JP2014136670A - Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image - Google Patents

Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image Download PDF

Info

Publication number
JP2014136670A
JP2014136670A JP2013007037A JP2013007037A JP2014136670A JP 2014136670 A JP2014136670 A JP 2014136670A JP 2013007037 A JP2013007037 A JP 2013007037A JP 2013007037 A JP2013007037 A JP 2013007037A JP 2014136670 A JP2014136670 A JP 2014136670A
Authority
JP
Japan
Prior art keywords
silica fine
spherical silica
fine particles
hydrophobic
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013007037A
Other languages
Japanese (ja)
Inventor
Kazuyuki Matsumura
和之 松村
Katsuaki Sakazume
功晃 坂詰
Harukazu Okuda
治和 奥田
Takeshi Fukuzumi
武司 福住
Keiichi Shirasawa
恵一 白澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Nissin Chemical Industry Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Nissin Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Nissin Chemical Industry Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2013007037A priority Critical patent/JP2014136670A/en
Publication of JP2014136670A publication Critical patent/JP2014136670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a strongly negative charge granted, hydrophobic, and spherical silica fine particle which imparts desired negative charge polarity and an electric charge quantity to a toner and keeps such the imparted state stably over a long period of time.SOLUTION: The strongly negative charge granted, hydrophobic, and spherical silica fine particle is a spherical hydrophobic silica fine particle having 0.005-0.030 micron volume-based median diameter of primary particles, 3 or smaller value of a particle size distribution (D90/D10) and 0.8-1 average degree of roundness.

Description

従来から、電子写真においては、帯電した着色粒子(以下、トナーという)を、静電潜像を形成せしめた光導電体表面や誘電体表面に接触させ、帯電したトナーを静電潜像の電荷量に応じて光導電体表面や誘電体表面に付着せしめることによって可視像を形成しており、通常この可視化操作は現像と呼ばれる。   Conventionally, in electrophotography, charged colored particles (hereinafter referred to as toner) are brought into contact with a photoconductor surface or dielectric surface on which an electrostatic latent image is formed, and the charged toner is charged in the electrostatic latent image. A visible image is formed by adhering to the photoconductor surface or dielectric surface according to the amount, and this visualization operation is usually called development.

最も一般的に用いられる粉砕型トナーは、熱可塑性のトナー用樹脂バインダーと、顔料、電荷制御剤(Charge Control Agent)、ワックスなどを熱混練し、これを粉砕、分級して、平均粒径5〜10μm程度の着色粒子として得られるものである。   The most commonly used pulverized toner is a thermoplastic toner binder, a pigment, a charge control agent, a wax, and the like, which are kneaded and pulverized and classified to obtain an average particle size of 5 It is obtained as colored particles of about 10 μm.

また、最近多用されはじめた懸濁重合型のケミカルトナーは、バインダー樹脂モノマー、顔料、電荷制御剤、ワックスを混合・分散した平均粒径5〜10μmの液滴を水中に分散させ、バインダー樹脂モノマーを重合せしめて得られるものである。また、乳化重合凝集型ケミカルトナーは、熱可塑性樹脂エマルジョン、ワックスエマルジョンと、顔料粒子および電荷制御剤粒子を粒径5〜10μmに凝集せしめて得られるものである。   In addition, suspension polymerization type chemical toners that have recently started to be widely used are obtained by dispersing droplets having an average particle diameter of 5 to 10 μm mixed and dispersed in water with binder resin monomers, pigments, charge control agents, and waxes. Can be obtained by polymerizing. The emulsion polymerization aggregation type chemical toner is obtained by aggregating a thermoplastic resin emulsion, a wax emulsion, pigment particles and charge control agent particles to a particle size of 5 to 10 μm.

これらのトナーを用いて鮮明な現像画像が得られるための最も重要な条件は、トナーが同一極性で均一かつ適用する現像システムに最適な帯電量に帯電していることである。従来、このように均一帯電したトナーは、トナー中に電荷制御剤を含有させておき、このトナーを静電潜像面に搬送するためのキャリア粒子、現像ロールあるいは現像ロールに対向して配設された層規制ブレードなどの部材と混合あるいは摩擦帯電することによって得ていた。   The most important condition for obtaining a sharply developed image using these toners is that the toner is charged with the same polarity and uniform charge amount that is optimal for the developing system to be applied. Conventionally, the uniformly charged toner has a charge control agent contained in the toner and is disposed opposite to carrier particles, a developing roll or a developing roll for transporting the toner to the electrostatic latent image surface. It was obtained by mixing or friction charging with a member such as a layer regulating blade.

トナーが獲得する摩擦電荷は、トナー表面に存在する電荷制御剤量によって支配される。このため、電荷制御剤はトナー中に練り込むよりは所望量をトナー表面に存在させようとする試みがなされている。   The triboelectric charge acquired by the toner is governed by the amount of charge control agent present on the toner surface. For this reason, attempts have been made to make the charge control agent exist on the toner surface in a desired amount rather than kneading it in the toner.

例えば、特許文献1および特許文献2においては、ヘンシェルミキサーあるいはハイブリダイザーなどを用いて電荷制御剤をトナー表面に存在させようとする試みがなされている。   For example, in Patent Document 1 and Patent Document 2, an attempt is made to make the charge control agent exist on the toner surface using a Henschel mixer or a hybridizer.

また、特許文献3および特許文献4においては、微細化した電荷制御剤粒子をトナー表面に固着せしめる試みがなされている。また、特許文献5においては、電荷制御剤溶液から電荷制御剤をトナー表面に析出させ、さらに微細化し電荷制御剤粒子を被覆する方法を開示している。   In Patent Document 3 and Patent Document 4, an attempt is made to fix the fine charge control agent particles to the toner surface. Patent Document 5 discloses a method of depositing a charge control agent from a charge control agent solution on the toner surface, further miniaturizing and coating the charge control agent particles.

また、特許文献6においては、トナーと水分散性の平均粒径0.01〜0.2μmの小粒子と電荷制御剤の水性分散液を混合し、この分散体を用いてトナー表面に強く付着せしめた電荷制御剤含有の小粒子層を形成することを試みている。さらに、特許文献7は、トナー表面に平均粒径が0.1〜0.8μmの小粒子中に電荷制御剤を分散させるか、あるいは該小粒子表面に電荷制御剤を付着させた小粒子をトナー表面に固定化せしめた静電像現像トナーを開示している。   In Patent Document 6, a toner, a small particle having an average particle diameter of 0.01 to 0.2 μm in water dispersibility, and an aqueous dispersion of a charge control agent are mixed, and this dispersion is used to adhere strongly to the toner surface. Attempts are made to form a small particle layer containing a charge control agent. Further, Patent Document 7 discloses a method in which a charge control agent is dispersed in small particles having an average particle diameter of 0.1 to 0.8 μm on the toner surface, or small particles having a charge control agent attached to the surface of the small particles. An electrostatic image developing toner fixed on a toner surface is disclosed.

一般に現像トナーは、静電潜像面と接触して静電潜像を現像することによって消費される。現像工程で消費されたトナーは新たに補給され、再び帯電部材と摩擦して帯電して現像されるプロセスを繰り返す。すなわち、上記の現像・補給の操作が定常的に続く間、トナーは常に帯電を獲得して現像を続けることができる。   In general, developing toner is consumed by developing an electrostatic latent image in contact with the electrostatic latent image surface. The toner consumed in the development process is newly replenished, and the process of developing by charging again by friction with the charging member is repeated. That is, while the above-described development / replenishment operation is continuously performed, the toner can always acquire charge and continue development.

特開平2−73371号公報JP-A-2-73371 特開平2−161471号公報JP-A-2-161471 特開平5−127423号公報Japanese Patent Laid-Open No. 5-127423 特開2004−220005号公報JP 2004-220005 A 特開平5−134457号公報JP-A-5-134457 特開平5−341570号公報Japanese Patent Laid-Open No. 5-341570 特開2004−109406号公報JP 2004-109406 A

しかしながら実際には、摩擦帯電はされたものの現像されずに現像機内に残るトナーや、トナーとの接触による帯電部材表面の汚染などによって、トナー帯電量が徐々に変化し、現像操作を繰り返すと現像画質が徐々に劣化するという問題があった。   In practice, however, the toner charge amount gradually changes due to toner that remains tribo-charged but remains undeveloped in the developing machine, or contamination of the surface of the charging member due to contact with the toner. There was a problem that the image quality gradually deteriorated.

この現像画像劣化には、現像・摩擦工程を繰り返すことによる、トナー表面や帯電部材表面の組成変化が影響を与えていることが考えられる。従って、トナーが摩擦混合・現像・補給を繰り返しても常に一定量の摩擦帯電量を維持するためには、トナーの表面組成中で、とりわけ電荷制御剤の量が常に一定量に維持されている必要がある。   It is conceivable that the deterioration of the developed image is affected by a change in the composition of the toner surface or the charging member surface by repeating the development / friction process. Therefore, in order to always maintain a constant amount of triboelectric charge even if the toner repeats friction mixing / development / replenishment, the amount of the charge control agent is always maintained constant in the toner surface composition. There is a need.

しかし、上記の従来技術を用いた場合でも、(1)トナーが現像操作や、現像器内でのトナーと帯電部材との摩擦・混合操作によって、トナー表面の電荷制御剤量に過不足が生ずる、(2)トナー表面の電荷制御剤が帯電部材表面に移行して汚染する、(3)トナー表面の電荷制御剤がトナーの内部に埋没する、などのため、トナー表面の電荷制御剤量を常に一定に保つことが困難となっている。この結果、トナーを長期間使用するとトナー帯電量は徐々に変化し、画像が劣化する問題は必然的に起こり、これらの問題は未だに解決されるに至っていない。   However, even when the above-described conventional technology is used, (1) the amount of charge control agent on the toner surface becomes excessive or insufficient due to the developing operation of the toner or the friction / mixing operation of the toner and the charging member in the developing device. (2) The charge control agent on the toner surface moves to the surface of the charging member and is contaminated. (3) The charge control agent on the toner surface is buried in the toner. It is difficult to keep it constant. As a result, when the toner is used for a long period of time, the toner charge amount gradually changes and the problem that the image is deteriorated inevitably occurs, and these problems have not yet been solved.

更に昨今の環境意識の高まりから、極力電荷制御剤においても安全な物質の使用が望まれている。   Furthermore, due to the recent increase in environmental awareness, it is desired to use a safe substance in charge control agents as much as possible.

そこで、本発明は、負帯電性を付与できるシリカ微粒子を用いて、長期間の使用によっても画像の劣化が生じにくく、静電像現像トナーを提供することを目的とする。   Accordingly, an object of the present invention is to provide an electrostatic image developing toner that uses silica fine particles capable of imparting negative chargeability and hardly causes image deterioration even after long-term use.

斯かる実情に鑑み本発明者は鋭意研究を行った結果、次の強負帯電付与性疎水性球状シリカ微粒子が、上記課題を解決することを見出し、本発明を完成した。   In view of such circumstances, the present inventor has conducted intensive research and found that the following strong and negative charge imparting hydrophobic spherical silica fine particles can solve the above-mentioned problems, and have completed the present invention.

すなわち本発明は、1次粒子の体積基準メジアン径が0.005〜0.030ミクロンの球状の疎水性シリカ微粒子であり、かつその微粒子の粒度分布D90/D10の値が3以下であり、平均円形度が0.8〜1であることを特徴とする強負帯電付与性疎水性球状シリカ微粒子を提供するものである。   That is, the present invention is a spherical hydrophobic silica fine particle having a primary particle volume-based median diameter of 0.005 to 0.030 micron, and the particle size distribution D90 / D10 of the fine particle is 3 or less. The present invention provides a strong and negatively chargeable hydrophobic spherical silica fine particle having a circularity of 0.8 to 1.

また、本発明は、
(A1) 一般式(I):
Si(OR34 (I)
(但し、R3は同一または異種の炭素原子数1〜6の一価炭化水素基を示す)
で表される4官能性シラン化合物またはその部分加水分解生成物またはこれらの混合物を塩基性物質の存在下水溶液中で加水分解、縮合することによって親水性球状シリカ微粒子混合水分散液を得、
(A2) 得られた親水性球状シリカ微粒子混合水分散液に、上記親水性球状シリカ微粒子混合水分散液中の水に対して親水性有機溶媒を質量比1.0〜5.0で混合し、
(A3) その親水性球状シリカ微粒子混合溶媒分散液に一般式(II):
2 3SiNHSiR2 3 (II)
(但し、R2は同一または異種の置換または非置換の炭素原子数1〜6の一価炭化水素基を示す)
で表されるシラザン化合物、一般式(III):
2 3SiX (III)
(但し、R2は同一または異種の置換または非置換の炭素原子数1〜6の一価炭化水素基を示し、XはOH基または加水分解性基を示す)
で表される1官能性シラン化合物又はこれらの混合物を添加し、これにより処理して該親水性球状シリカ微粒子の表面にR2 3SiO1/2単位(但し、R2は一般式(III)で定義の通り)を導入することにより疎水性シリカ微粒子とする製造方法により得られるものである上記の強負帯電付与性疎水性球状シリカ微粒子を提供するものである。
The present invention also provides:
(A1) General formula (I):
Si (OR 3 ) 4 (I)
(However, R 3 represents the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms.)
Hydrophilic spherical silica fine particle mixed aqueous dispersion is obtained by hydrolyzing and condensing a tetrafunctional silane compound represented by the above or a partial hydrolysis product thereof or a mixture thereof in an aqueous solution in the presence of a basic substance,
(A2) The obtained hydrophilic spherical silica fine particle mixed water dispersion was mixed with a hydrophilic organic solvent at a mass ratio of 1.0 to 5.0 with respect to the water in the hydrophilic spherical silica fine particle mixed water dispersion. ,
(A3) The hydrophilic spherical silica fine particle mixed solvent dispersion is represented by the general formula (II):
R 2 3 SiNHSiR 2 3 (II)
(Wherein R 2 represents the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms)
Silazane compounds represented by general formula (III):
R 2 3 SiX (III)
(Wherein R 2 represents the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms, and X represents an OH group or a hydrolyzable group)
Is added to the surface of the hydrophilic spherical silica fine particles, and R 2 3 SiO 1/2 units (wherein R 2 is represented by the general formula (III)) The above-described strong and negative charge-providing hydrophobic spherical silica fine particles are obtained by the production method of making hydrophobic silica fine particles by introducing the above.

更に、本発明は、上記の強負帯電付与性疎水性球状シリカ微粒子からなる静電荷現像用電荷制御剤を提供するものである。   Furthermore, the present invention provides a charge control agent for electrostatic charge development comprising the above-described strong and negative charge imparting hydrophobic spherical silica fine particles.

本発明の強負帯電付与性疎水性球状シリカ微粒子は帯電の立ち上がりが早く、従来の静電像現像トナーで問題が生じていたトナーとキャリアなどの帯電付与部材との混合操作や、上述したトナーの現像・補給操作を繰り返した場合、あるいは現像機内に新たなトナーが補給された場合などにおけるトナー帯電量の変動を極めて小さなものとすることができるため、現像操作により得られる画像を長期にわたって安定したものとすることができる。
一般的にトナーへの流動性付与目的に小粒径(通常20nm未満)フュームドシリカと呼ばれる不定形の疎水性シリカ外添剤を使用される場合が多く、表面積が大きいので帯電付与にも使用される場合がある。しかしこのようなフュームドシリカは強負帯電性ではあるが、長期間使用するにつれ、帯電付与効果は低減し、画像不良が起こる場合が多々あった。これは長期使用により、フュームドシリカがトナーに埋没するためと言われている。
しかし本発明の強負帯電付与性疎水性球状シリカ微粒子は驚くべきことに粒子径がフュームドシリカ並に小さいにも関らず、埋没が少なく長期間安定した強負帯電性を付与できる。
The strong and negative charge imparting hydrophobic spherical silica fine particles of the present invention have a quick rise in charge, and a mixing operation of a toner and a charge imparting member such as a carrier, which has been a problem with conventional electrostatic image developing toners, or the above-described toner Because the fluctuation of the toner charge amount can be made extremely small when the developing and replenishing operations are repeated or when new toner is replenished in the developing machine, the image obtained by the developing operation can be stabilized over a long period of time. Can be.
In general, an amorphous hydrophobic silica additive called small particle size (usually less than 20 nm) fumed silica is often used for the purpose of imparting fluidity to the toner. May be. However, such fumed silica is strongly negatively charged, but as it is used for a long period of time, the effect of imparting charge is reduced and image defects often occur. This is said to be because fumed silica is buried in the toner after long-term use.
However, the strong and negative charge imparting hydrophobic spherical silica fine particles of the present invention surprisingly have a particle size as small as that of fumed silica, but can provide strong and negative charge stability with little embedding for a long period of time.

以下、本発明の強負帯電付与性疎水性球状シリカ微粒子について更に詳細に説明する。
本発明は、1次粒子の体積基準メジアン径が0.005〜0.030ミクロン(μm)の球状の疎水性シリカ微粒子であり、かつその微粒子の粒度分布D90/D10の値が3以下であり、平均円形度が0.8〜1であることを特徴とする強負帯電付与性疎水性球状シリカ微粒子である。
Hereinafter, the strong and negative charge imparting hydrophobic spherical silica fine particles of the present invention will be described in more detail.
The present invention is spherical hydrophobic silica fine particles having a primary particle volume-based median diameter of 0.005 to 0.030 microns (μm), and the particle size distribution D90 / D10 of the fine particles is 3 or less. In addition, it is a hydrophobic spherical silica fine particle having a strong negative charge imparting characteristic, having an average circularity of 0.8 to 1.

ここで、粒子の体積基準メジアン径と粒度分布D90/D10の測定は次の方法により行う。
すなわち、メタノールにシリカ微粒子を、0.5質量%となるように添加し、10分間超音波にかけることにより、該微粒子を分散させる。このように処理した微粒子の粒度分布を、動的光散乱法/レーザードップラー法ナノトラック粒度分布測定装置(日機装株式会社製、商品名:UPA−EX150)により測定し、その体積基準メジアン径を粒子径とした。ここで、メジアン径とは粒度分布を累積分布として表した時の累積50%に相当する粒子径である。
本発明の強負帯電付与性疎水性球状シリカ微粒子は粒子径が0.005〜0.030ミクロンであり、好ましくは0.008〜0.03ミクロンである。この粒子径が0.005ミクロンよりも小さいと粒子の凝集が激しく、うまく取り出せない場合がある。また0.03ミクロンよりも大きいと良好な負帯電性を付与できない場合があり好ましくない。
Here, the volume reference median diameter and particle size distribution D90 / D10 of the particles are measured by the following method.
That is, silica fine particles are added to methanol so as to be 0.5 mass%, and the fine particles are dispersed by applying ultrasonic waves for 10 minutes. The particle size distribution of the fine particles treated in this way is measured with a dynamic light scattering method / laser Doppler nanotrack particle size distribution measuring device (trade name: UPA-EX150, manufactured by Nikkiso Co., Ltd.), and the volume-based median diameter is measured as particles. The diameter. Here, the median diameter is a particle diameter corresponding to 50% cumulative when the particle size distribution is expressed as a cumulative distribution.
The strong and negative charge imparting hydrophobic spherical silica fine particles of the present invention have a particle size of 0.005 to 0.030 microns, preferably 0.008 to 0.03 microns. If the particle size is smaller than 0.005 microns, the particles may be agglomerated so that they cannot be taken out well. On the other hand, if it is larger than 0.03 microns, good negative chargeability may not be imparted.

粉体の粒子径の分布を測定した場合に、小さい側から累積10%となる粒子径をD10、小さい側から累積90%となる粒子径をD90とする。本発明では、このD90/D10が3以下であることから、その粒度分布はシャープであることを特徴とするものである。このよう粒度分布がシャープな粒子であると、流動性を制御することが容易になる点で好ましい。上記D90/D10は、0より大きく2.5以下であることがより好ましい。D10及びD90は、上述のように、それぞれ、粒子径の分布を測定することによって得られる値である。   When the particle size distribution of the powder is measured, the particle size that becomes 10% cumulative from the small side is D10, and the particle size that is 90% cumulative from the small side is D90. In the present invention, since the D90 / D10 is 3 or less, the particle size distribution is sharp. Such a sharp particle size distribution is preferable in that it is easy to control fluidity. The D90 / D10 is more preferably greater than 0 and 2.5 or less. D10 and D90 are values obtained by measuring the particle size distribution as described above.

また、円形度とは、(粒子面積と等しい円の周囲長)/(粒子周囲長)をいう。
具体的には電子顕微鏡(倍率:10万倍)によって観察を行い、形状を確認する。
本発明の強負帯電付与性疎水性球状シリカ微粒子の平均円形度が0.8〜1であり、特に0.85〜1が好ましい。また、本発明において「球状」とは、真球だけでなく、若干歪んだ球も含む。なおこのような粒子の形状は、粒子を二次元に投影した時の円形度で評価し、本発明では円形度が0.8〜1の範囲にある。
Further, the circularity means (peripheral length of a circle equal to the particle area) / (peripheral length of particle).
Specifically, the shape is confirmed by observing with an electron microscope (magnification: 100,000 times).
The average circularity of the strong and negative charge imparting hydrophobic spherical silica fine particles of the present invention is 0.8 to 1, particularly preferably 0.85 to 1. In the present invention, “spherical” includes not only a true sphere but also a slightly distorted sphere. The shape of such particles is evaluated by the circularity when the particles are projected two-dimensionally, and the circularity is in the range of 0.8 to 1 in the present invention.

次に、本発明の強負帯電付与性疎水性球状シリカ微粒子の製造方法について詳細に説明する。   Next, the manufacturing method of the strong and negative charge imparting hydrophobic spherical silica fine particles of the present invention will be described in detail.

<製造方法A)>
本発明の疎水性球状シリカ微粒子は、例えば、次の
工程(A1):親水性球状シリカ微粒子の合成工程、
工程(A2):親水性有機溶媒で希釈する工程、
工程(A3):1官能性シラン化合物による表面処理工程
を経ることによって得られる。
以下、各工程を順を追って説明する。
<Manufacturing method A)>
The hydrophobic spherical silica fine particles of the present invention are, for example, the following step (A1): a synthetic step of hydrophilic spherical silica fine particles,
Step (A2): a step of diluting with a hydrophilic organic solvent,
Step (A3): Obtained by going through a surface treatment step with a functional silane compound.
Hereafter, each process is demonstrated in order.

・工程(A1):親水性球状シリカ微粒子の合成工程
まず、一般式(I):
Si(OR34 (I)
(但し、R3は同一または異種の炭素原子数1〜6の一価炭化水素基)で示される4官能性シラン化合物またはその部分加水分解生成物またはこれらの混合物を、塩基性物質を含む水中で加水分解、縮合することによって親水性球状シリカ微粒子混合溶媒分散液を得る。
Step (A1): Step of synthesizing hydrophilic spherical silica fine particles First, general formula (I):
Si (OR 3 ) 4 (I)
(Wherein R 3 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms) a tetrafunctional silane compound or a partial hydrolysis product thereof or a mixture thereof in water containing a basic substance. Hydrolyzed spherical silica fine particle mixed solvent dispersion liquid is obtained by hydrolysis and condensation.

上記一般式(I)中、R3は、炭素原子数1〜6の1価炭化水素基であるが、炭素原子数1〜4のものが好ましく、特に1〜2のものが好ましい。R3で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、フェニル基等、好ましくは、メチル基、エチル基、プロピル基、ブチル基、特に好ましくは、メチル基、エチル基が挙げられる。 In the general formula (I), R 3 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably having 1 to 4 carbon atoms, and particularly preferably having 1 to 2 carbon atoms. Examples of the monovalent hydrocarbon group represented by R 3 include a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group, preferably a methyl group, an ethyl group, a propyl group, and a butyl group, and particularly preferably , Methyl group, and ethyl group.

上記一般式(I)で示される4官能性シラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン、テトラフェノキシシラン等、好ましくは、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、特に好ましくは、テトラメトキシシラン、テトラエトキシシランが挙げられる。また、一般式(I)で示される4官能性シラン化合物の部分加水分解縮合生成物としては、例えば、メチルシリケート、エチルシリケート等が挙げられる。   Examples of the tetrafunctional silane compound represented by the general formula (I) include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, tetraphenoxysilane, and the like. Silane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, particularly preferably tetramethoxysilane and tetraethoxysilane. Examples of the partial hydrolysis-condensation product of the tetrafunctional silane compound represented by the general formula (I) include methyl silicate and ethyl silicate.

また、本工程で用いる塩基性物質としては、例えばアンモニア、ジメチルアミン、ジエチルアミン等が挙げられるが、好ましくは、アンモニア、ジエチルアミン、特に好ましくはアンモニアが挙げられる。これらの塩基性物質は、所要量を水に溶解したものが使用できる。   Examples of the basic substance used in this step include ammonia, dimethylamine, diethylamine and the like, preferably ammonia, diethylamine, and particularly preferably ammonia. As these basic substances, those obtained by dissolving a required amount in water can be used.

このとき使用される水の量は、一般式(I)で示される4官能性シラン化合物および/またはその部分加水分解縮合生成物のヒドロカルビルオキシ基の合計1モルに対して10〜200モルであることが好ましく、30〜150モルであることがより好ましく、50〜100モルであることが特に好ましい。塩基性物質の量は、一般式(I)で示される4官能性シラン化合物および/またはその部分加水分解縮合生成物、のヒドロカルビルオキシ基の合計1モルに対して0.01〜2モルであることが好ましく、0.02〜0.5モルであることがより好ましく、0.03〜0.12モルであることが特に好ましい。このとき、塩基性物質の量が少ないほど所望の小粒径シリカ微粒子となる。   The amount of water used at this time is 10 to 200 mol with respect to a total of 1 mol of the hydrocarbyloxy group of the tetrafunctional silane compound represented by the general formula (I) and / or the partial hydrolysis condensation product thereof. It is preferable that it is 30-150 mol, and it is especially preferable that it is 50-100 mol. The amount of the basic substance is 0.01 to 2 mol with respect to a total of 1 mol of hydrocarbyloxy groups of the tetrafunctional silane compound represented by the general formula (I) and / or a partial hydrolysis condensation product thereof. It is preferably 0.02 to 0.5 mol, more preferably 0.03 to 0.12 mol. At this time, the smaller the amount of the basic substance, the desired small particle size silica fine particles.

一般式(I)で示される4官能性シラン化合物等の加水分解および縮合は、即ち、塩基性物質を含む水との混合物中に、一般式(I)で示される4官能性シラン化合物等を添加することにより行われる。   Hydrolysis and condensation of the tetrafunctional silane compound represented by the general formula (I) is carried out, that is, the tetrafunctional silane compound represented by the general formula (I) is mixed with water containing a basic substance. This is done by adding.

この工程(A1)で得られる親水性球状シリカ微粒子分散水溶液中のシリカ微粒子の濃度は2〜15質量%が好ましく、特に3〜10質量%が好ましい。   The concentration of the silica fine particles in the aqueous solution of hydrophilic spherical silica fine particles obtained in this step (A1) is preferably 2 to 15% by mass, particularly preferably 3 to 10% by mass.

・工程(A2):親水性有機溶媒で希釈する工程
希釈に用いる親水性有機溶媒としては、水を溶解するものであれば特に制限されず、例えば、アルコール類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、酢酸セロソルブ等のセロソルブ類、アセトン、メチルエチルケトン等のケトン類、ジオキサン、テトラヒドロフラン等のエーテル類等、好ましくは、アルコール類、セロソルブ類、特に好ましくはアルコール類が挙げられる。アルコール類としては、一般式(V):
5OH (V)
[式中、R5は炭素原子数1〜6の1価炭化水素基である]で示されるアルコールが挙げられる。特にメタノール、エタノール、イソプロピルアルコールが好ましい。
Step (A2): Step of diluting with a hydrophilic organic solvent The hydrophilic organic solvent used for dilution is not particularly limited as long as it dissolves water. For example, alcohols, methyl cellosolve, ethyl cellosolve, butyl cellosolve, Examples include cellosolves such as cellosolve acetate, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane and tetrahydrofuran, preferably alcohols and cellosolves, and particularly preferably alcohols. As alcohols, general formula (V):
R 5 OH (V)
[Wherein, R 5 is a monovalent hydrocarbon group having 1 to 6 carbon atoms]. In particular, methanol, ethanol, and isopropyl alcohol are preferable.

この工程で親水性有機溶媒を用いて希釈するのは、工程(A3)でシラザン化合物と親水性球状シリカ微粒子の接触を促進するために十分な量の親水性有機溶媒の存在が必要であるからである。親水性球状シリカ微粒子分散水溶液中の水1に対して質量比として1.0〜5.0の親水性有機溶媒を混合して調製することが好ましい。該質量比が1.0未満の場合は混合溶媒へのシラザン化合物の溶解性が低く、シラザン化合物と親水性球状シリカ微粒子の接触が不十分になったり、疎水化された球状シリカ微粒子と混合溶媒との親和性が悪いため、疎水化反応の進行とともに疎水化処理された球状シリカ微粒子が塊状に析出して製造が困難になることがある。そして、該質量比が5.0 より大きい場合には疎水化された球状シリカ微粒子が混合溶媒にゾル状に分散したままでスラリー状分散液が得ることができず、濾別ができない場合や、疎水化処理工程中で不安定になりゲル状に増粘する場合があり、後者の場合には実質的に製造することができないことがある。   The dilution with the hydrophilic organic solvent in this step is because the presence of a sufficient amount of the hydrophilic organic solvent is necessary in order to promote the contact between the silazane compound and the hydrophilic spherical silica fine particles in the step (A3). It is. It is preferable to prepare by mixing a hydrophilic organic solvent having a mass ratio of 1.0 to 5.0 with respect to water 1 in the aqueous dispersion of hydrophilic spherical silica fine particles. When the mass ratio is less than 1.0, the solubility of the silazane compound in the mixed solvent is low, the contact between the silazane compound and the hydrophilic spherical silica fine particles is insufficient, or the hydrophobic spherical silica fine particles and the mixed solvent are mixed. The spherical silica fine particles that have been hydrophobized may precipitate in the form of a lump as the hydrophobing reaction proceeds, making the production difficult. And when the mass ratio is larger than 5.0, the hydrophobic spherical silica fine particles are dispersed in a mixed solvent in a sol form and a slurry dispersion cannot be obtained, and filtration cannot be performed. In some cases, it becomes unstable during the hydrophobization treatment process and thickens in the form of a gel.

・工程(A3):1官能性シラン化合物による表面処理工程
工程(A2)で得られた疎水性球状シリカ微粒子の混合溶液に
一般式(III):R2 3SiNHSiR2 3 (III)
(但し、R2は同一または異種の置換または非置換の炭素原子数1〜6の一価炭化水素基を示す)
で表されるシラザン化合物、
一般式(IV):R2 3SiX (IV)
(但し、R2は一般式(III)に同じ。XはOH基または加水分解性基を示す)で表される1官能性シラン化合物またはこれらの混合物を添加し、これにより球状シリカ微粒子表面を処理し該微粒子の表面にR2 3SiO1/2単位(但し、R2は一般式(III)で定義の通り)を導入することにより疎水性球状シリカ微粒子を得る。この工程では、上記の処理により球状シリカ微粒子の表面に残存するシラノール基をトリオルガノシリル化する形でR2 3SiO1/2単位が該表面に導入される。
Step (A3): Surface treatment step with a functional silane compound General formula (III): R 2 3 SiNHSiR 2 3 (III) is added to the mixed solution of hydrophobic spherical silica fine particles obtained in step (A2).
(Wherein R 2 represents the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms)
A silazane compound represented by:
General formula (IV): R 2 3 SiX (IV)
(However, R 2 is the same as in the general formula (III). X represents an OH group or a hydrolyzable group) and a monofunctional silane compound or a mixture thereof is added. Hydrophobic spherical silica fine particles are obtained by treating and introducing R 2 3 SiO 1/2 units (wherein R 2 is as defined in formula (III)) onto the surface of the fine particles. In this step, R 2 3 SiO 1/2 units are introduced to the surface in the form of triorganosilylation of silanol groups remaining on the surface of the spherical silica fine particles by the above treatment.

上記一般式(III)および(IV)中、R2は、好ましくは炭素原子数1〜4、特に好ましくは1〜2の1価炭化水素基である。R2で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等、好ましくは、メチル基、エチル基、プロピル基、特に好ましくは、メチル基、エチル基が挙げられる。また、これらの1価炭化水素基の水素原子の一部または全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくは、フッ素原子で置換されていてもよい。 In the general formulas (III) and (IV), R 2 is preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms. The monovalent hydrocarbon group represented by R 2 is, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group, preferably a methyl group, an ethyl group, or a propyl group. Includes a methyl group and an ethyl group. Further, some or all of the hydrogen atoms of these monovalent hydrocarbon groups may be substituted with halogen atoms such as fluorine atom, chlorine atom, bromine atom, preferably fluorine atom.

Xで示される加水分解性基としては、例えば、塩素原子、アルコキシ基、アミノ基、アシルオキシ基等が挙げられ、好ましくは、アルコキシ基、アミノ基、特に好ましくは、アルコキシ基が挙げられる。   Examples of the hydrolyzable group represented by X include a chlorine atom, an alkoxy group, an amino group, an acyloxy group, and the like, preferably an alkoxy group and an amino group, and particularly preferably an alkoxy group.

一般式(III)で示されるシラザン化合物としては、例えば、ヘキサメチルジシラザン、ヘキサエチルジシラザン等、好ましくはヘキサメチルジシラザンが挙げられる。一般式(IV)で示される1官能性シラン化合物としては、例えば、トリメチルシラノール、トリエチルシラノール等のモノシラノール化合物、トリメチルクロロシラン、トリエチルクロ
ロシラン等のモノクロロシラン、トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン、トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミン等のモノアミノシラン、トリメチルアセトキシシラン等のモノアシルオキシシラン、好ましくは、トリメチルシラノール、トリメチルメトキシシラン、トリメチルシリルジエチルアミン、特に好ましくは、トリメチルシラノール、トリメチルメトキシシランが挙げられる。
Examples of the silazane compound represented by the general formula (III) include hexamethyldisilazane and hexaethyldisilazane, and preferably hexamethyldisilazane. Examples of the monofunctional silane compound represented by the general formula (IV) include monosilanol compounds such as trimethylsilanol and triethylsilanol, monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane, and monoalkoxy such as trimethylmethoxysilane and trimethylethoxysilane. Examples thereof include monoaminosilanes such as silane, trimethylsilyldimethylamine and trimethylsilyldiethylamine, and monoacyloxysilanes such as trimethylacetoxysilane, preferably trimethylsilanol, trimethylmethoxysilane and trimethylsilyldiethylamine, particularly preferably trimethylsilanol and trimethylmethoxysilane.

これらの使用量は、使用した親水性球状シリカ微粒子のSi原子1モルに対して30〜150モル、好ましくは50〜120モル、特に好ましくは80〜110モルである。使用量が30モルより少ないとトナー外添加剤として使用した際の流動性が悪くなり好ましくない。また150モルより多いと経済的不利が生じてしまう。   These are used in an amount of 30 to 150 mol, preferably 50 to 120 mol, particularly preferably 80 to 110 mol, based on 1 mol of Si atoms in the used hydrophilic spherical silica fine particles. When the amount used is less than 30 mol, the fluidity when used as an additive outside the toner is deteriorated, which is not preferable. On the other hand, when the amount is more than 150 mol, an economic disadvantage occurs.

上記疎水性球状シリカ微粒子は、常圧乾燥、減圧乾燥等の常法によって粉体として得られる。   The hydrophobic spherical silica fine particles can be obtained as a powder by a conventional method such as atmospheric drying or reduced pressure drying.

上記製造方法で得られる強負帯電付与性疎水性球状シリカ微粒子は、1次粒子の平均の粒子径が0.005〜0.030ミクロンの球状の疎水性シリカ微粒子であり、かつその微粒子の粒度分布D90/D10の値が3以下であり、平均円形度が0.8〜1である。   The strong and negative charge imparting hydrophobic spherical silica fine particles obtained by the above production method are spherical hydrophobic silica fine particles having an average primary particle size of 0.005 to 0.030 microns, and the particle size of the fine particles. The value of distribution D90 / D10 is 3 or less, and the average circularity is 0.8-1.

また、この強負帯電付与性疎水性球状シリカ微粒子は、必要に応じて、負帯電性への悪影響がないような種々のシランカップリング剤、ジメチルジメトキシシラン等のシランで表面処理してもよい。   Further, the strong and negative charge imparting hydrophobic spherical silica fine particles may be surface-treated with various silane coupling agents and silanes such as dimethyldimethoxysilane so as not to adversely affect the negative chargeability, if necessary. .

この強負帯電付与性疎水性球状シリカ微粒子を電荷制御剤として使用する場合の配合量は、通常、トナー100質量部に対して、0.3〜3質量部が好ましく、さらに好ましくは0.1〜2重量部である。配合量が少なすぎると、トナーへの安定的に負帯電性を付与できず、多すぎると経済的にも不利である。   In the case of using the strong and negative charge-providing hydrophobic spherical silica fine particles as a charge control agent, the amount is usually preferably 0.3 to 3 parts by mass, more preferably 0.1 to 100 parts by mass of the toner. ~ 2 parts by weight. If the amount is too small, the toner cannot be stably provided with negative chargeability, and if it is too large, it is economically disadvantageous.

上記の電荷制御剤が添加されるトナー粒子としては、結着樹脂と着色剤を主成分として構成される公知のものが使用できる。また、必要に応じて他の外添剤が添加されていてもよい。   As the toner particles to which the charge control agent is added, known particles composed mainly of a binder resin and a colorant can be used. Further, other external additives may be added as necessary.

以下、実施例および比較例を用いて本発明を具体的に説明する。なお、下記の実施例は、本発明を何ら制限するものではない。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The following examples do not limit the present invention.

<合成例1>
[疎水性球状シリカ微粒子の合成]
・工程(A1):親水性球状シリカ微粒子の合成工程
攪拌機と、滴下ロートと、温度計とを備えた5リットルのガラス製反応器に水720gと、25%アンモニア水3.3gとを入れて混合した。この溶液を45℃となるように調整し、攪拌しながらテトラメトキシシラン61g(0.4モル)を5時間かけて滴下した。この滴下が終了した後も、さらに0.5時間攪拌を継続して加水分解を行うことにより、親水性球状シリカ微粒子の懸濁液を得た。
<Synthesis Example 1>
[Synthesis of hydrophobic spherical silica fine particles]
Step (A1): Step of synthesizing hydrophilic spherical silica fine particles 720 g of water and 3.3 g of 25% ammonia water were placed in a 5 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer. Mixed. The solution was adjusted to 45 ° C., and 61 g (0.4 mol) of tetramethoxysilane was added dropwise over 5 hours while stirring. Even after the completion of the dropwise addition, the suspension was further stirred for 0.5 hours for hydrolysis to obtain a suspension of hydrophilic spherical silica fine particles.

・工程(A2):親水性有機溶媒で希釈する工程
上で得られた懸濁液に室温でメタノール2670gを添加混合した。
・工程(A3):1官能性シラン化合物による表面処理工程
そこにヘキサメチルシラザン64g(0.4モル)を添加した後、この分散液を50〜60℃に加熱し、9時間反応させることにより、分散液中のシリカ微粒子をトリメチルシリル化した。次いで、この分散液中の溶媒を130℃、減圧下(6650Pa)で留去することにより、疎水性球状シリカ微粒子(1)20gを得た。
Step (A2): Step of diluting with a hydrophilic organic solvent 2670 g of methanol was added to and mixed with the suspension obtained above at room temperature.
Step (A3): Surface treatment step with a functional silane compound After adding 64 g (0.4 mol) of hexamethylsilazane, this dispersion is heated to 50-60 ° C. and reacted for 9 hours. The silica fine particles in the dispersion were trimethylsilylated. Subsequently, the solvent in this dispersion was distilled off at 130 ° C. under reduced pressure (6650 Pa) to obtain 20 g of hydrophobic spherical silica fine particles (1).

工程(A1)で得られた親水性球状シリカ微粒子について下記の測定方法1に従って測定を行った。また、上記の工程(A1)〜(A3)の各段階を経て得られた疎水性球状シリカ微粒子について、下記の測定方法1〜3に従って測定を行った。結果を表1に示す。   The hydrophilic spherical silica fine particles obtained in the step (A1) were measured according to the following measuring method 1. Further, the hydrophobic spherical silica fine particles obtained through the respective steps (A1) to (A3) were measured according to the following measuring methods 1 to 3. The results are shown in Table 1.

[測定方法1〜3]
1.工程(A1)で得られた親水性球状シリカ微粒子の粒子径測定
メタノールにシリカ微粒子懸濁液を、シリカ微粒子が0.5質量%となるように添加し、10分間超音波にかけることにより、該微粒子を分散させた。このように処理した微粒子の粒度分布を、動的光散乱法/レーザードップラー法ナノトラック粒度分布測定装置(日機装株式会社製、商品名:UPA−EX150)により測定し、その体積基準メジアン径を粒子径とした。なお、メジアン径とは粒度分布を累積分布として表した時の累積50%に相当する粒子径である。
[Measurement methods 1 to 3]
1. Particle size measurement of the hydrophilic spherical silica fine particles obtained in the step (A1) The silica fine particle suspension is added to methanol so that the silica fine particles are 0.5% by mass, and the fine particles are subjected to ultrasonic waves for 10 minutes. Was dispersed. The particle size distribution of the fine particles treated in this way is measured with a dynamic light scattering method / laser Doppler nanotrack particle size distribution measuring device (trade name: UPA-EX150, manufactured by Nikkiso Co., Ltd.), and the volume-based median diameter is measured as particles. The diameter. The median diameter is a particle diameter corresponding to 50% cumulative when the particle size distribution is expressed as a cumulative distribution.

2.工程(A3)において得られた疎水性球状シリカ微粒子の粒子径測定及び粒度分布D90/D10の測定
メタノールにシリカ微粒子を、0.5質量%となるように添加し、10分間超音波にかけることにより、該微粒子を分散させた。このように処理した微粒子の粒度分布を、動的光散乱法/レーザードップラー法ナノトラック粒度分布測定装置(日機装株式会社製、商品名:UPA−EX150)により測定し、その体積基準メジアン径を粒子径とした。
また粒度分布D90/D10の測定は、上記粒子径測定した際の分布において小さい側から累積が10%となる粒子径をD10、小さい側から累積が90%となる粒子径をD90とし測定された値からD90/D10を計算した。
2. Measurement of particle diameter and measurement of particle size distribution D90 / D10 of hydrophobic spherical silica fine particles obtained in step (A3) Add silica fine particles to methanol to a concentration of 0.5% by mass and apply ultrasonic waves for 10 minutes. Thus, the fine particles were dispersed. The particle size distribution of the fine particles treated in this way is measured with a dynamic light scattering method / laser Doppler nanotrack particle size distribution measuring device (trade name: UPA-EX150, manufactured by Nikkiso Co., Ltd.), and the volume-based median diameter is measured as particles. The diameter.
In addition, the particle size distribution D90 / D10 was measured by setting D10 as the particle diameter at which accumulation is 10% from the smaller side and D90 as the particle diameter at which accumulation is 90% from the smaller side. D90 / D10 was calculated from the value.

3.疎水性球状シリカ微粒子の形状測定
電子顕微鏡(日立製作所製、商品名:S−4700型、倍率:10万倍)によって観察を行い、形状を確認した。「球状」とは、真球だけでなく、若干歪んだ球も含む。なおこのような粒子の形状は、粒子を二次元に投影した時の円形度で評価し、円形度が0.8〜1の範囲にあるものとする。ここで円形度とは、(粒子面積と等しい円の周囲長)/(粒子周囲長)である。
3. Shape measurement of hydrophobic spherical silica fine particles The shape was confirmed by observation with an electron microscope (manufactured by Hitachi, Ltd., trade name: S-4700 type, magnification: 100,000 times). The term “spherical” includes not only a true sphere but also a slightly distorted sphere. Note that the shape of such particles is evaluated by the circularity when the particles are projected two-dimensionally, and the circularity is in the range of 0.8 to 1. Here, the circularity is (peripheral length of a circle equal to the particle area) / (peripheral length of particle).

<合成例2>
合成例1において、工程(A1)で水と25%アンモニア水の温度を35℃に変えたこと以外は合成例1と同様にして、疎水性球状シリカ微粒子(2)22gを得た。この疎水性球状シリカ微粒子を用いて合成例1と同様に測定した。この結果を表1に示す。
<Synthesis Example 2>
In Synthesis Example 1, 22 g of hydrophobic spherical silica fine particles (2) were obtained in the same manner as in Synthesis Example 1 except that the temperature of water and 25% ammonia water was changed to 35 ° C. in Step (A1). Measurement was performed in the same manner as in Synthesis Example 1 using the hydrophobic spherical silica fine particles. The results are shown in Table 1.

<合成例3>
合成例1において、工程(A1)で水と25%アンモニア水の温度を25℃に変えたこと以外は同様にして、疎水性球状シリカ微粒子(3)19gを得た。この疎水性球状シリカ微粒子を用いて合成例1と同様に測定した。この結果を表1に示す。
<Synthesis Example 3>
19 g of hydrophobic spherical silica fine particles (3) were obtained in the same manner as in Synthesis Example 1 except that the temperature of water and 25% aqueous ammonia was changed to 25 ° C. in the step (A1). Measurement was performed in the same manner as in Synthesis Example 1 using the hydrophobic spherical silica fine particles. The results are shown in Table 1.

<合成例4>
BET表面積200m2 /g の乾式法シリカ粉末(日本アエロジル社製品:アエロジル200)100gをミキサーに入れ、窒素雰囲気下、攪拌しながら水0.5gおよびヘキサメチルジシラザン10gをスプレーし、260 ℃ で80分間加熱した後に冷却し、疎水性シリカ粉末(4)103gを得た。
<Synthesis Example 4>
100 g of dry-process silica powder with a BET surface area of 200 m 2 / g (Nippon Aerosil Co., Ltd. product: Aerosil 200) was placed in a mixer and sprayed with 0.5 g of water and 10 g of hexamethyldisilazane with stirring in a nitrogen atmosphere at 260 ° C. After heating for 80 minutes and cooling, 103 g of hydrophobic silica powder (4) was obtained.

<合成例5>
BET表面積300m2 /g の乾式法シリカ粉末(日本アエロジル社製品: アエロジル300)100gをミキサーに入れ、窒素雰囲気下、攪拌しながら水0.5gおよびヘキサメチルジシラザン10gをスプレーし、260 ℃ で80分間加熱した後に冷却し、疎水性シリカ粉末(5)102gを得た。
<Synthesis Example 5>
100 g of dry-process silica powder having a BET surface area of 300 m 2 / g (product of Nippon Aerosil Co., Ltd .: Aerosil 300) was put in a mixer and sprayed with 0.5 g of water and 10 g of hexamethyldisilazane with stirring in a nitrogen atmosphere at 260 ° C. After heating for 80 minutes and cooling, 102 g of hydrophobic silica powder (5) was obtained.

<実施例1〜3、比較例1〜2>
上記得られたシリカ微粒子(1)〜(5)を用いてトナーを製造し、帯電量を以下のように測定した。
<Examples 1-3, Comparative Examples 1-2>
A toner was manufactured using the silica fine particles (1) to (5) obtained above, and the charge amount was measured as follows.

スチレンアクリル樹脂を粉砕分級して得た平均粒径8.2μmのモデルトナー1gに、標準キャリアL(日本画像学会配布)19gを量り込んだ100mLポリエチレン瓶に、合成例1から5で作製した疎水性シリカ粉末をそれぞれ0.01g量りとった。このようにして調製されたサンプルを、日本画像学会標準のトナーの帯電量測定基準(日本画像学会誌、37、461(1998))にしたがって調湿、混合を行い、混合時間を変えた時のトナー帯電量を測定した。なお、混合にはペイントコンディショナー(東洋精機製)を用い、トナー帯電量測定にはブローオフ帯電量測定装置(東芝ケミカル製、商品名:TB203)を用いた。調湿と測定は、温度23±3℃、湿度55±10%で行った。
それらの結果を表2に示す。
Hydrophobic prepared in Synthesis Examples 1 to 5 in a 100 mL polyethylene bottle in which 19 g of standard carrier L (distributed by the Imaging Society of Japan) was weighed into 1 g of model toner having an average particle diameter of 8.2 μm obtained by pulverizing and classifying styrene acrylic resin. 0.01 g of each of the functional silica powders was weighed. The samples prepared in this manner were conditioned and mixed according to the standard of charge measurement of toner of the Imaging Society of Japan (Journal of Imaging Society of Japan, 37, 461 (1998)), and the mixing time was changed. The toner charge amount was measured. A paint conditioner (manufactured by Toyo Seiki) was used for mixing, and a blow-off charge measuring device (trade name: TB203, manufactured by Toshiba Chemical) was used for toner charge measurement. Humidity adjustment and measurement were performed at a temperature of 23 ± 3 ° C. and a humidity of 55 ± 10%.
The results are shown in Table 2.

また、トナー用ポリエステル樹脂100質量部、カーボンブラック4質量部、エステル系ワックス3質量部を溶融混練し、粉砕分級後7.2μmに整えたトナー100質量部に対し、上記疎水性シリカ粉末(1)〜(5)を0.5質量部を外添して静電像現像トナーを作製した(それぞれ実施例4〜6、比較例3〜4とする。)これらのトナーをそれぞれリコー製IPSIO SP6110プリンターに投入し30000枚印字後の特性を観察した。画質、プリンター内部のトナー飛散による汚染性について観察した。その結果を表3に示す。   Further, 100 parts by mass of polyester resin for toner, 4 parts by mass of carbon black, and 3 parts by mass of ester wax were melt-kneaded, and the hydrophobic silica powder (1) was added to 100 parts by mass of toner adjusted to 7.2 μm after pulverization and classification. ) To (5) were externally added to prepare 0.5 parts by weight of electrostatic image developing toners (respectively, Examples 4 to 6 and Comparative Examples 3 to 4). These toners were respectively Ricoh's IPSIO SP6110. The characteristics after printing on 30000 sheets were put into the printer and observed. The image quality and the contamination due to toner scattering inside the printer were observed. The results are shown in Table 3.

Figure 2014136670
<注>
1)工程(A1)で得られた分散液の親水性球状シリカ微粒子
2)最終的に得られた疎水性シリカ微粒子
Figure 2014136670
<Note>
1) Hydrophilic spherical silica fine particles of dispersion obtained in step (A1) 2) Finally obtained hydrophobic silica fine particles

Figure 2014136670
Figure 2014136670

Figure 2014136670
Figure 2014136670

以上の結果から、本発明の強負帯電付与性疎水性球状シリカ微粒子を用いることにより、トナーに所望の負帯電極性と帯電量を付与し、これを長期にわたって安定維持できることが判る。   From the above results, it can be seen that, by using the strong and negative charge imparting hydrophobic spherical silica fine particles of the present invention, a desired negative charge polarity and charge amount can be imparted to the toner, and this can be stably maintained for a long time.

Claims (3)

1次粒子の体積基準メジアン径が0.005〜0.030ミクロンの球状の疎水性シリカ微粒子であり、かつその微粒子の粒度分布D90/D10の値が3以下であり、平均円形度が0.8〜1であることを特徴とする強負帯電付与性疎水性球状シリカ微粒子。   The primary particles are spherical hydrophobic silica fine particles having a volume-based median diameter of 0.005 to 0.030 microns, the particle size distribution D90 / D10 of the fine particles is 3 or less, and the average circularity is 0.00. Strong negative charge-providing hydrophobic spherical silica fine particles characterized by being 8 to 1. (A1) 一般式(I):
Si(OR34 (I)
(但し、R3は同一または異種の炭素原子数1〜6の一価炭化水素基を示す)
で表される4官能性シラン化合物またはその部分加水分解生成物またはこれらの混合物を塩基性物質の存在下水溶液中で加水分解、縮合することによって親水性球状シリカ微粒子混合水分散液を得、
(A2) 得られた親水性球状シリカ微粒子混合水分散液に、上記親水性球状シリカ微粒子混合水分散液中の水に対して親水性有機溶媒を質量比1.0〜5.0で混合し、
(A3) その親水性球状シリカ微粒子混合溶媒分散液に一般式(II):
2 3SiNHSiR2 3 (II)
(但し、R2は同一または異種の置換または非置換の炭素原子数1〜6の一価炭化水素基を示す)
で表されるシラザン化合物、一般式(III):
2 3SiX (III)
(但し、R2は同一または異種の置換または非置換の炭素原子数1〜6の一価炭化水素基を示し、XはOH基または加水分解性基を示す)
で表される1官能性シラン化合物又はこれらの混合物を添加し、これにより処理して該親水性球状シリカ微粒子の表面にR2 3SiO1/2単位(但し、R2は一般式(III)で定義の通り)を導入することにより疎水性シリカ微粒子とする製造方法により得られるものである請求項1に記載の強負帯電付与性疎水性球状シリカ微粒子。
(A1) General formula (I):
Si (OR 3 ) 4 (I)
(However, R 3 represents the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms.)
Hydrophilic spherical silica fine particle mixed aqueous dispersion is obtained by hydrolyzing and condensing a tetrafunctional silane compound represented by the above or a partial hydrolysis product thereof or a mixture thereof in an aqueous solution in the presence of a basic substance,
(A2) The obtained hydrophilic spherical silica fine particle mixed water dispersion was mixed with a hydrophilic organic solvent at a mass ratio of 1.0 to 5.0 with respect to the water in the hydrophilic spherical silica fine particle mixed water dispersion. ,
(A3) The hydrophilic spherical silica fine particle mixed solvent dispersion is represented by the general formula (II):
R 2 3 SiNHSiR 2 3 (II)
(Wherein R 2 represents the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms)
Silazane compounds represented by general formula (III):
R 2 3 SiX (III)
(Wherein R 2 represents the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms, and X represents an OH group or a hydrolyzable group)
Is added to the surface of the hydrophilic spherical silica fine particles, and R 2 3 SiO 1/2 units (wherein R 2 is represented by the general formula (III)) 2. The strongly negatively chargeable hydrophobic spherical silica fine particles according to claim 1, which are obtained by a production method for producing hydrophobic silica fine particles by introducing
上記請求項1又は2記載の強負帯電付与性疎水性球状シリカ微粒子からなる静電荷現像用電荷制御剤。   3. A charge control agent for electrostatic charge development, comprising the strong and negative charge imparting hydrophobic spherical silica fine particles according to claim 1.
JP2013007037A 2013-01-18 2013-01-18 Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image Pending JP2014136670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013007037A JP2014136670A (en) 2013-01-18 2013-01-18 Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013007037A JP2014136670A (en) 2013-01-18 2013-01-18 Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image

Publications (1)

Publication Number Publication Date
JP2014136670A true JP2014136670A (en) 2014-07-28

Family

ID=51414395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013007037A Pending JP2014136670A (en) 2013-01-18 2013-01-18 Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image

Country Status (1)

Country Link
JP (1) JP2014136670A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138011A (en) * 2015-01-27 2016-08-04 デンカ株式会社 Superfine silica powder and application thereof
KR20190013588A (en) * 2017-08-01 2019-02-11 신에쓰 가가꾸 고교 가부시끼가이샤 Granulation treated silica and preparing method thereof
CN113544091A (en) * 2019-03-06 2021-10-22 扶桑化学工业株式会社 Hydrophobic silica powder and toner resin particles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177500A (en) * 1986-01-30 1987-08-04 コニカ株式会社 Radiation picture conversion panel
JP2000044226A (en) * 1998-05-18 2000-02-15 Shin Etsu Chem Co Ltd Silane-surface-treated siliceous fine particles, their production and organic resin composition containing same
JP2005015251A (en) * 2003-06-24 2005-01-20 Shin Etsu Chem Co Ltd Hydrophobic spherical silica minute particle, its manufacturing method, and toner additive therewith for electrostatic charge image development
JP2006518398A (en) * 2003-02-20 2006-08-10 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング Coated phosphor, light-emitting device having this type of phosphor, and method for manufacturing the same
JP2008174430A (en) * 2007-01-22 2008-07-31 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particle, its manufacturing method and toner external additive for electrostatic charge image development
JP2008273757A (en) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same
JP2011032114A (en) * 2009-07-30 2011-02-17 Shin-Etsu Chemical Co Ltd Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
WO2011093142A1 (en) * 2010-01-26 2011-08-04 堺化学工業株式会社 Silica particles, process for production of same, and resin composition containing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177500A (en) * 1986-01-30 1987-08-04 コニカ株式会社 Radiation picture conversion panel
JP2000044226A (en) * 1998-05-18 2000-02-15 Shin Etsu Chem Co Ltd Silane-surface-treated siliceous fine particles, their production and organic resin composition containing same
JP2006518398A (en) * 2003-02-20 2006-08-10 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング Coated phosphor, light-emitting device having this type of phosphor, and method for manufacturing the same
JP2005015251A (en) * 2003-06-24 2005-01-20 Shin Etsu Chem Co Ltd Hydrophobic spherical silica minute particle, its manufacturing method, and toner additive therewith for electrostatic charge image development
JP2008174430A (en) * 2007-01-22 2008-07-31 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particle, its manufacturing method and toner external additive for electrostatic charge image development
JP2008273757A (en) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same
JP2011032114A (en) * 2009-07-30 2011-02-17 Shin-Etsu Chemical Co Ltd Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
WO2011093142A1 (en) * 2010-01-26 2011-08-04 堺化学工業株式会社 Silica particles, process for production of same, and resin composition containing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138011A (en) * 2015-01-27 2016-08-04 デンカ株式会社 Superfine silica powder and application thereof
KR20190013588A (en) * 2017-08-01 2019-02-11 신에쓰 가가꾸 고교 가부시끼가이샤 Granulation treated silica and preparing method thereof
US11603470B2 (en) 2017-08-01 2023-03-14 Shin-Etsu Chemical Co., Ltd. Method for manufacturing granulated silica
KR102566641B1 (en) 2017-08-01 2023-08-14 신에쓰 가가꾸 고교 가부시끼가이샤 Granulation treated silica and preparing method thereof
CN113544091A (en) * 2019-03-06 2021-10-22 扶桑化学工业株式会社 Hydrophobic silica powder and toner resin particles
US20220128914A1 (en) * 2019-03-06 2022-04-28 Fuso Chemical Co., Ltd. Hydrophobic silica powder and toner resin particle

Similar Documents

Publication Publication Date Title
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP3988936B2 (en) Silane surface-treated spherical silica titania fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP4579265B2 (en) Hydrophobic spherical silica fine particles having high fluidity, method for producing the same, toner external additive for developing electrostatic image using the same, and organic resin composition containing the same
JP5631699B2 (en) Method for producing irregular shaped silica fine particles and toner external additive for developing electrostatic image
JP2008174430A (en) Hydrophobic spherical silica fine particle, its manufacturing method and toner external additive for electrostatic charge image development
JP2011185998A (en) Electrostatic image-developing toner and electric charge-controlling particle for external addition
JP5439308B2 (en) Method for producing associated silica fine particles
JP2011032114A (en) Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
JP2014114175A (en) Surface-hydrophobized spherical silica fine particle, method for producing the same, and toner external additive, obtained by using the particle, for developing electrostatic charge image
JP2014209254A (en) Toner composition and method of preparing the same
JP6962296B2 (en) Positively charged hydrophobic spherical silica particles, a method for producing the same, and a positively charged toner composition using the same.
TWI804672B (en) Positively charged hydrophobic spherical silica particles, method for producing same, and positively charged toner composition using the positively charged hydrophobic spherical silica particles
JP4060241B2 (en) Hydrophobic spherical silica-based fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP2014136670A (en) Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP2000128534A (en) Hydrophobic rutile type titanium oxide and its production and application
JP4347201B2 (en) Toner external additive and toner for developing electrostatic image
JP6008137B2 (en) Surface organic resin-coated hydrophobic spherical silica fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
WO2022181018A1 (en) Surface-treated sol-gel silica particle manufacturing method, surface-treated sol-gel silica particles, and toner external additive for electrostatic charge image development
JP4628760B2 (en) Spherical hydrophobic polydiorganosiloxane-containing silica fine particles, toner additive for developing electrostatic image and toner
JP2001194824A (en) Electrostatic charge image developing toner external additive
JP6036448B2 (en) Resin particles and method for producing the same
JP3856744B2 (en) Toner external additive for electrostatic image development
JP4611006B2 (en) Spherical silica fine particles, toner external additive for developing electrostatic image and toner
JP4198108B2 (en) Toner external additive and toner for developing electrostatic image
JP5915550B2 (en) Method for producing silica-based fine particle electrostatic charge developing toner external additive having high dispersibility and low cohesiveness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160510