JP4321901B2 - Method for producing hydrophobic silica - Google Patents

Method for producing hydrophobic silica Download PDF

Info

Publication number
JP4321901B2
JP4321901B2 JP07481599A JP7481599A JP4321901B2 JP 4321901 B2 JP4321901 B2 JP 4321901B2 JP 07481599 A JP07481599 A JP 07481599A JP 7481599 A JP7481599 A JP 7481599A JP 4321901 B2 JP4321901 B2 JP 4321901B2
Authority
JP
Japan
Prior art keywords
silica
reaction
partial pressure
kpa
hydrophobic silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07481599A
Other languages
Japanese (ja)
Other versions
JP2000264621A (en
Inventor
胆治 小松原
真里 青木
良平 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP07481599A priority Critical patent/JP4321901B2/en
Publication of JP2000264621A publication Critical patent/JP2000264621A/en
Application granted granted Critical
Publication of JP4321901B2 publication Critical patent/JP4321901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、疎水性シリカ粉末の製法に関する。
【0002】
【従来の技術】
シリカの表面は、シラノール基で覆われており、親水性を示す。そのため、シリカは、液体樹脂やゴム等の充填材として使用した際に、分散性が悪かったり、加工後において吸湿し機械的強度を低下させることがあった。また、こうした吸湿性の高さから、粘度の経時安定性が悪い問題もあった。従って、シリカの表面を各種有機化合物で処理して疎水化し、上記問題点を改善することが広く試みられている。
【0003】
例えば、シリカの表面をシリコーンオイルで被覆すると、極めて疎水性の強いシリカが得られることが知られている。この方法によれば、水−メタノールの比を変えて該溶液に対する粉体の浮遊割合を測定する方法によって求められる疎水化度において、浮遊量0%となるメタノール濃度が70容量%程度という極めて高い疎水性を有するシリカを得ることが可能である。しかしながら、この方法では、シリコーンオイルの大部分はシリカ表面に物理的な吸着により付着しているだけであるため、これらはシリカ表面から離脱し易く、樹脂の充填材等として使用した際において、上記優れた疎水性の効果が思うように発揮されないことが多かった。
【0004】
こうしたことから、シリカ表面のシラノール基に有機化合物を反応させ、該有機化合物から導かれる疎水性基をシリカ表面に化学的に結合させることが、有利な方法として行われている。例えば、特公昭38−22129号公報には、シリカと低沸点のオルガノシロキサン類とを反応させることが記載され、その反応条件として、加温や加圧下で該オルガノシロキサン類を気体の状態で反応させることも記載されている。しかしながら、こうしたシリカと有機珪素化合物との反応は反応性が低く、得られるシリカは、十分な疎水性を有していないものであった。
【0005】
そのため、シリカと有機珪素化合物との反応性を向上させるために、該反応を水の存在下で行うことが特開昭56−41263号公報等により提案されている。その際、水の存在量は、十分な反応性で反応を行うためには、かなりの量存在させることが有利であると考えられていたため、実施例等では分圧として40〜100kPa程度存在する量で反応を行うのが一般的であった。しかして、このような条件で上記疎水化反応を行った場合、得られる疎水性シリカは、部分的には前記方法により測定される疎水化度において浮遊量0%となるメタノール濃度が60容量%以上になるような高い疎水性を有するシリカを得ることが可能であるが、一方でこうした疎水化の反応性にバラツキが生じ、充分に疎水化されていないものも相当量含まれてしまうものであった。従って、上記方法による疎水化度の測定において、浮遊量0%のときのメタノール濃度と浮遊量90%のときのメタノール濃度の差が10%以上になる広い疎水化度分布を有するものが得られていた。そうして、このように得られる疎水性シリカの疎水化度が均一でない場合、これを前記した用途に使用しても、今一歩満足できる効果が得られなかった。
【0006】
一方、高い反応性で均一に疎水化された疎水性シリカを得る方法として、特開平4−204750号公報において、溶媒で希釈したヘキサメチルジシラザンを沸点以下の温度でシリカに噴霧し、乾燥する方法が知られている。この方法によれば、条件によっては均一且つ高い疎水化度を有する疎水性シリカを得ることが可能であるが、この反応は、液体−固体反応であるため、乾燥工程において、液に触れたシリカが凝集し易いものであった。従って、十分な解砕工程を設けなければ、これを樹脂に分散させた場合などには、粗大な凝集粒子により樹脂組成物に白濁が生じる大きな問題があった。
【0007】
【発明が解決しようとする課題】
以上から、高く且つ均一な疎水化度を有する疎水性シリカを、凝集粒子を生じさせることなく製造することが大きな課題であった。
【0008】
【課題を解決するための手段】
本発明者等は、上記課題に鑑み鋭意研究を続けてきた。その結果、シリカとトリメチルシリル化剤とを、水蒸気の存在下で反応させるに際して、該水蒸気の分圧を特定の範囲にすれば、上記の課題が解決できることを見出し本発明を完成するに至った。
【0009】
即ち、本発明は、シリカとトリメチルシリル化剤とを、分圧が4〜20kPaの水蒸気の存在下で反応させることを特徴とする疎水性シリカの製造方法である。
【0010】
【発明の実施の形態】
本発明においてシリカは、特に制限されるものではなく公知のものが使用され、通常、湿式法又は乾式法により得られる無定形シリカが使用される。好適には、ハロゲノシランの火炎分解や加水分解で製造される乾式シリカであるのが好ましい。また、これらのシリカは溶融されたものであっても良い。こうしたシリカは、比表面積が5〜500m2/gであり、見掛比重が15〜200g/l、平均一次粒子径が7〜500nmのものが好適に使用できる。また、これらのシリカは、含水率が0.1〜10重量%のものが好ましい。さらに、単位面積当たりの表面のOH基が、1.0〜5.0個/nm2、好適には1.0〜2.5個/nm2のものを用いるのが好ましい。
【0011】
また、本発明において、上記シリカと反応させるトリメチルシリル化剤は、シリカ表面にトリメチルシリル基が導入可能なものが制限なく使用できる。具体的には、
((CH33Si)2NR
〔式中、Rは水素または低級アルキル基である〕、又は
(CH33SiY
〔式中、Yはハロゲン原子、−OH、−OR’、または−NR’2、から選ばれる基(R’は上記Rと同じである)である〕
で示される化合物が好ましい。ここで、上記化合物において、Rの低級アルキル基は、メチル基、エチル基、プロピル基等の炭素数1〜5、好適には炭素数1〜3のもの、特にメチル基が好ましい。また、Yのハロゲン原子は、塩素、フッ素、臭素、ヨウ素等が挙げられ、特に塩素が好ましい。上記((CH33Si)2NRで示されるトリメチルシリル化剤を例示すれば、ヘキサメチルジシラザン、N−メチル−ヘキサメチルジシラザン、N−エチル−ヘキサメチルジシラザン、ヘキサメチル−N−プロピルジシラザン等が挙げられ、反応性の良さからヘキサメチルジシラザンを用いるのが特に好適である。
【0012】
他方、(CH33SiYで示されるトリアルキルシリル化剤を例示すれば、トリメチルクロロシラン、トリメチルシラノール、メトキシトリメチルシラン、エトキシトリメチルシラン、プロポキシトリメチルシラン、ジメチルアミノトリメチルシラン、ジエチルアミノトリメチルシラン等が挙げられ、反応性の良さからトリメチルシラノールを用いるのが特に好適である。
【0013】
ここで、使用する疎水化剤が、上記トリメチルシリル化剤以外の、さらに高炭素数のトリアルキルシリル基を導入させるものの場合、シリカ表面への反応性が低下し、十分な疎水化度を有するシリカを得ることが難しくなる。
【0014】
本発明では、上記シリカとトリメチルシリル化剤とを、水蒸気の存在下で反応させる。本発明は、かかる反応に際して、該水蒸気の分圧を4〜20kPa、好適には5〜15kPaにした点に最大の特徴を有する。即ち、前記したとおり水蒸気の存在下でシリカとトリメチルシリル化剤とを反応させた場合、反応性は大きく向上するが、通常、該反応に際して行われているような高い水蒸気分圧とした場合では、疎水化反応の均一性が充分でなくなる。これに対して、上記特定の水蒸気分圧で反応を実施した場合、反応の均一性が大きく向上し、得られる疎水性シリカは、高い疎水化度を有するだけでなく、こうした疎水化度の分布においても極めて均一性の高いものになる。
【0015】
ここで、水蒸気分圧が4kPaより小さいと疎水化度が上がらず、かつ疎水化度の分布も広がる。一方、水蒸気分圧が20kPaより大きくなっても、疎水化度の分布が広がり、その均一性が損なわれる。
【0016】
また、本発明において、上記シリカとトリメチルシリル化剤との反応は、短い反応時間でより疎水化度の高いシリカを得る場合には、トリメチルシリル化剤の気相の分圧が50〜200kPa、好適には80〜150kPaになるような条件下で行うのが好ましい。
【0017】
さらに、本発明において、上記反応は、トリメチルシリル化剤と水蒸気のみからなる雰囲気で反応を実施しても良いが、通常は、これらを、窒素、ヘリウム等の不活性ガスにより希釈して反応に供するのが一般的である。その場合、反応雰囲気の全圧は、150〜500kPa、好適には150〜250kPaであるのが一般的である。
【0018】
なお、本発明においては、シリカとトリメチルシリル化剤との反応性をより高めるため、必要に応じてアンモニア、メチルアミン、ジメチルアミン等の塩基性ガス、好適にはアンモニアを反応雰囲気中に共存させても良い。こうした塩基性ガスの分圧は、1〜100kPaであるのが好適である。
【0019】
シリカとトリメチルシリル化剤との反応温度は、疎水化反応の反応性の良好さやトリメチルシリル化剤の分解の危険性を勘案すると130〜300℃、好適には150〜250℃であるのが好ましい。一般には、上記範囲において反応温度が高いほど、得られるシリカの疎水性が高くなる傾向がある。
【0020】
こうしたシリカの疎水化反応は、以上の各反応条件が、各々満足されていれば如何なる形式で実施されても良く、予め、上記要件が満足されるようにトリメチルシリル化剤と水とを、シリカが充填された反応器に仕込み反応を実施しても良いし、上記要件が満足されるようにトリメチルシリル化剤と水とを、シリカが充填された反応器に連続的または間欠的に供給しながら反応を実施しても良い。反応器は、通常、オートクレーブ等の耐圧性の密閉容器を用いて反応を行うのが好適である。また、シリカは、固定床式で反応させても良いが、好適には撹拌により流動させた状態で反応させるのが好ましい。
【0021】
なお、上記水蒸気の分圧の要件は、その反応期間の実質的全域に渡って満足されていれば、短期間該要件を外れる期間があっても、本発明では許容される。好適には、反応開始から反応終了までの期間において、その80%、好適には90%が上記条件で反応が行われるのが好ましい。特に、炭素含有量が飽和量に達するまで疎水化反応を行う場合には、該飽和量の50%まで反応が進んだ段階から飽和量にほぼ達する段階までの期間は、上記条件で反応を行うのが好適である。同様にトリメチルシリル化剤も、前記好適な分圧が反応期間の実質的全域に渡って満足されているのが好ましい。反応時間は、通常、20〜120分、好適には30〜60分から採択される。
【0022】
反応終了後、過剰の処理剤及び副生物は、混合機系を開放脱圧し、チッソガス洗浄するのが好ましい。
【0023】
以上により得られる疎水性シリカは、トリメチルシリル基が表面に化学結合しており、それにより表面が疎水性を呈している。そして、疎水化度の分布の均一性が極めて高く、前記した水−メタノールの比を変えて該溶液に対する粉体の浮遊割合を測定する方法によって求められる、浮遊量0%と浮遊量90%のときのメタノール濃度の差が7%以下、好適には5%以下と著しく小さい。また、該方法によって求められる、浮遊量0%となるメタノール濃度が60容量%以上、好適には62容量%以上の高い疎水化度を有するものを得ることが可能である。
【0024】
本発明の方法により得られる疎水性シリカにおいて、トリメチルシリル基の導入量は、1100℃の温度下、酸素雰囲気でCO2に熱分解することにより求められる炭素含有量が0.5〜10重量%、好適には1〜5重量%であるのが好ましい。また、これらトリメチルシリル基は、トリメチルシリル化剤をシリカにさらに反応させても、上記炭素含有量がそれ以上増加しない飽和量に実質的に達するまで、導入されているのが好ましい。さらに、本発明の疎水性シリカは、単位面積当たりの表面のOH基数が0.2〜0.5個/nm2程度であるのが一般的である。なお、上記飽和量まで疎水化された疎水性シリカは、トリメチルシリル基により、その表面のほとんどが覆われていると推定される。従って、上記数程度に表面にOH基が残存していたとしても、これは、該疎水性基によりブロックされ、その高い疎水化度には殆ど影響を及ぼさないと考えられる。
【0025】
さらに、本発明の方法で得られる疎水性シリカは、粗大な凝集粒子をほとんど含んでいない。具体的には、メタノール200mlにシリカ0.8gを混合し超音波分散(125W)を30秒行った後、標準ふるいにて20μm上に残ったシリカの割合を求めた場合、粒子径20μm以上の粗大凝集粒子の含有量は15重量%以下、より好適には10重量%以下のものを得ることが可能である。
【0026】
【発明の効果】
本発明の製造方法によれば、高い反応性でシリカとトリメチルシリル基を反応させることが可能であり、且つその反応の均一性も極めて良好である。しかも、気相反応であるため、粗大な凝集粒子が過剰に生じることもない。従って、得られる疎水性シリカは、高い疎水化度と均一な疎水化度の分布を有し、且つ粗大凝集粒子の含有量も極めて少ないものになる。
【0027】
従って、このような疎水性シリカは、液体樹脂やゴム等の増粘剤や補強充填剤として有用であり、分散性が極めてよく、吸湿性の低さから保存時の粘度の経時安定性が大きく改善される。また、粉体塗料や電子写真用トナー等の粉体系においても、混合することにより、当該粉体の流動性の改善、固結防止、帯電調整等に安定した効果を発揮する。
【0028】
【実施例】
以下に実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は、これらの実施例に限定されるものではない。なお、以下の実施例及び比較例における各種の物性の測定は以下の方法により実施した。
【0029】
1)炭素含有量
疎水性シリカを、1100℃の温度下、酸素雰囲気中でシリカ表面に化学結合する疎水性基をCO2に熱分解した後、微量炭素分析装置(Horiba製「EMIAー110」)により、シリカの含有する炭素含有量を求めた。なお、疎水化反応の再現性からみた炭素含有量の有効数字は0.1重量%である。
【0030】
2)疎水化度(F0
試料0.5gに、メタノールと水の混合溶液(25℃)100mlを加え、シエーカーで30分間振り混ぜた後1晩静置し該溶液に対する粉体の浮遊割合を測定する。水−メタノールの比を変えて上記操作を行い、浮遊量が0%となるメタノール濃度(容量%)を疎水化度(F0)として求めた。
【0031】
3)疎水化度分布(F0−F90
試料0.5gに、メタノールと水の混合溶液(25℃)100mlを加え、シェーカーで30分間振り混ぜた後1晩静置し該溶液に対する粉体の浮遊割合を測定する。水−メタノールの比を変えて上記操作を行ない、浮遊量0%(F0)と浮遊量90%(F90)を測定し、その差を疎水化度分布(F0−F90)として求めた。
【0032】
4)粗大凝集粒子の含有量
メタノール200mlにシリカ0.8gを混合し超音波分散(125W)を30秒行った後、標準ふるいにて20μm上に残ったシリカを乾燥し、その割合から求めた。
【0033】
3)増粘作用
疎水性シリカのエポキシ樹脂に対する増粘作用を調べた。エポキシ樹脂「エピコートR819」(油化シエル社製)180gに、疎水性シリカ7.2gを3000回転/分で2分間、デイソルバーを用いて分散させ、分散直後の初期粘度と30日後の粘度を、25℃でブルックフイールド粘度計(スピンドル4)により測定した。
【0034】
実施例1〜3
2リットルの撹拌機付きオートクレーブに、50gの乾式シリカ(商品名:レオロシールQS30、比表面積300m2/g、吸着水分0.4%、表面OH数1.5個/nm2、(株)トクヤマ製)を装入し、撹拌による流動化状態において、200℃に加熱した。反応器内部を窒素ガスで置換した後、水を水蒸気分圧が5、10、及び15kPaとなるように各供給して(窒素ガスの各分圧は93、88、及び83kPa)して反応器を密閉し、さらにヘキサメチルジシラザンを分圧が130kPaになるように内部に各噴霧し、シリカの流動化状態でトリメチルシリル化反応を開始した。なお、上記反応において、反応開始当初の雰囲気の全圧はそれぞれ228kPaであった。この反応は、いずれも反応開始7分で、シリカの炭素含有量がそれ以上ほとんど増加しない飽和量にほぼ達した。
【0035】
上記反応を60分間継続した後、反応を終了した。反応終了時のヘキサメチルジシラザンの分圧は70kPaであり、水蒸気分圧はほとんど変化しなかった。
【0036】
反応終了後、疎水性シリカからの過剰のヘキサメチルジシラザン及び副生物の除去は、オートクレーブを開放脱圧した後、チッソ気流による洗浄を行うことにより実施した。得られた疎水性シリカの物性を測定し表1に示した。
【0037】
なお、水蒸気分圧が5kPaであった疎水性シリカについて、疎水化度分布(F0−F90)を測定する際に求めた水−メタノールの比と浮遊量の関係を、図1として示した。
【0038】
【表1】

Figure 0004321901
【0039】
比較例1〜4
2リットルの撹拌機付きオートクレーブに50gの乾式シリカ(商品名:レオロシールQS30)を装入し、撹拌による流動化状態において、200℃に加熱した。反応器内部を窒素ガスで置換した後、水を水蒸気分圧が2、30、50、及び98kPaとなるように各供給して(窒素ガスの各分圧は96、68、48、及び0kPa)して反応器を密閉し、さらにヘキサメチルジシラザンを分圧が130kPaになるように内部に各噴霧し、シリカの流動化状態でトリメチルシリル化反応を開始した。なお、上記反応において、反応開始当初の雰囲気の全圧はそれぞれ228kPaであった。この反応は、いずれも反応開始7分で、それぞれシリカの炭素含有量がそれ以上ほとんど増加しない飽和量にほぼ達した。
【0040】
上記反応を60分間継続した後、反応を終了した。反応終了時のヘキサメチルジシラザンの分圧は70kPaであり、水蒸気分圧はほとんど変化しなかった。
【0041】
反応終了後、疎水性シリカからの過剰のヘキサメチルジシラザン及び副生物の除去は、オートクレーブを開放脱圧した後、チッソ気流による洗浄を行うことにより実施した。得られた疎水性シリカの物性を測定し表2に示した。
【0042】
なお、上記比較例1〜4と前記実施例1〜3の結果における、水蒸気分圧と疎水化度分布(F0−F90)の関係を、図2として示した。図2に示されるように、水蒸気分圧が本願発明での範囲において、得られる疎水性シリカの疎水化度分布(F0−F90)は特異的に小さくなる結果であった。
【0043】
【表2】
Figure 0004321901
【0044】
比較例5
2リットルの撹拌機付きオートクレーブに50gの乾式シリカ(商品名:レオロシールQS30)を装入し、撹拌による流動化状態において、120℃に加熱し、2時間保持した。反応器内部を窒素ガスで置換した後、ヘキサメチルジシラザン5.0gをテトラヒドロフラン20gに溶解した混合液を5分かけて徐々に加え、10分間撹拌後120℃の恒温槽で2時間処理した。得られた疎水性シリカの物性を測定し表3に示した。
【0045】
【表3】
Figure 0004321901
【0046】
実施例4
2リットルの撹拌機付きオートクレーブに50gの乾式シリカ(商品名:レオロシールQS30)を装入し、撹拌による流動化状態において、200℃に加熱した。反応器内部を窒素ガスで置換した後、水を水蒸気分圧が15kPaとなるように供給して(窒素ガスの分圧は83kPa)して反応器を密閉し、さらにヘキサメチルジシラザンを分圧が90kPaになるように内部に各噴霧し、シリカの流動化状態でトリメチルシリル化反応を開始した。なお、上記反応において、反応開始当初の雰囲気の全圧は188kPaであった。この反応は、反応開始7分で、シリカの炭素含有量がそれ以上ほとんど増加しない飽和量にほぼ達した。
【0047】
上記反応を60分間継続した後、反応を終了した。反応終了時のヘキサメチルジシラザンの分圧は30kPaであり、水蒸気分圧はほとんど変化しなかった。
【0048】
反応終了後、疎水性シリカからの過剰のヘキサメチルジシラザン及び副生物の除去は、オートクレーブを開放脱圧した後、チッソ気流による洗浄を行うことにより実施した。得られた疎水性シリカの物性を測定し表4に示した。
【0049】
【表4】
Figure 0004321901
【0050】
参考実験例1、2
2リットルの撹拌機付きオートクレーブに50gの乾式シリカ(商品名:レオロシールQS30)を装入し、撹拌による流動化状態において、それぞれ150と250℃に加熱した。反応器内部を窒素ガスで置換した後、水を水蒸気分圧が15kPaとなるように供給して(窒素ガスの分圧は83kPa)して反応器を密閉し、さらにヘキサメチルジシラザンを分圧が90kPaになるように内部に各噴霧し、シリカの流動化状態でトリメチルシリル化反応を開始した。なお、上記反応において、反応開始当初の雰囲気の全圧は188kPaであった。この反応は、それぞれ反応開始10分と5分で、シリカの炭素含有量がそれ以上ほとんど増加しない飽和量にほぼ達した。
【0051】
上記反応を60分間継続した後、反応を終了した。反応終了時のヘキサメチルジシラザンの分圧は30kPaであり、水蒸気分圧はほとんど変化しなかった。
【0052】
反応終了後、疎水性シリカからの過剰のヘキサメチルジシラザン及び副生物の除去は、オートクレーブを開放脱圧した後、チッソ気流による洗浄を行うことにより実施した。
【0054】
実施例5、6
実施例2において、乾式シリカとして「レオロシールQS10」(比表面積130m/g、吸着水分0.3重量%、表面OH数1.5個/nm、見掛比重50g/l、平均一次粒子径が16nm、(株)トクヤマ製)及び「レオロシールQS40」(比表面積380m/g、吸着水分0.5重量%、表面OH数1.5個/nm、見掛比重50g/l、平均一次粒子径が7nm、(株)トクヤマ製)を用いて、実施例2と同様に実施した。いずれの反応も、反応開始7分でシリカの炭素含有量がそれ以上増加しない飽和量に達した。得られた疎水性シリカの物性を測定し表に示した。
【0055】
【表5】
Figure 0004321901

【図面の簡単な説明】
【図1】図1は、実施例1で製造された疎水性シリカについて、疎水化度分布(F0−F90)を測定する際に求めた水−メタノールの比と浮遊量の関係を示す図である。
【図2】図2は、実施例1〜3及び比較例1〜4で製造された各疎水性シリカにおける、水蒸気分圧と疎水化度分布(F0−F90)の関係をを示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing hydrophobic silica powder.
[0002]
[Prior art]
The surface of silica is covered with silanol groups and exhibits hydrophilicity. Therefore, when silica is used as a filler such as a liquid resin or rubber, the dispersibility may be poor, or moisture may be absorbed after processing to lower the mechanical strength. In addition, due to the high hygroscopicity, there is a problem that the stability with time of viscosity is poor. Therefore, it has been widely attempted to improve the above problems by treating the surface of silica with various organic compounds to make them hydrophobic.
[0003]
For example, it is known that when the surface of silica is coated with silicone oil, highly hydrophobic silica can be obtained. According to this method, in the degree of hydrophobicity obtained by the method of measuring the floating ratio of the powder with respect to the solution by changing the water-methanol ratio, the methanol concentration at which the floating amount becomes 0% is as extremely high as about 70% by volume. It is possible to obtain hydrophobic silica. However, in this method, since most of the silicone oil is only attached to the silica surface by physical adsorption, they are easily detached from the silica surface, and when used as a resin filler or the like, In many cases, the excellent hydrophobic effect was not exhibited as expected.
[0004]
For these reasons, it is an advantageous method to react an organic compound with a silanol group on the silica surface and chemically bond a hydrophobic group derived from the organic compound to the silica surface. For example, Japanese Examined Patent Publication No. 38-22129 describes that silica and a low-boiling organosiloxane are reacted. As the reaction conditions, the organosiloxane is reacted in a gaseous state under heating or pressure. It is also described. However, such a reaction between silica and an organosilicon compound has low reactivity, and the resulting silica does not have sufficient hydrophobicity.
[0005]
Therefore, in order to improve the reactivity between silica and the organosilicon compound, it has been proposed in Japanese Patent Application Laid-Open No. 56-41263, etc. to perform the reaction in the presence of water. At that time, it was considered that the presence of water was advantageous in order to carry out the reaction with sufficient reactivity. Therefore, in Examples and the like, the partial pressure is about 40 to 100 kPa. It was common to carry out the reaction in volume. Thus, when the hydrophobization reaction is carried out under such conditions, the resulting hydrophobic silica partially has a methanol concentration of 60% by volume with a floating amount of 0% in the degree of hydrophobization measured by the above method. It is possible to obtain silica having high hydrophobicity as described above, but on the other hand, there is a variation in the reactivity of such hydrophobicity, and there is a considerable amount that is not fully hydrophobized. there were. Therefore, in the measurement of the degree of hydrophobicity by the above method, a product having a wide hydrophobicity distribution in which the difference between the methanol concentration when the floating amount is 0% and the methanol concentration when the floating amount is 90% is 10% or more is obtained. It was. Thus, when the hydrophobicity of the hydrophobic silica obtained in this way is not uniform, even if it is used for the above-mentioned purposes, a satisfactory effect cannot be obtained.
[0006]
On the other hand, as a method for obtaining highly reactive and uniformly hydrophobic hydrophobic silica, JP-A-4-204750 discloses spraying hexamethyldisilazane diluted with a solvent onto silica at a temperature below the boiling point and drying. The method is known. According to this method, it is possible to obtain a hydrophobic silica having a uniform and high degree of hydrophobicity depending on the conditions. However, since this reaction is a liquid-solid reaction, the silica touched by the liquid in the drying step is used. Was easily aggregated. Therefore, if a sufficient crushing step is not provided, there is a big problem that white turbidity is generated in the resin composition due to coarse aggregated particles when this is dispersed in the resin.
[0007]
[Problems to be solved by the invention]
From the above, it has been a major problem to produce hydrophobic silica having a high and uniform degree of hydrophobicity without causing aggregated particles.
[0008]
[Means for Solving the Problems]
The present inventors have continued intensive studies in view of the above problems. As a result, when the silica and the trimethylsilylating agent are reacted in the presence of water vapor, it has been found that the above problems can be solved by setting the partial pressure of the water vapor to a specific range, and the present invention has been completed.
[0009]
That is, the present invention is a method for producing hydrophobic silica, characterized in that silica and a trimethylsilylating agent are reacted in the presence of water vapor having a partial pressure of 4 to 20 kPa.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the silica is not particularly limited, and a known silica is used. Usually, amorphous silica obtained by a wet method or a dry method is used. Preferably, it is a dry silica produced by flame decomposition or hydrolysis of halogenosilane. These silicas may be melted. Such silica having a specific surface area of 5 to 500 m 2 / g, an apparent specific gravity of 15 to 200 g / l, and an average primary particle diameter of 7 to 500 nm can be suitably used. These silicas preferably have a water content of 0.1 to 10% by weight. Furthermore, it is preferable to use one having a surface OH group per unit area of 1.0 to 5.0 / nm 2 , preferably 1.0 to 2.5 / nm 2 .
[0011]
In the present invention, as the trimethylsilylating agent to be reacted with the silica, those capable of introducing a trimethylsilyl group on the silica surface can be used without limitation. In particular,
((CH 3 ) 3 Si) 2 NR
[Wherein R is hydrogen or a lower alkyl group] or (CH 3 ) 3 SiY
[Wherein Y is a group selected from a halogen atom, —OH, —OR ′, or —NR ′ 2 (R ′ is the same as R above)]
The compound shown by these is preferable. Here, in the above compound, the lower alkyl group of R is preferably a group having 1 to 5 carbon atoms such as a methyl group, an ethyl group or a propyl group, preferably 1 to 3 carbon atoms, particularly preferably a methyl group. Examples of the halogen atom for Y include chlorine, fluorine, bromine, iodine and the like, and chlorine is particularly preferable. Examples of the trimethylsilylating agent represented by the above ((CH 3 ) 3 Si) 2 NR include hexamethyldisilazane, N-methyl-hexamethyldisilazane, N-ethyl-hexamethyldisilazane, hexamethyl-N-propyl. Examples thereof include disilazane, and hexamethyldisilazane is particularly preferable because of its good reactivity.
[0012]
On the other hand, examples of the trialkylsilylating agent represented by (CH 3 ) 3 SiY include trimethylchlorosilane, trimethylsilanol, methoxytrimethylsilane, ethoxytrimethylsilane, propoxytrimethylsilane, dimethylaminotrimethylsilane, and diethylaminotrimethylsilane. It is particularly preferable to use trimethylsilanol because of its good reactivity.
[0013]
Here, when the hydrophobizing agent to be used is one that introduces a trialkylsilyl group having a higher carbon number other than the above trimethylsilylating agent, the reactivity to the silica surface is reduced and the silica has a sufficient degree of hydrophobization. It becomes difficult to get.
[0014]
In the present invention, the silica and the trimethylsilylating agent are reacted in the presence of water vapor. The present invention has the greatest feature in that the partial pressure of the water vapor is 4 to 20 kPa, preferably 5 to 15 kPa, in the reaction. That is, as described above, when silica and a trimethylsilylating agent are reacted in the presence of water vapor, the reactivity is greatly improved. However, in the case where the water vapor partial pressure is usually high during the reaction, The uniformity of the hydrophobization reaction is not sufficient. On the other hand, when the reaction is carried out at the specific water vapor partial pressure, the uniformity of the reaction is greatly improved, and the resulting hydrophobic silica not only has a high degree of hydrophobicity but also a distribution of such degree of hydrophobicity. In this case, the uniformity is extremely high.
[0015]
Here, when the water vapor partial pressure is less than 4 kPa, the degree of hydrophobicity does not increase, and the distribution of the degree of hydrophobicity also widens. On the other hand, even if the partial pressure of water vapor is higher than 20 kPa, the distribution of the degree of hydrophobicity is widened and the uniformity is impaired.
[0016]
In the present invention, the reaction between the silica and the trimethylsilylating agent is preferably carried out when the partial pressure in the gas phase of the trimethylsilylating agent is 50 to 200 kPa when silica having a higher degree of hydrophobicity is obtained in a short reaction time. Is preferably carried out under the condition of 80 to 150 kPa.
[0017]
Furthermore, in the present invention, the above reaction may be carried out in an atmosphere consisting only of a trimethylsilylating agent and water vapor, but usually these are diluted with an inert gas such as nitrogen or helium and used for the reaction. It is common. In that case, the total pressure in the reaction atmosphere is generally 150 to 500 kPa, preferably 150 to 250 kPa.
[0018]
In the present invention, a basic gas such as ammonia, methylamine or dimethylamine, preferably ammonia is preferably allowed to coexist in the reaction atmosphere as necessary in order to further increase the reactivity between silica and the trimethylsilylating agent. Also good. The partial pressure of such basic gas is preferably 1 to 100 kPa.
[0019]
The reaction temperature between silica and the trimethylsilylating agent is preferably 130 to 300 ° C, and preferably 150 to 250 ° C, taking into account the good reactivity of the hydrophobization reaction and the risk of decomposition of the trimethylsilylating agent. In general, the higher the reaction temperature in the above range, the higher the hydrophobicity of the resulting silica.
[0020]
Such a hydrophobization reaction of silica may be carried out in any form as long as each of the above reaction conditions is satisfied. In order to satisfy the above requirements, a trimethylsilylating agent and water are previously added to silica. The charged reactor may be charged and the reaction may be performed, or the trimethylsilylating agent and water may be reacted while being continuously or intermittently supplied to the silica-filled reactor so that the above requirements are satisfied. May be implemented. In general, it is preferable to carry out the reaction using a pressure-resistant airtight container such as an autoclave. Silica may be reacted in a fixed bed type, but is preferably reacted in a state where it is fluidized by stirring.
[0021]
It should be noted that if the requirement for the partial pressure of water vapor is satisfied over substantially the entire reaction period, even if there is a period outside the requirement for a short period of time, it is allowed in the present invention. Preferably, in the period from the start of the reaction to the end of the reaction, 80%, preferably 90%, of the reaction is performed under the above conditions. In particular, when the hydrophobization reaction is performed until the carbon content reaches the saturation amount, the reaction is performed under the above conditions during the period from the stage where the reaction has progressed to 50% of the saturation amount to the stage where the saturation amount is almost reached. Is preferred. Similarly, for the trimethylsilylating agent, the preferred partial pressure is preferably satisfied over substantially the entire reaction period. The reaction time is usually selected from 20 to 120 minutes, preferably from 30 to 60 minutes.
[0022]
After the completion of the reaction, it is preferable that excess treating agent and by-products are depressurized and the nitrogen gas is washed in the mixer system.
[0023]
In the hydrophobic silica obtained as described above, the trimethylsilyl group is chemically bonded to the surface, whereby the surface is hydrophobic. And the uniformity of the degree of hydrophobicity distribution is extremely high, and the amount of floating amount is 0% and the amount of floating amount is 90%, which is obtained by the method of measuring the floating ratio of the powder with respect to the solution by changing the water-methanol ratio. The difference in methanol concentration is extremely small at 7% or less, preferably 5% or less. In addition, it is possible to obtain a product having a high degree of hydrophobicity, which is obtained by this method and has a methanol concentration of 0% by volume, preferably 60% by volume or more, and preferably 62% by volume or more.
[0024]
In the hydrophobic silica obtained by the method of the present invention, the amount of trimethylsilyl group introduced is 0.5 to 10% by weight of carbon content determined by thermal decomposition to CO 2 in an oxygen atmosphere at a temperature of 1100 ° C. It is preferably 1 to 5% by weight. These trimethylsilyl groups are preferably introduced until the carbon content reaches a saturation level that does not increase any more even when the trimethylsilylating agent is further reacted with silica. Further, the hydrophobic silica of the present invention generally has a surface OH group number of about 0.2 to 0.5 / nm 2 per unit area. In addition, it is estimated that most of the surface of the hydrophobic silica hydrophobized to the saturation amount is covered with a trimethylsilyl group. Accordingly, even if OH groups remain on the surface in the above-mentioned number, it is considered that this is blocked by the hydrophobic groups and hardly affects the high degree of hydrophobicity.
[0025]
Furthermore, the hydrophobic silica obtained by the method of the present invention contains almost no coarse aggregated particles. Specifically, after mixing 0.8 g of silica in 200 ml of methanol and performing ultrasonic dispersion (125 W) for 30 seconds, when the ratio of silica remaining on 20 μm was obtained with a standard sieve, the particle diameter was 20 μm or more. It is possible to obtain a coarse aggregated particle content of 15% by weight or less, more preferably 10% by weight or less.
[0026]
【The invention's effect】
According to the production method of the present invention, silica and a trimethylsilyl group can be reacted with high reactivity, and the uniformity of the reaction is extremely good. Moreover, since it is a gas phase reaction, coarse aggregated particles are not generated excessively. Therefore, the obtained hydrophobic silica has a high degree of hydrophobicity and a uniform hydrophobicity distribution, and the content of coarse aggregated particles is extremely small.
[0027]
Therefore, such hydrophobic silica is useful as a thickening agent and reinforcing filler for liquid resins and rubbers, has extremely good dispersibility, and has a high stability over time of viscosity during storage due to low hygroscopicity. Improved. Also, in powder systems such as powder paints and electrophotographic toners, when mixed, stable effects are exhibited in improving the fluidity of the powder, preventing caking, and adjusting the charge.
[0028]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition, various physical properties in the following examples and comparative examples were measured by the following methods.
[0029]
1) Carbon content Hydrophobic silica is thermally decomposed into CO 2 at a temperature of 1100 ° C in an oxygen atmosphere, and then a trace carbon analyzer ("EMIA-110" manufactured by Horiba) ) To determine the carbon content of silica. In addition, the effective number of carbon content seen from the reproducibility of the hydrophobization reaction is 0.1% by weight.
[0030]
2) Hydrophobicity (F 0 )
100 ml of a mixed solution of methanol and water (25 ° C.) is added to 0.5 g of the sample, shaken with a shaker for 30 minutes, and then allowed to stand overnight to measure the floating ratio of the powder with respect to the solution. The above operation was performed while changing the water-methanol ratio, and the methanol concentration (volume%) at which the floating amount became 0% was determined as the degree of hydrophobicity (F 0 ).
[0031]
3) Hydrophobization degree distribution (F 0 -F 90 )
100 ml of a mixed solution of methanol and water (25 ° C.) is added to 0.5 g of the sample, shaken with a shaker for 30 minutes, and then allowed to stand overnight to measure the floating ratio of the powder with respect to the solution. Change the water-methanol ratio and perform the above procedure, measure the floating amount 0% (F 0 ) and the floating amount 90% (F 90 ), and obtain the difference as the hydrophobicity distribution (F 0 -F 90 ). It was.
[0032]
4) Content of coarse agglomerated particles After mixing 0.8 g of silica with 200 ml of methanol and carrying out ultrasonic dispersion (125 W) for 30 seconds, the silica remaining on 20 μm was dried with a standard sieve and obtained from the ratio. .
[0033]
3) Thickening action The thickening action of the hydrophobic silica on the epoxy resin was examined. Disperse 7.2 g of hydrophobic silica at 3000 rpm for 2 minutes using a day solver in 180 g of epoxy resin “Epicoat R819” (manufactured by Yuka Shell) to determine the initial viscosity immediately after dispersion and the viscosity after 30 days. , Measured at 25 ° C. with a Brookfield viscometer (spindle 4).
[0034]
Examples 1-3
In a 2 liter autoclave with a stirrer, 50 g of dry silica (trade name: Leolosil QS30, specific surface area 300 m 2 / g, adsorbed moisture 0.4%, surface OH number 1.5 / nm 2 , manufactured by Tokuyama Corporation ) And heated to 200 ° C. in a fluidized state by stirring. After replacing the inside of the reactor with nitrogen gas, water is supplied to each of the water vapor so that the partial pressure of water vapor is 5, 10, and 15 kPa (each partial pressure of nitrogen gas is 93, 88, and 83 kPa). And hexamethyldisilazane was sprayed inside each so that the partial pressure was 130 kPa, and the trimethylsilylation reaction was started in the fluidized state of silica. In the above reaction, the total pressure in the atmosphere at the beginning of the reaction was 228 kPa. In all of these reactions, 7 minutes after the start of the reaction, the carbon content of silica almost reached a saturation level that hardly increases any more.
[0035]
The above reaction was continued for 60 minutes, and then the reaction was terminated. The partial pressure of hexamethyldisilazane at the end of the reaction was 70 kPa, and the water vapor partial pressure hardly changed.
[0036]
After the reaction was completed, excess hexamethyldisilazane and by-products were removed from the hydrophobic silica by opening the autoclave and depressurizing it, followed by washing with a nitrogen stream. The physical properties of the obtained hydrophobic silica were measured and are shown in Table 1.
[0037]
The relationship between the water-methanol ratio and the floating amount obtained when measuring the hydrophobicity distribution (F 0 -F 90 ) for hydrophobic silica having a water vapor partial pressure of 5 kPa is shown in FIG. .
[0038]
[Table 1]
Figure 0004321901
[0039]
Comparative Examples 1-4
A 2 liter autoclave with a stirrer was charged with 50 g of dry silica (trade name: Leolosil QS30) and heated to 200 ° C. in a fluidized state by stirring. After substituting the inside of the reactor with nitrogen gas, water was supplied so that the partial pressure of water vapor was 2, 30, 50, and 98 kPa (each partial pressure of nitrogen gas was 96, 68, 48, and 0 kPa). Then, the reactor was sealed, and hexamethyldisilazane was sprayed inside so that the partial pressure was 130 kPa, and the trimethylsilylation reaction was started in the fluidized state of silica. In the above reaction, the total pressure in the atmosphere at the beginning of the reaction was 228 kPa. In all of these reactions, at 7 minutes from the start of the reaction, the carbon content of the silica almost reached a saturation amount that hardly increases any more.
[0040]
The above reaction was continued for 60 minutes, and then the reaction was terminated. The partial pressure of hexamethyldisilazane at the end of the reaction was 70 kPa, and the water vapor partial pressure hardly changed.
[0041]
After the reaction was completed, excess hexamethyldisilazane and by-products were removed from the hydrophobic silica by opening the autoclave and depressurizing it, followed by washing with a nitrogen stream. The physical properties of the obtained hydrophobic silica were measured and are shown in Table 2.
[0042]
The relationship between the partial pressure of water vapor and the degree of hydrophobicity distribution (F 0 -F 90 ) in the results of Comparative Examples 1 to 4 and Examples 1 to 3 is shown in FIG. As shown in FIG. 2, the hydrophobization degree distribution (F 0 -F 90 ) of the obtained hydrophobic silica was specifically reduced when the water vapor partial pressure was within the range of the present invention.
[0043]
[Table 2]
Figure 0004321901
[0044]
Comparative Example 5
A 2 liter autoclave with a stirrer was charged with 50 g of dry silica (trade name: Leolosil QS30), heated to 120 ° C. in a fluidized state by stirring, and held for 2 hours. After the inside of the reactor was replaced with nitrogen gas, a mixed solution in which 5.0 g of hexamethyldisilazane was dissolved in 20 g of tetrahydrofuran was gradually added over 5 minutes, followed by stirring for 10 minutes and treating in a thermostatic bath at 120 ° C. for 2 hours. The physical properties of the obtained hydrophobic silica were measured and are shown in Table 3.
[0045]
[Table 3]
Figure 0004321901
[0046]
Example 4
A 2 liter autoclave with a stirrer was charged with 50 g of dry silica (trade name: Leolosil QS30) and heated to 200 ° C. in a fluidized state by stirring. After replacing the inside of the reactor with nitrogen gas, water was supplied so that the partial pressure of water vapor was 15 kPa (the partial pressure of nitrogen gas was 83 kPa), the reactor was sealed, and hexamethyldisilazane was further divided. Was sprayed inside so as to be 90 kPa, and a trimethylsilylation reaction was started in a fluidized state of silica. In the above reaction, the total pressure in the atmosphere at the beginning of the reaction was 188 kPa. This reaction almost reached a saturation amount in which the carbon content of silica hardly increased any more after 7 minutes from the start of the reaction.
[0047]
The above reaction was continued for 60 minutes, and then the reaction was terminated. The partial pressure of hexamethyldisilazane at the end of the reaction was 30 kPa, and the water vapor partial pressure hardly changed.
[0048]
After the reaction was completed, excess hexamethyldisilazane and by-products were removed from the hydrophobic silica by opening the autoclave and depressurizing it, followed by washing with a nitrogen stream. The physical properties of the obtained hydrophobic silica were measured and are shown in Table 4.
[0049]
[Table 4]
Figure 0004321901
[0050]
Reference experiment examples 1 and 2
A 2 liter autoclave equipped with a stirrer was charged with 50 g of dry silica (trade name: Leolosil QS30) and heated to 150 and 250 ° C., respectively, in a fluidized state by stirring. After replacing the inside of the reactor with nitrogen gas, water was supplied so that the partial pressure of water vapor was 15 kPa (the partial pressure of nitrogen gas was 83 kPa), the reactor was sealed, and hexamethyldisilazane was further divided. Was sprayed inside so as to be 90 kPa, and a trimethylsilylation reaction was started in a fluidized state of silica. In the above reaction, the total pressure in the atmosphere at the beginning of the reaction was 188 kPa. This reaction almost reached a saturation amount at which the carbon content of silica hardly increased any more at 10 minutes and 5 minutes from the start of the reaction, respectively.
[0051]
The above reaction was continued for 60 minutes, and then the reaction was terminated. The partial pressure of hexamethyldisilazane at the end of the reaction was 30 kPa, and the water vapor partial pressure hardly changed.
[0052]
After the reaction was completed, excess hexamethyldisilazane and by-products were removed from the hydrophobic silica by opening the autoclave and depressurizing it, followed by washing with a nitrogen stream .
[0054]
Examples 5 and 6
In Example 2, “Leosil QS10” (specific surface area 130 m 2 / g, adsorbed moisture 0.3 wt%, surface OH number 1.5 pieces / nm 2 , apparent specific gravity 50 g / l, average primary particle size as dry silica 16 nm, manufactured by Tokuyama Co., Ltd.) and “Leosil QS40” (specific surface area 380 m 2 / g, adsorbed water 0.5 wt%, surface OH number 1.5 / nm 2 , apparent specific gravity 50 g / l, average primary This was carried out in the same manner as in Example 2 using a particle size of 7 nm, manufactured by Tokuyama Corporation. In any reaction, the saturation amount at which the carbon content of the silica did not increase further reached 7 minutes after the start of the reaction. The physical properties of the obtained hydrophobic silica were measured and are shown in Table 5 .
[0055]
[Table 5]
Figure 0004321901

[Brief description of the drawings]
FIG. 1 shows the relationship between the water-methanol ratio and the floating amount obtained when measuring the hydrophobicity distribution (F 0 -F 90 ) for the hydrophobic silica produced in Example 1. FIG. FIG.
FIG. 2 is a graph showing the relationship between water vapor partial pressure and hydrophobicity distribution (F 0 -F 90 ) in each of the hydrophobic silicas produced in Examples 1 to 3 and Comparative Examples 1 to 4. It is.

Claims (3)

シリカとトリメチルシリル化剤とを、分圧が4〜20kPaの水蒸気の存在下で反応させることを特徴とする疎水性シリカの製造方法。A method for producing hydrophobic silica, comprising reacting silica and a trimethylsilylating agent in the presence of water vapor having a partial pressure of 4 to 20 kPa. トリメチルシリル化剤の分圧が30〜150kPaであることを特徴とする請求項1記載の疎水性シリカの製造方法。Hydrophobic silica mosquito method of manufacturing according to claim 1, wherein the partial pressure of trimethylsilyl agent is 30~150KPa. トリメチルシリル化剤が、ヘキサメチルジシラザンである請求項1または請求項2記載の疎水性シリカの製造方法。The method for producing hydrophobic silica according to claim 1 or 2, wherein the trimethylsilylating agent is hexamethyldisilazane.
JP07481599A 1999-03-19 1999-03-19 Method for producing hydrophobic silica Expired - Lifetime JP4321901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07481599A JP4321901B2 (en) 1999-03-19 1999-03-19 Method for producing hydrophobic silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07481599A JP4321901B2 (en) 1999-03-19 1999-03-19 Method for producing hydrophobic silica

Publications (2)

Publication Number Publication Date
JP2000264621A JP2000264621A (en) 2000-09-26
JP4321901B2 true JP4321901B2 (en) 2009-08-26

Family

ID=13558197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07481599A Expired - Lifetime JP4321901B2 (en) 1999-03-19 1999-03-19 Method for producing hydrophobic silica

Country Status (1)

Country Link
JP (1) JP4321901B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348113A (en) * 2001-05-25 2002-12-04 Mitsubishi Materials Corp Method for producing silica powder and silica power produced b using the same
FR2865671B1 (en) * 2004-01-30 2007-03-16 Commissariat Energie Atomique CERAMIC NANOPOUDRE SUITABLE FOR SINTING AND METHOD OF SYNTHESIS
JP4102771B2 (en) 2004-03-25 2008-06-18 富士フイルム株式会社 Inkjet recording medium
JP4758655B2 (en) * 2005-01-31 2011-08-31 株式会社トクヤマ Surface-treated silica fine particles
JP4986444B2 (en) * 2005-12-12 2012-07-25 株式会社トクヤマ Hydrophobic inorganic powder and method for producing the same
JP2007191355A (en) * 2006-01-19 2007-08-02 Nippon Aerosil Co Ltd Surface-hydrophobized silica powder by dry method
US7348062B2 (en) * 2006-06-10 2008-03-25 Solutia Incorporated Interlayers comprising modified fumed silica
JP2009188411A (en) * 2009-03-06 2009-08-20 Tokyo Electron Ltd Silylation processing method, silylation processing apparatus, and etching processing system
JP2011056814A (en) * 2009-09-10 2011-03-24 Toto Ltd External structure and coating liquid for external structure
JP5468463B2 (en) * 2010-05-11 2014-04-09 電気化学工業株式会社 Surface-modified spherical silica powder and method for producing the same
JP5809185B2 (en) * 2013-03-28 2015-11-10 富士フイルム株式会社 Solution casting method
US10259944B2 (en) 2014-07-24 2019-04-16 Denka Company Limited Silica fine powder and use thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4240741A1 (en) * 1992-12-03 1994-06-09 Wacker Chemie Gmbh Process for the hydrophobization of fumed silica
JP2886037B2 (en) * 1993-06-23 1999-04-26 株式会社トクヤマ Hydrophobic fine silica and method for producing the same
JP2886105B2 (en) * 1995-03-24 1999-04-26 株式会社トクヤマ Method for producing hydrophobic silica
DE19620942A1 (en) * 1995-06-05 1996-12-12 Gen Electric Efficient process for hydrophobicizing inorganic powder
JP4093660B2 (en) * 1998-12-25 2008-06-04 株式会社トクヤマ Hydrophobic silica and method for producing the same

Also Published As

Publication number Publication date
JP2000264621A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
EP1316589B1 (en) Hydrophobic silica fine powder and its manufacture
JP5032328B2 (en) Production of direct hydrophobic silica from aqueous colloidal silica dispersions
JP4828032B2 (en) Hydrophobic silica powder and method for producing the same
JP4321901B2 (en) Method for producing hydrophobic silica
US4274883A (en) Aqueous dispersion of a hydrophobic silica
KR101463879B1 (en) Silica particles and method of producing the same
KR100930284B1 (en) Particulate silica
US9187502B2 (en) Silica particles and method for producing the same
US20110319647A1 (en) Method of producing silica particles
JPH0588907B2 (en)
JPS632887B2 (en)
JP5811620B2 (en) Method for producing silica particles
JP2886037B2 (en) Hydrophobic fine silica and method for producing the same
JP2010534617A (en) Surface-modified silica produced by pyrolysis
US6174926B1 (en) Method of preparing organically modified silica
Krysztafkiewicz et al. The effect of surface modification on physicochemical properties of precipitated silica
JP2003171117A (en) Hydrophobic silica fine powder and method for manufacturing the same
KR20110106364A (en) Pyrogenic silicic acid manufactured in a small-scale production plant
JP4093660B2 (en) Hydrophobic silica and method for producing the same
KR20190137780A (en) Fumed Silica Treated with Silicone Oil, and Method and Application of the Preparation
JP2886105B2 (en) Method for producing hydrophobic silica
JP2005539113A (en) Hydrophobic silica having organosilicon compounds and blends thereof
CN115124043A (en) Silica particles and method for producing same
KR20090113835A (en) Method of preparing new silsesquioxane filler material
JP4425013B2 (en) Method for producing silica powder having quaternary ammonium group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150612

Year of fee payment: 6

EXPY Cancellation because of completion of term