JP4164789B2 - Method for producing filler for resin - Google Patents

Method for producing filler for resin Download PDF

Info

Publication number
JP4164789B2
JP4164789B2 JP2001400075A JP2001400075A JP4164789B2 JP 4164789 B2 JP4164789 B2 JP 4164789B2 JP 2001400075 A JP2001400075 A JP 2001400075A JP 2001400075 A JP2001400075 A JP 2001400075A JP 4164789 B2 JP4164789 B2 JP 4164789B2
Authority
JP
Japan
Prior art keywords
inorganic oxide
fine powder
oxide fine
resin
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001400075A
Other languages
Japanese (ja)
Other versions
JP2003192831A (en
Inventor
成泰 石橋
博州 城野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aerosil Co Ltd
Original Assignee
Nippon Aerosil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aerosil Co Ltd filed Critical Nippon Aerosil Co Ltd
Priority to JP2001400075A priority Critical patent/JP4164789B2/en
Publication of JP2003192831A publication Critical patent/JP2003192831A/en
Application granted granted Critical
Publication of JP4164789B2 publication Critical patent/JP4164789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、接着剤や塗料などの樹脂組成物の粘度調整用充填剤、または天然ゴムや合成ゴム、エンジニアプラスチックスなどの補強性充填剤、またはポリエチレンやポリエステルなどのフィルムに添加するブロッキング防止用充填剤などに用いる樹脂充填剤に関するものである。
【0002】
【従来の技術】
シリカ、チタニア、アルミナなどの無機酸化物をシランカップリング剤やポリマーなど表面改質処理剤によって表面改質し、その表面水酸基を化学的に変換してより多機能な特性を付与することが知られている。例えば、これらの無機酸化物は表面に水酸基を有するので通常は親水性を示すが、これらの無機酸化物微粉末を適当なカップリング剤やポリマーを用いて表面処理することによって疎水性に変換することが知られている。無機酸化物微粉末を疎水化することによって、これらの無機酸化物微粉末を樹脂、例えばシリコーン樹脂やエポキシ樹脂などに添加した場合、その分散性を高めることができ、また樹脂硬化物の機械強度を向上することができる。さらに樹脂粉末の流動性を向上し、また水分の吸着を妨げるなどの効果が得られる。
【0003】
無機酸化物微粉末の疎水化剤としてアルキルシラン系化合物やシリコーンオイルなどの高分子化合物が一般に広く用いられている。シリコーンオイル系化合物やシリコーンワニス系化合物を用いた例が特開昭62−171913号公報に記載されている。これらの処理剤によればシリカ表面を十分に疎水化することができ、比表面積あたりの炭素含有量も高いものが得られるが、これらの化合物は無機酸化物微粉末表面の水酸基と化学的に十分結合しておらず、物理的吸着あるいは水素結合などの物理的結合によって存在しているため不安定であり、経時的に疎水性を失いやすいと云う欠点がある。
【0004】
また、アミン系化合物を触媒に用いた例も一般に知られているが、アミン系化合物やシリコーンオイル、シリコーンワニスなどは、既に述べたように無機酸化物微粉末表面の水酸基と反応して結合しているわけではなく、物理的な結合で無機酸化物微粉末表面の存在しているため、無機酸化物微粉末表面には未反応の水酸基が多く残存している。これらの水酸基は樹脂に混錬した際に粘度を上昇させたり、経時的に増粘性を高めるなどの現象を引き起こす原因となる。
【0005】
一方、アルキルシラザン系化合物はシリコーンオイルやシリコーンワニスなどの物理的な作用による被覆処理とは異なり、無機酸化物表面の水酸基と化学的に反応するため、残存する未反応の水酸基数が少ない。ただし、このアルキルシラザン系化合物は無機酸化物表面の水酸基と反応する際に副生成物としてアンモニアガスを生じる。通常、このアンモニアガスを完全に除去することは困難であり、表面改賃無機酸化物表面に残存している水酸基に作用して樹脂粘度の経時安定性に影響を及ぽすという問題がある。更に、これらの残存アンモニアはエポキシ樹脂やウレタン樹脂で硬化触媒として作用するため硬化を不安定にする。また、液状シリコーンゴムのルイス酸を触媒とした硬化機構においてアンモニアはルイス酸に作用するため必要触媒量が多くなり、白金触媒を用いた硬化機構ではアンモニアが白金触媒の触媒毒となるため白金触媒が過剰に必要となり、何れもコスト高を招き、また硬化時間のコントロールも困難になると云う問題がある。
【0006】
また、へキサメチルジシラザンに代表されるアルキルシラザン系化合物は無機酸化物表面の水酸基と化学的に結合するが、表面水酸基の数や疎水化基の立体障害などの問題から、これまで知られている処理方法では導入しうる疎水化剤量には限りがある。例えば、特許第2886037号には水蒸気の存在下、150〜250℃の温度で無機酸化物微粉末にヘキサメチルジシラザンを接触させ、粉末表面の水酸基と反応させて疎水化し、反応後は未反応物や副生物を窒素ガスでパージする方法が記載されている。
【0007】
この方法ではぺキサメチルジシラザンと無機酸化物微粉末を接触させる温度はヘキサメチルジシラザンの沸点以上であることが好ましいとし、ヘキサメチルジシラザンと無機酸化物微粉末との接触・混合工程、ヘキサメチルジシラザンと無機酸化物微粉末との反応、脱アンモニア工程を全てヘキサメチルジシラザンの沸点以上で行うことが推奨されている。しかし、このように反応触媒となる水蒸気下でヘキサメチルジシラザンが導入されると直ちに水蒸気と反応して加水分解物を生成し、この加水分解物はこの温度下で気化し、アンモニアや未反応物と共にパージ除去される。従って、無機酸化物微粉末表面に疎水化剤を導入するには効率的でなく、炭素含有量の高いものを得ることはできない。
【0008】
このように、アルキルシラザン系化合物で疎水化処理した無機酸化物微粉において、比表面積あたりの疎水化剤の量が多く、しかもアンモニア残存量が少ないものは従来の方法では満足なものが得られていない。本発明はこのような従来の問題を解決したものであり、比表面積あたり高い炭素含有量を有し、しかも残存アンモニア量が非常に少なく、樹脂に添加したときに粘性を低く維持することができる無機酸化物粉末からなる樹脂用充填剤を提供するものである。
【0009】
【課題を解決する手段】
本発明によれば、以下の樹脂用充填剤の製造方法が提供される。
(1)無機酸化物微粉末100重量部に対してアルキルシラザン系化合物5〜50重量部を添加し、水分の存在下で反応させ、反応温度を室温から300℃まで段階的に高め、この初期段階の時間を長く保持すると共に後期段階の時間を相対的に短くして反応させることにより、比表面積(m2/g)に対する炭素含有量(重量%)の比が0.02以上であって、残留アンモニア量が25ppm以下である疎水化処理された無機酸化物微粉末からなる樹脂用充填剤を製造することを特徴とする方法。
(2)無機酸化物微粉末とアルキルシラザン系化合物との反応温度を室温〜100℃に高めて表面処理反応を行わせ、次いで反応温度を100℃以上〜150℃に昇温して反応を進め、その後、更に170〜300℃まで昇温して残留アンモニアを揮散させる上記(3)の製造方法。
【0010】
本発明によれば、アルキルシラザン系化合物による疎水化処理方法において、無機酸化物微粉末にアルキルシラザン系化合物を導入して水分の存在下で反応させ、この反応温度を段階的に高め、異なる温度領域に所定時間保持して反応させる多段温度制御を行うことにより、比表面積あたり高い炭素含有量を有し、しかも残存アンモニア量が非常に少なく、樹脂に充填したときに低粘性を保つことできる優れた無機酸化物粉末からなる樹脂用充填剤を得ることができる。
【0011】
【発明の実施の形態】
以下、本発明を実施形態に基づいて具体的に説明する。
〔樹脂用充填剤〕
本発明の樹脂用充填剤は、アルキルシラザン系化合物で疎水化処理された無機酸化物微粉末からなり、比表面積(m2/g)に対する炭素含有量(重量%)の比が0.02以上であって、残留アンモニア量が25ppm以下、好ましくは15ppm以下であることを特徴とし、好ましくは、シリコーン樹脂に20重量%添加したときの粘度が10Pa・s以下である樹脂用充填剤である。
【0012】
本発明の無機酸化物微粉末としてはシリカ、アルミナ、酸化チタンなどを用いることができ、またアルミナコートシリカ、チタニアコートシリカ、アルミナコートシリカ、シリカーコートチタニアなどのような異種無機酸化物コート無機酸化物、または異種無機酸化物ドープ無機酸化物などを用いることができる。これらから選ばれる複数種でも良い。また、これらの無機酸化物微粉末は湿式法、乾式法いずれの方法で合成されたもので良い。なお、乾式法で合成された無機酸化物については本発明の効果が顕著である。その例としては、ケイ素ハロゲン化合物の火炎加水分解によって生成されたシリカであって、比表面積が窒素吸着法(BET法)で400m2/g未満のいわゆるヒュームドシリカと称されるものが挙げられる。具体的には、AEROSIL50、90G、130、200、300、380、380S(以上、日本アエロジル社製品)、TT600、0×50(以上、デグサヒュルス社製品)などの商品名で市販されているものがある。
【0013】
また、チタン化合物の火炎加水分解により生成した酸化チタン〔商品名:P25(日本アエロジル社製品)〕、同様の製法によるアルミナ〔商品名:AI203−C(デグサヒュルス社製品)〕、アルミナ−シリカ混合物〔商品名:MOX80、MOX170、COK84(以上デグサヒュルス社製品)〕などが挙げられる。また、これらのシリカ、アルミナ、酸化チタンの表面に異種無機酸化物をコーティングしたもの、あるいはドーピングしたものも用いることができる。さらに、これらの複数種の混合物でも良い。以上の無機酸化物微粉末の粒径は限定されない。
【0014】
アルキルシラザン系化合物はケイ素−窒素結合を有する有機ケイ素化合物であれば良い。なお、工業的規模での使用、生産の観点からヘキサメチルジシラザンが一般的である。
【0015】
本発明の樹脂用充填剤はこのアルキルシラザン系化合物で疎水化処理された無機酸化物微粉末であって、比表面積に対する炭素含有量の比〔炭素含有量/比表面積〕が0.02以上のものである。この比(炭素含有量/比表面積)は比表面積あたりの疎水化剤の存在量を示している。アルキルシラザン系化合物は無機酸化物微粉末表面の水酸基と反応するため、比表面積が大きいと水酸基数と反応するアルキルシラザン系化合物の量が多くなり粉末全体の炭素含有量が高くなる。従って、高い疎水性や樹脂に添加した場合のレオロジー特性などを検討する場合、単に炭素含有量のみを考慮しては不十分であり、単位表面積あたりの炭素含有量を検討する必要がある。本発明は〔炭素含有量/比表面積〕を指標とし、この比を0.02以上とすることにより、高い疎水化処理効果を確保している。この比が0.02より低いと樹脂に添加した場合に樹脂との濡れ性が不良であり、樹脂混合物の増粘性が高くなる。また樹脂混合物の粘度の経時安定性が低下する。これは無機酸化物表面の疎水化剤量が少なく、表面の水酸基がアルキルシラザン系化合物によって十分に被覆されていないためと考えられる。
【0016】
本発明の疎水化処理された無機酸化物微粉末は、さらに残留アンモニア量が25ppm以下のものである。アンモニア残量は樹脂に添加した際の増粘性、粘度の経時変化、硬化特性に影響を与える。本発明の疎水化処理した無機酸化物微粉末のアンモニア残量は25ppm以下、好ましくは15ppm以下であり、この範囲であれば上記樹脂特性に実質的な影響を与えない。残存アンモニア量が25ppmより多いと樹脂の増粘性や粘度の経時変化に影響が見られる。
【0017】
また、本発明の無機酸化物微粉末は、好ましくは、シリコーン樹脂に20重量%添加したときの比粘度が4.0以下であり、充填剤を添加した樹脂組成物の粘性を低く維持することができるものである。なお、比粘度は充填剤を添加したときの粘度と充填剤を添加しないもとの樹脂粘度の比である。もとの樹脂粘度が13000csであって充填剤を添加した粘度がN(Pa・s)であるとき、比粘度は〔N/13〕で表される。
【0018】
〔製造方法〕
本発明の疎水化処理された無機酸化物微粉末は、無機酸化物微粉末100重量部に対してアルキルシラザン系化合物5〜50重量部を添加し、水分の存在下で反応させ、反応温度を300℃、好ましくは250℃まで段階的に高め、各段階の温度下に所定時間保持して反応させることによって製造される。
【0019】
アルキルシラザン系化合物の添加量は、無機酸化物微粉末100重量部に対して5〜50重量部が好ましい。アルキルシラザン系化合物が5重量部未満では疎水化処理が不十分になる。一方、この化合物を50重量部より多く用いても、その効果は飽和するので経済的でなく、また生成するアンモニア量も多くなり、アンモニアを除去するのが困難になる。
【0020】
無機酸化物微粉末とアルキルシラザン系化合物とを水の存在下で反応させる。水分を導入せずに反応させるとシリカとアルキルシラザン系化合物との反応性が低いために炭素含有量を高めることが難しい。水分の添加方法は、例えば、シリカ微粉末に水分を直接噴霧し、あるいは水蒸気を導入するなど適宜な方法を用いることができる。アルキルシラザン系化合物と同時に水分を導入してもよいが、より高い炭素含有量を得るためにはアルキルシラザン系化合物を添加する前に水分を導入した方が良い。添加する水分量は特に制限されないが、比表面積当りの炭素含有量が高いものを得るには無機酸化物100重量部に対して0.5重量部以上であることが好ましい。これ以下の添加量でも良いが生産性が低い。
【0021】
無機酸化物微粉末とアルキルシラザン系化合物の反応操作は一般的な方法によることができる。反応装置はバッチ式でも連続式でもく、流動床式でも固定床式でも良い。例えば、ヘンシェルミキサーなどに代表される攪拌手段を備えた容器にシリカ微粉末を入れ、窒素雰囲気下で攪拌し、アルキルシラザン系化合物を噴霧し、あるいは気化したアルキルシラザン系化合物を導入し、シリカ微粉末と混合し、加熱して反応させる、あるいは流動床型反応器にシリカ微粉末を装入し、アルキルシラザン系化合物を気化させてシリカ微粉末と混合した後に加熱し反応させる。
【0022】
無機酸化物微粉末とアルキルシラザン系化合物との反応は反応温度を段階的に高めて行うと良い。具体的には、例えば、反応温度を室温〜100℃に高めて表面処理反応を行わせ、次いで反応温度を100℃以上〜150℃に昇温して表面処理反応を進め、その後、更に170〜300℃、好ましくは250℃まで昇温して残留アンモニアを揮散させる。このようにアルキルシラザン系化合物を無機酸化物微粉末に添加して接触混合する第一段階の温度は100℃以下が良く、第二段階の反応温度は150℃以下が好ましい。こらの温度が上記範囲を超えると炭素含有量を高めることが難しくなる。残留アンモニアを揮散させる第三段階の温度は170〜300℃、好ましくは170〜250℃が適当である。170℃未満ではアンモニアの除去が効率的ではなく、除去時間が大幅にかかり生産性が低くなる。また300℃を超えると導入基の分解が起り始める。また、この段階で窒素やヘリウム等の置換ガスを導入し、アンモニアガスを系外に追い出すのが好ましい。
【0023】
第一段階から第三段階に至る各段階の保持時間は、第一段階の保持時間T1、第二段階の保持時間T2、第三段階の保持時間T3とするとき、T1≧T2>T3であるのが好ましい。第一段階と第二段階はアルキルシラザン系化合物と無機酸化物微粉末との反応を進めるために保持時間は長い方が良い。十分に反応を行えるため単位面積当たりの炭素含有量を多くすることが出来る。第一段階の時間を長く保持する(T1≧T2)ことにより、アルキルシラザン系化合物が十分に混合され、無機酸化物微粉末表面に分散されて反応が進むので、単位面積あたりの炭素含有量を多くすることができる。第三段階の時間は相対的に短くてよい(T2>T3)。これは第二段階でもアンモニアが生成して揮散しているので、第三段階では残存している微量のアンモニアを除去すれば良いからである。第三段階の時間が長いと導入した炭素分が分解して無機酸化物微粉末表面の炭素量が減少する場合がある。
【0024】
【実施例】
以下、本発明を実施例によって具体的に示す。なお、疎水化無機酸化物微粉末の炭素含有量の測定はホリバ社製装置(EMIA−110)を用いて測定した。比表面積は窒素ガス吸着BET法(1点法)で測定した値である。アンモニアの測定は規格(JIS K7237)を参考にした過塩素酸による電位差滴定法によって行った。この方法は疎水化処理した無機酸化物微粉末を酢酸とクロロホルムの混合溶液に分散し、マグネテックスターラで攪拌しながら、この懸濁液に過塩素酸と酢酸の混合溶液を滴下し、その電位変化から当量点(終点)を求める方法であり、具体的には以下のようにして残留アンモニア量を求めた。
【0025】
疎水化処理したシリカ微粉末10〜20gを酢酸クロロホルム混合溶液(酢酸2:クロロホルム1)400mlに入れ、回転子を入れて攪拌する。電位差自動滴定装置(京都電子工業社製品:AT−310J)を用い、この懸濁液を0.01N過塩素酸と酢酸の混合溶液で滴定し、N(ppm)=[f・L・140]/W の式に従って残留アンモニア量を算出した。ここで、N(ppm)は残留アンモニア量(窒素量換算)、fは0.01N過塩素酸と酢酸の混合溶液の係数、Lは当量点までに要した過塩素酸酢酸混合溶液の量、Wは無機酸化物粉末の量である。
【0026】
表面処理して得た樹脂用充填剤をシリコーン樹脂(両末端OH基ジメチルシリコーン:13000cs)に20重量%添加し、プラネタリーミキサを用い500rpmで30分間真空混錬を行い、混合物の粘度をE型粘度計で測定した。またこの混合物を40℃に保管して経時変化を調べた。さらに、このシリコーン樹脂混合物100重量部にジブチル錫ジラウレート0.1重量部を添加し、プラネタリーミキサを用い500rpmで5分真空混錬を行い、その混練物の硬化性を評価した。
【0027】
〔実施例1〕
比表面積200m2/gの煙霧質シリカ5kgを攪拌羽付き混合容器に入れ、攪拌しながら系内を窒素で置換した。これに水50gを噴霧して添加した後、ヘキサメチルジシラザン1.5kgを70℃で噴霧した。次に、100℃まで昇温して5分間保持した。さらに200℃まで昇温してアンモニアや未反応物などを除去して疎水化無機酸化物微粉末Aを得た。この粉末について各測定値を表1に示した。
【0028】
〔実施例2〕
比表面積300m2/gの煙霧質シリカ5kgを流動床型反応容器に入れ、反応容器下部より窒素を導入して系内を置換した。ここに水蒸気を10分間で100g導入した。この容器内の温度は95℃であった。次に、ヘキサメチルジシラザン2.0kgを気化させて反応容器内に導入した。この反応容器を140℃まで昇温し、10分間保持した。さらに250℃まで昇温してアンモニアや未反応物などを除去し、疎水化無機酸化物微粉末Bを得た。この粉末について各測定値を表1に示した。
【0029】
〔実施例3〕
比表面積50m2/gの煙霧質シリカ5kgを攪拌羽付き混合容器に入れ、攪拌しながら系内を窒素で置換した。これに水30gを噴霧して添加した後、ヘキサメチルジシラザン0.25kgを40℃で噴霧した。次に、100℃まで昇温して30分間保持した。さらに200℃まで昇温してアンモニアや未反応物などを除去し、疎水化無機酸化物微粉末Cを得た。この粉末について各測定値を表1に示した。
【0030】
〔実施例4〕
比表面積200m2/gの煙霧質シリカ5kgを攪拌羽付き混合容器に入れ、攪拌しながら系内を窒素で置換した。これに水200gを噴霧して添加した後、ヘキサメチルシクロトリシラザン2.5kgを60℃で噴霧した。次に、80℃まで昇温して60分間保持した。さらに250℃まで昇温してアンモニアや未反応物などを除去し、疎水化無機酸化物微粉末Dを得た。この粉末について各測定値を表1に示した。
【0031】
〔実施例5〕
比表面積100m2/gの煙霧質アルミナ5kgを攪拌羽付き混合容器に入れ、攪拌しながら系内を窒素で置換した。これに水50gを噴霧して添加した後、ヘキサメチルジシラザン1.5kgを60℃で噴霧した。次に、100℃まで昇温して20分間保持した。さらに、200℃まで昇温してアンモニアや未反応物などを除去し、疎水化無機酸化物微粉末Eを得た。この粉末について各測定値を表1に示した。
【0032】
〔比較例1〕
比表面積200m2/gの煙霧質シリカ5kgを攪拌羽付き混合容器に入れ、攪拌しながら系内を窒素で置換した。これに水50gを噴霧して添加した後、ヘキサメチルジシラザン1.5kgを40℃で噴霧した。次に200℃まで昇温して5分保持し、その後アンモニアや未反応物などを除去し、疎水化無機酸化物微粉末Fを得た。この粉末について各測定値を表1に示した。
【0033】
〔比較例2〕
比表面積200m2/gの煙霧質シリカ5kgを攪拌羽付き混合容器に入れ、攪拌しながら系内を窒素で置換した。これに水50gを噴霧して添加した後、ヘキサメチルジシラザン1.5kgを70℃で噴霧した.次に、100℃まで昇温して5分間保持した。さらに、260℃まで昇温してアンモニアや未反応物などを除去し、疎水化無機酸化物微粉末Gを得た。この粉末について各測定値を表1に示した。
【0034】
〔比較例3〕
比表面積300m2/gの煙霧質シリカ5kgを流動床型反応容器に入れ、反応容器下部より窒素を導入して系内を置換した。反応容器内を200℃に保持し、ここに水蒸気を10分間で100g、ヘキサメチルジシラザンを10分間で2.0kg導入した。アンモニアや未反応物などを除去し、疎水化無機酸化物微粉末Hを得た。この粉末について各測定値を表1に示した。
【0035】
〔比較例4〕
予めジメチルジクロロシランで処理した比表面積260m2/g、炭素量1.6wt%の煙霧質シリカ5kgを攪拌羽付き混合容器に入れ、攪拌しながら系内を窒素で置換した。これに水50gを噴霧して添加した後、ヘキサメチルジシラザン1.0kgを40℃で噴霧した。次に200℃まで昇温して5分間保持した。アンモニアや未反応物などを除去し、疎水化無機酸化物微粉末Iを得た。この粉末について各測定値を表1に示した。
【0036】
〔比較例5〕
比表面積200m2/gの煙霧質シリカ5kgを流動床型反応容器に入れ、反応容器下部より窒素を導入して系内を置換した。これにジメチルシリコーン(KF96100cs)2.5kgを噴霧し、350℃まで昇温して30分間保持し、疎水化無機酸化物微粉末Jを得た。この粉末について各測定値を表1に示した。
【0037】
【表1】

Figure 0004164789
【0038】
表1の結果に示すように、本発明の無機酸化物微粉末からなる樹脂用充填剤は炭素含有量/比表面積の値が何れも0.02以上であり、残留アンモニア量が24ppm以下、好ましくは15ppm以下(実施例1、3〜5)である。従って、これを添加したシリコーン樹脂の比粘度は4.0以下であり、その経時変化も少ない。またシリコーン樹脂の硬化性も良好である。一方、比較例1、3、4は残留アンモニア量が少ないが、炭素含有量/比表面積の値が小さいためにシリコーン樹脂の粘度が不良である。比較例2は残留アンモニア量が多く、シリコン樹脂の粘度の経時安定性および硬化性が不良である。比較例5は疎水化剤としてジメチルシリコーンを用いており、この無機酸化物微粉末を添加したシリコーン樹脂の粘度の経時安定性および硬化性が著しく劣る。
【0039】
【発明の効果】
本発明の樹脂用充填剤は、疎水化処理された無機酸化物微粉末の〔炭素含有量/比表面積〕の値が大きく、しかも残留アンモニア量が少ない。従って、樹脂に添加した場合、樹脂混合物の粘性を低く保つことができる。また、アルキルシラザン系化合物によって処理されているのでその経時安定性に優れる。[0001]
BACKGROUND OF THE INVENTION
The present invention is for blocking prevention to be added to a filler for adjusting the viscosity of a resin composition such as an adhesive or paint, or a reinforcing filler such as natural rubber, synthetic rubber or engineer plastic, or a film such as polyethylene or polyester. The present invention relates to a resin filler used for a filler or the like.
[0002]
[Prior art]
It is known that inorganic oxides such as silica, titania, and alumina are surface-modified with surface modification agents such as silane coupling agents and polymers, and the surface hydroxyl groups are chemically converted to give more multifunctional properties. It has been. For example, these inorganic oxides usually have hydrophilicity because they have hydroxyl groups on the surface, but these inorganic oxide fine powders are converted to hydrophobicity by surface treatment with an appropriate coupling agent or polymer. It is known. By making the inorganic oxide fine powder hydrophobic, when these inorganic oxide fine powders are added to a resin, such as a silicone resin or an epoxy resin, the dispersibility can be improved, and the mechanical strength of the cured resin is also improved. Can be improved. Furthermore, the fluidity of the resin powder can be improved, and effects such as preventing moisture adsorption can be obtained.
[0003]
In general, polymer compounds such as alkylsilane compounds and silicone oil are widely used as hydrophobizing agents for fine inorganic oxide powders. An example using a silicone oil compound or a silicone varnish compound is described in Japanese Patent Application Laid-Open No. 62-171913. Although these treatment agents can sufficiently hydrophobize the silica surface and have a high carbon content per specific surface area, these compounds are chemically bonded to the hydroxyl groups on the surface of the inorganic oxide fine powder. There is a drawback that it is unstable because it is not sufficiently bonded and is present by physical bonding such as physical adsorption or hydrogen bonding, and it tends to lose its hydrophobicity over time.
[0004]
In addition, examples using amine compounds as catalysts are generally known, but amine compounds, silicone oils, silicone varnishes and the like react with hydroxyl groups on the surface of the inorganic oxide fine powder as described above and bind. However, since the surface of the inorganic oxide fine powder is present due to physical bonding, many unreacted hydroxyl groups remain on the surface of the inorganic oxide fine powder. These hydroxyl groups cause a phenomenon such as an increase in viscosity when kneaded in the resin or an increase in viscosity over time.
[0005]
On the other hand, the alkylsilazane compound, unlike the coating treatment by physical action such as silicone oil or silicone varnish, chemically reacts with the hydroxyl groups on the surface of the inorganic oxide, so that the number of remaining unreacted hydroxyl groups is small. However, this alkylsilazane compound generates ammonia gas as a by-product when it reacts with the hydroxyl group on the surface of the inorganic oxide. Usually, it is difficult to completely remove this ammonia gas, and there is a problem that it affects the time-dependent stability of the resin viscosity by acting on the hydroxyl group remaining on the surface of the surface modified inorganic oxide. Furthermore, since these residual ammonia acts as a curing catalyst in epoxy resins and urethane resins, the curing becomes unstable. Also, in the curing mechanism of liquid silicone rubber using Lewis acid as a catalyst, ammonia acts on Lewis acid, so the required amount of catalyst is increased, and in the curing mechanism using platinum catalyst, ammonia becomes the catalyst poison of platinum catalyst. However, there is a problem that it is necessary to excessively increase the cost, and it is difficult to control the curing time.
[0006]
Alkylsilazane compounds represented by hexamethyldisilazane chemically bond with hydroxyl groups on the surface of inorganic oxides, but are known so far because of problems such as the number of surface hydroxyl groups and steric hindrance of hydrophobic groups. However, the amount of the hydrophobizing agent that can be introduced is limited. For example, in Japanese Patent No. 2886037, hexamethyldisilazane is brought into contact with inorganic oxide fine powder at a temperature of 150 to 250 ° C. in the presence of water vapor and reacted with a hydroxyl group on the powder surface to be hydrophobized and unreacted after the reaction. A method for purging objects and by-products with nitrogen gas is described.
[0007]
In this method, the temperature at which pexamethyldisilazane is brought into contact with the inorganic oxide fine powder is preferably equal to or higher than the boiling point of hexamethyldisilazane, and the contact / mixing step of hexamethyldisilazane with the inorganic oxide fine powder. It is recommended that the reaction and deammonification step of hexamethyldisilazane and inorganic oxide fine powder are all carried out at or above the boiling point of hexamethyldisilazane. However, as soon as hexamethyldisilazane is introduced under the water vapor that serves as the reaction catalyst, it reacts with the water vapor to produce a hydrolyzate, which is vaporized at this temperature, resulting in ammonia and unreacted Purged with the object. Therefore, it is not efficient to introduce a hydrophobizing agent to the surface of the inorganic oxide fine powder, and a high carbon content cannot be obtained.
[0008]
As described above, in the inorganic oxide fine powder hydrophobized with the alkylsilazane compound, the amount of the hydrophobizing agent per specific surface area and the amount of residual ammonia is small, and the conventional method is satisfactory. Absent. The present invention solves such a conventional problem, has a high carbon content per specific surface area, has a very small residual ammonia amount, and can maintain a low viscosity when added to a resin. The present invention provides a filler for a resin comprising an inorganic oxide powder.
[0009]
[Means for solving the problems]
According to the present invention, the following method for producing a filler for resin is provided.
(1) 5 to 50 parts by weight of an alkylsilazane compound is added to 100 parts by weight of fine inorganic oxide powder and reacted in the presence of moisture, and the reaction temperature is increased stepwise from room temperature to 300 ° C. By keeping the stage time long and reacting the latter stage time relatively short, the ratio of the carbon content (% by weight) to the specific surface area (m 2 / g) is 0.02 or more. A method for producing a resin filler comprising a hydrophobized inorganic oxide fine powder having a residual ammonia amount of 25 ppm or less.
(2) The surface treatment reaction is performed by raising the reaction temperature between the inorganic oxide fine powder and the alkylsilazane compound to room temperature to 100 ° C, and then the reaction temperature is raised to 100 ° C to 150 ° C to advance the reaction. Then, the production method of (3) above, further raising the temperature to 170 to 300 ° C. to volatilize residual ammonia.
[0010]
According to the present invention, in the hydrophobization method using an alkylsilazane compound, the alkylsilazane compound is introduced into the inorganic oxide fine powder and reacted in the presence of moisture, and the reaction temperature is increased stepwise. By performing multi-stage temperature control that keeps reacting for a predetermined time in the region, it has a high carbon content per specific surface area, very little residual ammonia, and can maintain low viscosity when filled in resin It is possible to obtain a filler for a resin comprising an inorganic oxide powder.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described based on embodiments.
[Filler for resin]
The filler for a resin of the present invention comprises an inorganic oxide fine powder hydrophobized with an alkylsilazane compound, and the ratio of the carbon content (% by weight) to the specific surface area (m 2 / g) is 0.02 or more. The amount of residual ammonia is 25 ppm or less, preferably 15 ppm or less. Preferably, the resin filler has a viscosity of 10 Pa · s or less when added to a silicone resin by 20 wt%.
[0012]
As the inorganic oxide fine powder of the present invention, silica, alumina, titanium oxide and the like can be used, and different inorganic oxide-coated inorganic materials such as alumina-coated silica, titania-coated silica, alumina-coated silica, silica-coated titania and the like. An oxide or a different inorganic oxide-doped inorganic oxide can be used. Multiple types selected from these may be used. These inorganic oxide fine powders may be synthesized by either a wet method or a dry method. The effect of the present invention is remarkable for inorganic oxides synthesized by a dry method. Examples thereof include silicas produced by flame hydrolysis of silicon halogen compounds, and so-called fumed silica having a specific surface area of less than 400 m 2 / g by the nitrogen adsorption method (BET method). . Specifically, AEROSIL50, 90G, 130, 200, 300, 380, 380S (above, Nippon Aerosil products), TT600, 0x50 (above, Degussa Huls products), etc. is there.
[0013]
Further, titanium oxide produced by flame hydrolysis of a titanium compound [trade name: P25 (product of Nippon Aerosil Co., Ltd.)], alumina produced by the same production method (trade name: AI203-C (product of Degussa Huls)), alumina-silica mixture [ Product names: MOX80, MOX170, COK84 (Degussa Huls product)) and the like. In addition, those obtained by coating the surface of these silica, alumina, and titanium oxide with different inorganic oxides or those doped can be used. Further, a mixture of a plurality of these may be used. The particle size of the above inorganic oxide fine powder is not limited.
[0014]
The alkylsilazane compound may be an organosilicon compound having a silicon-nitrogen bond. Hexamethyldisilazane is generally used from the viewpoint of use and production on an industrial scale.
[0015]
The filler for resin of the present invention is an inorganic oxide fine powder hydrophobized with the alkylsilazane compound, and the ratio of carbon content to specific surface area [carbon content / specific surface area] is 0.02 or more. Is. This ratio (carbon content / specific surface area) indicates the abundance of the hydrophobizing agent per specific surface area. Since the alkylsilazane compound reacts with the hydroxyl group on the surface of the inorganic oxide fine powder, if the specific surface area is large, the amount of the alkylsilazane compound that reacts with the number of hydroxyl groups increases and the carbon content of the entire powder increases. Therefore, when examining high hydrophobicity and rheological properties when added to a resin, it is not sufficient to consider only the carbon content, and it is necessary to examine the carbon content per unit surface area. In the present invention, [carbon content / specific surface area] is used as an index, and by setting this ratio to 0.02 or more, a high hydrophobizing effect is ensured. When this ratio is lower than 0.02, the wettability with the resin is poor when added to the resin, and the viscosity of the resin mixture is increased. Further, the stability with time of the viscosity of the resin mixture decreases. This is probably because the amount of the hydrophobizing agent on the surface of the inorganic oxide is small and the surface hydroxyl groups are not sufficiently covered with the alkylsilazane compound.
[0016]
The inorganic oxide fine powder subjected to the hydrophobization treatment of the present invention further has a residual ammonia amount of 25 ppm or less. The remaining amount of ammonia affects the thickening, the viscosity change with time, and the curing characteristics when added to the resin. The remaining amount of ammonia in the hydrophobized inorganic oxide fine powder of the present invention is 25 ppm or less, preferably 15 ppm or less. If it is within this range, the resin characteristics are not substantially affected. When the amount of residual ammonia is more than 25 ppm, the thickening of the resin and the change with time of the viscosity are affected.
[0017]
The inorganic oxide fine powder of the present invention preferably has a specific viscosity of 4.0 or less when added to a silicone resin by 20% by weight, and the viscosity of the resin composition to which a filler is added is kept low. Is something that can be done. The specific viscosity is the ratio of the viscosity when the filler is added to the original resin viscosity without the filler. When the original resin viscosity is 13000 cs and the viscosity of the filler added is N (Pa · s), the specific viscosity is represented by [N / 13].
[0018]
〔Production method〕
In the hydrophobized inorganic oxide fine powder of the present invention, 5 to 50 parts by weight of an alkylsilazane compound is added to 100 parts by weight of the inorganic oxide fine powder, and the reaction is performed in the presence of moisture. It is produced by raising the temperature stepwise to 300 ° C, preferably 250 ° C, and maintaining the reaction for a predetermined time at the temperature of each step.
[0019]
The addition amount of the alkylsilazane compound is preferably 5 to 50 parts by weight with respect to 100 parts by weight of the inorganic oxide fine powder. When the alkylsilazane compound is less than 5 parts by weight, the hydrophobization treatment is insufficient. On the other hand, even if this compound is used in an amount of more than 50 parts by weight, the effect is saturated, so that it is not economical, and the amount of ammonia produced increases, making it difficult to remove ammonia.
[0020]
The inorganic oxide fine powder and the alkylsilazane compound are reacted in the presence of water. If the reaction is carried out without introducing moisture, it is difficult to increase the carbon content because the reactivity between silica and the alkylsilazane compound is low. As a method for adding water, for example, an appropriate method such as spraying water directly on silica fine powder or introducing water vapor can be used. Although moisture may be introduced simultaneously with the alkylsilazane compound, it is better to introduce moisture before adding the alkylsilazane compound in order to obtain a higher carbon content. The amount of water to be added is not particularly limited, but it is preferably 0.5 parts by weight or more with respect to 100 parts by weight of the inorganic oxide in order to obtain a high carbon content per specific surface area. The amount added may be less, but the productivity is low.
[0021]
The reaction operation of the inorganic oxide fine powder and the alkylsilazane compound can be performed by a general method. The reaction apparatus may be a batch type or a continuous type, and may be a fluidized bed type or a fixed bed type. For example, silica fine powder is put in a container equipped with a stirring means such as a Henschel mixer and stirred under a nitrogen atmosphere, and an alkylsilazane compound is sprayed or vaporized alkylsilazane compound is introduced. The mixture is mixed with powder and heated to react, or silica fine powder is charged into a fluidized bed reactor, the alkylsilazane compound is vaporized and mixed with silica fine powder, and then heated and reacted.
[0022]
The reaction between the inorganic oxide fine powder and the alkylsilazane compound is preferably carried out by increasing the reaction temperature stepwise. Specifically, for example, the reaction temperature is raised to room temperature to 100 ° C. to cause the surface treatment reaction, and then the reaction temperature is raised to 100 ° C. or more to 150 ° C. to advance the surface treatment reaction. Residual ammonia is volatilized by raising the temperature to 300 ° C, preferably 250 ° C. Thus, the temperature of the first stage in which the alkylsilazane compound is added to the inorganic oxide fine powder and contact-mixed is preferably 100 ° C. or lower, and the reaction temperature of the second stage is preferably 150 ° C. or lower. When these temperatures exceed the above range, it is difficult to increase the carbon content. The temperature of the third stage for volatilizing the residual ammonia is 170 to 300 ° C, preferably 170 to 250 ° C. If the temperature is less than 170 ° C., the removal of ammonia is not efficient, and the removal time is significantly increased and the productivity is lowered. When the temperature exceeds 300 ° C., decomposition of the introduced group starts to occur. Further, it is preferable to introduce a replacement gas such as nitrogen or helium at this stage to drive out the ammonia gas out of the system.
[0023]
The retention time of each stage of the first stage reaches the third stage, the holding time T 1 of the first phase, the retention time T 2 of the second stage, when the holding time T 3 of the third stage, T 1 ≧ T 2 > T 3 is preferred. In the first stage and the second stage, in order to advance the reaction between the alkylsilazane compound and the inorganic oxide fine powder, a longer holding time is better. Since the reaction can be sufficiently performed, the carbon content per unit area can be increased. By keeping the time of the first stage long (T 1 ≧ T 2 ), the alkylsilazane compound is sufficiently mixed and dispersed on the surface of the inorganic oxide fine powder, so that the reaction proceeds, so the carbon content per unit area The amount can be increased. The time for the third stage may be relatively short (T 2 > T 3 ). This is because ammonia is generated and volatilized also in the second stage, and in the third stage, it is sufficient to remove the trace amount of remaining ammonia. If the time of the third stage is long, the carbon content introduced may be decomposed and the amount of carbon on the surface of the inorganic oxide fine powder may be reduced.
[0024]
【Example】
Hereinafter, the present invention will be specifically described by way of examples. The carbon content of the hydrophobized inorganic oxide fine powder was measured using an apparatus manufactured by Horiba (EMIA-110). The specific surface area is a value measured by a nitrogen gas adsorption BET method (one-point method). Ammonia was measured by potentiometric titration with perchloric acid with reference to the standard (JIS K7237). In this method, a hydrophobized inorganic oxide fine powder is dispersed in a mixed solution of acetic acid and chloroform, and while stirring with a magnetic stirrer, a mixed solution of perchloric acid and acetic acid is added dropwise to this suspension, and the potential is reduced. This is a method for obtaining the equivalent point (end point) from the change. Specifically, the residual ammonia amount was obtained as follows.
[0025]
10-20 g of hydrophobized silica fine powder is put into 400 ml of a mixed solution of acetic acid / chloroform (acetic acid 2: chloroform 1), and a rotator is added and stirred. This suspension was titrated with a mixed solution of 0.01N perchloric acid and acetic acid using a potentiometric automatic titrator (Kyoto Electronics Industrial Co., Ltd. product: AT-310J), and N (ppm) = [f · L · 140]. The amount of residual ammonia was calculated according to the equation / W. Here, N (ppm) is the amount of residual ammonia (in terms of nitrogen), f is the coefficient of a mixed solution of 0.01 N perchloric acid and acetic acid, L is the amount of perchloric acid acetic acid mixed solution required up to the equivalence point, W is the amount of the inorganic oxide powder.
[0026]
The resin filler obtained by the surface treatment is added to a silicone resin (both ends OH group dimethyl silicone: 13000cs) by 20% by weight and vacuum kneaded at 500 rpm for 30 minutes using a planetary mixer. Measured with a type viscometer. Further, this mixture was stored at 40 ° C., and the change with time was examined. Furthermore, 0.1 part by weight of dibutyltin dilaurate was added to 100 parts by weight of this silicone resin mixture, and vacuum kneading was performed at 500 rpm for 5 minutes using a planetary mixer, and the curability of the kneaded product was evaluated.
[0027]
[Example 1]
5 kg of fumed silica having a specific surface area of 200 m 2 / g was placed in a mixing vessel equipped with stirring blades, and the system was replaced with nitrogen while stirring. After adding 50 g of water by spraying thereto, 1.5 kg of hexamethyldisilazane was sprayed at 70 ° C. Next, the temperature was raised to 100 ° C. and held for 5 minutes. Further, the temperature was raised to 200 ° C. to remove ammonia, unreacted substances and the like, and thus a hydrophobized inorganic oxide fine powder A was obtained. The measured values of this powder are shown in Table 1.
[0028]
[Example 2]
5 kg of fumed silica having a specific surface area of 300 m 2 / g was placed in a fluidized bed reaction vessel, and nitrogen was introduced from the bottom of the reaction vessel to replace the inside of the system. Here, 100 g of water vapor was introduced in 10 minutes. The temperature in this container was 95 degreeC. Next, 2.0 kg of hexamethyldisilazane was vaporized and introduced into the reaction vessel. The reaction vessel was heated to 140 ° C. and held for 10 minutes. Further, the temperature was raised to 250 ° C. to remove ammonia, unreacted substances and the like, and a hydrophobic inorganic oxide fine powder B was obtained. The measured values of this powder are shown in Table 1.
[0029]
Example 3
5 kg of fumed silica having a specific surface area of 50 m 2 / g was placed in a mixing vessel equipped with stirring blades, and the system was replaced with nitrogen while stirring. After adding 30 g of water by spraying, 0.25 kg of hexamethyldisilazane was sprayed at 40 ° C. Next, it heated up to 100 degreeC and hold | maintained for 30 minutes. Further, the temperature was raised to 200 ° C. to remove ammonia and unreacted substances, and a hydrophobized inorganic oxide fine powder C was obtained. The measured values of this powder are shown in Table 1.
[0030]
Example 4
5 kg of fumed silica having a specific surface area of 200 m 2 / g was placed in a mixing vessel equipped with stirring blades, and the system was replaced with nitrogen while stirring. After adding 200 g of water by spraying, 2.5 kg of hexamethylcyclotrisilazane was sprayed at 60 ° C. Next, the temperature was raised to 80 ° C. and held for 60 minutes. Further, the temperature was raised to 250 ° C. to remove ammonia and unreacted substances, and a hydrophobic inorganic oxide fine powder D was obtained. The measured values of this powder are shown in Table 1.
[0031]
Example 5
5 kg of fumed alumina having a specific surface area of 100 m 2 / g was placed in a mixing vessel equipped with stirring blades, and the system was replaced with nitrogen while stirring. After adding 50 g of water by spraying thereto, 1.5 kg of hexamethyldisilazane was sprayed at 60 ° C. Next, it heated up to 100 degreeC and hold | maintained for 20 minutes. Furthermore, the temperature was raised to 200 ° C. to remove ammonia and unreacted substances, and a hydrophobic inorganic oxide fine powder E was obtained. The measured values of this powder are shown in Table 1.
[0032]
[Comparative Example 1]
5 kg of fumed silica having a specific surface area of 200 m 2 / g was placed in a mixing vessel equipped with stirring blades, and the system was replaced with nitrogen while stirring. After adding 50 g of water by spraying, 1.5 kg of hexamethyldisilazane was sprayed at 40 ° C. Next, the temperature was raised to 200 ° C. and held for 5 minutes, and then ammonia and unreacted substances were removed to obtain hydrophobized inorganic oxide fine powder F. The measured values of this powder are shown in Table 1.
[0033]
[Comparative Example 2]
5 kg of fumed silica having a specific surface area of 200 m 2 / g was placed in a mixing vessel equipped with stirring blades, and the system was replaced with nitrogen while stirring. After adding 50 g of water by spraying, 1.5 kg of hexamethyldisilazane was sprayed at 70 ° C. Next, the temperature was raised to 100 ° C. and held for 5 minutes. Furthermore, the temperature was raised to 260 ° C. to remove ammonia and unreacted substances, and a hydrophobic inorganic oxide fine powder G was obtained. The measured values of this powder are shown in Table 1.
[0034]
[Comparative Example 3]
5 kg of fumed silica having a specific surface area of 300 m 2 / g was placed in a fluidized bed reaction vessel, and nitrogen was introduced from the bottom of the reaction vessel to replace the inside of the system. The inside of the reaction vessel was kept at 200 ° C., and 100 g of water vapor was introduced into it for 10 minutes and 2.0 kg of hexamethyldisilazane was introduced into it for 10 minutes. Ammonia and unreacted substances were removed to obtain hydrophobized inorganic oxide fine powder H. The measured values of this powder are shown in Table 1.
[0035]
[Comparative Example 4]
5 kg of fumed silica having a specific surface area of 260 m 2 / g and carbon content of 1.6 wt% previously treated with dimethyldichlorosilane was placed in a mixing vessel equipped with stirring blades, and the system was replaced with nitrogen while stirring. After adding 50 g of water by spraying thereto, 1.0 kg of hexamethyldisilazane was sprayed at 40 ° C. Next, the temperature was raised to 200 ° C. and held for 5 minutes. Ammonia and unreacted substances were removed to obtain hydrophobized inorganic oxide fine powder I. The measured values of this powder are shown in Table 1.
[0036]
[Comparative Example 5]
5 kg of fumed silica having a specific surface area of 200 m 2 / g was placed in a fluidized bed reaction vessel, and nitrogen was introduced from the bottom of the reaction vessel to replace the inside of the system. This was sprayed with 2.5 kg of dimethyl silicone (KF96100cs), heated to 350 ° C. and held for 30 minutes to obtain hydrophobized inorganic oxide fine powder J. The measured values of this powder are shown in Table 1.
[0037]
[Table 1]
Figure 0004164789
[0038]
As shown in the results of Table 1, the filler for resin comprising the inorganic oxide fine powder of the present invention has a carbon content / specific surface area value of 0.02 or more and a residual ammonia amount of 24 ppm or less, preferably Is 15 ppm or less (Examples 1 and 3 to 5). Therefore, the specific viscosity of the silicone resin to which it is added is 4.0 or less, and its change with time is small. Moreover, the curability of the silicone resin is also good. On the other hand, Comparative Examples 1, 3, and 4 have a small amount of residual ammonia, but the viscosity of the silicone resin is poor because the value of carbon content / specific surface area is small. In Comparative Example 2, the amount of residual ammonia is large, and the viscosity of the silicone resin over time and the curability are poor. In Comparative Example 5, dimethyl silicone is used as a hydrophobizing agent, and the viscosity stability over time and curability of the silicone resin to which the inorganic oxide fine powder is added are remarkably inferior.
[0039]
【The invention's effect】
The resin filler of the present invention has a large value of [carbon content / specific surface area] of the hydrophobized inorganic oxide fine powder and a small amount of residual ammonia. Therefore, when added to the resin, the viscosity of the resin mixture can be kept low. In addition, since it is treated with an alkylsilazane compound, its stability over time is excellent.

Claims (2)

無機酸化物微粉末100重量部に対してアルキルシラザン系化合物5〜50重量部を添加し、水分の存在下で反応させ、反応温度を室温から300℃まで段階的に高め、この初期段階の時間を長く保持すると共に後期段階の時間を相対的に短くして反応させることにより、比表面積(m2/g)に対する炭素含有量(重量%)の比が0.02以上であって、残留アンモニア量が25ppm以下である疎水化処理された無機酸化物微粉末からなる樹脂用充填剤を製造することを特徴とする方法。5 to 50 parts by weight of an alkylsilazane compound is added to 100 parts by weight of the inorganic oxide fine powder, reacted in the presence of moisture, and the reaction temperature is increased stepwise from room temperature to 300 ° C. Is maintained for a long time and the reaction in the later stage is made relatively short, so that the ratio of the carbon content (% by weight) to the specific surface area (m 2 / g) is 0.02 or more, and the residual ammonia A method for producing a filler for a resin comprising a hydrophobized inorganic oxide fine powder having an amount of 25 ppm or less. 無機酸化物微粉末とアルキルシラザン系化合物との反応温度を室温〜100℃に高めて表面処理反応を行わせ、次いで反応温度を100℃以上〜150℃に昇温して反応を進め、その後、更に170〜300℃まで昇温して残留アンモニアを揮散させる請求項1の製造方法。The reaction temperature of the inorganic oxide fine powder and the alkylsilazane compound is increased to room temperature to 100 ° C. to cause a surface treatment reaction, and then the reaction temperature is increased to 100 ° C. to 150 ° C. to proceed the reaction. Furthermore, the manufacturing method of Claim 1 which raises temperature to 170-300 degreeC and volatilizes residual ammonia.
JP2001400075A 2001-12-28 2001-12-28 Method for producing filler for resin Expired - Fee Related JP4164789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001400075A JP4164789B2 (en) 2001-12-28 2001-12-28 Method for producing filler for resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400075A JP4164789B2 (en) 2001-12-28 2001-12-28 Method for producing filler for resin

Publications (2)

Publication Number Publication Date
JP2003192831A JP2003192831A (en) 2003-07-09
JP4164789B2 true JP4164789B2 (en) 2008-10-15

Family

ID=27604833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400075A Expired - Fee Related JP4164789B2 (en) 2001-12-28 2001-12-28 Method for producing filler for resin

Country Status (1)

Country Link
JP (1) JP4164789B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004010755A1 (en) * 2004-03-05 2005-09-22 Degussa Ag silicone rubber
JP5104337B2 (en) * 2008-01-23 2012-12-19 住友大阪セメント株式会社 Zirconia-containing silicone resin composition
BRPI0909427A2 (en) * 2008-03-28 2015-11-03 3M Innovative Proferties Company loaded resins and method for the production of loaded resins
JP5626788B2 (en) * 2010-12-06 2014-11-19 日揮触媒化成株式会社 Sealant paint and use thereof
CN103987657B (en) 2012-03-09 2015-09-02 住友大阪水泥股份有限公司 Finishing metal oxide particle material and optical semiconductor sealing compositions and optical semiconductor device
JP5809185B2 (en) * 2013-03-28 2015-11-10 富士フイルム株式会社 Solution casting method
WO2023189642A1 (en) * 2022-03-31 2023-10-05 株式会社トクヤマ Surface-treated silica powder, resin composition, and dispersion

Also Published As

Publication number Publication date
JP2003192831A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
US5008305A (en) Treated silica for reinforcing silicone elastomer
JP5003988B2 (en) Surface-modified inorganic oxide powder and production method and use thereof
CA2536441C (en) Surface-modified nanoparticles, their preparation and use
EP2279226B1 (en) Surface modified silicon dioxide particles
JP4828032B2 (en) Hydrophobic silica powder and method for producing the same
JP3229174B2 (en) Surface modified metal oxide fine powder and method for producing the same
US5057151A (en) Process for preparing hydrophobic particulate solids containing si-oh groups and a process for using the same
US4985477A (en) Method of producing treated silica filler for silicone rubber
US20060084723A1 (en) Nanocomposites, method of production, and method of use
EP0017734B1 (en) Curable organopolysiloxane compositions containing carbon black, method for preparing the same and method for curing the compositions
US20030103890A1 (en) Hydrophobic silica fine powder and making method
JPS636062A (en) Method of modifying surface of fine silica powder
JP2007519793A (en) Use of pretreated precipitated silica as a reinforcing filler for silicone elastomers, and curable silicone elastomer compositions obtained by ambient mixing
EP1926769A1 (en) Modified nanoparticles
JP4164789B2 (en) Method for producing filler for resin
EP1641425A1 (en) A method of producing a silanized composite filler and a method of producing a composite material
KR20190013588A (en) Granulation treated silica and preparing method thereof
JPH0710524A (en) Hydrophobic fine silica and production thereof
DE19748606A1 (en) Superficially hydrophilized silicone elastomers, processes for their production and their use
US4164509A (en) Process for preparing finely divided hydrophobic oxide particles
JP4321901B2 (en) Method for producing hydrophobic silica
JP2002256173A (en) Surface modified inorganic oxide powder and its use
JP3259547B2 (en) Method for surface modification of silica
US6524705B1 (en) Silicone surface treated metal oxides
JPH0647458B2 (en) Method for surface modification of fine silica powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4164789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees