JPH0710524A - Hydrophobic fine silica and production thereof - Google Patents

Hydrophobic fine silica and production thereof

Info

Publication number
JPH0710524A
JPH0710524A JP15238293A JP15238293A JPH0710524A JP H0710524 A JPH0710524 A JP H0710524A JP 15238293 A JP15238293 A JP 15238293A JP 15238293 A JP15238293 A JP 15238293A JP H0710524 A JPH0710524 A JP H0710524A
Authority
JP
Japan
Prior art keywords
fine silica
groups
hydrophobic
silica
hexamethyldisilazane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15238293A
Other languages
Japanese (ja)
Other versions
JP2886037B2 (en
Inventor
Masahiro Nakamura
正博 中村
Kazuhisa Nobemoto
一寿 延本
Takatsune Nagano
尊凡 永野
Yoshio Mitani
芳雄 美谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15539308&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0710524(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP15238293A priority Critical patent/JP2886037B2/en
Publication of JPH0710524A publication Critical patent/JPH0710524A/en
Application granted granted Critical
Publication of JP2886037B2 publication Critical patent/JP2886037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain highly hydrophobic fine silica having enough hydrophobic groups and a small amt. of OH groups on the surface. CONSTITUTION:This hydrophobic fine silica has <=0.3 OH group per 1nm<2> surface area on the surface and >=60% modified hydrophobic degree. This hydrophobic fine silica is produced by bringing fine silica having >=1.5 OH groups per 1nm<2> surface area on the surface into contact with hexamethyldisilazane in the presence of steam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面に十分な量の疎水
基を有し、しかもOH基の量は少なく、高い疎水性を示
す微細シリカおよびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine silica having a sufficient amount of hydrophobic groups on the surface and a small amount of OH groups and exhibiting high hydrophobicity, and a method for producing the same.

【0002】[0002]

【従来の技術】クロロシランの火炎熱分解によって製造
されるシリカは、比表面積が50〜500m2/g程度
の微細シリカであり、一般にはフュームドシリカと呼ば
れている。この微細シリカは樹脂の充填・補強材や粉末
の流動化剤として用いられているが、これらの用途に使
用するためには微細シリカの表面を疎水性にすることが
しばしば必要とされている。疎水化処理された微細シリ
カを上記の用途に用いた場合の効果は一概にはいえない
が、例えば、シリコーン樹脂の充填・補強材として使用
した場合には微細シリカ粒子の分散性を高めてシリコー
ン樹脂の伸びや機械的強度を向上させる効果があり、粉
末の流動化剤として用いた場合にはその流動性を著しく
向上させる効果がある。
Silica produced by flame pyrolysis of chlorosilane is a fine silica having a specific surface area of about 50 to 500 m 2 / g and is generally called fumed silica. This fine silica is used as a resin filling / reinforcing material and a fluidizing agent for powders, but it is often necessary to make the surface of the fine silica hydrophobic for use in these applications. The effect of using hydrophobized fine silica for the above applications cannot be generally stated, but for example, when it is used as a filler / reinforcing agent for silicone resin, the dispersibility of fine silica particles is increased to improve the silicone content. It has the effect of improving the elongation and mechanical strength of the resin, and has the effect of significantly improving the fluidity when used as a fluidizing agent for powder.

【0003】このような効果を求め、微細シリカの表面
を高度に疎水化する試みが従来から広く行われており、
メチルクロロシランやシランカップリング剤などが疎水
化処理剤として用いられてきた。このような疎水化処理
剤のなかでも、適度に大きい分子量の化合物が高疎水性
微細シリカを得るためには有効であった。例えば、微細
シリカを分子量の大きい疎水化処理剤であるシリコーン
オイルで処理すると、後述する方法で測定された修飾疎
水度で表される疎水性の程度が70%の微細シリカを得
ることができる。しかし、この場合のシリコーンオイル
の大部分は、単に微細シリカの表面に付着しているだけ
で、表面と反応しているわけではない。したがって、充
填する樹脂の種類によっては、修飾されたシリコーンオ
イルが表面から離れて樹脂中に溶け出し、分散した微細
シリカ粒子の疎水度が期待に反して悪化することが起こ
り得る。
In order to obtain such effects, attempts to make the surface of fine silica highly hydrophobic have been widely made in the past.
Methylchlorosilane and silane coupling agents have been used as hydrophobic treatment agents. Among such hydrophobizing agents, a compound having an appropriately large molecular weight was effective for obtaining highly hydrophobic fine silica. For example, when fine silica is treated with a silicone oil which is a hydrophobizing agent having a large molecular weight, it is possible to obtain fine silica having a degree of hydrophobicity of 70% represented by a modified hydrophobicity measured by the method described below. However, most of the silicone oil in this case simply adheres to the surface of the fine silica and does not react with the surface. Therefore, depending on the type of the resin to be filled, the modified silicone oil may be separated from the surface and dissolved in the resin, and the hydrophobicity of the dispersed fine silica particles may be deteriorated unexpectedly.

【0004】また、別の高疎水化処理の方法としては、
微細シリカをヘキサメチルジシラザンで処理する方法が
ある(特開昭62−171913号公報)。この方法
は、ヘキサメチルジシラザンが微細シリカの表面のOH
基と反応することを利用したものである。従って、この
方法により疎水化処理された微細シリカの表面にはトリ
メチルシリル基が化学結合により固定されており、修飾
疎水度60%以上の微細シリカを得ることができる。こ
の方法において、微細シリカの表面に十分な量のトリメ
チルシリル基を導入するためには微細シリカを予め水で
濡らせて表面のOH基の数を増加させることが必要であ
った。この方法で得た微細シリカは、その修飾疎水度が
前述のシリコーンオイル処理で得た微細シリカの修飾疎
水度と比べて劣るが、疎水基が表面に化学的に結合して
いることに特徴がある。
[0004] Another method for highly hydrophobic treatment is as follows.
There is a method of treating fine silica with hexamethyldisilazane (JP-A-62-171913). In this method, hexamethyldisilazane is OH on the surface of fine silica.
It utilizes that it reacts with a group. Therefore, trimethylsilyl groups are fixed by chemical bonds on the surface of the finely-divided silica that has been hydrophobized by this method, and finely-divided silica having a modified hydrophobicity of 60% or more can be obtained. In this method, in order to introduce a sufficient amount of trimethylsilyl groups onto the surface of fine silica, it was necessary to prewet fine silica with water to increase the number of OH groups on the surface. The modified hydrophobicity of the fine silica obtained by this method is inferior to that of the fine silica obtained by the above-mentioned silicone oil treatment, but is characterized in that the hydrophobic group is chemically bonded to the surface. is there.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
方法で得た微細シリカは修飾疎水度で表した疎水性の程
度が良好であるが、その応用分野においては、さらに高
疎水性の微細シリカの出現が望まれてきた。そのような
高疎水性微細シリカが出現すれば、例えば、樹脂の充填
剤として用いた場合、樹脂と微細シリカの濡れ性向上や
分散性向上に伴う種々の応用特性の改善が期待できる。
より具体的には、エポキシや不飽和ポリエステル樹脂に
充填剤として混合して、樹脂の粘度やチキソトロピー性
の経時的な安定性の向上が期待される。また、このよう
な微細シリカをシリコーンのような各種シーラントに混
合して使用すると、カートリッジからの押し出し性の経
時的な安定性向上効果が期待される。
However, although the fine silica obtained by the above method has a good degree of hydrophobicity represented by the modified hydrophobicity, in the field of its application, it has a higher hydrophobicity than fine silica. The appearance has been desired. When such highly hydrophobic fine silica appears, for example, when it is used as a filler for a resin, improvement of various application characteristics can be expected due to improvement of wettability and dispersion of the resin and fine silica.
More specifically, it is expected that the viscosity or thixotropy of the resin is improved with time by mixing it with an epoxy or unsaturated polyester resin as a filler. Further, when such fine silica is used by mixing it with various sealants such as silicone, an effect of improving the stability of pushability from the cartridge over time is expected.

【0006】ところで、前記した疎水化処理方法により
得られた微細シリカは、修飾疎水度が60%以上の高疎
水性を示すが、別の観点から見るとその疎水性の程度は
必ずしも良好でないことが判明した。すなわち、上記の
微細シリカは修飾疎水度は良好であるが、その表面にO
H基を多数有していることがわかった。例えば、シリコ
ーンオイルで処理した微細シリカは、シリコーンオイル
が表面OH基と反応せずに単に付着されているだけであ
り、1個/nm2程度の表面OH基が残存している。ま
た、ヘキサメチルジシラザンで微細シリカを処理する方
法は、ヘキサメチルジシラザンが微細シリカの表面のO
H基と反応することを利用したものであるために、微細
シリカの表面に予めOH基を導入しなければならず、そ
うすると、導入されたOH基の一部がヘキサメチルジシ
ラザンと反応せずに微細シリカ表面に残存する。
By the way, the fine silica obtained by the above-mentioned hydrophobizing method exhibits a high hydrophobicity with a modified hydrophobicity of 60% or more, but from another viewpoint, the degree of the hydrophobicity is not necessarily good. There was found. That is, although the above-mentioned fine silica has a good modified hydrophobicity, O
It was found to have a large number of H groups. For example, in the case of fine silica treated with silicone oil, the silicone oil does not react with the surface OH groups and is simply attached, and about 1 / nm 2 surface OH groups remain. In addition, in the method of treating fine silica with hexamethyldisilazane, hexamethyldisilazane is used as O on the surface of fine silica.
Since the reaction with H groups is used, OH groups must be introduced on the surface of the fine silica in advance, and then some of the introduced OH groups do not react with hexamethyldisilazane. Remain on the surface of fine silica.

【0007】従来の疎水化方法では、表面を高性能な疎
水基で修飾することにのみ目が向けられた。しかし、そ
れが表面OH基の数を減少させることには必ずしもつな
がらなかったと思われる。前述のシリコーンオイルやヘ
キサメチルジシラザンによる疎水化処理は、モノメチル
クロロシランやジメチルジクロロシランよりも高性能の
疎水基を表面に導入することによって表面の疎水性を増
すことができるが、表面のOH基の減少にはつながら
ず、総合的な疎水度が必ずしも良好ではない。
Conventional hydrophobizing methods have focused solely on modifying the surface with high performance hydrophobic groups. However, it appears that it did not necessarily lead to a reduction in the number of surface OH groups. The above-mentioned hydrophobic treatment with silicone oil or hexamethyldisilazane can increase the hydrophobicity of the surface by introducing a hydrophobic group having higher performance than monomethylchlorosilane or dimethyldichlorosilane into the surface, However, the overall hydrophobicity is not always good.

【0008】このように、従来の方法で疎水化された微
細シリカは修飾疎水度は良好であるが、その表面にOH
基を多数有しており、微細シリカの総合的な疎水性の程
度を判断するには、表面を修飾した疎水基に基づく疎水
度と表面OH基が少ないことに基づく疎水度の両方で論
じなければならないことが判明した。
As described above, fine silica hydrophobized by the conventional method has a good modified hydrophobicity, but OH is formed on the surface thereof.
In order to judge the overall degree of hydrophobicity of fine silica, which has a large number of groups, it is necessary to discuss both the hydrophobicity based on the surface-modified hydrophobic group and the hydrophobicity based on the small number of surface OH groups. It turned out to be a must.

【0009】そこで本発明者らは、このように総合的な
疎水度が良好な微細シリカを得ることを目的として、表
面に疎水基が十分な量存在し、修飾疎水度が良好で、し
かもOH基の数の少ない微細シリカを得るために研究を
重ねてきた。
[0009] Therefore, the present inventors have a sufficient amount of hydrophobic groups on the surface, have a good modified hydrophobicity, and have an OH value in order to obtain fine silica having a good overall hydrophobicity. Research has been conducted to obtain fine silica having a small number of groups.

【0010】[0010]

【課題を解決するための手段】その結果、疎水化前の微
細シリカとして表面OH基の比較的少ないものを使用
し、ヘキサメチルジシラザンを接触させる際に水蒸気を
存在させることによって上記目的を達成することができ
ることを見いだし、本発明を完成するに至った。
As a result, the above object is achieved by using fine silica having a relatively small number of surface OH groups as the fine silica before hydrophobization, and allowing water vapor to be present when hexamethyldisilazane is brought into contact with the silica. As a result, they have completed the present invention.

【0011】即ち、本発明は、単位表面積当たりの表面
のOH基の数が0.3個/nm2以下であり、且つ修飾
疎水度が60%以上であることを特徴とする疎水性微細
シリカである。
That is, according to the present invention, the number of OH groups on the surface per unit surface area is 0.3 / nm 2 or less, and the modified hydrophobicity is 60% or more. Is.

【0012】本発明の疎水性微細シリカは、比表面積が
50〜500m2/g、特に150〜300m2/gの微
細粒子よりなるシリカである。このような微細シリカ
は、通常、ハロゲノシランの火炎熱分解あるいは加水分
解で製造することができる。
The hydrophobic fine silica of the present invention is a silica composed of fine particles having a specific surface area of 50 to 500 m 2 / g, particularly 150 to 300 m 2 / g. Such fine silica can be usually produced by flame pyrolysis or hydrolysis of halogenosilane.

【0013】本発明の疎水性微細シリカは、単位表面積
当たりの表面のOH基の数が0.3個/nm2以下であ
り、且つ修飾疎水度が60%以上でなければならない。
本発明の疎水性微細シリカは、このように表面OH基数
が少なく、且つ修飾疎水度が高いことの両者の総合的な
効果により、著しく疎水性の高い微細シリカとなってい
る。
The hydrophobic fine silica of the present invention must have the number of OH groups on the surface per unit surface area of 0.3 / nm 2 or less and the modified hydrophobicity of 60% or more.
The hydrophobic fine silica of the present invention is a fine silica having remarkably high hydrophobicity due to the combined effects of the small number of OH groups on the surface and the high modified hydrophobicity.

【0014】表面OH基の数および修飾疎水度のいずれ
か一方が上記した範囲を外れた場合には、本発明の疎水
性微細シリカと比べ、十分な疎水性を有する微細シリカ
とはならない。例えば、表面OH基の数が上記値を越え
たときは、一般に湿度環境下で大きな吸湿量を示す傾向
にある。また、修飾疎水度が上記値未満のときは、例え
ば、シリコーンに分散させると微細シリカの分散が十分
でないために粘度が高くなり、また、その粘度の経時変
化が大きくなるという傾向を示す。これらの二つの傾向
は、必ずしも明確に区別できるものでなく、少なからず
相互に影響を及ぼし合うものと考えられる。
When either one of the number of OH groups on the surface and the modified hydrophobicity is out of the above range, fine silica having sufficient hydrophobicity is not obtained as compared with the fine hydrophobic silica of the present invention. For example, when the number of OH groups on the surface exceeds the above value, a large amount of moisture absorption generally tends to be exhibited in a humid environment. Further, when the modified hydrophobicity is less than the above value, for example, when dispersed in silicone, the fine silica is not sufficiently dispersed, so that the viscosity becomes high, and the viscosity tends to change with time. These two tendencies are not always clearly distinguishable, and are considered to influence each other to some extent.

【0015】表面のOH基の数は0.3個/nm2以下
であればよいが、0.25個/nm2以下、さらに0.
20個/nm2以下であることが高疎水性の微細シリカ
とするために好ましい。なお、本発明における単位表面
積当たりの表面のOH基の数は、後述するカールフィッ
シャー法により測定した表面水分量を基に計算した値で
ある。また、修飾疎水度は60%以上であればよいが、
さらに62%以上であることが好ましい。修飾疎水度は
後述する方法により測定することができる。
[0015] The number of OH groups on the surface may be any 0.3 pieces / nm 2 or less, but the 0.25 pieces / nm 2 or less, and further 0.
The number of 20 / nm 2 or less is preferable for obtaining highly hydrophobic fine silica. The number of OH groups on the surface per unit surface area in the present invention is a value calculated based on the amount of surface water measured by the Karl Fischer method described later. The modified hydrophobicity may be 60% or more,
Further, it is preferably 62% or more. The modified hydrophobicity can be measured by the method described below.

【0016】本発明の疎水性微細シリカは粗粒の少ない
ものであることが好ましく、通常は目開き45μmの篩
残が0.1重量%以下であることが好ましい。また、本
発明の疎水性微細シリカは修飾疎水度に寄与する疎水基
をその表面に有するために疎水基の量に応じた炭素を表
面に有しており、その炭素量は後述する方法によって測
定することができる。例えば、本発明の疎水性微細シリ
カの炭素量は通常2.7〜5.0重量%の範囲である。
さらに、本発明の疎水性微細シリカは後述する方法によ
り製造された場合には反応副生物であるアンモニアを吸
着しているが、これが特定の用途において問題となると
きは窒素ガスを吹き込むことにより副生物や未反応物を
パージすることができ、アンモニア量を100ppm以
下とすることができる。また、本発明の疎水生微細シリ
カを中性近辺、例えば、後述する方法で測定されたpH
を5.0〜8.0の範囲とすることができる。
The hydrophobic fine silica of the present invention preferably has a small number of coarse particles, and usually the sieve residue having an opening of 45 μm is preferably 0.1% by weight or less. In addition, since the hydrophobic fine silica of the present invention has a hydrophobic group that contributes to the modified hydrophobicity on its surface, it has carbon according to the amount of the hydrophobic group on the surface, and the carbon amount is measured by the method described below. can do. For example, the amount of carbon of the hydrophobic fine silica of the present invention is usually in the range of 2.7 to 5.0% by weight.
Furthermore, the hydrophobic fine silica of the present invention adsorbs ammonia, which is a reaction by-product, when it is produced by the method described below. Biological substances and unreacted substances can be purged, and the amount of ammonia can be 100 ppm or less. In addition, the hydrophobic finely divided silica of the present invention may be added in the vicinity of neutral pH, for example, the pH measured by the method described below.
Can be in the range of 5.0 to 8.0.

【0017】本発明の疎水性微細シリカは、どのような
方法によって得てもよいが、次に述べる方法によって好
適に製造することができる。単位表面積当たりの表面の
OH基の数が1.5個/nm2以下である微細シリカを
水蒸気の存在下にヘキサメチルジシラザンと接触させる
方法である。
The hydrophobic fine silica of the present invention may be obtained by any method, but can be suitably produced by the method described below. It is a method in which fine silica having a number of OH groups on the surface per unit surface area of 1.5 / nm 2 or less is brought into contact with hexamethyldisilazane in the presence of water vapor.

【0018】単位表面積当たりの表面のOH基の数が
1.5個/nm2以下である微細シリカを得る方法は種
々あるが、例えば、ハロゲノシランの火炎熱分解あるい
は加水分解で製造された微細シリカの反応直後の吸湿し
ていない状態のものを使用するか、または、吸湿を避け
て保存したものを使用すれば良い。また、微細シリカを
モノメチルクロロシランやトリメチルクロロシランで表
面処理をすることによっても調製することができる。こ
の微細シリカの単位表面積当たりの表面のOH基の数が
1.5個/nm2を越えると、ヘキサメチルジシラザン
と接触させた後においても未反応の表面OH基の数が多
く残存し、微細シリカの表面が親水性となるために好ま
しくない。ヘキサメチルジシラザンと接触させる前の微
細シリカの表面のOH基の数は1.5個/nm2以下で
あればよいが、得られる疎水性微細シリカの表面OH基
の数をできるだけ減少させるため、0.5個/nm2
下であることが好ましい。
There are various methods for obtaining fine silica having the number of OH groups on the surface per unit surface area of 1.5 / nm 2 or less. For example, fine silica produced by flame pyrolysis or hydrolysis of halogenosilane. It is possible to use the silica that has not been imbibed immediately after the reaction with silica, or the one that has been stored while avoiding the imbibition. It can also be prepared by surface-treating fine silica with monomethylchlorosilane or trimethylchlorosilane. When the number of surface OH groups per unit surface area of this fine silica exceeds 1.5 / nm 2 , a large number of unreacted surface OH groups remain even after contacting with hexamethyldisilazane, It is not preferable because the surface of the fine silica becomes hydrophilic. The number of OH groups on the surface of the fine silica before contacting with hexamethyldisilazane may be 1.5 / nm 2 or less, but in order to reduce the number of OH groups on the surface of the obtained hydrophobic fine silica as much as possible. , 0.5 / nm 2 or less is preferable.

【0019】ヘキサメチルジシラザンと接触させる前の
微細シリカは、通常、比表面積が50〜500m2
g、特に好ましくは、200〜400m2/gであり、
表面処理後は、通常150〜300m2/gの範囲とな
る。
Fine silica before contact with hexamethyldisilazane usually has a specific surface area of 50 to 500 m 2 /
g, particularly preferably 200 to 400 m 2 / g,
After the surface treatment, it is usually in the range of 150 to 300 m 2 / g.

【0020】本発明においては、この微細シリカを水蒸
気の存在下にヘキサメチルジシラザンと接触させる。ヘ
キサメチルジシラザンは、液体、気体の別なく使用可能
である。ヘキサメチルジシラザンの使用量は特に限定さ
れないが、通常、微細シリカ1kg当り0.2〜10.
0kgの範囲から選べばよい。
In the present invention, this fine silica is brought into contact with hexamethyldisilazane in the presence of water vapor. Hexamethyldisilazane can be used regardless of liquid or gas. The amount of hexamethyldisilazane used is not particularly limited, but is usually 0.2 to 10 per 1 kg of fine silica.
You can choose from the range of 0 kg.

【0021】本発明においては、上記のヘキサメチルジ
シラザンと微細シリカとの接触を水蒸気の存在下に行う
ことが重要である。従来、トリメチルシリル基は、ヘキ
サメチルジシラザンが微細シリカ表面のOH基と反応す
ることにより微細シリカ表面に導入されるために、元の
微細シリカには十分な量のOH基が必要であると考えら
れていた。しかしながら、前述のように、OH基の一部
はヘキサメチルジシラザンとの接触によっても未反応の
状態で残存し、そのために疎水基で修飾後も微細シリカ
表面のOH基が残存し、好ましくないことが判明した。
これを防ぐためには、元の微細シリカは表面のOH基が
比較的少ないほうがよい。しかし、表面OH基の量が少
ないとヘキサメチルジシラザンの反応性が悪く、十分な
量のトリメチルシリル基を導入することができないとい
う矛盾が生じていた。
In the present invention, it is important to contact the above hexamethyldisilazane with fine silica in the presence of water vapor. Conventionally, the trimethylsilyl group is introduced to the surface of fine silica by reacting hexamethyldisilazane with the OH group on the surface of fine silica, and therefore it is considered that the original fine silica needs a sufficient amount of OH groups. It was being done. However, as described above, some of the OH groups remain in an unreacted state even when contacted with hexamethyldisilazane, and therefore the OH groups on the surface of the fine silica remain after modification with the hydrophobic group, which is not preferable. It has been found.
In order to prevent this, the original fine silica should have relatively few OH groups on the surface. However, when the amount of OH groups on the surface was small, the reactivity of hexamethyldisilazane was poor, and there was a contradiction that a sufficient amount of trimethylsilyl groups could not be introduced.

【0022】ところが、本発明のように、ヘキサメチル
ジシラザンとの接触を水蒸気の存在下に行うことによっ
て、表面のOH基の量が少ない微細シリカを使用するに
もかかわらず、得られる疎水性微細シリカの表面に、以
外にも十分な量のトリメチルシリル基を導入することが
でき、しかも、表面OH基の数を極めて少なくすること
ができた。この理由は定かではないが、水蒸気が触媒と
して作用し、ヘキサメチルジシラザンの反応性を向上さ
せたものと思われる。
However, as in the present invention, by contacting with hexamethyldisilazane in the presence of water vapor, the obtained hydrophobicity is obtained in spite of using fine silica having a small amount of OH groups on the surface. Besides, a sufficient amount of trimethylsilyl groups could be introduced to the surface of the fine silica, and the number of surface OH groups could be extremely reduced. The reason for this is not clear, but it is considered that water vapor acts as a catalyst to improve the reactivity of hexamethyldisilazane.

【0023】本発明における水蒸気の使用量は特に制限
されないが、一般にはヘキサメチルジシラザンと水蒸気
との供給比率が、水蒸気/ヘキサメチルジシラザン=1
/4〜2/1(モル比)となるように選択することが好
ましい。水蒸気は微細シリカをヘキサメチルジシラザン
と接触させる反応器中に間欠的に供給してもよく、ま
た、連続的に供給しても良い。通常は、反応器中にヘキ
サメチルジシラザンと水蒸気とを一定の比率で連続的ま
たは間欠的に供給することが好ましい。
The amount of steam used in the present invention is not particularly limited, but generally, the supply ratio of hexamethyldisilazane and steam is steam / hexamethyldisilazane = 1.
It is preferable to select / 4 to 2/1 (molar ratio). The steam may be supplied intermittently or continuously into the reactor in which the fine silica is brought into contact with hexamethyldisilazane. Usually, it is preferable to feed hexamethyldisilazane and water vapor into the reactor at a constant ratio continuously or intermittently.

【0024】微細シリカとヘキサメチルジシラザンの接
触時の温度は特に制限ないが、上記したようにヘキサメ
チルジシラザンを気体状態で接触させることが好ましい
ため、ヘキサメチルジシラザンの沸点以上の温度、一般
には150〜250℃の温度を採用することが好まし
い。また、接触時間は特に制限ないが、通常0.5〜2
時間の範囲から採用すればよい。
The temperature at the time of contact between the fine silica and hexamethyldisilazane is not particularly limited, but since it is preferable to contact hexamethyldisilazane in a gaseous state as described above, a temperature above the boiling point of hexamethyldisilazane, Generally, it is preferable to employ a temperature of 150 to 250 ° C. The contact time is not particularly limited, but is usually 0.5 to 2
It may be adopted from the range of time.

【0025】なお、反応の形式は特に制限されず、例え
ば、バッチ式、連続式のいずれでもよく、また、反応装
置も流動床式、固定床式あるいは単なる混合器であって
もよい。反応後は未反応物や副生物を窒素でパージして
乾燥することが、得られる疎水性微細シリカのNH3
量を低減させることができるために好ましい。
The type of reaction is not particularly limited, and may be, for example, a batch type or a continuous type, and the reaction apparatus may be a fluidized bed type, a fixed bed type or a simple mixer. After the reaction, it is preferable to purge unreacted substances and by-products with nitrogen and then dry the resulting finely divided hydrophobic silica because the NH 3 content can be reduced.

【0026】本発明においては、水蒸気の存在下におけ
る微細シリカとヘキサメチルジシラザンとの接触を行う
前に、まず、微細シリカをメチルトリクロルシラン、ジ
メチルジクロルシラン等のアルキルハロゲノシランと接
触させておくことにより、さらに優れた疎水性微細シリ
カを製造することができる。
In the present invention, before contacting the fine silica with hexamethyldisilazane in the presence of water vapor, first, the fine silica is contacted with an alkylhalogenosilane such as methyltrichlorosilane or dimethyldichlorosilane. By setting it, more excellent hydrophobic fine silica can be produced.

【0027】この方法は、シリカ表面のOH基にアルキ
ルハロゲノシランを反応させて予め比較的立体障害の小
さいアルキルハロゲノシリル基を導入し、残存するOH
基を反応性の高いヘキサメチルジシラザンと反応させる
方法である。アルキルハロゲノシリル基の導入のみで
は、本発明の特定の表面OH数と修飾疎水度とを共に満
足するものは得れないが、さらに反応性の高いヘキサメ
チルジシラザンを水蒸気の存在下で反応させることによ
り、著しく疎水度の優れた微細シリカを得ることができ
る。この方法は、修飾疎水度を高め、かつ、表面OH基
の数を最も減少させることができる方法であり、本発明
において最も好ましい方法である。なお、上記の方法に
おいて、二段処理の順を逆にすると、先に導入されたヘ
キサメチルジシラザンに基づくトリメチルシリル基の立
体障害のために、アルキルハロゲノシランは十分に反応
せず、目的とする高疎水性シリカを得ることができな
い。
In this method, the OH group on the silica surface is reacted with an alkylhalogenosilane to previously introduce an alkylhalogenosilyl group having a relatively small steric hindrance, and the remaining OH
It is a method of reacting a group with highly reactive hexamethyldisilazane. Although the introduction of the alkylhalogenosilyl group alone does not provide the specific surface OH number and the modified hydrophobicity of the present invention, hexamethyldisilazane having higher reactivity is reacted in the presence of water vapor. As a result, it is possible to obtain fine silica having extremely excellent hydrophobicity. This method is a method capable of increasing the modified hydrophobicity and reducing the number of surface OH groups most, and is the most preferable method in the present invention. In the above method, if the order of the two-step treatment is reversed, the alkylhalogenosilane does not react sufficiently due to the steric hindrance of the trimethylsilyl group based on the hexamethyldisilazane introduced earlier, and thus the target is obtained. Highly hydrophobic silica cannot be obtained.

【0028】この方法において最初に行う微細シリカと
アルキルハロゲノシランとの接触の条件は、西ドイツ特
許第1163784号明細書に記載されている接触条件
を採用すれば良い。例えば、テトラクロロシランの火炎
熱分解法により製造された微細シリカを反応器中に投入
した後450℃程度に加熱し、微細シリカ1kg当りア
ルキルハロゲノシランを0.05〜1kgで、アルキル
ハロゲノシランと水蒸気との供給比率が水蒸気/アルキ
ルハロゲノシラン=1/3〜1/0.01(モル比)と
なるように、アルキルハロゲノシランと水蒸気とを反応
器中に窒素によって並流的に気送し、反応終了後は未反
応物や副生物を窒素でパージして乾燥する方法が好まし
い。
As the contact condition between the finely divided silica and the alkylhalogenosilane, which is first performed in this method, the contact condition described in West German Patent No. 1163784 may be adopted. For example, fine silica produced by the flame pyrolysis method of tetrachlorosilane is charged into a reactor and then heated to about 450 ° C., and 0.05 to 1 kg of alkylhalogenosilane per 1 kg of fine silica, alkylhalogenosilane and water vapor. Alkylhalogenosilane and water vapor are cocurrently fed by nitrogen into the reactor in a cocurrent manner such that the supply ratio of water vapor / alkylhalogenosilane = 1/3 to 1 / 0.01 (molar ratio). After completion of the reaction, a method of purging unreacted materials and by-products with nitrogen and drying is preferred.

【0029】このようにして、本発明の疎水性微細シリ
カを製造することができる。
In this way, the hydrophobic fine silica of the present invention can be manufactured.

【0030】[0030]

【発明の効果】本発明の疎水性微細シリカは、表面のO
H基の量が極めて少なく、しかも、ヘキサメチルジシラ
ザンとの接触によって疎水基が導入されており、極めて
疎水性の優れた微細シリカである。
The hydrophobic fine silica of the present invention has a surface O
The amount of H groups is extremely small, and moreover, a hydrophobic group is introduced by contact with hexamethyldisilazane, which is a fine silica having extremely excellent hydrophobicity.

【0031】従って、本発明の疎水性微細シリカは、あ
る種の樹脂、たとえば、シリコーン樹脂に混合した場
合、濡れ性と分散性がよいために粘度の上昇が小さく、
また、粘度の経時安定性を向上させることができる。粘
度上昇が小さいことは、その樹脂に多量の微細シリカが
充填できる可能性がある。また、本発明の疎水性微細シ
リカを各種シーラントや樹脂に増粘剤として混合した場
合、粘度やチキソトロピー性の経時的な安定性を高める
ことができる。
Therefore, when the hydrophobic fine silica of the present invention is mixed with a certain resin, for example, a silicone resin, the wettability and dispersibility are good, and therefore the increase in viscosity is small,
Further, the stability of viscosity with time can be improved. The small increase in viscosity may allow the resin to be filled with a large amount of fine silica. Further, when the hydrophobic fine silica of the present invention is mixed with various sealants and resins as a thickener, the stability of viscosity and thixotropy with time can be increased.

【0032】さらに、本発明の疎水性微細シリカは、上
記した用途の他にも、各種粉体、例えば、乾式コピー機
のトナー、粉状樹脂等、各種粉体の流動化剤としても好
適に用いることができ、かつ、湿度環境下で吸湿しにく
いため、その流動化性能や帯電量の環境変化が少なく、
好適に用いることができる。
Further, the hydrophobic fine silica of the present invention is suitable as a fluidizing agent for various powders such as toners of dry copying machines, powdery resins and the like, in addition to the above-mentioned applications. It can be used, and since it is difficult to absorb moisture in a humid environment, there is little environmental change in its fluidization performance and charge amount,
It can be preferably used.

【0033】[0033]

【実施例】以下に実施例を掲げて本発明を詳細に説明す
るが、本発明はこれら実施例に限定されるものではな
い。なお、以下の実施例および比較例における各種の物
性の測定は以下の方法による。
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. In addition, measurement of various physical properties in the following examples and comparative examples is performed by the following methods.

【0034】1.表面OH基および平衡吸着水分量 カールフィシャー法により測定した。即ち、試料を12
0℃で12時間乾燥し(この操作により表面の吸着水分
はなくなりOH基のみとなる。)、25℃相対湿度80
%の雰囲気中に試料を45日静置した(この操作によっ
て水分が吸着平衡に達する。)。測定は京都電子工業社
製カールフィッシャー水分計MKS−210型を用い、
メタノールを溶媒とし直接シリカ表面の吸着水分を定量
した。滴定試薬には、HYDRANAL COMPOS
ITE 5Kを用いた。
1. Surface OH groups and equilibrium adsorbed water content Measured by the Karl Fischer method. That is, 12 samples
It was dried at 0 ° C for 12 hours (this operation removes the adsorbed water on the surface and leaves only OH groups), and 25 ° C relative humidity 80.
The sample was allowed to stand for 45 days in an atmosphere of 10% (this operation allows water to reach adsorption equilibrium). The measurement was performed using a Karl Fischer moisture meter MKS-210 manufactured by Kyoto Electronics Manufacturing Co., Ltd.
The water adsorbed directly on the silica surface was quantified using methanol as a solvent. For the titration reagent, HYDRANAL COMPOS
ITE 5K was used.

【0035】表面OH基数は、上記の方法で測定された
シリカ表面の吸着水分から下記式により計算して求め
た。
The number of OH groups on the surface was calculated by the following formula from the adsorbed water content on the silica surface measured by the above method.

【0036】表面OH基数(個/nm2) = 668.9 × H2
O(wt%) /比表面積(m2/g) 2.炭素分析 シリカの表面疎水基が含有する炭素を1100℃、酸素
雰囲気中にてCO2に熱分解した後、微量炭素分析装置
(堀場社製EMIA−110型)によりシリカの含有す
る炭素量を分析した。
Number of OH groups on surface (number / nm 2 ) = 668.9 × H 2
O (wt%) / specific surface area (m 2 / g) 2. Carbon Analysis After thermally decomposing carbon contained in the surface hydrophobic group of silica into CO 2 in an oxygen atmosphere at 1100 ° C., the amount of carbon contained in silica is analyzed by a trace carbon analyzer (EMIA-110 type manufactured by Horiba). did.

【0037】3.修飾疎水度 疎水性微細シリカは水には浮遊するが、メタノールには
完全に懸濁する。このことを利用し、以下の方法によっ
て測定した修飾疎水度をシリカ表面疎水基による疎水化
の指標とした。
3. Modified hydrophobicity Hydrophobic fine silica floats in water but completely suspends in methanol. Utilizing this fact, the modified hydrophobicity measured by the following method was used as an index of hydrophobization by the silica surface hydrophobic group.

【0038】疎水性微細シリカ0.2gを容量250m
lのビーカー中の50mlの水に添加した。メタノール
をビュレットからシリカの全量が懸濁するまで滴下し
た。この際ビーカー内の溶液をマグネチックスターラー
で常時攪拌した。疎水性微細シリカの全量が溶液中に懸
濁された時点を終点とし、終点におけるビーカーの液体
混合物中のメタノールの容量百分率を修飾疎水度とし
た。
0.2 g of hydrophobic fine silica was added to a volume of 250 m.
Added to 50 ml water in a 1 beaker. Methanol was added dropwise from a burette until the total amount of silica was suspended. At this time, the solution in the beaker was constantly stirred with a magnetic stirrer. The time point when the total amount of the hydrophobic fine silica was suspended in the solution was taken as the end point, and the volume percentage of methanol in the liquid mixture in the beaker at the end point was taken as the modified hydrophobicity.

【0039】4.比表面積 柴田理化学社製比表面積測定装置(SA−1000)を
用いて、窒素吸着BET1点法により測定した。 5.pH測定 疎水性微細シリカ4gをはかり取り、先ずメタノール5
0mlを加え、次いで脱気された純水50mlを加えて
スターラーで10分間攪拌した後、液のpHを測定し
た。
4. Specific surface area Using a specific surface area measuring device (SA-1000) manufactured by Shibata Rikagaku Co., Ltd., it was measured by a nitrogen adsorption BET one-point method. 5. pH measurement Weigh out 4 g of hydrophobic fine silica, and first add 5 ml of methanol.
After adding 0 ml and then adding 50 ml of degassed pure water and stirring for 10 minutes with a stirrer, the pH of the liquid was measured.

【0040】6.残留NH3量 水−メタノール混合溶液によって疎水性微細シリカをス
ラリー化し、メトロオーム社製CH−9191型NH3
ガス電極により測定した。
6. Amount of residual NH 3 Hydrophobic fine silica was slurried with a water-methanol mixed solution, and CH-9191 type NH 3 manufactured by Metroohm Co., Ltd.
It was measured with a gas electrode.

【0041】7.粗粒 疎水性微細シリカ5gをはかり取り、先ずメタノール5
0mlに湿潤し、純水50mlを加え、超音波で5分間
分散した。分散後目開き45μm、開口面積12.6c
2の篩いを用い、流水を5L/分で5分間流通し、篩
上に残ったシリカを乾燥後定量した。
7. Weigh 5 g of coarse-grained hydrophobic fine silica,
Wet to 0 ml, added 50 ml of pure water, and ultrasonically dispersed for 5 minutes. Opening after dispersion 45 μm, opening area 12.6 c
Using a m 2 sieve, running water was circulated at 5 L / min for 5 minutes, and the silica remaining on the sieve was dried and quantified.

【0042】8.シリコーンの粘度 ジメチルシリコーンオイル(粘度1000cs(センチ
ストークス))180gに疎水性微細シリカ9gを添加
し、常温においてディスパーを用いて3000rpmで
2分間分散させた後、25℃の恒温槽中に2時間放置し
た。試料をBL型回転粘度計を用い60rpmでの粘度
を測定した。
8. Viscosity of silicone 9 g of hydrophobic fine silica was added to 180 g of dimethyl silicone oil (viscosity 1000 cs (centistokes)) and dispersed at room temperature for 2 minutes at 3000 rpm using a disper, and then left in a thermostat at 25 ° C for 2 hours. did. The viscosity of the sample was measured at 60 rpm using a BL type rotational viscometer.

【0043】実施例1 テトラクロロシランの火炎熱分解で得られた製造直後の
比表面積300m2/gで表面OH基数が1.4個/n
2の親水性微細シリカ5Kgを内容積300Lのミキ
サー中において攪拌混合し、窒素雰囲気に置換を行っ
た。反応温度170℃において、ヘキサメチルジシラザ
ンを200g/分、水蒸気を22g/分で75分供給し
て疎水化処理を行った。反応後毎分40Lの窒素を30
分間供給し脱アンモニアを行った。結果を表1に示し
た。
Example 1 A specific surface area of 300 m 2 / g immediately after production obtained by flame pyrolysis of tetrachlorosilane and a surface OH group number of 1.4 / n
5 kg of hydrophilic fine silica of m 2 was stirred and mixed in a mixer with an internal volume of 300 L, and the atmosphere was replaced with nitrogen. At a reaction temperature of 170 ° C., hexamethyldisilazane was supplied at 200 g / min, and steam was supplied at 22 g / min for 75 minutes to perform a hydrophobic treatment. After the reaction, add 40 L of nitrogen per minute to 30
It was supplied for a minute to perform deammonification. The results are shown in Table 1.

【0044】実施例2 テトラクロロシランの火炎熱分解で得られた製造直後の
比表面積280m2/gの微細シリカ5Kgを流動層反
応器に入れ、ジメチルジクロロシランを20g/分、水
蒸気を180g/分で450℃に加熱された流動層反応
器中に窒素によって並流的に40分間気送した。疎水化
処理後、未反応物や副生物は窒素でパージして乾燥し
た。以上の操作により比表面積235m2/g、炭素含
有量1.6wt%、表面OH基の0.45個/nm2
修飾疎水度52%の微細シリカが得られた。
Example 2 5 kg of fine silica having a specific surface area of 280 m 2 / g immediately after production obtained by flame pyrolysis of tetrachlorosilane was placed in a fluidized bed reactor, 20 g / min of dimethyldichlorosilane and 180 g / min of steam. Nitrogen was cocurrently pumped for 40 minutes into a fluidized bed reactor heated at 450 ° C. After the hydrophobic treatment, unreacted substances and by-products were purged with nitrogen and dried. By the above operation, the specific surface area was 235 m 2 / g, the carbon content was 1.6 wt%, the surface OH groups were 0.45 / nm 2 ,
Fine silica with a modified hydrophobicity of 52% was obtained.

【0045】この微細シリカ5Kgを内容積300Lの
ミキサー中において攪拌混合し窒素雰囲気に置換を行っ
た。反応温度200℃において、ヘキサメチルジシラザ
ンを200g/分、水蒸気11g/分にて75分供給し
疎水化処理を行った。反応後毎分40Lで窒素を30分
間供給して脱アンモニアを行った。結果を表1に示し
た。
5 kg of this fine silica was agitated and mixed in a mixer with an internal volume of 300 L to replace the atmosphere with nitrogen. At a reaction temperature of 200 ° C., hexamethyldisilazane was supplied at 200 g / min and steam at 11 g / min for 75 minutes for hydrophobic treatment. After the reaction, 40 L / min of nitrogen was supplied for 30 minutes to perform deammonification. The results are shown in Table 1.

【0046】実施例3 実施例2において、ジメチルジクロロシランの供給量を
24g/分に増加したことにより、比表面積230m2
/g、炭素含有量2.2wt%、表面OH基数0.34
個/nm2、修飾疎水度56%の微細シリカが得られ
た。この微細シリカを用いたこと以外は実施例2と同様
の処理を行った。結果を表1に示した。
Example 3 In Example 2, the specific surface area of 230 m 2 was increased by increasing the supply amount of dimethyldichlorosilane to 24 g / min.
/ G, carbon content 2.2 wt%, surface OH group number 0.34
Fine silica having a number of particles / nm 2 and a modified hydrophobicity of 56% was obtained. The same treatment as in Example 2 was carried out except that this fine silica was used. The results are shown in Table 1.

【0047】実施例4 実施例2において、表面処理剤をモノメチルトリクロロ
シランに変更したこと以外は同様の処理を行った。この
操作により比表面積230m2/g、炭素含有量2.2
wt%、表面OH基数0.4個/nm2、修飾疎水度5
2%の微細シリカが得られた。この微細シリカを使用し
て実施例2と同様にヘキサメチルジシラザン処理を行っ
た。結果を表1に示した。
Example 4 The same treatment as in Example 2 was conducted except that the surface treating agent was changed to monomethyltrichlorosilane. This operation resulted in a specific surface area of 230 m 2 / g and a carbon content of 2.2.
wt%, number of OH groups on surface 0.4 / nm 2 , modified hydrophobicity 5
2% finely divided silica was obtained. Using this fine silica, hexamethyldisilazane treatment was carried out in the same manner as in Example 2. The results are shown in Table 1.

【0048】実施例5 実施例2において、ヘキサメチルジシラザンを200g
/分、水蒸気を11g/分で60分間供給して疎水化処
理を行った他は実施例2と同様に行った。結果を表1に
示した。
Example 5 In Example 2, 200 g of hexamethyldisilazane was added.
/ Min, steam was supplied at a rate of 11 g / min for 60 minutes to perform the hydrophobic treatment, and the same procedure as in Example 2 was performed. The results are shown in Table 1.

【0049】実施例6 実施例1において、比表面積380m2/g、表面OH
基数1.4個/nm2の微細シリカを出発原料に使用し
た他は実施例1と同様に行った。結果を表1に示した。
Example 6 In Example 1, a specific surface area of 380 m 2 / g, surface OH
The same procedure as in Example 1 was carried out except that fine silica having a number of bases of 1.4 / nm 2 was used as a starting material. The results are shown in Table 1.

【0050】比較例1〜2 実施例1および2において、ヘキサメチルジシラザンと
の接触時に水蒸気の添加を行わなかったこと以外は実施
例1および2と同様にして行い、その結果を表1に比較
例1および2として示した。
Comparative Examples 1 and 2 The same procedure as in Examples 1 and 2 was repeated except that no steam was added during the contact with hexamethyldisilazane in Examples 1 and 2, and the results are shown in Table 1. The results are shown as Comparative Examples 1 and 2.

【0051】比較例3 比表面積300m2/gの微細シリカに水分を吸着させ
た後に乾燥し、表面OH基数4個/nm2の微細シリカ
を得た。この微細シリカを用いて実施例1と同様にして
ヘキサメチルジシラザン処理を行い、その結果を表1に
示した。
Comparative Example 3 Fine silica having a specific surface area of 300 m 2 / g was allowed to adsorb water and then dried to obtain fine silica having 4 surface OH groups / nm 2 . Using this fine silica, hexamethyldisilazane treatment was carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0052】比較例4 比表面積300m2/gで、表面OH基数1.4個/n
2の微細シリカ5Kgを内容積300Lのミキサー中
において攪拌混合し、窒素雰囲気に置換を行った。雰囲
気温度200℃にてジメチルシリコーンオイルを噴霧
し、引き続き電気炉で350℃に加熱し、微細シリカを
得た。その結果を表1に示した。
Comparative Example 4 Specific surface area of 300 m 2 / g, number of surface OH groups 1.4 / n
5 Kg of m 2 fine silica was stirred and mixed in a mixer with an internal volume of 300 L, and the atmosphere was replaced with a nitrogen atmosphere. Dimethyl silicone oil was sprayed at an ambient temperature of 200 ° C. and subsequently heated to 350 ° C. in an electric furnace to obtain fine silica. The results are shown in Table 1.

【0053】[0053]

【表1】 [Table 1]

【0054】実施例7 実施例1〜6および比較例1〜2で得られた微細シリカ
を前記した方法にしたがってシリコーンと混合し、これ
を25℃の恒温槽中に保存し、保存の経過日数とシリコ
ーンの粘度との関係を図1に示した。
Example 7 The fine silica particles obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were mixed with silicone according to the method described above, and the mixture was stored in a thermostat at 25 ° C. The relationship between the viscosity and the viscosity of silicone is shown in FIG.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、微細シリカとシリコーンの混合物を
25℃の恒温槽中に保存したときの経過日数とシリコー
ンの粘度との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the number of days elapsed and the viscosity of silicone when a mixture of fine silica and silicone was stored in a thermostat at 25 ° C.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 美谷 芳雄 山口県徳山市御影町1番1号 徳山曹達株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Mitani 1-1 Mikagecho, Tokuyama City, Yamaguchi Prefecture Tokuyama Soda Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】単位表面積当たりの表面のOH基の数が
0.3個/nm2以下であり、且つ修飾疎水度が60%
以上であることを特徴とする疎水性微細シリカ。
1. The number of OH groups on the surface per unit surface area is 0.3 / nm 2 or less, and the modified hydrophobicity is 60%.
The above is a hydrophobic fine silica characterized by the above.
【請求項2】単位表面積当たりの表面のOH基の数が
1.5個/nm2以下である微細シリカを水蒸気の存在
下にヘキサメチルジシラザンと接触させることを特徴と
する請求項1記載の疎水性微細シリカの製造方法。
2. The method according to claim 1, wherein fine silica having a number of OH groups on the surface per unit surface area of 1.5 / nm 2 or less is contacted with hexamethyldisilazane in the presence of water vapor. Of the method for producing hydrophobic fine silica.
【請求項3】単位表面積当たりの表面のOH基の数が
1.5個/nm2以下である微細シリカをアルキルハロ
ゲノシランと接触させた後、水蒸気の存在下にヘキサメ
チルジシラザンと接触させることを特徴とする請求項1
記載の疎水性微細シリカの製造方法。
3. Fine silica having a number of surface OH groups per unit surface area of 1.5 / nm 2 or less is contacted with an alkylhalogenosilane, and then contacted with hexamethyldisilazane in the presence of water vapor. Claim 1 characterized by the above.
A method for producing the hydrophobic fine silica described.
JP15238293A 1993-06-23 1993-06-23 Hydrophobic fine silica and method for producing the same Expired - Lifetime JP2886037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15238293A JP2886037B2 (en) 1993-06-23 1993-06-23 Hydrophobic fine silica and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15238293A JP2886037B2 (en) 1993-06-23 1993-06-23 Hydrophobic fine silica and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0710524A true JPH0710524A (en) 1995-01-13
JP2886037B2 JP2886037B2 (en) 1999-04-26

Family

ID=15539308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15238293A Expired - Lifetime JP2886037B2 (en) 1993-06-23 1993-06-23 Hydrophobic fine silica and method for producing the same

Country Status (1)

Country Link
JP (1) JP2886037B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2734738A1 (en) * 1995-06-05 1996-12-06 Gen Electric PROCESS FOR THE TREATMENT OF RAW MINERAL POWDER, MAKING IT HYDROPHOBIC
EP0858793A1 (en) * 1997-02-17 1998-08-19 Tokuyama Corporation Soft relining material for dentures
JP2000264621A (en) * 1999-03-19 2000-09-26 Tokuyama Corp Production of hydrophobic silica
JP2002256170A (en) * 2001-03-05 2002-09-11 Tokuyama Corp Hydrophobic silica powder and its manufacturing method
JP2003176122A (en) * 2001-09-13 2003-06-24 Wacker Chemie Gmbh Silica with low silanol group content
JP2004323361A (en) * 2003-04-21 2004-11-18 New Hair Keshoryo Honpo:Kk Bleaching powder
JP2005154325A (en) * 2003-11-25 2005-06-16 New Hair Keshoryo Honpo:Kk Hydrous powder cosmetic base and cosmetic
JP2006299248A (en) * 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd Composition comprising inorganic fine particles, optical film, antireflection film, and polarizing plate and display device using the same
JP2008529949A (en) * 2005-02-18 2008-08-07 ワッカー ケミー アクチエンゲゼルシャフト Particles with small specific surface area and large thickening effect
JP2010085837A (en) * 2008-10-01 2010-04-15 Nippon Aerosil Co Ltd Hydrophobic silica fine particle and electrophotographic toner composition
JP2010180110A (en) * 2009-02-06 2010-08-19 Sumitomo Osaka Cement Co Ltd Hydrophobic porous oxide particle and method for hydrophobicizing porous oxide particle
JP2013234237A (en) * 2012-05-08 2013-11-21 Shin-Etsu Chemical Co Ltd Method for producing organomodified inorganic filler, organomodified inorganic filler, and thermoconductive silicone composition
JP2015189638A (en) * 2014-03-28 2015-11-02 電気化学工業株式会社 surface-modified silica powder and slurry composition
JP2018204725A (en) * 2017-06-06 2018-12-27 日立化成株式会社 Aerogel-containing packing body and method for producing aerogel-containing packing body
WO2023182511A1 (en) * 2022-03-25 2023-09-28 日鉄ケミカル&マテリアル株式会社 Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4615952B2 (en) * 2004-09-30 2011-01-19 株式会社トクヤマ Modified hydrophobized silica and method for producing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2734738A1 (en) * 1995-06-05 1996-12-06 Gen Electric PROCESS FOR THE TREATMENT OF RAW MINERAL POWDER, MAKING IT HYDROPHOBIC
EP0858793A1 (en) * 1997-02-17 1998-08-19 Tokuyama Corporation Soft relining material for dentures
JP2000264621A (en) * 1999-03-19 2000-09-26 Tokuyama Corp Production of hydrophobic silica
JP2002256170A (en) * 2001-03-05 2002-09-11 Tokuyama Corp Hydrophobic silica powder and its manufacturing method
JP2008189545A (en) * 2001-09-13 2008-08-21 Wacker Chemie Ag Silica with low content of silanol group
JP2003176122A (en) * 2001-09-13 2003-06-24 Wacker Chemie Gmbh Silica with low silanol group content
JP2004323361A (en) * 2003-04-21 2004-11-18 New Hair Keshoryo Honpo:Kk Bleaching powder
JP4700903B2 (en) * 2003-11-25 2011-06-15 株式会社ニューヘヤー化粧料本舗 Hydrous powder cosmetic base and cosmetic
JP2005154325A (en) * 2003-11-25 2005-06-16 New Hair Keshoryo Honpo:Kk Hydrous powder cosmetic base and cosmetic
JP2008529949A (en) * 2005-02-18 2008-08-07 ワッカー ケミー アクチエンゲゼルシャフト Particles with small specific surface area and large thickening effect
JP4719752B2 (en) * 2005-02-18 2011-07-06 ワッカー ケミー アクチエンゲゼルシャフト Process for producing fumed silica
US8257674B2 (en) 2005-02-18 2012-09-04 Wacker Chemie Ag Particles having a small specific surface and a great thickening effect
JP2006299248A (en) * 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd Composition comprising inorganic fine particles, optical film, antireflection film, and polarizing plate and display device using the same
JP2010085837A (en) * 2008-10-01 2010-04-15 Nippon Aerosil Co Ltd Hydrophobic silica fine particle and electrophotographic toner composition
JP2010180110A (en) * 2009-02-06 2010-08-19 Sumitomo Osaka Cement Co Ltd Hydrophobic porous oxide particle and method for hydrophobicizing porous oxide particle
JP2013234237A (en) * 2012-05-08 2013-11-21 Shin-Etsu Chemical Co Ltd Method for producing organomodified inorganic filler, organomodified inorganic filler, and thermoconductive silicone composition
JP2015189638A (en) * 2014-03-28 2015-11-02 電気化学工業株式会社 surface-modified silica powder and slurry composition
JP2018204725A (en) * 2017-06-06 2018-12-27 日立化成株式会社 Aerogel-containing packing body and method for producing aerogel-containing packing body
WO2023182511A1 (en) * 2022-03-25 2023-09-28 日鉄ケミカル&マテリアル株式会社 Spherical crystalline silica particles, method for producing same, and resin composite composition and resin composite containing same

Also Published As

Publication number Publication date
JP2886037B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
JP2886037B2 (en) Hydrophobic fine silica and method for producing the same
JP4688895B2 (en) Silica with low silanol group content
US4273589A (en) Precipitated silicic acid, method and compositions containing same
JP3229174B2 (en) Surface modified metal oxide fine powder and method for producing the same
JP4503914B2 (en) Hydrophobic precipitated silica, process for its production and use thereof
JP3217759B2 (en) Silicon dioxide having partially or completely silylated polysilicate chains on its surface and method for producing the same, toner containing the same, silicone composition and silicone elastomer
EP1361915B1 (en) Method of preparing of porous hybrid particles with organic groups removed from the surface
US5342597A (en) Process for uniformly moisturizing fumed silica
US6197384B1 (en) Hydrophobic precipitated silica
JP3787593B2 (en) Silicic acid with uniform silylating agent layer
JPH013006A (en) Hydrophobic precipitated silica, its preparation and use as a reinforcing material for silicone elastomers
CA2417459A1 (en) Room temperature crosslinking, one component silicone rubber formulations with hydrophobic silicas
JP2003137532A (en) Method of manufacturing hydrophobic precipitated silica
JP5507458B2 (en) Method for producing nanoscale silicon dioxide
JP4321901B2 (en) Method for producing hydrophobic silica
Krysztafkiewicz et al. The effect of surface modification on physicochemical properties of precipitated silica
EP0437911A1 (en) Method for producing dual zone materials by catalyzed halosilylation
JP2003171117A (en) Hydrophobic silica fine powder and method for manufacturing the same
JP2886105B2 (en) Method for producing hydrophobic silica
US4308074A (en) Precipitated silicic acid, method and compositions containing same
JP4164789B2 (en) Method for producing filler for resin
JP5542457B2 (en) Method for producing surface-treated fumed silica powder
JP4093660B2 (en) Hydrophobic silica and method for producing the same
JPWO2004060803A1 (en) Highly dispersible hydrophobic silica fine powder and production method thereof.
JPH1033975A (en) Method for making inorganic powder hydrophobic

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080212

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100212

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120212

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130212

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20140212

EXPY Cancellation because of completion of term