JP5468463B2 - Surface-modified spherical silica powder and method for producing the same - Google Patents

Surface-modified spherical silica powder and method for producing the same Download PDF

Info

Publication number
JP5468463B2
JP5468463B2 JP2010109470A JP2010109470A JP5468463B2 JP 5468463 B2 JP5468463 B2 JP 5468463B2 JP 2010109470 A JP2010109470 A JP 2010109470A JP 2010109470 A JP2010109470 A JP 2010109470A JP 5468463 B2 JP5468463 B2 JP 5468463B2
Authority
JP
Japan
Prior art keywords
spherical silica
silica powder
mass
hydrophobicity
water content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010109470A
Other languages
Japanese (ja)
Other versions
JP2011236089A (en
Inventor
正章 秀島
修 國友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2010109470A priority Critical patent/JP5468463B2/en
Publication of JP2011236089A publication Critical patent/JP2011236089A/en
Application granted granted Critical
Publication of JP5468463B2 publication Critical patent/JP5468463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、表面改質球状シリカ粉末及びその製造方法に関する。   The present invention relates to a surface-modified spherical silica powder and a method for producing the same.

従来、デジタル複写機やレーザープリンタ等に使用される静電荷像現像用トナーにおいて、その流動性改善や帯電特性の安定化のために、疎水化処理された球状シリカがトナー外添剤として用いられている。この球状シリカに要求される特性は、湿度による帯電量の変化を少なくするため高い疎水性を有し、しかも帯電特性を均一にする為に、球状シリカを均一に表面改質することである。疎水化処理された球状シリカの疎水化度分布について、未だ満足のいくものはなく、高い疎水化度を有する球状シリカであっても経時変化で若干の水分を含んでいく。その水分を含んだ球状シリカが感光体ドラム上に残留し、画像不良を引き起こすといった問題が生じてきた。   Conventionally, in electrostatic charge image developing toners used in digital copying machines, laser printers, and the like, hydrophobic silica is used as an external additive for improving fluidity and stabilizing charging characteristics. ing. The properties required for the spherical silica are to have a high hydrophobicity in order to reduce the change in charge amount due to humidity, and to uniformly modify the surface of the spherical silica in order to make the charging properties uniform. There is still no satisfactory hydrophobization degree distribution of the spherical silica that has been subjected to the hydrophobization treatment, and even spherical silica having a high degree of hydrophobization contains some water over time. There has been a problem that the spherical silica containing the moisture remains on the photosensitive drum and causes an image defect.

シリカと表面改質剤の反応速度は遅く、また表面改質剤の揮発性が高いことから、表面改質剤が反応を起こす前に系外へ揮発してしまい高い疎水性を発現することはできない。そこで、密閉型の混合装置、例えばヘンシェルミキサーを用い、表面改質剤とシリカ粒子の接触時間を長くすることで高い疎水性を実現する方法が提案(特許文献1)された。しかし、この方法では、ミキサーのブレード部分等でシリカ粒子の凝集が発生するため、分散性が損なわれるという問題がある。 Since the reaction rate between silica and the surface modifier is slow, and the volatility of the surface modifier is high, the surface modifier volatilizes out of the system before the reaction occurs and expresses high hydrophobicity. Can not. In view of this, a method has been proposed (Patent Document 1) that achieves high hydrophobicity by increasing the contact time between the surface modifier and the silica particles using a closed mixing device, for example, a Henschel mixer. However, this method has a problem in that dispersibility is impaired because aggregation of silica particles occurs in the blade portion of the mixer.

この問題を解決する方法として、循環ガスで原料球状シリカを浮遊(流動化)させた状態で、表面改質剤を噴霧する方法が提案(特許文献2)された。しかし、疎水化度の均一性という点では未だ満足のいくものではなく、更なる技術改善が求められている。 As a method for solving this problem, a method has been proposed (Patent Document 2) in which the surface modifier is sprayed in a state where the raw spherical silica is suspended (fluidized) with a circulating gas. However, it is still not satisfactory in terms of the uniformity of the degree of hydrophobicity, and further technical improvements are required.

特開平5−19526号公報Japanese Patent Laid-Open No. 5-19526 特開2004−67475号公報JP 2004-67475 A

本発明は、高温高湿下においても含有水分量の増加が極めて少ない高疎水性の球状シリカ粉末を提供することである。   An object of the present invention is to provide a highly hydrophobic spherical silica powder in which the increase in water content is extremely small even under high temperature and high humidity.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)原料球状シリカ粉末のBET比表面積が30〜80m /gであり、メタノール滴定法における球状シリカ粉末が100質量%沈降した時の疎水化度Aと、球状シリカ粉末が5質量%沈降した時の疎水化度Bが式(1)及び式(2)を満たす疎水化度分布を有し、高温高湿(温度50℃湿度70%)の試験条件下において、試験前と24時間後の含有水分量の増加量が0.02質量%以下であることを特徴とする球状シリカ粉末。
74%≦A≦75% ・・・式(1)
A−B≦% ・・・式(2)
(2)前記(1)に記載の球状シリカ粉末を用いたことを特徴とする静電荷像現像用トナー外添剤。
The present invention employs the following means in order to solve the above problems.
(1) The raw spherical silica powder has a BET specific surface area of 30 to 80 m 2 / g, the hydrophobicity A when the spherical silica powder in the methanol titration method settles to 100% by mass, and the spherical silica powder settles to 5% by mass. The hydrophobization degree B at the time of the test has a hydrophobization degree distribution satisfying the formulas (1) and (2), under the test conditions of high temperature and high humidity (temperature: 50 ° C., humidity: 70%) before and after 24 hours. A spherical silica powder characterized in that the increase in water content is 0.02% by mass or less.
74% ≦ A ≦ 75% Formula (1)
A−B ≦ 9 % (2)
(2) A toner external additive for developing an electrostatic charge image, wherein the spherical silica powder described in (1) is used.

本発明の球状シリカ粉末は、高温高湿下においても含有水分量の増加が極めて少ない。   The spherical silica powder of the present invention has very little increase in water content even under high temperature and high humidity.

図1は実施例1の疎水化度分布を示す図である。FIG. 1 is a diagram showing the hydrophobization degree distribution of Example 1. FIG.

本発明の球状シリカ粉末は、メタノール滴定法における球状シリカ粉末が100質量%沈降した時の疎水化度Aが式(1)を満たすものである。
65%≦A ・・・式(1)
疎水化度65%未満のシリカ粉末は、保存雰囲気中の水分の影響を受け、シリカ表面の水分量が増加する。疎水化度の上限には制約はなく、大きいほどよい。
In the spherical silica powder of the present invention, the degree of hydrophobicity A when the spherical silica powder in the methanol titration method settles to 100% by mass satisfies the formula (1).
65% ≦ A Formula (1)
Silica powder having a hydrophobization degree of less than 65% is affected by moisture in the storage atmosphere, and the moisture content on the silica surface increases. There is no restriction on the upper limit of the degree of hydrophobicity, and the higher the better.

また、球状シリカ粉末の疎水化度分布については、メタノール滴定法における球状シリカ粉末が100質量%沈降した時の疎水化度Aと、球状シリカ粉末が5質量%沈降した時の疎水化度Bが式(2)を満たすものが好ましい。より好ましくは式(3)を満たすものである。
A−B≦15% ・・・式(2)
A−B≦10% ・・・式(3)
シャープな疎水化度分布を有する球状シリカ粉末は、高温高湿(温度50℃湿度70%)の条件下における、試験前と24時間後の含有水分量の増加量が0.02質量%以下と著しく低下させることができる。
Further, regarding the hydrophobicity distribution of the spherical silica powder, the hydrophobization degree A when the spherical silica powder is precipitated by 100% by mass in the methanol titration method and the hydrophobization degree B when the spherical silica powder is precipitated by 5% by mass. What satisfy | fills Formula (2) is preferable. More preferably, it satisfies the formula (3).
A-B ≦ 15% (2)
A-B ≦ 10% Formula (3)
The spherical silica powder having a sharp hydrophobization degree distribution is 0.02% by mass or less in water content before and after 24 hours under the conditions of high temperature and high humidity (temperature 50 ° C., humidity 70%). Can be significantly reduced.

本発明における高温高湿の条件とは、球状シリカ粉末を恒温恒湿槽、例えば「AG−225」(ADVANTEC社製)にて温度50℃湿度70%に保持することで、球状シリカ粉末の水分変化を加速することができる。   The condition of high temperature and high humidity in the present invention means that the spherical silica powder is kept at a temperature of 50 ° C. and a humidity of 70% in a constant temperature and humidity chamber, for example, “AG-225” (manufactured by ADVANTEC), so Change can be accelerated.

本発明の静電荷像現像用トナー外添剤は、本発明の球状シリカ粉末からなるものである。本発明の外添剤は、従来のシリカからなる外添剤と同様にして使用することができる。その一例は、特開2000−330328号公報に記載されている。   The toner external additive for developing an electrostatic charge image of the present invention comprises the spherical silica powder of the present invention. The external additive of the present invention can be used in the same manner as conventional external additives made of silica. One example is described in Japanese Patent Application Laid-Open No. 2000-330328.

本発明の球状シリカ粉末は、原料球状シリカ粉末をガスで浮遊させた状態で表面改質剤を噴霧する。反応容器中の空間率を0.85〜0.99とし、含有水分量が0.20質量%以下の原料シリカ粉末に水と表面改質剤を噴霧することによって製造することができる。 The spherical silica powder of the present invention is sprayed with the surface modifier in a state where the raw spherical silica powder is suspended with a gas. It can be produced by spraying water and a surface modifier onto a raw silica powder having a space ratio in the reaction vessel of 0.85 to 0.99 and a water content of 0.20% by mass or less.

反応容器中の空間率を0.85〜0.99とすることで原料球状シリカ粉末の凝集が少なく、高分散状態での表面改質が可能である。空間率0.85未満では原料球状シリカ粉末の凝集が発生し、均一な表面改質ができない。空間率が0.99超では、原料球状シリカ粉末の均一な表面改質は可能だが、効率が悪く製造には向かない。空間率は、例えばガスライン上のバルブ開度等でガス流量を調整することにより維持できる。原料球状シリカ粉末を高分散状態で表面改質することで、高疎水性を発現することができる。   By setting the space ratio in the reaction vessel to 0.85 to 0.99, there is little aggregation of the raw spherical silica powder, and surface modification in a highly dispersed state is possible. When the space ratio is less than 0.85, the raw spherical silica powder is aggregated and uniform surface modification cannot be performed. When the space ratio exceeds 0.99, uniform surface modification of the raw spherical silica powder is possible, but the efficiency is low and it is not suitable for production. The space ratio can be maintained by adjusting the gas flow rate with, for example, a valve opening degree on the gas line. By modifying the surface of the raw spherical silica powder in a highly dispersed state, high hydrophobicity can be expressed.

本発明に用いる反応容器に特に指定はなく、例えば振動流動層装置「VUA−15型」(中央化工機社製)のような装置を用いることができる。なお、本発明中の空間率とは、反応容器中で浮遊している原料球状シリカ粉末の見掛け体積中におけるガスの体積の割合を示したものである。   The reaction vessel used in the present invention is not particularly specified, and for example, an apparatus such as a vibrating fluidized bed apparatus “VUA-15 type” (manufactured by Chuo Kako Co., Ltd.) can be used. In addition, the space ratio in this invention shows the ratio of the volume of the gas in the apparent volume of the raw material spherical silica powder floating in the reaction container.

上記の表面改質剤を噴霧する工程において、原料球状シリカ粉末の含有水分量を0.20質量%以下にして、表面改質剤を噴霧することによって原料球状シリカ粉末の凝集が少なく、高い表面反応性を与えることができる。   In the step of spraying the surface modifying agent, the water content of the raw spherical silica powder is reduced to 0.20% by mass or less, and the surface modifying agent is sprayed to reduce the aggregation of the raw spherical silica powder and to increase the surface. It can provide reactivity.

通常、シリカ表面の水分はシリカの凝集に寄与しており、表面改質剤の加水分解に十分に作用しない。原料球状シリカ粉末の含有水分量が0.20質量%を超えると、凝集が発生しており均一な表面改質ができない。そこで、原料球状シリカ粉末の含有水分量を0.20質量%以下にすることで、原料球状シリカ粉末の凝集を著しく緩和し、高分散状態を作り出すことができる。原料球状シリカ粉末の含有水分量を0.20質量%以下に低下させる方法としては、例えば原料球状シリカ粉末を乾燥ガスに接触させることが挙げられる。乾燥ガスとしては、作業性や安全性の面から液体Nガスを用いることが好ましい。 Usually, the moisture on the silica surface contributes to the aggregation of the silica and does not sufficiently act on the hydrolysis of the surface modifier. If the water content of the raw spherical silica powder exceeds 0.20% by mass, aggregation occurs and uniform surface modification cannot be performed. Therefore, by setting the water content of the raw spherical silica powder to 0.20% by mass or less, aggregation of the raw spherical silica powder can be remarkably relieved and a highly dispersed state can be created. Examples of a method for reducing the water content of the raw material spherical silica powder to 0.20% by mass or less include bringing the raw material spherical silica powder into contact with a dry gas. As the dry gas, liquid N 2 gas is preferably used from the viewpoint of workability and safety.

原料球状シリカ粉末に水と表面改質剤を噴霧することによって、噴霧した水が表面改質剤の加水分解に好適に作用し、高い表面反応性を与えることができる。水と表面改質剤を噴霧する条件は、特に制限なく適用できるが、均一な表面改質を行うため、例えば2流体ノズル等を用いて液滴径を細かくして噴霧することが好ましい。また、水と表面改質剤は、別々に噴霧しても良いし、同時に噴霧しても良い。   By spraying water and the surface modifier on the raw spherical silica powder, the sprayed water suitably acts on the hydrolysis of the surface modifier and can impart high surface reactivity. The conditions for spraying water and the surface modifying agent can be applied without any particular limitation. However, in order to perform uniform surface modification, for example, it is preferable to spray with a fine droplet diameter using a two-fluid nozzle or the like. Moreover, water and a surface modifier may be sprayed separately, and may be sprayed simultaneously.

原料球状シリカ粉末をガスに浮遊させる条件としては、反応容器中の下部から上部へ向けてガスを流し、0.005〜5m/sの流速となるようガス流量を調整した。表面改質に対する水及び表面改質剤の噴霧量は、原料球状シリカ粉末100質量部対し、水が0.3〜5質量部、表面改質剤が0.5〜10質量部である。   As conditions for suspending the raw spherical silica powder in the gas, the gas was flowed from the lower part to the upper part in the reaction vessel, and the gas flow rate was adjusted to a flow rate of 0.005 to 5 m / s. The spray amount of water and the surface modifier for the surface modification is 0.3 to 5 parts by mass of water and 0.5 to 10 parts by mass of the surface modifier with respect to 100 parts by mass of the raw spherical silica powder.

本発明の表面改質剤としては、ヘキサメチルジシラザンを用いることができ、高い疎水性が発現できる。   As the surface modifier of the present invention, hexamethyldisilazane can be used, and high hydrophobicity can be expressed.

原料球状シリカ粉末の製造方法としては、例えばシリコン粒子を化学炎や電気炉等で形成された高温場に投じて酸化反応させながら球状化する方法(例えば特許第1568168号明細書)、シリコン粒子スラリーを火炎中に噴霧して酸化反応させながら球状化する方法(例えば特開2000−247626号公報)などによって製造することができる。   As a method for producing the raw material spherical silica powder, for example, a method in which silicon particles are spheroidized while being subjected to an oxidation reaction by being put in a high temperature field formed by a chemical flame or an electric furnace (for example, Japanese Patent No. 1568168), a silicon particle slurry Can be produced by a method of spheroidizing while spraying into a flame to cause an oxidation reaction (for example, JP-A-2000-247626).

原料球状シリカ粉末の比表面積としては、3〜150m/gであることが好ましく、より好ましくは15〜95m/gである。比表面積は、BET測定機、例えば「Macsorb HM Model−1201」(マウンテック社製)で測定することができる。 The specific surface area of the raw material spherical silica powder is preferably 3~150m 2 / g, more preferably 15~95m 2 / g. The specific surface area can be measured with a BET measuring device, for example, “Macsorb HM Model-1201” (manufactured by Mountec).

原料球状シリカ粉末の「球状」の程度としては、平均球形度が0.85以上であることが好ましい。平均球形度は、実体顕微鏡、例えば「モデルSMZ−10型」(ニコン社製)、走査型電子顕微鏡、透過型電子顕微鏡等にて撮影した粒子像を画像解析装置、例えば(日本アビオニクス社製など)に取り込み、次のようにして測定することができる。すなわち、写真から粒子の投影面積(C)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(D)とすると、その粒子の球形度はC/Dとして表示できる。そこで、資料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、D=πrであるから、D=π×(PM/2π)となり、個々の粒子の球形度は、球形度=C/D=C×4π/(PM)として算出することができる。このようにして得られた任意の粒子200個の球形度を求めその平均値を平均球形度とする。 As the degree of “spherical” of the raw spherical silica powder, the average sphericity is preferably 0.85 or more. The average sphericity is measured by using a stereomicroscope such as “Model SMZ-10” (manufactured by Nikon Corp.), a scanning electron microscope, a transmission electron microscope, or the like as an image analysis apparatus such as (manufactured by Nippon Avionics Co., Ltd.). ) And can be measured as follows. That is, the projected area (C) and the perimeter (PM) of particles are measured from a photograph. When the area of a perfect circle corresponding to the perimeter (PM) is (D), the sphericity of the particle can be displayed as C / D. Therefore, assuming a perfect circle having the same circumference as the circumference of the material particle (PM), PM = 2πr and D = πr 2 , so that D = π × (PM / 2π) 2 , and each particle Can be calculated as sphericity = C / D = C × 4π / (PM) 2 . The sphericity of 200 arbitrary particles thus obtained is obtained, and the average value is defined as the average sphericity.

本発明の球状シリカ粉末は、原料球状シリカ粉末の表面改質剤による処理物からなるものであり、その疎水化度は以下のメタノール滴定法によって算出した。
すなわち、200mlのビーカーにイオン交換水50mlを入れ0.2gの試料を添加する。攪拌しながら、ビュレットからメタノールを加え、液面上に試料が認められなくなった点を終点として要したメタノール量から、下記の式(4)により疎水化度を算出する。式中のGはメタノール使用量(ml)を表す。

疎水化度(%)=(G/G+50)×100 ・・・式(4)

式(4)より、疎水化度とメタノール使用量の関係を表すと以下のようになる。
疎水化度(%) メタノール使用量(ml)
0 0
10 5.5
20 17
30 21
40 33
50 50
60 75
70 116
80 200
90 450
The spherical silica powder of the present invention consists of a treated product of the raw spherical silica powder with a surface modifier, and the degree of hydrophobicity was calculated by the following methanol titration method.
That is, 50 ml of ion-exchanged water is put into a 200 ml beaker, and a 0.2 g sample is added. While stirring, methanol is added from the burette, and the degree of hydrophobicity is calculated by the following formula (4) from the amount of methanol required with the point where the sample is no longer recognized on the liquid surface. G in the formula represents the amount of methanol used (ml).

Hydrophobic degree (%) = (G / G + 50) × 100 (4)

From the equation (4), the relationship between the degree of hydrophobicity and the amount of methanol used is expressed as follows.
Hydrophobicity (%) Methanol consumption (ml)
0 0
10 5.5
20 17
30 21
40 33
50 50
60 75
70 116
80 200
90 450

また、疎水化度分布は以下のように求められる。
0.2gの試料を200mlのビンにイオン交換水50mlとメタノールを疎水化度10%に対応する量加え、1分間振り混ぜた後、1時間静置し、沈んだ試料を分離する。それを蒸発皿に移し、溶液を蒸発乾固し、デシケーター中で放冷する。蒸発乾固後の試料(g)を測定し、下記の式(5)より沈降量(質量%)を測定する。

沈降量(質量%)=蒸発乾固後の試料量(g)/試料量0.2(g)×100 式(5)

次に、疎水化度が10,20,30,40,50,60,70,80,90(%)に対するメタノール量を順次使用し、上記と同様にして沈降量を測定する。疎水化度と沈降量の関係をグラフに表すことによって疎水化度分布が明瞭に表される。例えば、後述する実施例1の疎水化度分布が図1に明確に示されている。
The hydrophobicity distribution is obtained as follows.
A 0.2 g sample is added to a 200 ml bottle with 50 ml of ion-exchanged water and methanol in an amount corresponding to a hydrophobicity of 10%, shaken for 1 minute, and allowed to stand for 1 hour to separate a sunk sample. It is transferred to an evaporating dish and the solution is evaporated to dryness and allowed to cool in a desiccator. The sample (g) after evaporation to dryness is measured, and the amount of sediment (mass%) is measured from the following formula (5).

Sedimentation amount (% by mass) = sample amount after evaporation to dryness (g) / sample amount 0.2 (g) × 100 formula (5)

Next, the amount of methanol with respect to the degree of hydrophobicity of 10, 20, 30, 40, 50, 60, 70, 80, 90 (%) is sequentially used, and the amount of sedimentation is measured in the same manner as described above. By expressing the relationship between the degree of hydrophobicity and the amount of sedimentation in a graph, the degree of hydrophobicity distribution is clearly expressed. For example, the hydrophobization degree distribution of Example 1 described later is clearly shown in FIG.

本発明における含有水分量は、カールフィッシャー電量滴定法で測定される。カールフィッシャー微量水分測定装置、例えば「CA−100」(三菱化学社製)にて測定することができる。具体的には、試料を水分気化装置に入れ、電気ヒーターで200℃まで加熱昇温しながら、脱水処理されたアルゴンガスをキャリアガスとして供給し、試料の表面吸着水を測定することができる。   The water content in the present invention is measured by the Karl Fischer coulometric titration method. It can be measured by a Karl Fischer trace moisture measuring device, for example, “CA-100” (manufactured by Mitsubishi Chemical Corporation). Specifically, the sample surface adsorbed water can be measured by putting the sample in a moisture vaporizer and supplying the dehydrated argon gas as a carrier gas while heating up to 200 ° C. with an electric heater.

本発明における含有水分量の増加量は、球状シリカ粉末の表面改質直後の含有水分量と、高温高湿(温度50℃湿度70%)の条件下においての24時間後の含有水分量の差により求めることができる。 The increase in the water content in the present invention is the difference between the water content immediately after the surface modification of the spherical silica powder and the water content after 24 hours under conditions of high temperature and high humidity (temperature: 50 ° C., humidity: 70%). It can ask for.

実施例1
BET比表面積80m/gで平均球形度が0.90の原料球状シリカ粉末500gを反応容器に仕込み、Nガスで浮遊させながら原料球状シリカ粉末の含有水分量を0.173(質量%)にした。空間率を0.97に調整し、次いで水20gとヘキサメチルジシラザン40gを噴霧し、球状シリカ粉末を得た。得られた球状シリカ粉末の疎水化度と含有水分変化量を測定した。それらの結果を表1に示す。
Example 1
500 g of raw spherical silica powder having a BET specific surface area of 80 m 2 / g and an average sphericity of 0.90 was charged into a reaction vessel, and the water content of the raw spherical silica powder was 0.173 (mass%) while being suspended in N 2 gas. I made it. The porosity was adjusted to 0.97, and then 20 g of water and 40 g of hexamethyldisilazane were sprayed to obtain a spherical silica powder. The degree of hydrophobicity and the amount of change in water content of the obtained spherical silica powder were measured. The results are shown in Table 1.

実施例2
BET比表面積30m/gで平均球形度が0.93の原料球状シリカ粉末1000gを反応容器に仕込み、Nガスで浮遊させながら原料球状シリカ粉末の含有水分量を0.148(質量%)にした。空間率を0.92に調整し、次いで水15gとヘキサメチルジシラザン30gを噴霧し、球状シリカ粉末を得た。得られた球状シリカ粉末の疎水化度と含有水分変化量を測定した。それらの結果を表1に示す。
Example 2
1000 g of raw spherical silica powder having a BET specific surface area of 30 m 2 / g and an average sphericity of 0.93 was charged into a reaction vessel, and the water content of the raw spherical silica powder was 0.148 (mass%) while being suspended in N 2 gas. I made it. The porosity was adjusted to 0.92, and then 15 g of water and 30 g of hexamethyldisilazane were sprayed to obtain a spherical silica powder. The degree of hydrophobicity and the amount of change in water content of the obtained spherical silica powder were measured. The results are shown in Table 1.

実施例3
BET比表面積30m/gで平均球形度が0.93の原料球状シリカ粉末1000gを反応容器に仕込み、Nガスで浮遊させながら原料球状シリカ粉末の含有水分量を0.097(質量%)にした。空間率を0.97に調整し、次いで水15gとヘキサメチルジシラザン30gを噴霧し、球状シリカ粉末を得た。得られた球状シリカ粉末の疎水化度と含有水分変化量を測定した。それらの結果を表1に示す。
Example 3
1000 g of raw spherical silica powder having a BET specific surface area of 30 m 2 / g and an average sphericity of 0.93 was charged into a reaction vessel, and the water content of the raw spherical silica powder was 0.097 (mass%) while being suspended in N 2 gas. I made it. The porosity was adjusted to 0.97, and then 15 g of water and 30 g of hexamethyldisilazane were sprayed to obtain a spherical silica powder. The degree of hydrophobicity and the amount of change in water content of the obtained spherical silica powder were measured. The results are shown in Table 1.

実施例4
BET比表面積12m/gで平均球形度が0.92の原料球状シリカ粉末2000gを反応容器に仕込み、Nガスで浮遊させながら原料球状シリカ粉末の含有水分量を0.060(質量%)にした。空間率を0.86に調整し、次いで水15gとヘキサメチルジシラザン30gを噴霧し、球状シリカ粉末を得た。得られた球状シリカ粉末の疎水化度と含有水分変化量を測定した。それらの結果を表1に示す。
Example 4
2000 g of raw spherical silica powder having a BET specific surface area of 12 m 2 / g and an average sphericity of 0.92 was charged into a reaction vessel, and the water content of the raw spherical silica powder was 0.060 (mass%) while floating in N 2 gas. I made it. The porosity was adjusted to 0.86, and then 15 g of water and 30 g of hexamethyldisilazane were sprayed to obtain a spherical silica powder. The degree of hydrophobicity and the amount of change in water content of the obtained spherical silica powder were measured. The results are shown in Table 1.

実施例5
BET比表面積100m/gで平均球形度が0.89の原料球状シリカ粉末500gを反応容器に仕込み、Nガスで浮遊させながら原料球状シリカ粉末の含有水分量を0.189(質量%)にした。空間率を0.98に調整し、次いで水20gとヘキサメチルジシラザン40gを噴霧し、球状シリカ粉末を得た。得られた球状シリカ粉末の疎水化度と含有水分変化量を測定した。それらの結果を表1に示す。
Example 5
500 g of raw spherical silica powder having a BET specific surface area of 100 m 2 / g and an average sphericity of 0.89 was charged into a reaction vessel, and the water content of the raw spherical silica powder was 0.189 (mass%) while being suspended in N 2 gas. I made it. The porosity was adjusted to 0.98, and then 20 g of water and 40 g of hexamethyldisilazane were sprayed to obtain a spherical silica powder. The degree of hydrophobicity and the amount of change in water content of the obtained spherical silica powder were measured. The results are shown in Table 1.

実施例6
BET比表面積7m/gで平均球形度が0.91の原料球状シリカ粉末4000gを反応容器に仕込み、Nガスで浮遊させながら原料球状シリカ粉末の含有水分量を0.057(質量%)にした。空間率を0.94に調整し、次いで水15gとヘキサメチルジシラザン30gを噴霧し、球状シリカ粉末を得た。得られた球状シリカ粉末の疎水化度と含有水分変化量を測定した。それらの結果を表1に示す。
Example 6
4000 g of raw spherical silica powder having a BET specific surface area of 7 m 2 / g and an average sphericity of 0.91 was charged into a reaction vessel, and the water content of the raw spherical silica powder was 0.057 (mass%) while being suspended in N 2 gas. I made it. The porosity was adjusted to 0.94, and then 15 g of water and 30 g of hexamethyldisilazane were sprayed to obtain a spherical silica powder. The degree of hydrophobicity and the amount of change in water content of the obtained spherical silica powder were measured. The results are shown in Table 1.

比較例1
空間率を0.83に調整したこと以外は実施例4と同様にし、球状シリカ粉末を得た。得られた球状シリカ粉末の疎水化度と含有水分変化量を測定した。それらの結果を表1に示す。
Comparative Example 1
A spherical silica powder was obtained in the same manner as in Example 4 except that the porosity was adjusted to 0.83. The degree of hydrophobicity and the amount of change in water content of the obtained spherical silica powder were measured. The results are shown in Table 1.

比較例2
原料球状シリカ粉末の含有水分量を0.213(質量%)としたこと以外は実施例2と同様にし、球状シリカ粉末を得た。得られた球状シリカ粉末の疎水化度と含有水分変化量を測定した。それらの結果を表1に示す。
Comparative Example 2
A spherical silica powder was obtained in the same manner as in Example 2 except that the water content of the raw material spherical silica powder was 0.213 (mass%). The degree of hydrophobicity and the amount of change in water content of the obtained spherical silica powder were measured. The results are shown in Table 1.

比較例3
原料球状シリカ粉末の含有水分量を0.212(質量%)とし、空間率を0.80に調整したこと以外は実施例6と同様にし、球状シリカ粉末を得た。得られた球状シリカ粉末の疎水化度と含有水分変化量を測定した。それらの結果を表1に示す。
Comparative Example 3
A spherical silica powder was obtained in the same manner as in Example 6 except that the water content of the raw material spherical silica powder was 0.212 (mass%) and the porosity was adjusted to 0.80. The degree of hydrophobicity and the amount of change in water content of the obtained spherical silica powder were measured. The results are shown in Table 1.

実施例と比較例の対比から分かるように、本発明の球状シリカ粉末は、高温高湿下においても含有水分量の増加量が極めて少ないものである。本発明の製造方法を用いることで、高温高湿の条件下においても含有水分量の増加量が極めて少ない球状シリカ粉末を製造することができる。   As can be seen from the comparison between the examples and the comparative examples, the spherical silica powder of the present invention has an extremely small increase in water content even under high temperature and high humidity. By using the production method of the present invention, it is possible to produce a spherical silica powder with an extremely small increase in the water content even under high temperature and high humidity conditions.

本発明の球状シリカ粉末は特に、静電荷像現像用トナー外添剤に好適に用いることができ、安定した高い印字性を期待できる。
In particular, the spherical silica powder of the present invention can be suitably used for an external toner additive for developing an electrostatic image, and stable high printability can be expected.

Claims (2)

原料球状シリカ粉末のBET比表面積が30〜80/gであり、メタノール滴定法における球状シリカ粉末が100質量%沈降した時の疎水化度Aと、球状シリカ粉末が5質量%沈降した時の疎水化度Bが式(1)及び式(2)を満たす疎水化度分布を有し、高温高湿(温度50℃湿度70%)の試験条件下において、試験前と24時間後の含有水分量の増加量が0.02質量%以下であることを特徴とする球状シリカ粉末。
74%≦A≦75% ・・・式(1)
A−B≦% ・・・式(2)
When the raw spherical silica powder has a BET specific surface area of 30 to 80 m 2 / g, the hydrophobicity A when the spherical silica powder in the methanol titration method settles 100 mass%, and the spherical silica powder sediments 5 mass% Has a hydrophobicity distribution satisfying the formulas (1) and (2), and is contained before and after the test under the test conditions of high temperature and high humidity (temperature 50 ° C., humidity 70%). A spherical silica powder characterized in that the increase in water content is 0.02 mass% or less.
74% ≦ A ≦ 75% Formula (1)
A−B ≦ 9 % (2)
請求項1に記載の球状シリカ粉末を用いたことを特徴とする静電荷像現像用トナー外添剤。
A toner external additive for developing an electrostatic charge image, wherein the spherical silica powder according to claim 1 is used.
JP2010109470A 2010-05-11 2010-05-11 Surface-modified spherical silica powder and method for producing the same Active JP5468463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109470A JP5468463B2 (en) 2010-05-11 2010-05-11 Surface-modified spherical silica powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109470A JP5468463B2 (en) 2010-05-11 2010-05-11 Surface-modified spherical silica powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011236089A JP2011236089A (en) 2011-11-24
JP5468463B2 true JP5468463B2 (en) 2014-04-09

Family

ID=45324497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109470A Active JP5468463B2 (en) 2010-05-11 2010-05-11 Surface-modified spherical silica powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP5468463B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871718B2 (en) * 2012-05-30 2016-03-01 日本アエロジル株式会社 Surface treatment method for hydrophilic sol-gel silica particles and method for producing hydrophobic sol-gel silica powder
JP2014114175A (en) * 2012-12-06 2014-06-26 Shin Etsu Chem Co Ltd Surface-hydrophobized spherical silica fine particle, method for producing the same, and toner external additive, obtained by using the particle, for developing electrostatic charge image
JP6429791B2 (en) * 2013-10-30 2018-11-28 デンカ株式会社 Hydrophobized spherical silica fine powder and use thereof
CN112601713B (en) * 2018-08-07 2024-02-02 电化株式会社 Silica powder having excellent dispersibility, resin composition using same, and method for producing same
JP6564517B1 (en) * 2018-12-17 2019-08-21 株式会社アドマテックス Filler for electronic material and method for producing the same, method for producing resin composition for electronic material, high-frequency substrate, and slurry for electronic material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4321901B2 (en) * 1999-03-19 2009-08-26 株式会社トクヤマ Method for producing hydrophobic silica
JP3957590B2 (en) * 2002-08-09 2007-08-15 電気化学工業株式会社 Method for producing highly dispersed, highly hydrophobic spherical silica fine powder
JP2005148448A (en) * 2003-11-17 2005-06-09 Denki Kagaku Kogyo Kk Silica fine powder, method for manufacturing the same, and use
JP2006030662A (en) * 2004-07-16 2006-02-02 Ricoh Co Ltd Toner, developer, and image forming apparatus and process cartridge using the same
JP3983234B2 (en) * 2004-08-16 2007-09-26 電気化学工業株式会社 Manufacturing method of toner external additive
JP4758655B2 (en) * 2005-01-31 2011-08-31 株式会社トクヤマ Surface-treated silica fine particles

Also Published As

Publication number Publication date
JP2011236089A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP4758655B2 (en) Surface-treated silica fine particles
JP5468463B2 (en) Surface-modified spherical silica powder and method for producing the same
US20110318581A1 (en) Silica particles and method of producing the same
JP6030059B2 (en) Spherical silica fine powder and toner external additive for developing electrostatic image using spherical silica fine powder
JP2009292915A (en) Surface-modified inorganic oxide powder and toner composition for electrophotography
CN106904657B (en) FeOOH nano-particle of size adjustable and preparation method thereof
JP7155046B2 (en) Hydrophobic silica powder and toner resin particles
JP2006290712A (en) Hydrophobic positive charged silica fine powder, manufacturing method of the same and toner for electrostatic latent image development in which the same is added as external additive
JP6445877B2 (en) Ultra fine silica powder and its use
JP3983234B2 (en) Manufacturing method of toner external additive
JP5871718B2 (en) Surface treatment method for hydrophilic sol-gel silica particles and method for producing hydrophobic sol-gel silica powder
JP5915555B2 (en) Silica composite particles and method for producing the same
JP4099748B2 (en) Surface modified inorganic oxide powder
JP6328488B2 (en) Spherical silica fine powder and use thereof
JP2014136670A (en) Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP6429791B2 (en) Hydrophobized spherical silica fine powder and use thereof
JP6577471B2 (en) Silica fine powder and its use
JP2015000830A (en) Spherical silica composition and use of the same
JP6036448B2 (en) Resin particles and method for producing the same
JP5683101B2 (en) Surface-treated silica
JP2018054881A (en) Amorphous aluminosilicate-based toner external additive
JP4936237B2 (en) Positively charged hydrophobic titanium oxide fine powder and its production and use
JP2004143028A (en) Alumina doped hydrophobic-treated silica particulate
JP2004231498A (en) Surface modified silica fine powder
JP2022126550A (en) Method of producing surface treated gas phase process silica particle, surface treated gas phase process silica particle, and external toner additive for developing electrostatic charge image

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140129

R151 Written notification of patent or utility model registration

Ref document number: 5468463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250