されているように、材料自体が伸縮性を持つ有機
材料系の絶縁体層を用いると良い。従来、有機系の絶縁
材料はその絶縁破壊の強さが無機系絶縁材料に比べて十
分ではなかったが、近年、有機材料の電気的特性の改良
は著しく、例えば、ポリイミド樹脂のような材料は絶縁
破壊の強さが数100kV/mmとガラスのそれに劣ら
ないので、本発明の電歪効果素子の絶縁体層用材料とし
て十分実用に供し得る。
Here, in order to reduce the decrease in displacement and the occurrence of failure due to the above-mentioned band-shaped inorganic insulating layer, as described in the second publication, the material itself is made of an organic material system having elasticity. It is preferable to use an insulating layer. Conventionally, the strength of dielectric breakdown of organic insulating materials has not been sufficient as compared with inorganic insulating materials, but in recent years, the electrical characteristics of organic materials have been significantly improved. Since the strength of dielectric breakdown is several hundred kV / mm, which is not inferior to that of glass, it can be sufficiently put to practical use as a material for an insulator layer of the electrostrictive effect element of the present invention.

【0035】尚、上述した実施例では、絶縁体層51A
及び外部電極層31Aが形成される側面(右側面)と、
絶縁体層51B及び外部電極層31Bが形成される側面
(左側面)とが互いに異なる面であったが、これらの面
は同じ側面であっても構わない。更には、図3に示す斜
視図のように、外部電極層31Aと外部電極層31Bと
が、同一の側面上で同じ一つの絶縁体層51を共用する
構造とすることもできる。
In the above-mentioned embodiment, the insulating layer 51A is used.
And a side surface (right side surface) on which the external electrode layer 31A is formed,
Although the side surface (left side surface) on which the insulator layer 51B and the external electrode layer 31B are formed are different from each other, these surfaces may be the same side surface. Further, as shown in the perspective view of FIG. 3, the external electrode layer 31A and the external electrode layer 31B may have a structure in which the same one insulator layer 51 is shared on the same side surface.

【0036】次に、上述の帯状絶縁体層による発生変位
量の低下及び故障発生を更に軽減した第2の実施例につ
いて説明する。図4は、本発明の第2の実施例の斜視図
である。尚、以下の説明では、説明の煩雑さを避けるた
めに、相対向する二つの絶縁体層のうち右側面上の絶縁
体層52Aを例にとって説明する。
Next, a description will be given of a second embodiment in which the reduction of the displacement amount caused by the above-mentioned strip-shaped insulator layer and the occurrence of failure are further reduced. FIG. 4 is a perspective view of the second embodiment of the present invention. In the following description, in order to avoid complication of the description, the insulator layer 52A on the right side surface of the two insulator layers facing each other will be described as an example.

【0037】図4を参照すると、本実施例は、絶縁体層
52Aのパターンが図1に示す第1の実施例のものとは
異なっている。本実施例における絶縁体層52Aのパタ
ーンは、図4及び図5(a)に示すように、外部電極層
31Aの櫛歯状突出部の間の部分に半円形の凹み部6が
設けられた形状となっている。
Referring to FIG. 4, this embodiment is different from the first embodiment shown in FIG. 1 in the pattern of the insulating layer 52A. In the pattern of the insulator layer 52A in this embodiment, as shown in FIGS. 4 and 5A, a semicircular recess 6 is provided in a portion between the comb-teeth-shaped protrusions of the external electrode layer 31A. It has a shape.

【0038】この凹み部6を設けたことにより、積層体
側面と絶縁体層52Aとの接触面積が減る。又、例え
ば、直円筒状の金属パイプと蛇腹状の金属パイプとの比
較から分るように、凹み部6を設けたことによる形状効
果により絶縁体層52Aに伸縮性がもたらされる。本実
施例ではこれら接触面積の減少と伸縮性の付与とによっ
て、積層体の変位発生に対する絶縁体層52Aの拘束力
と、これに伴なう発生変位量の低下が軽減される。
By providing the recess 6, the contact area between the side surface of the laminate and the insulating layer 52A is reduced. Further, for example, as can be seen from the comparison between the straight cylindrical metal pipe and the bellows-shaped metal pipe, the insulating layer 52A is made stretchable due to the shape effect of providing the recessed portion 6. In the present embodiment, the contact area is reduced and the elasticity is imparted, so that the restraint force of the insulating layer 52A against the displacement of the laminate and the accompanying reduction in the generated displacement amount are reduced.

【0039】又、積層体が紙面上下方向に変位するのに
伴なって絶縁体層52Aに上下方向の力が加ったとき、
凹み部6では絶縁体層52Aの側辺部に対する引張り力
が分散される。従って、例えば今、図5(a)に示すよ
うに、凹み部6にスクリーン印刷時の微小欠陥が生じた
場合でも、この微小欠陥に対する応力の集中は、同図中
に短い矢印で示すように緩和される。これに対して、図
5(b)に示す直線状絶縁体層51Aでは、上記のよう
な絶縁体層51A側辺部での引張り力の分散はない。そ
の結果、絶縁体層51A周辺部に上述したと同様の微小
欠陥が生じた場合には、図中に長い矢印で示すようにこ
の欠陥部分に大きな応力の集中が起り、変位発生が繰り
返されるのに従ってこの欠陥から絶縁体層51Aの破断
が進行する。従って、絶縁体層の側辺部に生じる微小欠
陥の密度が、図5(a)に示す第2の実施例と図5
(b)に示す直線状の絶縁体層とで同一であれば、絶縁
体層の微小欠陥からの破断の確率は本実施例の方が低
く、それだけ素子を繰り返し変位させたときの故障が少
ない。尚、凹み部6の形状は半円形に限られるものでは
ない。楕円の一部でもよいし、正弦曲線の一部でもよ
い。更に、複数の直線を滑らかに連続させて作られる形
状でもよい。
Further, when a vertical force is applied to the insulating layer 52A as the laminated body is displaced in the vertical direction of the paper surface,
In the recessed portion 6, the tensile force with respect to the side portion of the insulator layer 52A is dispersed. Therefore, for example, as shown in FIG. 5A, even if a minute defect occurs during screen printing in the recessed portion 6, the concentration of stress on the minute defect is as shown by a short arrow in FIG. Will be alleviated. On the other hand, in the linear insulator layer 51A shown in FIG. 5B, the tensile force is not dispersed in the side portion of the insulator layer 51A as described above. As a result, when a minute defect similar to the one described above occurs in the peripheral portion of the insulator layer 51A, large stress concentration occurs in this defect portion as indicated by a long arrow in the figure, and displacement is repeated. Accordingly, the breakage of the insulator layer 51A progresses from this defect. Therefore, the density of minute defects generated on the side portion of the insulator layer is the same as that of the second embodiment shown in FIG.
If it is the same as that of the linear insulator layer shown in (b), the probability of breakage from minute defects in the insulator layer is lower in the present embodiment, and accordingly, there are less failures when the element is repeatedly displaced. . The shape of the recess 6 is not limited to the semicircle. It may be part of an ellipse or part of a sine curve. Further, it may have a shape formed by smoothly connecting a plurality of straight lines.

【0040】上述した第2の実施例では、絶縁体層52
Aの凹み部6とその他の部分とは不連続につながってい
る。従って、スクリーン印刷時の微小欠陥の発生部位
が、この不連続接続点あるいは凹み部6以外の直線状部
分に合致し、そこに応力の集中が起り素子が故障する可
能性が、僅かではあるが残る。このような原因による素
子の故障は、絶縁体層のパターンを図5(c)に示す形
状にすることによって、更に軽減できる。すなわち、図
5(c)を参照すると、この図に示す絶縁体層53Aの
パターンは、外部電極層の櫛歯状突出部に相当する部分
を半円形凸状に形成し、凹み部6と滑らかに接続させて
いる。このような形状の絶縁体層53Aでは、絶縁体層
周辺部のいずれの部分でも引張り力が分散されるので、
微小欠陥による素子の故障発生はより少なくなる。ここ
で、この例では、凸状半円と凹み状半円とを連続させた
が、それぞれの形状は半円に限られるものではない。楕
円の一部でもよいし、正弦曲線のようにしても同様の効
果を得ることができる。
In the second embodiment described above, the insulator layer 52
The recessed portion 6 of A and other portions are discontinuously connected. Therefore, there is a slight possibility that the portion where the minute defect is generated during screen printing coincides with the discontinuous connection point or the linear portion other than the recessed portion 6 and the stress is concentrated there to cause the element to fail. Remain. The failure of the element due to such a cause can be further reduced by forming the pattern of the insulating layer into the shape shown in FIG. That is, referring to FIG. 5C, in the pattern of the insulator layer 53A shown in this figure, the portion corresponding to the comb-shaped protruding portion of the external electrode layer is formed in a semicircular convex shape, and the concave portion 6 and the smooth portion are smooth. Connected to. In the insulator layer 53A having such a shape, the tensile force is dispersed in any of the peripheral portions of the insulator layer.
The occurrence of device failure due to minute defects is reduced. Here, in this example, the convex semi-circle and the concave semi-circle are continuous, but the respective shapes are not limited to the semi-circle. The same effect can be obtained by using a part of an ellipse or a sine curve.

【0041】尚、上述の第2の実施例においては、外部
電極層31Aのパターンを、図4に示すように、その帯
状部分に対して櫛歯状突出部が両方向に飛び出す形状、
つまり二つの櫛歯状突出部を背中合せに設けたパターン
としたが、このパターンは、図1に示すように、櫛歯状
突出部が片側にだけ飛び出すような形状としてもよいこ
とは勿論である。又、二つの絶縁体層を積層体の同一側
面上に形成してもよいし、更に、このとき二つの外部電
極層が同一の絶縁体層を共用するようにしてもよいこと
は、第1の実施例におけると同様である。
In the above-mentioned second embodiment, the pattern of the external electrode layer 31A is formed in such a manner that the comb-teeth-like protrusions project in both directions with respect to the strip-shaped portion, as shown in FIG.
That is, the two comb-teeth-shaped protrusions are provided back to back, but this pattern may have a shape in which the comb-teeth-shaped protrusions project only to one side, as shown in FIG. . Also, two insulator layers may be formed on the same side surface of the laminate, and at this time, two external electrode layers may share the same insulator layer. Is the same as in the embodiment.

【0042】[0042]

【発明の効果】以上説明したように、本発明は全面電極
型の積層型電歪効果素子において、積層体側面に露出す
る内部電極層の露出部を外部電極層から絶縁するための
絶縁体層及び、内部電極層を一層置きに接続するための
外部電極層をスクリーン印刷により形成すると共に、絶
縁体層の形状を、帯状に連続する一つの絶縁体層で全内
部電極層を絶縁する形状とし、又、外部電極層の形状
を、内部電極層の露出部と接続する部分が絶縁体層の帯
状部分から櫛歯状に突出する形状としている。
As described above, according to the present invention, in the laminated electrode electrostrictive effect element of the full-surface electrode type, the insulating layer for insulating the exposed portion of the internal electrode layer exposed on the side surface of the laminated body from the external electrode layer. And, the external electrode layers for connecting every other internal electrode layer are formed by screen printing, and the shape of the insulating layer is such that all the internal electrode layers are insulated by one insulating layer continuous in a strip shape. Also, the external electrode layer is shaped such that the portion connected to the exposed portion of the internal electrode layer protrudes like a comb from the strip-shaped portion of the insulator layer.

【0043】これにより本発明によれば、セラミック層
の厚さが絶縁体層の絶縁耐力に制限されることなく、外
部電極層のスクリーン印刷精度でのみ決るようにでき
る。従って、内部電極層ごとに独立した絶縁体層を形成
する従来の電歪効果素子に比べて、セラミック層をより
薄膜化し高電界で駆動することができる。
Thus, according to the present invention, the thickness of the ceramic layer is not limited by the dielectric strength of the insulator layer, but can be determined only by the screen printing accuracy of the external electrode layer. Therefore, compared with the conventional electrostrictive effect element in which an independent insulator layer is formed for each internal electrode layer, the ceramic layer can be made thinner and can be driven by a high electric field.

【0044】しかも、電気泳動法により絶縁体層を形成
する素子とは異なって、絶縁体層及び外部電極層形成の
ために何等新しい工程を必要せず、又、製造条件の管理
を厳しくする必要がないので、製造コストを大きく低減
できる。
Moreover, unlike the element in which the insulator layer is formed by the electrophoretic method, no new process is required to form the insulator layer and the external electrode layer, and the manufacturing conditions need to be strictly controlled. Therefore, the manufacturing cost can be greatly reduced.

【0045】更には、絶縁体層を選択的除去法により形
成する素子に比べて、素子製造時の熱的、機械的損傷が
ないので、これらの損傷に伴なう電気的、機械的特性の
劣化や信頼性の低下などの問題はない。
Further, as compared with the device in which the insulating layer is formed by the selective removal method, there is no thermal or mechanical damage at the time of manufacturing the device, so that the electrical and mechanical characteristics associated with these damages are There are no problems such as deterioration or deterioration of reliability.

【0046】更に、本発明は、絶縁体層の積層方向に延
びる側辺に対して、外部電極層の櫛歯状突出部に挟まれ
た部分に、連続した線で描かれる凹み部を設けている。
これにより、絶縁体層を帯状連続体にすることによる発
生変位量の低下及び、繰り返し変位させたときの絶縁体
層の破断に起因する素子の故障発生が軽減される。
Further, according to the present invention, a concave portion drawn by a continuous line is provided in a portion sandwiched between the comb-teeth-shaped protrusions of the external electrode layer with respect to a side extending in the stacking direction of the insulating layers. There is.
This reduces the amount of displacement that occurs when the insulating layer is formed into a strip-shaped continuous body, and reduces the occurrence of device failure due to breakage of the insulating layer when repeatedly displaced.

【0047】本発明の電歪効果素子は、変位量が比較的
小さい用途、頻繁に変位を繰り返さないDCサーボ的な
動作をするような用途、更には、故障した場合の交換が
容易な用途などに用いた場合、特にその低コスト性とい
う利点を大いに発揮する。
The electrostrictive effect element of the present invention is used for a comparatively small amount of displacement, for a DC servo-like operation in which displacement is not repeated frequently, and for easy replacement when a failure occurs. When it is used for, the advantage of its low cost is exerted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の斜視図である。FIG. 1 is a perspective view of a first embodiment of the present invention.

【図2】従来の電歪効果素子及び本発明の第1の実施例
において、セラミック層の厚さと絶縁体層の幅との関係
及び、セラミック層と外部電極層の幅との関係を説明す
るための図である。
FIG. 2 illustrates the relationship between the thickness of the ceramic layer and the width of the insulating layer and the relationship between the width of the ceramic layer and the width of the external electrode layer in the conventional electrostrictive effect element and the first embodiment of the present invention. FIG.

【図3】本発明の第1の実施例における絶縁体層及び外
部電極層の構造の、他の例を示す斜視図である。
FIG. 3 is a perspective view showing another example of the structures of the insulator layer and the external electrode layer in the first example of the present invention.

【図4】本発明の第2の実施例の斜視図である。FIG. 4 is a perspective view of a second embodiment of the present invention.

【図5】分図(a)は、本発明の第2の実施例における
絶縁体層に微小欠陥が生じた場合の応力の状態を示す図
である。分図(b)は、本発明の第1の実施例における
絶縁体層に微小欠陥が生じた場合の応力の状態を示す図
である。分図(c)は、本発明の第2の実施例における
絶縁体層のパターンの、他の例を示す図である。
FIG. 5A is a diagram showing a state of stress when minute defects are generated in the insulating layer in the second embodiment of the present invention. FIG. 6B is a diagram showing a state of stress when minute defects are generated in the insulating layer in the first embodiment of the present invention. Separation diagram (c) is a diagram showing another example of the pattern of the insulator layer in the second embodiment of the present invention.

【図6】従来の積層型電歪効果素子の一例の斜視図であ
る。
FIG. 6 is a perspective view of an example of a conventional laminated electrostrictive effect element.

【図7】従来の積層型電歪効果素子の他の例の断面図で
ある。
FIG. 7 is a cross-sectional view of another example of a conventional laminated electrostrictive effect element.

【符号の説明】 1 セラミック層 2 内部電極層 3A,3B 外部電極層 4 接続導体 5A,5B 絶縁体層 6 凹み部 31A,31B 外部電極層 51,51A,51B,52A,52B,53A,53
B 絶縁体層
[Description of Reference Signs] 1 ceramic layer 2 internal electrode layers 3A, 3B external electrode layer 4 connection conductors 5A, 5B insulator layer 6 recessed portions 31A, 31B external electrode layers 51, 51A, 51B, 52A, 52B, 53A, 53
B insulator layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 電歪効果を示すセラミック層と前記セラ
ミック層の平面形状と同一な平面形状をもつ内部電極層
とを交互に積層してなる積層体の積層方向に沿う軸に平
行な第1の側面上に、前記積層方向に帯状に連続し前記
内部電極層の前記第1の側面への露出部を部分的に覆う
第1の絶縁体層と、前記第1の絶縁体層上に設けられ、
前記内部電極層のうち一層おきに配置された第1の内部
電極層の前記第1の側面への露出部を電気的に接続する
第1の外部電極層を設け、 前記積層体の前記積層方向に沿う軸に平行な第2の側面
上には、前記積層方向に帯状に連続し前記内部電極層の
前記第2の側面への露出部を部分的に覆う第2の絶縁体
層と、前記第2の絶縁体層上に設けられ、前記内部電極
層のうち前記第1の内部電極層とは異なる第2の内部電
極層の前記第2の側面への露出部を電気的に接続する第
2の外部電極層を設け、 前記第1の外部電極層及び前記第2の外部電極層の平面
形状を、各内部電極層と接続する部分が各絶縁体層から
櫛歯状に突出した形状にした構造の積層型電歪効果素
子。
1. A first parallel to a shaft along a stacking direction of a stack body in which a ceramic layer exhibiting an electrostrictive effect and an internal electrode layer having the same planar shape as the ceramic layer are alternately stacked. A first insulator layer that is continuous in a strip shape in the stacking direction and partially covers an exposed portion of the internal electrode layer that is exposed to the first side surface, and is provided on the first insulator layer. The
A first external electrode layer electrically connecting exposed portions of the first internal electrode layers arranged in alternate layers of the internal electrode layers to the first side surface, and the stacking direction of the stacked body. A second insulator layer continuous on the second side surface parallel to the axis extending along the stacking direction in a strip shape and partially covering the exposed portion of the internal electrode layer to the second side surface; A second insulating layer provided on the second insulator layer, for electrically connecting an exposed portion of the second inner electrode layer of the inner electrode layer different from the first inner electrode layer to the second side surface; 2 external electrode layers are provided, and the planar shape of the first external electrode layer and the second external electrode layer is made to have a shape in which a portion connected to each internal electrode layer protrudes in a comb shape from each insulator layer. The laminated electrostrictive effect element having the above structure.
【請求項2】 請求項1記載の積層型電歪効果素子にお
いて、 前記第1の側面と前記第2の側面とが互いに対向する側
面であることを特徴とする積層型電歪効果素子。
2. The laminated electrostrictive effect element according to claim 1, wherein the first side surface and the second side surface are side surfaces facing each other.
【請求項3】 請求項1記載の積層型電歪効果素子にお
いて、 前記第1の側面と前記第2の側面とが同一の側面である
ことを特徴とする積層型電歪効果素子。
3. The laminated electrostrictive effect element according to claim 1, wherein the first side surface and the second side surface are the same side surface.
【請求項4】 請求項3記載の積層型電歪効果素子にお
いて、 前記第1の絶縁体層と前記第2の絶縁体層とが同一の絶
縁体層であることを特徴とする積層型電歪効果素子。
4. The laminated electrostrictive effect element according to claim 3, wherein the first insulator layer and the second insulator layer are the same insulator layer. Strain effect element.
【請求項5】 請求項1記載の積層型電歪効果素子にお
いて、 前記第1の絶縁体層及び前記第2の絶縁体層が、シリカ
ガラス或いはアルミナガラス等のような無機物質からな
ることを特徴とする積層型電歪効果素子。
5. The laminated electrostrictive effect element according to claim 1, wherein the first insulator layer and the second insulator layer are made of an inorganic material such as silica glass or alumina glass. Characteristic multilayer electrostrictive effect element.
【請求項6】 請求項1記載の積層型電歪効果素子にお
いて、 前記第1の絶縁体層及び前記第2の絶縁体層が、電気絶
縁性樹脂からなることを特徴とする積層型電歪効果素
子。
6. The laminated electrostrictive effect element according to claim 1, wherein the first insulator layer and the second insulator layer are made of an electrically insulating resin. Effect element.
【請求項7】 請求項1記載の積層型電歪効果素子にお
いて、 前記第1の絶縁体層及び前記第2の絶縁体層の平面形状
を、前記積層方向に平行な辺の前記第1の外部電極層及
び前記第2の外部電極層の前記櫛歯状の突出部に挟まれ
た部分に、連続する線で描かれる凹みを有する形状とし
たことを特徴とする積層型電歪効果素子。
7. The laminated electrostrictive effect element according to claim 1, wherein a planar shape of the first insulator layer and the second insulator layer is the first of the sides parallel to the stacking direction. A laminated electrostrictive effect element having a shape having a recess drawn by a continuous line in a portion sandwiched between the external electrode layer and the second external electrode layer between the comb-teeth-shaped protrusions.
【請求項8】 請求項7記載の積層型電歪効果素子にお
いて、 前記積層方向に平行な辺は、前記凹みとこの凹み以外の
部分とが連続する線で滑らかに接続されてなることを特
徴とする積層型電歪効果素子。
8. The stacked electrostrictive effect element according to claim 7, wherein a side parallel to the stacking direction is formed by smoothly connecting the recess and a portion other than the recess by a continuous line. And a laminated electrostrictive effect element.
JP5243423A 1993-09-30 1993-09-30 Multilayer electrostrictive effect element Expired - Lifetime JP2748830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5243423A JP2748830B2 (en) 1993-09-30 1993-09-30 Multilayer electrostrictive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5243423A JP2748830B2 (en) 1993-09-30 1993-09-30 Multilayer electrostrictive effect element

Publications (2)

Publication Number Publication Date
JPH07106652A true JPH07106652A (en) 1995-04-21
JP2748830B2 JP2748830B2 (en) 1998-05-13

Family

ID=17103654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5243423A Expired - Lifetime JP2748830B2 (en) 1993-09-30 1993-09-30 Multilayer electrostrictive effect element

Country Status (1)

Country Link
JP (1) JP2748830B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072370A (en) * 2003-08-26 2005-03-17 Ngk Insulators Ltd Multilayer ceramics electronic component and manufacturing method therefor
EP1132978A4 (en) * 1998-10-29 2006-03-01 Hitachi Ltd Multilayer electronic part, its manufacturing method, two-dimensionally arrayed element packaging structure, and its manufacturing method
US7352115B2 (en) 2004-04-28 2008-04-01 Tdk Corporation Piezoelectric element and piezoelectric device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211974A (en) * 1986-03-12 1987-09-17 Hitachi Metals Ltd Laminated piezoelectric element and manufacture thereof
JPH03225975A (en) * 1990-01-31 1991-10-04 Nec Corp Laminated piezoelectric actuator element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211974A (en) * 1986-03-12 1987-09-17 Hitachi Metals Ltd Laminated piezoelectric element and manufacture thereof
JPH03225975A (en) * 1990-01-31 1991-10-04 Nec Corp Laminated piezoelectric actuator element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1132978A4 (en) * 1998-10-29 2006-03-01 Hitachi Ltd Multilayer electronic part, its manufacturing method, two-dimensionally arrayed element packaging structure, and its manufacturing method
JP2005072370A (en) * 2003-08-26 2005-03-17 Ngk Insulators Ltd Multilayer ceramics electronic component and manufacturing method therefor
US7352115B2 (en) 2004-04-28 2008-04-01 Tdk Corporation Piezoelectric element and piezoelectric device

Also Published As

Publication number Publication date
JP2748830B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
US4780639A (en) Electrostriction effect element
JP2830724B2 (en) Manufacturing method of piezoelectric actuator
JPH04159785A (en) Electrostrictive effect element
JP2006351602A (en) Multilayer piezoelectric actuator device
US6215230B1 (en) Alternately stacked piezoelectric actuator in which each electrode layer leaves an alternately L-shaped stripe of piezoelectric material uncovered
JP2986706B2 (en) Piezoelectric element and piezoelectric actuator using the same
JP2850718B2 (en) Manufacturing method of piezoelectric actuator
JPH07106652A (en) Multilayer electrostriction effect device
JP2824116B2 (en) Multilayer piezoelectric actuator
JPH0794796A (en) Multilayered electrostrictive/piezoelectric device
JPH09148638A (en) Multilayered piezoelectric actuator and its manufacture
JPH0387076A (en) Piezoelectric actuator and manufacture thereof
JP2692397B2 (en) Electrostrictive effect element
JPS62133777A (en) Lamination-type piezoelectric element and manufacture thereof
CN218071336U (en) Piezoelectric driver unit array and deformable mirror
JPH04337682A (en) Piezoelectric effect element and electrostrictive effect element
JPH0279482A (en) Electrostriction effect element and manufacture thereof
JPH06204581A (en) Laminated piezoelectric ceramic actuator
JP3227896B2 (en) Stacked piezoelectric body
JP2024058316A (en) Piezoelectric element
JPH04299587A (en) Electrostriction effect element
JPH04334076A (en) Multilayered piezoelectric element and its manufacture
CN115242120A (en) Method for manufacturing piezoelectric actuator array and piezoelectric actuator array
KR100612800B1 (en) Piezoelectric multilayer actuator designed to reduce a stress caused by electric field
JPH02164084A (en) Manufacture of laminated piezoelectric actuator element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980120