JP2016138011A - Superfine silica powder and application thereof - Google Patents

Superfine silica powder and application thereof Download PDF

Info

Publication number
JP2016138011A
JP2016138011A JP2015013262A JP2015013262A JP2016138011A JP 2016138011 A JP2016138011 A JP 2016138011A JP 2015013262 A JP2015013262 A JP 2015013262A JP 2015013262 A JP2015013262 A JP 2015013262A JP 2016138011 A JP2016138011 A JP 2016138011A
Authority
JP
Japan
Prior art keywords
less
toner
silica powder
powder
ultrafine silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015013262A
Other languages
Japanese (ja)
Other versions
JP6445877B2 (en
Inventor
慧 平田
Satoshi Hirata
慧 平田
修治 佐々木
Shuji Sasaki
修治 佐々木
貴久 水本
Takahisa Mizumoto
貴久 水本
勇人 松尾
Yuto Matsuo
勇人 松尾
明範 下川
Akinori Shimokawa
明範 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2015013262A priority Critical patent/JP6445877B2/en
Publication of JP2016138011A publication Critical patent/JP2016138011A/en
Application granted granted Critical
Publication of JP6445877B2 publication Critical patent/JP6445877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a toner external additive excellent in preservable property, electrification characteristic and flowability and to provided a hydrophobized superfine silica powder suitable for the toner external additive.SOLUTION: In one embodiment, there is provided the superfine silica powder having an average particle diameter of 80 nm or more and less than 300 nm, an average sphericity of 0.50 or more and less than 0.80, an average aspect ratio of 1.0 or more and less than 1.50, and a moisture content of 0.05 wt% or more and less than 0.30 wt.%. The specific area is preferably 10.0 m/g or more and less than 150 m/g. In another embodiment, there is provided the superfine silica fine powder which is identical to the above superfine silica powder in the one embodiment except that the surface of superfine silica powder is treated with hexamethyldisilazane. There is also provided a toner external additive for static charge image development containing the superfine silica powder.SELECTED DRAWING: None

Description

本発明は、超微粉シリカ粉末及びその用途に関する。 The present invention relates to ultrafine silica powder and uses thereof.

従来、デジタル複写機やレーザープリンター等に使用される静電荷像現像用トナーにおいて、その流動性改善や帯電特性の安定化のために、表面処理されたシリカ微粉体がトナー外添剤として用いられている。このシリカ微粉体には、湿度による帯電量の変化を少なくするため高い疎水性を有し、しかもトナー表面を均一に被覆できるように、凝集が少なく高分散であることが求められている。シリカ微粉体の比表面積については、200〜500m/g程度の超微粉末が使用されるが、繰り返しの画像形成を行っていくうちにトナー粒子表面にシリカ超微粉末が埋没し、トナーの流動性、摩擦帯電量、転写性等が低下して画像不良を引き起こすことが確認されている。 Conventionally, in electrostatic toner image developing toners used in digital copying machines, laser printers, etc., surface-treated silica fine powder has been used as an external additive to improve fluidity and stabilize charging characteristics. ing. This silica fine powder is required to have high hydrophobicity in order to reduce the change in charge amount due to humidity, and to be highly dispersed with little aggregation so that the toner surface can be uniformly coated. As for the specific surface area of the silica fine powder, an ultrafine powder of about 200 to 500 m 2 / g is used. As the image formation is repeated, the ultrafine powder of silica is embedded in the surface of the toner particles. It has been confirmed that fluidity, triboelectric charge, transferability, and the like are deteriorated to cause image defects.

このシリカ超微粉末の埋没を低減させるため、比表面積80m/g未満の比較的粒子径の大きな無機微粉末を併用する方法(特許文献1、特許文献2、特許文献3)がある。比較的粒子径の大きな無機微粉末はトナー同士が直接接して生じるストレスを低減させるスペーサー効果を発現する。これにより、シリカ超微粉末の埋没を抑え、トナーの長寿命化を図る方法などがとられている。 In order to reduce the burying of the silica ultrafine powder, there are methods (Patent Document 1, Patent Document 2, and Patent Document 3) in which inorganic fine powder having a specific surface area of less than 80 m 2 / g and a relatively large particle diameter is used in combination. An inorganic fine powder having a relatively large particle size exhibits a spacer effect that reduces stress caused by direct contact between toners. In this way, a method of suppressing the burying of the ultrafine silica powder and extending the life of the toner is taken.

近年、トナーの低温定着化の加速により、トナーを長期間保存した際に、トナー同士のブロッキングにより、トナーの保存性、帯電性、流動性が低下する問題が大きくなっている。これらの問題改善に、比較的粒径の大きな無機微粉末を添加することが一般的である。比較的粒径の大きな無機微粉末としては、ゾルゲル法にて合成されたコロイダルシリカや、四塩化ケイ素の燃焼加水分解で製造されたヒュームドシリカが一般的である。しかし、コロイダルシリカの場合、帯電量が低く、かつトナーと一点でのみ接触するため、トナー表面からの脱離量が多く、保存性の改善効果が低いという問題点がある。また、ヒュームドシリカはストラクチャー構造を有し、接触点が多いためトナー表面からの脱離は改善されるものの、トナー同士が接触する際の抵抗が大きくなるので、流動性が悪化する問題がある。そのため、球形度及びアスペクト比を適度にコントロールした超微粉シリカ微粉末が保存性、帯電性、流動性の改善のために求められている。 In recent years, due to acceleration of low-temperature fixing of toners, when toners are stored for a long period of time, there is a serious problem that toner storage property, charging property, and fluidity are deteriorated due to blocking between toners. In general, an inorganic fine powder having a relatively large particle size is added to improve these problems. As inorganic fine powder having a relatively large particle diameter, colloidal silica synthesized by a sol-gel method and fumed silica produced by combustion hydrolysis of silicon tetrachloride are generally used. However, in the case of colloidal silica, the charge amount is low and the toner contacts with the toner only at one point. Therefore, there is a problem that the amount of detachment from the toner surface is large and the effect of improving the storage stability is low. Further, fumed silica has a structure structure, and since there are many contact points, the detachment from the toner surface is improved, but the resistance when the toners come into contact with each other is increased, so that the fluidity is deteriorated. . For this reason, ultrafine silica fine powders having moderately controlled sphericity and aspect ratio are required to improve storage stability, chargeability and fluidity.

特開平5−346682号公報JP-A-5-346682 特開2000−81723号公報JP 2000-81723 A 特開2004−67475号公報JP 2004-67475 A

本発明の目的は、保存性、帯電性、流動性に優れたトナー外添剤を提供することであり、そのトナー外添剤に好適な疎水化超微粉シリカ粉末を提供することである。 An object of the present invention is to provide a toner external additive excellent in storage stability, chargeability and fluidity, and to provide a hydrophobized ultrafine silica powder suitable for the toner external additive.

本発明者は、上記の目的を達成するべく鋭意研究を進めたところ、これを達成する超微粉シリカ粉末を見いだした。本発明はかかる知見に基づくものであり、以下の要旨を有する。
(1)平均粒子径が80nm以上300nm未満であり、平均球形度が0.50以上0.80未満、平均アスペクト比が1.0以上1.50未満、水分量が0.05wt%以上0.30wt%未満であることを特徴とする超微粉シリカ粉末。
(2)比表面積が10.0m/g以上150m/g未満であることを特徴とする前記(1)に記載の超微粉シリカ粉末。
(3)前記(1)又は(2)に記載の超微粉シリカ粉末をヘキサメチルジシラザンで表面処理したことを特徴とする超微粉シリカ微粉末。
(4)前記(1)から(3)のいずれか一項に記載の超微粉シリカ粉末を含有することを特徴とする静電荷像現像用トナー外添剤。
The present inventor has intensively studied to achieve the above object, and has found an ultrafine silica powder that achieves this. The present invention is based on such knowledge and has the following gist.
(1) The average particle size is 80 nm or more and less than 300 nm, the average sphericity is 0.50 or more and less than 0.80, the average aspect ratio is 1.0 or more and less than 1.50, and the water content is 0.05 wt% or more and 0.0. An ultrafine silica powder characterized by being less than 30 wt%.
(2) The ultrafine silica powder as described in (1) above, having a specific surface area of 10.0 m 2 / g or more and less than 150 m 2 / g.
(3) Ultra fine silica fine powder, wherein the ultra fine silica powder according to (1) or (2) is surface-treated with hexamethyldisilazane.
(4) A toner external additive for developing an electrostatic charge image, comprising the ultrafine silica powder according to any one of (1) to (3).

本発明によれば、保存性、帯電性、流動性に優れたトナーを調製するのに好適なトナー外添剤が提供される。また前記トナー外添剤に好適な超微粉シリカ粉末が提供される。 According to the present invention, a toner external additive suitable for preparing a toner excellent in storage stability, chargeability and fluidity is provided. Also provided is an ultrafine silica powder suitable for the toner external additive.

以下、本発明を詳細に説明する。
本発明の超微粉シリカ粉末は、レーザー回折散乱式粒度分布測定機にて測定された平均粒子径が80nm以上300nm未満であることが必要である。平均粒子径が80nm未満であると、トナー同士のブロッキング防止に寄与しないサイズの疎水化球状シリカ微粉末が多くなり、トナー外添剤に使用した際に、保存性を向上させることが出来ない。一方、平均粒子径が300nm以上となると、疎水化球状シリカ微粉末自体の帯電量が小さくなり、トナー外添剤に使用した際の帯電性が不十分となる。そのため、好ましい平均粒子径は90nm以上250nm以下、より好ましくは100nmを超え200nm以下である。
Hereinafter, the present invention will be described in detail.
The ultrafine silica powder of the present invention needs to have an average particle size of 80 nm or more and less than 300 nm as measured with a laser diffraction / scattering particle size distribution analyzer. When the average particle size is less than 80 nm, the amount of hydrophobic spherical silica fine powder having a size that does not contribute to prevention of blocking between the toners increases, and the storage stability cannot be improved when used as an external toner additive. On the other hand, when the average particle diameter is 300 nm or more, the charge amount of the hydrophobized spherical silica fine powder itself becomes small, and the chargeability when used as an external toner additive becomes insufficient. Therefore, a preferable average particle diameter is 90 nm or more and 250 nm or less, more preferably more than 100 nm and 200 nm or less.

本発明の球状シリカ微粉末のレーザー回折散乱式粒度分布は、ベックマンコールター社製「LS−230」を用いて測定することができる。測定に際しては、溶媒には水を用い、前処理として2分間、トミー精工社製「超音波発生器UD−200(超微量チップTP−040装着)」を用いて200Wの出力をかけて分散処理する。また、PIDS(Polarization Intensity Differential Scattering)濃度を45〜55質量%に調整する。粒度分布の解析は0.04〜2000μmの範囲を粒子径チャンネルがlog(μm)=0.04の幅で116分割にして行った。水の屈折率には1.33を用い、球状シリカ微粉末の屈折率には1.50を用いた。なお、測定した粒度分布において、累積体積が50%となる粒子が平均粒子径である。 The laser diffraction / scattering particle size distribution of the spherical silica fine powder of the present invention can be measured using “LS-230” manufactured by Beckman Coulter. In the measurement, water was used as a solvent, and dispersion treatment was performed with an output of 200 W using “Ultrasonic Generator UD-200 (with ultra-trace chip TP-040)” manufactured by Tommy Seiko Co., Ltd. for 2 minutes as a pretreatment. To do. In addition, the concentration of PIDS (Polarization Intensity Differential Scattering) is adjusted to 45 to 55% by mass. The analysis of the particle size distribution was performed by dividing the range of 0.04 to 2000 μm into 116 divisions with a particle diameter channel of log (μm) = 0.04. The refractive index of water was 1.33, and the refractive index of spherical silica fine powder was 1.50. In the measured particle size distribution, particles having a cumulative volume of 50% are average particle sizes.

本発明の超微粉シリカ粉末の平均球形度は0.50以上0.80未満であることが必要である。平均球形度が0.50未満であると、外添剤の一部がトナーに埋没しやすくなり、スペーサー効果が低下し、結果的にトナーの流動性が悪化する。また、平均球形度が0.80以上であると、トナー表面とトナー外添剤の接触点が少なくなるため、トナー表面からの外添剤の脱離が顕著となり、保存性が悪化する。そのため、好ましい平均球形度は0.55以上0.75未満、より好ましくは0.60以上0.70未満である。 The average sphericity of the ultrafine silica powder of the present invention needs to be 0.50 or more and less than 0.80. When the average sphericity is less than 0.50, a part of the external additive is easily embedded in the toner, the spacer effect is lowered, and the fluidity of the toner is deteriorated as a result. On the other hand, when the average sphericity is 0.80 or more, the contact point between the toner surface and the toner external additive is decreased, and the detachment of the external additive from the toner surface becomes remarkable, and the storage stability is deteriorated. Therefore, a preferable average sphericity is 0.55 or more and less than 0.75, more preferably 0.60 or more and less than 0.70.

本発明の超微粉シリカ粉末の平均球形度は、下記方法で測定する。超微粉シリカ粉末をカーボンペーストで試料台に固定後、オスミウムコーティングを行い、日本電子社製走査型電子顕微鏡「JSM−6301F型」で撮影した倍率10万倍、解像度2048×1356ピクセルの画像をパソコンに取り込んだ。この画像を、マウンテック社製画像解析装置「MacView Ver.4」を使用し、簡単取り込みツールを用いて粒子を認識させ、粒子の投影面積(A)と周囲長(PM)から球形度を測定した。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の球形度はA/Bとなるので、試料の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πr2であるから、B=π×(PM/2π)となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)となる。撮影した粒子が、複数の一次粒子が凝集して二次粒子となっている形状の場合、二次粒子を単一の粒子とみなし、投影面積(A)は二次粒子全体の面積、周囲長(PM)は、二次粒子の界面に沿って測定した長さとする。このようにして得られた任意の投影面積円相当径50nm以上の粒子200個の球形度を求め、その平均値を平均球形度とした。 The average sphericity of the ultrafine silica powder of the present invention is measured by the following method. After fixing ultrafine silica powder to the sample stage with carbon paste, osmium coating was performed, and an image taken with a scanning electron microscope “JSM-6301F type” manufactured by JEOL Ltd. with a magnification of 100,000 times and a resolution of 2048 × 1356 pixels Incorporated. Using this image analysis apparatus “MacView Ver. 4” manufactured by Mountec Co., Ltd., particles were recognized using a simple capture tool, and the sphericity was measured from the projected area (A) and the perimeter (PM) of the particles. . If the area of a perfect circle corresponding to the perimeter (PM) is (B), the sphericity of the particle is A / B, so a perfect circle having the same perimeter as the perimeter (PM) of the sample is assumed. Then, since PM = 2πr and B = πr2, B = π × (PM / 2π) 2 , and the sphericity of each particle becomes sphericity = A / B = A × 4π / (PM) 2. . When the photographed particles have a shape in which a plurality of primary particles are aggregated to form secondary particles, the secondary particles are regarded as a single particle, and the projected area (A) is the area of the entire secondary particle and the perimeter length. (PM) is the length measured along the interface of the secondary particles. The sphericity of 200 particles having an arbitrary projected area equivalent circle diameter of 50 nm or more thus obtained was determined, and the average value was defined as the average sphericity.

本発明の超微粉シリカ微粉末の平均アスペクト比は、1.0以上1.50未満であることが必要である。平均アスペクト比が1.50以上になると、アスペクト比の高い外添剤によってトナー同士の接触時の抵抗が大きくなり、トナーの流動性が悪化する。そのため、好ましい平均アスペクト比は1.40未満であり、より好ましくは1.30未満である。 The average aspect ratio of the ultrafine silica fine powder of the present invention is required to be 1.0 or more and less than 1.50. When the average aspect ratio is 1.50 or more, the resistance at the time of contact between the toners increases due to the external additive having a high aspect ratio, and the fluidity of the toner deteriorates. Therefore, the preferable average aspect ratio is less than 1.40, more preferably less than 1.30.

本発明の超微粉シリカ粉末のアスペクト比は下記方法で測定する。超微粉シリカ粉末をカーボンペーストで試料台に固定後、オスミウムコーティングを行い、日本電子社製走査型電子顕微鏡「JSM−6301F型」で撮影した倍率10万倍、解像度2048×1356ピクセルの画像をパソコンに取り込んだ。この画像を、マウンテック社製画像解析装置「MacView Ver.4」を使用し、簡単取り込みツールを用いて粒子を認識させ、粒子の長径(A)と短径(B)の比(A/B)からアスペクト比を測定した。長径(A)は、粒子表面上の2点間の距離の最大値と定義する。また、短径(B)は、長径と直交する線分の、長さの極大値と定義する。なお、この極大値が複数存在するときはこれらの平均値を短径(B)とする。また、撮影した粒子が、複数の一次粒子が凝集して二次粒子となっている形状の場合、二次粒子を単一の粒子とみなして測定する。このようにして得られた任意の投影面積円相当径50nm以上の粒子200個のアスペクト比を求め、その平均値を平均アスペクト比とした。   The aspect ratio of the ultrafine silica powder of the present invention is measured by the following method. After fixing ultrafine silica powder to the sample stage with carbon paste, osmium coating was performed, and an image taken with a scanning electron microscope “JSM-6301F type” manufactured by JEOL Ltd. with a magnification of 100,000 times and a resolution of 2048 × 1356 pixels Incorporated. Using this image, the image analysis apparatus “MacView Ver. 4” manufactured by Mountec Co., Ltd. was used to recognize the particles using a simple capture tool, and the ratio of the major axis (A) to the minor axis (B) of the particles (A / B) The aspect ratio was measured. The major axis (A) is defined as the maximum value of the distance between two points on the particle surface. The minor axis (B) is defined as the maximum value of the length of the line segment orthogonal to the major axis. When there are a plurality of local maximum values, the average value is defined as the minor axis (B). Further, when the photographed particles have a shape in which a plurality of primary particles are aggregated to form secondary particles, the secondary particles are regarded as single particles and measured. The aspect ratio of 200 particles having an arbitrary projected area equivalent circle diameter of 50 nm or more thus obtained was determined, and the average value was defined as the average aspect ratio.

本発明のシリカの製法の詳細については後述するが、金属シリコンの酸化反応法が好ましい。製造方法を例示すれば、金属シリコンを化学炎や電気炉等で形成された高温場に投じて酸化反応させながら球状化する方法(例えば特許第1568168号明細書)、金属シリコン粒子スラリーを火炎中に噴霧して酸化反応させながら球状化する方法(例えば特開2000−247626号公報)などが挙げられる。この際、従来の製法は合成炉頂部のみに設置されたバーナーによる合成であるのに対して、今回の発明では、合成炉頂部のバーナーに加え、合成炉中部のアフターバーナーを使用した製造方法に特徴があり、従来にない球形度及びアスペクト比を持つ超微粉シリカ粉末の形状コントロールが可能となる。 Although details of the method for producing silica of the present invention will be described later, an oxidation reaction method of metal silicon is preferable. Examples of production methods include a method of spheroidizing metal silicon by throwing it into a high temperature field formed by a chemical flame or an electric furnace (for example, Japanese Patent No. 1568168), and metal silicon particle slurry in a flame And a method of spheroidizing by spraying on the surface (for example, Japanese Patent Application Laid-Open No. 2000-247626). In this case, the conventional manufacturing method is synthesis using a burner installed only at the top of the synthesis furnace, whereas in the present invention, in addition to the burner at the top of the synthesis furnace, the manufacturing method uses an afterburner in the middle of the synthesis furnace. Therefore, it is possible to control the shape of ultrafine silica powder having an unprecedented sphericity and aspect ratio.

本発明の超微粉シリカ粉末の水分量は0.05wt%以上0.30wt%未満であることが必要である。トナーの帯電量は外添剤の水分量に起因し、帯電量の高低により、印字特性が変動する。水分量が0.05wt%未満の場合、超微粉シリカ粉末自体の帯電量が高くなるため、トナー外添剤に使用した際に帯電量が過剰となり、印刷面の汚れの原因となる。また、水分量が0.30wt%以上の場合、シリカ自体の帯電量が低いため、トナー外添剤に使用した場合に帯電量が不十分となり、印字の際に白抜けが多く発生する。そのため、好ましい水分量は0.10wt%以上0.25wt%未満であり、より好ましくは0.15wt%以上0.20wt%未満である。   The water content of the ultrafine silica powder of the present invention needs to be 0.05 wt% or more and less than 0.30 wt%. The charge amount of the toner is caused by the moisture content of the external additive, and the printing characteristics vary depending on the charge amount. When the amount of water is less than 0.05 wt%, the amount of charge of the ultrafine silica powder itself becomes high, so that the amount of charge becomes excessive when used as an external toner additive, which causes stains on the printing surface. Further, when the water content is 0.30 wt% or more, since the charge amount of silica itself is low, the charge amount becomes insufficient when used as an external toner additive, and white spots occur frequently during printing. Therefore, the preferable water content is 0.10 wt% or more and less than 0.25 wt%, more preferably 0.15 wt% or more and less than 0.20 wt%.

本発明の超微粉シリカ粉末の含有水分量は、カールフィッシャー電量滴定法で測定される。カールフィッシャー微量水分測定装置、例えば「CA−100」(三菱化学社製)にて測定することができる。具体的には、試料を水分気化装置に入れ、電気ヒーターで200℃まで加熱昇温しながら、脱水処理されたアルゴンガスをキャリアガスとして供給し、試料の表面吸着水を測定することができる。 The water content of the ultrafine silica powder of the present invention is measured by the Karl Fischer coulometric titration method. It can be measured by a Karl Fischer trace moisture measuring device, for example, “CA-100” (manufactured by Mitsubishi Chemical Corporation). Specifically, the sample surface adsorbed water can be measured by putting the sample in a moisture vaporizer and supplying the dehydrated argon gas as a carrier gas while heating up to 200 ° C. with an electric heater.

本発明における超微粉シリカ微粉末の比表面積は、10.0m/g以上150m/g未満であることが好ましい。比表面積がm/g未満であると、超微粉シリカ粉末自体の帯電量が小さくなり、トナー外添剤に使用した際の帯電性が不十分となる恐れがある。一方、比表面積が100m/gを超えると、トナー同士のブロッキング防止に寄与しないサイズの疎水化球状シリカ微粉末が多くなり、トナー外添剤に使用した際に、保存性を向上させることが出来ない恐れがある。さらに好ましい比表面積は20m/g以上90m/g未満、最も好ましくは25m/g以上80m/g未満である。 The specific surface area of the ultrafine silica fine powder in the present invention is preferably 10.0 m 2 / g or more and less than 150 m 2 / g. When the specific surface area is less than m 2 / g, the amount of charge of the ultrafine silica powder itself becomes small, and the chargeability when used as an external toner additive may be insufficient. On the other hand, when the specific surface area exceeds 100 m 2 / g, the size of the hydrophobized spherical silica fine powder that does not contribute to prevention of blocking between the toners increases, and when used as a toner external additive, the storage stability can be improved. There is a fear that it cannot be done. A more preferable specific surface area is 20 m 2 / g or more and less than 90 m 2 / g, most preferably 25 m 2 / g or more and less than 80 m 2 / g.

本発明の疎水化球状シリカ微粉末の比表面積は、BET法に基づく値であり、マウンテック社製比表面積測定機「MacsorbHM model−1208」を用い、BET一点法にて測定する。測定に先立ち、窒素ガス雰囲気中で300℃、18分間加熱して前処理を行った。なお、吸着ガスには、窒素30%、ヘリウム70%の混合ガスを用い、本体流量計の指示値が25ml/minになるように流量を調整した。 The specific surface area of the hydrophobized spherical silica fine powder of the present invention is a value based on the BET method, and is measured by the BET single point method using a specific surface area measuring machine “MacsorbHM model-1208” manufactured by Mountec. Prior to the measurement, pretreatment was performed by heating at 300 ° C. for 18 minutes in a nitrogen gas atmosphere. The adsorbed gas was a mixed gas of 30% nitrogen and 70% helium, and the flow rate was adjusted so that the indicated value of the main body flow meter was 25 ml / min.

本発明の球状シリカ微粉体は、例えば流動層内にて循環ガスで超微粉シリカ粉末を浮遊(流動化)させた状態で、まず水を噴霧、混合してシラノール基を活性化させた後、ヘキサメチルジシラザンを噴霧、混合して疎水化処理を行うことによって得られる。または表面処理剤をガス化させ超微粉シリカ微粉末に接触させる方法などがある。流動層による気流混合は粉体にかかる力が小さいため、凝集が少なく、高分散状態での疎水化処理が可能となり、更に循環ガスで流動化させることによって見かけ上の密閉状態を作り出し、処理効率が高められる。循環ガスによる流動層の形成は、ブロワによって系内のガスを吸引し、その排気ラインを再び入口側に戻して流動化ガスとして用いることによって実現できる。 The spherical silica fine powder of the present invention, for example, in a state where the ultrafine silica powder is suspended (fluidized) with a circulating gas in a fluidized bed, first, after spraying and mixing water to activate silanol groups, It is obtained by spraying and mixing hexamethyldisilazane to perform a hydrophobic treatment. Alternatively, there is a method in which a surface treatment agent is gasified and brought into contact with ultrafine silica fine powder. Airflow mixing in a fluidized bed has less force on the powder, so there is less agglomeration and hydrophobization treatment in a highly dispersed state is possible. Furthermore, fluidization with a circulating gas creates an apparent hermetic state, and processing efficiency Is increased. Formation of the fluidized bed by the circulating gas can be realized by sucking the gas in the system by the blower, returning the exhaust line to the inlet side again, and using it as the fluidizing gas.

本発明の疎水化球状シリカ微粉末は、ヘキサメチルジシラザンを単独で処理しても良いし、2種類以上の表面処理剤で処理しても良い。例えば、正帯電性付与の為、アミノシランカップリング剤と併用する場合は、まず、球状シリカ微粉末にアミノシラン処理を行った後に、本発明の疎水化処理方法を実施すれば良い。 The hydrophobized spherical silica fine powder of the present invention may be treated with hexamethyldisilazane alone or with two or more kinds of surface treatment agents. For example, when the aminosilane coupling agent is used in combination with an aminosilane coupling agent for imparting positive chargeability, the hydrophobization treatment method of the present invention may be carried out after the spherical silica fine powder is first treated with aminosilane.

疎水化処理された球状シリカ微粉末のトナーへの配合量は、通常、トナー100質量部に対して、0.1〜10質量部が好ましく、さらに好ましくは0.5〜5質量部である。配合量が少なすぎると、トナーへの付着量が少なく十分な保存性向上効果が得られず、多すぎるとトナーの帯電性に悪影響を及ぼすおそれがある。 The blending amount of the spherical silica fine powder subjected to the hydrophobization treatment into the toner is usually preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the toner. If the blending amount is too small, the amount of adhesion to the toner is small and a sufficient storage stability improving effect cannot be obtained. If the blending amount is too large, the chargeability of the toner may be adversely affected.

本発明の球状シリカ微粉末を含有するトナー外添剤のシリカ粉末には、本発明の球状シリカ微粉末が単独で使用されるものとは限らず、例えば、流動性付与効果の高い200〜500m/gの超微粉末シリカと併用して使用することもできる。 The silica powder of the toner external additive containing the spherical silica fine powder of the present invention is not limited to the spherical silica fine powder of the present invention used alone, for example, 200 to 500 m having a high fluidity-imparting effect. It can also be used in combination with 2 / g ultrafine silica.

本発明の球状シリカ微粉末を含有するトナー外添剤が添加される静電荷像現像用トナーとしては、結着樹脂と着色剤を主成分として構成される公知のものが使用できる。また、必要に応じて帯電制御剤が添加されていてもよい。 As the toner for developing an electrostatic charge image to which the toner external additive containing the spherical silica fine powder of the present invention is added, a known toner composed mainly of a binder resin and a colorant can be used. Moreover, the charge control agent may be added as needed.

本発明の球状シリカ微粉末を含有するトナー外添剤が添加された静電荷像現像用トナーは、一成分現像剤として使用でき、また、それをキャリアと混合して二成分現像剤として使用することもできる。二成分現像剤として使用する場合においては、上記トナー外添剤は予めトナー粒子に添加せず、トナーとキャリアの混合時に添加してトナーの表面被覆を行ってもよい。キャリアとしては、鉄粉等、あるいはそれらの表面に樹脂コーティングされた公知のものが使用される。 The toner for developing an electrostatic charge image to which the toner external additive containing the spherical silica fine powder of the present invention is added can be used as a one-component developer, or mixed with a carrier and used as a two-component developer. You can also. When used as a two-component developer, the toner external additive may not be added to the toner particles in advance, but may be added when the toner and the carrier are mixed to coat the surface of the toner. As the carrier, iron powder or the like, or a known one whose surface is resin-coated is used.

以下、本発明について、実施例及び比較例により、さらに詳細に説明する。
実施例1〜13 比較例1〜13
超微粉シリカ粉末は、合成炉の頂部に内炎と外炎が形成できる1本の二重管構造のLPG−酸素混合型バーナーが設置、中部に2本の二重管構造のLPG−酸素混合型アフターバーナーが設置され、さらに下部に捕集系ラインが直結されてなる装置を用いて合成した。頂部のバーナーの中心部には更にスラリー噴霧用の二流体ノズルが設置され、その中心部から、金属シリコン粉末(平均粒径9.8μm)と水からなるスラリー(金属シリコン濃度:10〜70質量%)を20.0kg/Hrのフィード量で噴射した。バーナー及び二流体ノズルの周囲からは水蒸気を供給した。火炎の形成は二重管バーナーの出口に数十個の細孔を設け、そこからLPGと酸素の混合ガスを噴射することによって行った。LPGの供給量は、合計5〜15N/hrとした。以上のように合成炉の頂部にて二流体ノズルから噴射したスラリーを火炎に通過させ球状シリカ超微粉を合成する。更に合成した球状シリカ超微粉は、粒子同士が凝集した状態で合成炉中部、具体的には、合成炉の長さを100とした場合、炉頂部から30〜70の距離となる場所に設置した二重管構造のLPG−酸素混合型アフターバーナーにて再度溶融することにより超微粉シリカ粉末とし、最終的にブロワによって合成炉下部の捕集ラインより空気輸送し、バグフィルターで捕集した。アフターバーナーは、炉体に並行で炉体下部方向を0度とすると、30度〜60度の角度となるように設置し、アフターバーナーから供給するLPG量は合計0〜10m/hrとした。なお、超微粉シリカ粉末の粒子径及び比表面積の調整は、スラリー濃度、スラリーフィード量で調整することにより行った。また、超微粉シリカ粉末の球形度及びアスペクト比は合成炉中部のアフターバーナーを使用することによって行った。さらに、超微粉シリカ粉末の水分量の調整は合成炉頂部の水蒸気量によって調整することによって行った。捕集した超微粉シリカ微粉末を適宜配合し、各種粒子径、球形度、アスペクト比及び比表面積の超微粉シリカ粉末A〜Mを得た。また、比較例として、スラリー濃度、スラリーフィード量、合成炉中部のアフターバーナーのLPG量、合成炉頂部の水蒸気量を調整することにより得られた超微粉シリカ粉末を適宜配合し、超微粉シリカ粉末N〜Vを得た。また、比較例として、アフターバーナーを使用しない、従来の合成法にて得られた超微粉シリカ粉末を適宜配合し、超微粉シリカ粉末W〜Xを得た。
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples.
Examples 1-13 Comparative Examples 1-13
The ultra fine silica powder is equipped with one double tube LPG-oxygen mixed burner that can form inner flame and outer flame at the top of the synthesis furnace, and two double tube LPG-oxygen mixed in the middle A type afterburner was installed, and the synthesis was performed using an apparatus in which a collection system line was directly connected to the lower part. A two-fluid nozzle for slurry spraying is further installed at the center of the top burner, and a slurry (metal silicon concentration: 10 to 70 mass) consisting of metal silicon powder (average particle size 9.8 μm) and water from the center. %) Was injected at a feed rate of 20.0 kg / Hr. Water vapor was supplied from around the burner and the two-fluid nozzle. The formation of the flame was performed by providing several tens of pores at the outlet of the double tube burner and injecting a mixed gas of LPG and oxygen therefrom. The total supply amount of LPG was 5 to 15 N 3 / hr. As described above, the slurry injected from the two-fluid nozzle at the top of the synthesis furnace is passed through a flame to synthesize spherical silica ultrafine powder. Furthermore, the synthesized spherical silica ultrafine powder was placed in a place in the middle of the synthesis furnace with the particles agglomerated, specifically, at a distance of 30 to 70 from the top of the furnace when the length of the synthesis furnace was 100. The mixture was melted again with a double-pipe LPG-oxygen mixed afterburner to obtain ultrafine silica powder, which was finally pneumatically transported from the collection line at the bottom of the synthesis furnace by a blower and collected by a bag filter. The afterburner was installed in parallel with the furnace body so that the furnace body lower direction was 0 degree, and the angle was 30 to 60 degrees, and the total amount of LPG supplied from the afterburner was 0 to 10 m 3 / hr. The particle diameter and specific surface area of the ultrafine silica powder were adjusted by adjusting the slurry concentration and the slurry feed amount. The sphericity and aspect ratio of the ultrafine silica powder were measured by using an afterburner in the middle of the synthesis furnace. Furthermore, the water content of the ultrafine silica powder was adjusted by adjusting the water content at the top of the synthesis furnace. The collected ultrafine silica fine powder was appropriately blended to obtain ultrafine silica powders A to M having various particle diameters, sphericity, aspect ratio and specific surface area. Further, as a comparative example, the ultrafine powder silica powder N was appropriately blended by adjusting the slurry concentration, the slurry feed amount, the LPG amount of the afterburner in the middle of the synthesis furnace, and the water vapor amount at the top of the synthesis furnace. ~ V was obtained. In addition, as a comparative example, ultrafine silica powders W to X were obtained by appropriately blending ultrafine silica powder obtained by a conventional synthesis method without using an afterburner.

超微粉シリカ微粉末A〜Xを各100g、流動層(中央化工機社製「振動流動層装置VUA−15型」)に仕込み、Nガスで流動させたところに水2gを噴霧して5分間流動混合させた後、ヘキサメチルジシラザン(信越化学工業社製「SZ−31」)を4g噴霧し、30分間流動混合した。流動混合後、130℃に昇温し、窒素ガスを通気しながら生成したアンモニアを除去し、疎水性の超微粉シリカ粉末A〜Xを得た。得られた疎水性超微粉シリカ粉末の疎水化度はいずれも65%以上であった。 100 g each of ultrafine silica fine powders A to X were charged in a fluidized bed (“Vibrating fluidized bed device VUA-15 type” manufactured by Chuo Kako Co., Ltd.) and fluidized with N 2 gas to spray 2 g of water. After fluidly mixing for 4 minutes, 4 g of hexamethyldisilazane (“SZ-31” manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed and fluidly mixed for 30 minutes. After the fluid mixing, the temperature was raised to 130 ° C., and ammonia generated while removing nitrogen gas was removed to obtain hydrophobic ultrafine silica powders A to X. The hydrophobicity of the obtained hydrophobic ultrafine silica powder was 65% or more.

また、市販の表面疎水化処理を行っていない、比表面積が50m/gのヒュームドシリカY及び比表面積がm/gのコロイダルシリカZをそれぞれ前述同様に流動層内で疎水化表面処理を行い、疎水性超微粉シリカ粉末Y、Zを得た。得られた疎水性超微粉シリカ粉末の疎水化度はいずれも65%以上80%未満であった。 Moreover, not performed commercially available surface hydrophobic treatment, a specific surface area of 50 m 2 / g hydrophobic surface treatment respectively the same manner as described above the fluidized bed fumed silica Y and a specific surface area of m 2 / g of colloidal silica Z of To obtain hydrophobic ultrafine silica powders Y and Z. The hydrophobicity of the obtained hydrophobic ultrafine silica powder was 65% or more and less than 80%.

ヘキサメチルジシラザンで疏水化処理を行った超微粉シリカ粉末の、トナー外添剤としての特性を評価するために、保存性、流動性及び帯電性を以下の方法に従って測定した。それらの結果を表1に示す。   In order to evaluate the characteristics of the ultrafine powdered silica powder that has been subjected to a water-repelling treatment with hexamethyldisilazane as a toner external additive, storage stability, fluidity and chargeability were measured according to the following methods. The results are shown in Table 1.

(1)保存性
上記のように得られた疎水性超微粉シリカ粉末A〜Z各15gと、ガラス転移点62℃のポリエステル樹脂をジェットミルで平均粒径が7.5μmになるように粉砕調整した樹脂粉485gをヘンシェルミキサー(三井三池化工機社製「FM−10B型」)に入れ、1000rpmで1分間混合した。この混合物10gをシリコーンカップに計り取り、温度62℃の条件下で3時間静置した後、目開き74μmの篩の上に静かに移し、パウダテスタ(ホソカワミクロン社製「PT−E型」)の振動台にセットした。篩の振幅を1.0mmに設定して、30秒間振動した後、篩上に残った混合物の質量を測定した。この値が小さいほど、トナーの保存性が良いことを表す。
(1) Storage stability 15 g of each of the above-obtained hydrophobic ultrafine silica powders A to Z and a polyester resin having a glass transition point of 62 ° C. are pulverized and adjusted so that the average particle diameter becomes 7.5 μm by a jet mill. 485 g of the resin powder thus obtained was put into a Henschel mixer (“FM-10B type” manufactured by Mitsui Miike Chemical Co., Ltd.) and mixed at 1000 rpm for 1 minute. 10 g of this mixture was weighed into a silicone cup and allowed to stand at a temperature of 62 ° C. for 3 hours, and then gently transferred onto a sieve having an opening of 74 μm, and a powder tester (“PT-E type” manufactured by Hosokawa Micron Corporation) was vibrated. I set it on the table. After setting the amplitude of the sieve to 1.0 mm and vibrating for 30 seconds, the mass of the mixture remaining on the sieve was measured. The smaller this value, the better the storage stability of the toner.

(2)帯電性
上記のように得られた疎水性超微粉シリカ粉末A〜Z各30gと、平均粒子径5μmの架橋スチレン樹脂粉(綜研化学社製商品名「SX−500H」)970gをヘンシェルミキサー(三井三池化工機社製「FM−10B型」)に入れ、1000rpmで1分間混合し疑似トナーを作製した。この疑似トナーを、温度25℃、相対湿度55%の条件下で24時間静置した後、ブローオフ帯電量を以下の手法で測定した。模擬トナー0.20gと、キャリアとして負帯電極性トナー用標準キャリア(日本画像学会より頒布「N−01」)3.80gを100mlポリエチレン製容器に入れて容器の蓋を閉め、容器を上下にして手に持ち、約30cmのストロークにて2回/秒の速度で200回振とうさせた。振とう3分後、この模擬トナーとキャリアの混合物0.30gを用いて吸引分離式帯電量測定器(三協パイオテク社製「セパソフトSTC−1」)により、ブローオフ帯電量を測定した。吸引時間は3分間、吸引圧力は4.0kPaとし、模擬トナーとキャリアの分離に用いるスクリーンには目開き32μmの金網を使用した。このブローオフ帯電量のマイナスの値が大きいほど、トナーの帯電性が良いことを表す。
(2) Chargeability 970 g of the hydrophobic ultrafine silica powders A to Z obtained as described above and 970 g of a crosslinked styrene resin powder having an average particle diameter of 5 μm (trade name “SX-500H” manufactured by Soken Chemical Co., Ltd.) This was put into a mixer ("FM-10B type" manufactured by Mitsui Miike Chemical Co., Ltd.) and mixed at 1000 rpm for 1 minute to prepare a pseudo toner. The pseudo toner was allowed to stand for 24 hours under conditions of a temperature of 25 ° C. and a relative humidity of 55%, and then the blow-off charge amount was measured by the following method. Put 0.20 g of simulated toner and 3.80 g of a negatively charged polar toner standard carrier (distributed by the Imaging Society of Japan “N-01”) as a carrier in a 100 ml polyethylene container, close the container lid, and turn the container up and down. It was held in a hand and shaken 200 times at a speed of 2 times / second with a stroke of about 30 cm. Three minutes after shaking, the blow-off charge amount was measured with a suction separation type charge amount measuring device (“Sepasoft STC-1” manufactured by Sankyo Piotech Co., Ltd.) using 0.30 g of the mixture of the simulated toner and carrier. The suction time was 3 minutes, the suction pressure was 4.0 kPa, and a screen of 32 μm mesh was used for the screen used for separating the simulated toner and the carrier. The larger the negative value of the blow-off charge amount, the better the chargeability of the toner.

(3)流動性
上記の保存性評価手順同様にヘンシェルミキサーにて混合した疎水性超微粉シリカ粉末A〜Z各15gと、ガラス転移点62℃のポリエステル樹脂の混合物20gをパウダテスタ(ホソカワミクロン社製「PT−E型」)の振動台の上に乗せた710μmの篩に入れ、180秒振動させ、漏斗を通して落下する混合物を、下方に設置した安息角測定用テーブルに堆積させた。円錐状に形成された堆積物の、水平面に対する側面の角度を安息角として流動性を評価した。この安息角が小さいほど、流動性が良いことを表す。
(3) Fluidity 15 g of each of the hydrophobic ultrafine silica powders AZ mixed with a Henschel mixer and 20 g of a polyester resin having a glass transition point of 62 ° C. are mixed with a powder tester (“Hosokawa Micron” The mixture was put on a 710 μm sieve placed on a shaking table of “PT-E type”), vibrated for 180 seconds, and the mixture dropped through the funnel was deposited on a table for measuring an angle of repose installed below. The flowability of the sediment formed in a conical shape was evaluated using the angle of the side surface with respect to the horizontal plane as the repose angle. The smaller the angle of repose, the better the fluidity.

Figure 2016138011
Figure 2016138011

Figure 2016138011
Figure 2016138011

実施例と比較例の対比から明らかなように、本発明によれば、保存性、帯電性、流動性に優れたトナー外添剤が提供される。また前記トナー外添剤への添加に好適な超微粉シリカ粉末が提供される。 As is clear from the comparison between the examples and the comparative examples, according to the present invention, an external toner additive excellent in storage stability, chargeability and fluidity is provided. Also provided is an ultrafine silica powder suitable for addition to the toner external additive.

本発明の球状シリカ微粉末は、複写機やレーザープリンター等に使用される電子写真用トナーの外添剤として利用される。

The spherical silica fine powder of the present invention is used as an external additive for an electrophotographic toner used in a copying machine, a laser printer or the like.

Claims (4)

平均粒子径が80nm以上300nm未満であり、平均球形度が0.50以上0.80未満、平均アスペクト比が1.0以上1.50未満、水分量が0.05wt%以上0.30wt%未満であることを特徴とする超微粉シリカ粉末。 Average particle size is 80 nm or more and less than 300 nm, average sphericity is 0.50 or more and less than 0.80, average aspect ratio is 1.0 or more and less than 1.50, and water content is 0.05 wt% or more and less than 0.30 wt%. An ultrafine silica powder characterized by 比表面積が10.0m/g以上150m/g未満であることを特徴とする請求項1に記載の超微粉シリカ粉末。 2. The ultrafine silica powder according to claim 1, wherein the specific surface area is 10.0 m < 2 > / g or more and less than 150 m < 2 > / g. 請求項1又は2に記載の超微粉シリカ粉末をヘキサメチルジシラザンで表面処理したことを特徴とする超微粉シリカ微粉末。 An ultrafine silica fine powder, wherein the ultrafine silica powder according to claim 1 or 2 is surface-treated with hexamethyldisilazane. 請求項1から3のいずれかに一項に記載の超微粉シリカ粉末を含有することを特徴とする静電荷像現像用トナー外添剤。
A toner external additive for developing an electrostatic charge image, comprising the ultrafine silica powder according to any one of claims 1 to 3.
JP2015013262A 2015-01-27 2015-01-27 Ultra fine silica powder and its use Active JP6445877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015013262A JP6445877B2 (en) 2015-01-27 2015-01-27 Ultra fine silica powder and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015013262A JP6445877B2 (en) 2015-01-27 2015-01-27 Ultra fine silica powder and its use

Publications (2)

Publication Number Publication Date
JP2016138011A true JP2016138011A (en) 2016-08-04
JP6445877B2 JP6445877B2 (en) 2018-12-26

Family

ID=56559842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015013262A Active JP6445877B2 (en) 2015-01-27 2015-01-27 Ultra fine silica powder and its use

Country Status (1)

Country Link
JP (1) JP6445877B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230179A1 (en) * 2017-06-15 2018-12-20 信越化学工業株式会社 Silicone composition and production method for same
JP2019001975A (en) * 2017-06-15 2019-01-10 信越化学工業株式会社 Silicone composition and manufacturing method therefor
CN110787524A (en) * 2019-11-08 2020-02-14 协鑫高科纳米新材料(徐州)有限公司 Separator for producing fumed silica
KR20210038428A (en) * 2018-08-07 2021-04-07 덴카 주식회사 Silica powder with excellent dispersibility, resin composition using the same, and method for manufacturing the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004287197A (en) * 2003-03-24 2004-10-14 Fuji Xerox Co Ltd Electrostatic latent image developing toner, electrostatic latent image developer, and image forming method
JP2007065326A (en) * 2005-08-31 2007-03-15 Canon Inc Image forming apparatus
JP2007279702A (en) * 2006-03-17 2007-10-25 Ricoh Co Ltd Toner as well as developer and image forming method using the same
JP2008169102A (en) * 2006-10-12 2008-07-24 Catalysts & Chem Ind Co Ltd Confetti-like silica-based sol and method for producing the same
JP2008233256A (en) * 2007-03-16 2008-10-02 Ricoh Co Ltd Toner for electrostatic charge image development, container containing toner, developer, image forming apparatus, process cartridge, and method for manufacturing toner
JP2010039005A (en) * 2008-07-31 2010-02-18 Sharp Corp Toner, developer, developing device and image forming apparatus
JP2012140280A (en) * 2010-12-28 2012-07-26 Kao Corp Method for producing aspheric silica particulate
JP2012189960A (en) * 2011-03-14 2012-10-04 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2013076999A (en) * 2011-09-16 2013-04-25 Ricoh Co Ltd Carrier for electrostatic latent image development, developer, and image forming apparatus
JP2013156592A (en) * 2012-01-31 2013-08-15 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2013190648A (en) * 2012-03-14 2013-09-26 Ricoh Co Ltd Toner, two-component developer, and image forming apparatus
JP2014136670A (en) * 2013-01-18 2014-07-28 Shin Etsu Chem Co Ltd Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP2014191108A (en) * 2013-03-26 2014-10-06 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004287197A (en) * 2003-03-24 2004-10-14 Fuji Xerox Co Ltd Electrostatic latent image developing toner, electrostatic latent image developer, and image forming method
JP2007065326A (en) * 2005-08-31 2007-03-15 Canon Inc Image forming apparatus
JP2007279702A (en) * 2006-03-17 2007-10-25 Ricoh Co Ltd Toner as well as developer and image forming method using the same
JP2008169102A (en) * 2006-10-12 2008-07-24 Catalysts & Chem Ind Co Ltd Confetti-like silica-based sol and method for producing the same
JP2008233256A (en) * 2007-03-16 2008-10-02 Ricoh Co Ltd Toner for electrostatic charge image development, container containing toner, developer, image forming apparatus, process cartridge, and method for manufacturing toner
JP2010039005A (en) * 2008-07-31 2010-02-18 Sharp Corp Toner, developer, developing device and image forming apparatus
JP2012140280A (en) * 2010-12-28 2012-07-26 Kao Corp Method for producing aspheric silica particulate
JP2012189960A (en) * 2011-03-14 2012-10-04 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2013076999A (en) * 2011-09-16 2013-04-25 Ricoh Co Ltd Carrier for electrostatic latent image development, developer, and image forming apparatus
JP2013156592A (en) * 2012-01-31 2013-08-15 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2013190648A (en) * 2012-03-14 2013-09-26 Ricoh Co Ltd Toner, two-component developer, and image forming apparatus
JP2014136670A (en) * 2013-01-18 2014-07-28 Shin Etsu Chem Co Ltd Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP2014191108A (en) * 2013-03-26 2014-10-06 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230179A1 (en) * 2017-06-15 2018-12-20 信越化学工業株式会社 Silicone composition and production method for same
JP2019001975A (en) * 2017-06-15 2019-01-10 信越化学工業株式会社 Silicone composition and manufacturing method therefor
CN110741048A (en) * 2017-06-15 2020-01-31 信越化学工业株式会社 Silicone composition and method for preparing the same
KR20200019139A (en) * 2017-06-15 2020-02-21 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone composition and its manufacturing method
CN110741048B (en) * 2017-06-15 2022-03-22 信越化学工业株式会社 Silicone composition and method for preparing the same
KR102479753B1 (en) 2017-06-15 2022-12-21 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone composition and manufacturing method thereof
KR20210038428A (en) * 2018-08-07 2021-04-07 덴카 주식회사 Silica powder with excellent dispersibility, resin composition using the same, and method for manufacturing the same
KR102607973B1 (en) 2018-08-07 2023-11-29 덴카 주식회사 Silica powder with excellent dispersibility, resin composition using the same, and method for producing the same
CN110787524A (en) * 2019-11-08 2020-02-14 协鑫高科纳米新材料(徐州)有限公司 Separator for producing fumed silica

Also Published As

Publication number Publication date
JP6445877B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
US9665026B2 (en) Toner and two-component developer
JP6030059B2 (en) Spherical silica fine powder and toner external additive for developing electrostatic image using spherical silica fine powder
JP6445877B2 (en) Ultra fine silica powder and its use
JP2006206413A (en) Surface-treated silica microparticle
JP5834856B2 (en) Resin particles and method for producing the same
JP5989201B2 (en) Silicone oil-treated silica particles and electrophotographic toner
JP3983234B2 (en) Manufacturing method of toner external additive
JP2015079166A (en) Production method of toner
JP6577471B2 (en) Silica fine powder and its use
JP6328488B2 (en) Spherical silica fine powder and use thereof
TWI626216B (en) Hydrophobized spherical vermiculite fine powder and use thereof
JP2004155648A (en) Surface-treated silica particle and its use
JP6966189B2 (en) Amorphous aluminosilicate toner external additive
JP2004067475A (en) Highly dispersible, highly hydrophobic spherical silica fine powder, method for producing the powder, and use
JP2011043759A (en) Toner for electrostatic charge image development, and image forming apparatus and image forming method using the toner
JP2015000830A (en) Spherical silica composition and use of the same
JP6036448B2 (en) Resin particles and method for producing the same
CN107807498A (en) External additive and preparation method thereof and the toner comprising external additive
WO2016117344A1 (en) Silicone oil-treated silica particles and toner for electrophotography
JP2004143028A (en) Alumina doped hydrophobic-treated silica particulate
WO2022176388A1 (en) Method for manufacturing surface-treated vapor phase silica particles, surface-treated vapor phase silica particles, and external additive for toner for electrostatic charge image development
JP2786658B2 (en) Method for producing toner for developing electrostatic images

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181130

R150 Certificate of patent or registration of utility model

Ref document number: 6445877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250