JP2011032114A - Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same - Google Patents

Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same Download PDF

Info

Publication number
JP2011032114A
JP2011032114A JP2009177905A JP2009177905A JP2011032114A JP 2011032114 A JP2011032114 A JP 2011032114A JP 2009177905 A JP2009177905 A JP 2009177905A JP 2009177905 A JP2009177905 A JP 2009177905A JP 2011032114 A JP2011032114 A JP 2011032114A
Authority
JP
Japan
Prior art keywords
silica fine
spherical silica
fine particles
group
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009177905A
Other languages
Japanese (ja)
Inventor
Muneo Kudo
宗夫 工藤
Masaki Tanaka
正喜 田中
Katsuaki Sakazume
功晃 坂詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009177905A priority Critical patent/JP2011032114A/en
Publication of JP2011032114A publication Critical patent/JP2011032114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrophobic spherical silica fine particle useful as a toner external additive and capable of improving the environmental stability of electrostatic charge of a toner. <P>SOLUTION: The hydrophobic spherical silica fine particle is obtained by a hydrophobic treatment comprising: introducing an R<SP>4</SP>SiO<SB>3/2</SB>unit (wherein R<SP>4</SP>is a 1-20C monovalent hydrocarbon group) into a surface of a hydrophilic spherical silica fine particle comprising an SiO<SB>2</SB>unit obtained by hydrolyzing and condensing at least one compound selected from the group consisting of tetrahydrocarbyloxysilane compounds represented by the general formula (1): Si(OR<SP>1</SP>)<SB>4</SB>(1) (wherein R<SP>1</SP>s are the same or different and each is a 1-6C monovalent hydrocarbon group) and partial hydrolysis/condensation products thereof; and further introducing an R<SP>6</SP><SB>3</SB>SiO<SB>1/2</SB>unit (wherein R<SP>6</SP>s are the same or different and each is a 1-20C monovalent hydrocarbon group). The hydrophobic spherical silica fine particle has a carbon content of 2-5 mass%, a hydrocarbyloxy group content of 0.3-5 mass% and a particle diameter of 0.01-5 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、疎水性球状シリカ微粒子、特には炭素含量、ヒドロカルビルオキシ基含量が高い疎水性球状シリカ微粒子に関する。更に、高画質化のために用いる静電荷像現像用の小粒径トナー外添剤に関する。   The present invention relates to hydrophobic spherical silica fine particles, and particularly to hydrophobic spherical silica fine particles having a high carbon content and high hydrocarbyloxy group content. Further, the present invention relates to a small particle size toner external additive for developing an electrostatic image used for improving image quality.

電子写真法等で使用する乾式現像剤は、結着樹脂中に着色剤を分散したトナーそのものを用いる一成分現像剤と、そのトナーにキャリアを混合した二成分現像剤とに大別できる。これらの現像剤を用いてコピー操作を行う場合、プロセス適合性を有するためには、現像剤が流動性、耐ケーキング性、定着性、帯電性、クリーニング性等に優れていることが必要である。特に、流動性、耐ケーキング性、定着性、クリーニング性を高めるために、無機微粒子をトナーに添加することがしばしば行われている。しかしながら、無機微粒子の分散性がトナー特性に大きな影響を与え、分散性が不均一な場合には、流動性、耐ケーキング性、定着性に所望の特性が得られなかったり、クリーニング性が不十分になって、感光体上にトナー固着等が発生し、黒点状の画像欠陥が生じたりする原因となることがあった。これらの問題点を改善する目的で、表面を疎水化処理した無機微粒子が種々提案されているが、表面を疎水化処理したシリカ微粒子が特に多く提案されている。   Dry developers used in electrophotography and the like can be roughly classified into a one-component developer using a toner itself in which a colorant is dispersed in a binder resin and a two-component developer in which a carrier is mixed with the toner. When performing a copying operation using these developers, in order to have process compatibility, the developer needs to be excellent in fluidity, caking resistance, fixing properties, charging properties, cleaning properties, and the like. . In particular, inorganic fine particles are often added to the toner in order to improve fluidity, caking resistance, fixing properties, and cleaning properties. However, the dispersibility of the inorganic fine particles has a great influence on the toner characteristics, and when the dispersibility is not uniform, desired characteristics cannot be obtained in the fluidity, caking resistance, and fixability, or the cleaning properties are insufficient. As a result, toner sticking or the like may occur on the photoconductor, which may cause black spot image defects. For the purpose of improving these problems, various inorganic fine particles whose surface has been subjected to a hydrophobic treatment have been proposed, and many silica fine particles whose surface has been subjected to a hydrophobic treatment have been proposed.

原体となる合成シリカ微粒子は、その製法によって、シラン化合物を燃焼させて得られる燃焼法シリカ(即ち、ヒュームドシリカ)、金属珪素粉を爆発的に燃焼させて得られる爆燃法シリカ、珪酸ナトリウムと鉱酸との中和反応によって得られる湿式シリカ(このうち、アルカリ条件で合成し凝集させたものを沈降法シリカ、酸性条件で合成し凝集させたものをゲル法シリカという)、珪酸ナトリウムからイオン交換樹脂で脱ナトリウムして得られた酸性珪酸をアルカリ性にして重合することで得られるコロイダルシリカ(シリカゾル)、ヒドロカルビルオキシシランの加水分解によって得られるゾルゲル法シリカ(いわゆるStoeber法)に大別される。   Synthetic silica fine particles that are the base material are combusted silica (that is, fumed silica) obtained by burning a silane compound, explosive silica obtained by explosively burning metal silicon powder, sodium silicate. From wet silica obtained by neutralization reaction of mineral acid with mineral acid (among those synthesized and agglomerated under alkaline conditions are precipitated silica, and those synthesized and agglomerated under acidic conditions are called gel silica), sodium silicate Colloidal silica (silica sol) obtained by alkalizing and polymerizing acidic silicic acid obtained by sodium removal with an ion exchange resin, and sol-gel silica (so-called Stöber method) obtained by hydrolysis of hydrocarbyloxysilane. The

疎水化処理方法としては、シリカ微粒子粉体に、疎水化剤、例えば界面活性剤、シリコーンオイル、又はアルキルハロゲノシラン、アルキルアルコキシシラン、アルキルジシラザンなどのシリル化剤の気体を接触させ疎水化処理する方法、水と親水性有機混合溶媒中でシリル化剤に接触させ疎水化処理する方法などがある。   As the hydrophobizing method, hydrophobizing treatment is performed by bringing silica fine particle powder into contact with a hydrophobizing agent such as a surfactant, silicone oil, or a silylating agent such as alkylhalogenosilane, alkylalkoxysilane, or alkyldisilazane. And a hydrophobization treatment by contacting with a silylating agent in a mixed solvent of water and a hydrophilic organic solvent.

例えば、シリコーンオイルで処理した無機微粒子(特開平8−292598号公報:特許文献1)、シリコーンオイルで処理したシリカ微粒子(特開2000−172003号公報、特開2003−195556号公報、特開2006−206413号公報:特許文献2〜4)、シランで処理したシリカ(特開2005−3726号公報、特開2005−121835号公報:特許文献5,6)が挙げられる。   For example, inorganic fine particles treated with silicone oil (JP-A-8-292598: Patent Document 1), silica fine particles treated with silicone oil (JP-A 2000-172003, JP-A 2003-195556, JP-A 2006). -206413 gazette: Patent Documents 2 to 4) and silica treated with silane (Japanese Patent Laid-Open Nos. 2005-3726 and 2005-121835: Patent Documents 5 and 6).

また、アルコキシシランの加水分解で製造した親水性球状シリカ微粒子の表面を第一段階の疎水化処理をする工程と、得られる疎水性シリカ微粒子の表面をトリオルガノシリル化、即ち、第二段階の疎水化処理をする工程とによって、疎水化することが提案されている(特開2000−330328号公報:特許文献7)。   Further, the surface of the hydrophilic spherical silica fine particles produced by hydrolysis of alkoxysilane is subjected to a first-stage hydrophobization treatment, and the surface of the resulting hydrophobic silica fine particles is triorganosilylated, that is, a second-stage hydrophobized. Hydrophobization has been proposed by a hydrophobizing process (Japanese Patent Laid-Open No. 2000-330328: Patent Document 7).

このような表面を疎水化処理したシリカ微粒子は、トナーの流動性は改善するものの、トナーの帯電特性、特に帯電の環境安定性を悪くしてしまう。   Although the silica fine particles whose surface has been subjected to a hydrophobic treatment improve the fluidity of the toner, the charging characteristics of the toner, particularly the environmental stability of charging, are deteriorated.

特開平8−292598号公報JP-A-8-292598 特開2000−172003号公報JP 2000-172003 A 特開2003−195556号公報JP 2003-195556 A 特開2006−206413号公報JP 2006-206413 A 特開2005−3726号公報Japanese Patent Laid-Open No. 2005-3726 特開2005−121835号公報JP 2005-121835 A 特開2000−330328号公報JP 2000-330328 A

本発明は、上記事情に鑑みなされたもので、トナーの帯電の環境安定性を改良することができる疎水性球状シリカ微粒子及びその製造方法を提供することを目的とする。
また、本発明の別の目的は、該疎水性球状シリカ微粒子を用いる静電荷像現像用トナー外添剤を提供することである。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a hydrophobic spherical silica fine particle capable of improving the environmental stability of charging of a toner and a method for producing the same.
Another object of the present invention is to provide an external toner additive for developing electrostatic images using the hydrophobic spherical silica fine particles.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、4官能性シラン化合物及び/又はその部分加水分解縮合生成物を塩基性物質の存在下、親水性有機溶媒と水との混合媒体中で加水分解縮合して親水性球状シリカ微粒子を生成させる際、水含有量が20質量%以下である親水性球状シリカ微粒子混合媒体分散液を得、この水含有量が20質量%以下の分散液中のシリカ微粒子について、R4SiO3/2単位、次いでR6 3SiO1/2単位を導入することにより、炭素含量が2〜5質量%、ヒドロカルビルオキシ基含量が0.3〜5質量%とそれぞれ高い疎水性球状シリカ微粒子が得られ、このシリカ微粒子がトナー外添剤として使用されてトナーの帯電の環境安定性を改善し得ることを知見した。 As a result of intensive studies to achieve the above object, the present inventors have converted a tetrafunctional silane compound and / or a partially hydrolyzed condensation product thereof into a hydrophilic organic solvent and water in the presence of a basic substance. When the hydrophilic spherical silica fine particles are produced by hydrolysis and condensation in a mixed medium, a hydrophilic spherical silica fine particle mixed medium dispersion having a water content of 20% by mass or less is obtained, and the water content is 20% by mass. By introducing R 4 SiO 3/2 units and then R 6 3 SiO 1/2 units into the silica fine particles in the following dispersion, the carbon content is 2 to 5% by mass and the hydrocarbyloxy group content is 0.3. It has been found that high hydrophobic spherical silica fine particles of ˜5% by mass can be obtained, and the silica fine particles can be used as an external toner additive to improve the environmental stability of toner charging.

即ち、本発明者らは、先に、
(A)(a−1)一般式(1):
Si(OR14 (1)
(式中、R1は同一又は異なり、炭素原子数1〜6の1価炭化水素基である。)
で示される4官能性シラン化合物及びその部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を、塩基性物質の存在下で親水性有機溶媒と水との混合媒体中で加水分解、縮合して、親水性球状シリカ微粒子を生成させる工程と、
(a−2)溶媒として用いられた前記混合媒体から親水性有機溶媒を除去して媒体を水に置換して、水の含有量が90質量%以上である親水性球状シリカ微粒子の水分散液を得る工程と、
(B)前記親水性球状シリカ微粒子水分散液中の親水性球状シリカ微粒子の表面にR4SiO3/2単位(式中、R4は置換又は非置換の、炭素原子数1〜20の1価炭化水素基である。)を導入し、第一次疎水性球状シリカ微粒子を得る工程と、
(C)得られた第一次疎水性球状シリカ微粒子の表面にR6 3SiO1/2単位(式中、R6は同一又は異なり、置換又は非置換の、炭素原子数1〜6の1価炭化水素基である。)を導入して第二次疎水性シリカ微粒子を得る工程と、
により、ヒドロカルビルオキシ基含量が1,000ppm以下である疎水性環状シリカ微粒子を得ることを提案した(特開2008−174430号公報)。
これに対し、上述したように、炭素含量、ヒドロカルビルオキシ基量を多くすると、意外なことにトナーの帯電の環境安定性を改良することができることを見出し、本発明をなすに至ったものである。
That is, the inventors first
(A) (a-1) General formula (1):
Si (OR 1 ) 4 (1)
(In the formula, R 1 are identical or different, is a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
Hydrolysis of at least one compound selected from the group consisting of a tetrafunctional silane compound and a partial hydrolysis-condensation product thereof in a mixed medium of a hydrophilic organic solvent and water in the presence of a basic substance Condensing to produce hydrophilic spherical silica fine particles;
(A-2) An aqueous dispersion of hydrophilic spherical silica fine particles having a water content of 90% by mass or more by removing the hydrophilic organic solvent from the mixed medium used as a solvent and replacing the medium with water. Obtaining
(B) R 4 SiO 3/2 units on the surface of the hydrophilic spherical silica fine particles in the hydrophilic spherical silica fine particle aqueous dispersion (wherein R 4 is a substituted or unsubstituted 1 to 1 carbon atom having 1 to 20 carbon atoms). A first-order hydrophobic spherical silica fine particle,
(C) R 6 3 SiO 1/2 unit (wherein R 6 is the same or different and is substituted or unsubstituted, 1 to 6 carbon atoms) on the surface of the obtained primary hydrophobic spherical silica fine particles. A secondary hydrocarbon silica fine particle by introducing a secondary hydrocarbon silica fine particle),
Proposed to obtain hydrophobic cyclic silica fine particles having a hydrocarbyloxy group content of 1,000 ppm or less (Japanese Patent Laid-Open No. 2008-174430).
On the other hand, as described above, when the carbon content and the amount of hydrocarbyloxy group are increased, it has been surprisingly found that the environmental stability of toner charging can be improved, and the present invention has been made. .

本発明は、上記の課題を解決する手段として、第一に、
下記一般式(1):
Si(OR14 (1)
(式中、R1は同一又は異なり、炭素原子数1〜6の1価炭化水素基である。)
で示されるテトラヒドロカルビルオキシシラン化合物及びその部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を加水分解及び縮合することによって得られたSiO2単位からなる親水性球状シリカ微粒子の表面にR4SiO3/2単位(式中、R4は置換又は非置換の炭素原子数1〜20の1価炭化水素基である。)を導入し、更にR6 3SiO1/2単位(式中、R6は同一又は異なり、置換又は非置換の炭素原子数1〜20の1価炭化水素基である。)を導入する疎水化処理により得られた疎水性球状シリカ微粒子であって、炭素含量が2〜5質量%であり、ヒドロカルビルオキシ基含量が0.3〜5質量%であり、粒子径が0.01〜5μmである疎水性球状シリカ微粒子を提供する。
As a means for solving the above problems, the present invention firstly
The following general formula (1):
Si (OR 1 ) 4 (1)
(In the formula, R 1 are identical or different, is a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
Surface of hydrophilic spherical silica fine particles comprising SiO 2 units obtained by hydrolyzing and condensing at least one compound selected from the group consisting of tetrahydrocarbyloxysilane compounds and partial hydrolysis-condensation products thereof R 4 SiO 3/2 unit (wherein R 4 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms) is further introduced into R 6 3 SiO 1/2 unit ( In which R 6 is the same or different and is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.) Hydrophobic spherical silica fine particles having a carbon content of 2 to 5% by mass, a hydrocarbyloxy group content of 0.3 to 5% by mass, and a particle size of 0.01 to 5 μm are provided.

本発明は、第二に、上記の疎水性球状シリカ微粒子の製造方法として、
(A)下記一般式(1):
Si(OR14 (1)
(式中、R1は同一又は異なり、炭素原子数1〜6の1価炭化水素基である。)
で示される4官能性シラン化合物及びその部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を、塩基性物質の存在下で親水性有機溶媒と水との混合媒体中で加水分解、縮合して、親水性球状シリカ微粒子を生成させ、水含有量が20質量%以下である親水性球状シリカ微粒子混合媒体分散液を得る工程と、
(B)前記親水性球状シリカ微粒子混合媒体分散液中の親水性球状シリカ微粒子の表面にR4SiO3/2単位(式中、R4は置換又は非置換の炭素原子数1〜20の1価炭化水素基である。)を導入し、第一次疎水性球状シリカ微粒子を得る工程と、
(C)得られた第一次疎水性球状シリカ微粒子の表面にR6 3SiO1/2単位(式中、R6は同一又は異なり、置換又は非置換の炭素原子数1〜6の1価炭化水素基である。)を導入して第二次疎水性シリカ微粒子を得る工程と、
を有する製造方法を提供する。
更に、本発明は、前記疎水性球状シリカ微粒子からなる静電荷像現像用トナー外添剤を提供する。
The present invention secondly, as a method for producing the above-mentioned hydrophobic spherical silica fine particles,
(A) The following general formula (1):
Si (OR 1 ) 4 (1)
(In the formula, R 1 are identical or different, is a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
Hydrolysis of at least one compound selected from the group consisting of a tetrafunctional silane compound and a partial hydrolysis-condensation product thereof in a mixed medium of a hydrophilic organic solvent and water in the presence of a basic substance And condensing to produce hydrophilic spherical silica fine particles to obtain a hydrophilic spherical silica fine particle mixed medium dispersion having a water content of 20% by mass or less;
(B) R 4 SiO 3/2 units on the surface of the hydrophilic spherical silica fine particles in the hydrophilic spherical silica fine particle mixed medium dispersion (wherein R 4 is a substituted or unsubstituted 1 to 20 carbon atom number 1). A first-order hydrophobic spherical silica fine particle,
(C) R 6 3 SiO 1/2 unit (wherein R 6 is the same or different and is a substituted or unsubstituted monovalent valence of 1 to 6 carbon atoms) on the surface of the obtained primary hydrophobic spherical silica fine particles. A hydrocarbon group) to obtain secondary hydrophobic silica fine particles,
A production method is provided.
Furthermore, the present invention provides an external toner additive for developing electrostatic images comprising the hydrophobic spherical silica fine particles.

本発明の疎水性球状シリカ微粒子は、トナー外添剤として有用であり、トナーの帯電の環境安定性を改良することができる。更に、該トナー外添剤は、有機感光体との反応や相互作用がないため感光体の変質や削れが生じにくい。また、分散性に優れており、流動性が良好であるため感光体へのトナー付着が生じず、環境状態に依存しない帯電性を有する。このトナー外添剤を用いることで、電子写真法、静電記録法等における静電荷像の現像に応用することにより、高画質化が達成される。   The hydrophobic spherical silica fine particles of the present invention are useful as an external toner additive, and can improve the environmental stability of toner charging. Further, since the toner external additive does not react or interact with the organic photoreceptor, the photoreceptor is unlikely to be altered or scraped. Further, since it has excellent dispersibility and good fluidity, toner adhesion to the photoreceptor does not occur, and the charging property does not depend on environmental conditions. By using this toner external additive, high image quality can be achieved by applying it to the development of electrostatic images in electrophotography, electrostatic recording, and the like.

以下、本発明について詳細に説明する。
合成シリカ微粒子は、その製法によって、シラン化合物を燃焼させて得られる燃焼法シリカ(即ち、ヒュームドシリカ)、金属珪素粉を爆発的に燃焼させて得られる爆燃法シリカ、珪酸ナトリウムと鉱酸との中和反応によって得られる湿式シリカ(このうちアルカリ条件で合成したものを沈降法シリカ、酸性条件で合成したものをゲル法シリカという)、ヒドロカルビルオキシシランの加水分解によって得られるゾルゲル法シリカ(いわゆるStoeber法)に大別される。本発明は、このうち、ゾルゲル法シリカに関するものである。
Hereinafter, the present invention will be described in detail.
Synthetic silica fine particles are produced by combustion method silica obtained by burning a silane compound (that is, fumed silica), deflagration silica obtained by explosively burning metal silicon powder, sodium silicate and mineral acid. Wet silica obtained by the neutralization reaction of the above (the one synthesized under alkaline conditions is precipitated silica, the one synthesized under acidic conditions is gel silica), the sol-gel silica obtained by hydrolysis of hydrocarbyloxysilane (so-called (Stober method). Of these, the present invention relates to sol-gel silica.

<疎水性球状シリカ微粒子の特徴>
まず、本発明の疎水性球状シリカ微粒子の特徴について詳細に説明する。本発明のシリカ微粒子は、4官能性シラン化合物及び/又はその部分加水分解縮合生成物を加水分解及び縮合することによって得られたSiO2単位からなる親水性球状シリカ微粒子の表面にR4SiO3/2単位(式中、R4は置換又は非置換の炭素原子数1〜20の1価炭化水素基である)を導入し、更にR6 3SiO1/2単位(式中、R6は同一又は異なり、置換又は非置換の炭素原子数1〜20の1価炭化水素基である)を導入する疎水化処理により得られた疎水性球状シリカ微粒子であって、炭素含量が2〜5質量%であり、好ましくは2〜4質量%である。
炭素含量が2質量%未満では、トナーの帯電の環境安定性が悪くなり、5質量%を超えるとトナーの帯電量が低くなってしまう。
<Characteristics of hydrophobic spherical silica fine particles>
First, the characteristics of the hydrophobic spherical silica fine particles of the present invention will be described in detail. The silica fine particles of the present invention have R 4 SiO 3 on the surface of hydrophilic spherical silica fine particles composed of SiO 2 units obtained by hydrolysis and condensation of a tetrafunctional silane compound and / or a partial hydrolysis condensation product thereof. / 2 unit (wherein R 4 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms), and further R 6 3 SiO 1/2 unit (wherein R 6 is The same or different, substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms), which is obtained by hydrophobizing spherical silica fine particles having a carbon content of 2 to 5 mass %, Preferably 2 to 4% by mass.
When the carbon content is less than 2% by mass, the environmental stability of toner charging is deteriorated, and when it exceeds 5% by mass, the charge amount of the toner is lowered.

上記シリカ微粒子のヒドロカルビルオキシ基含量は0.3〜5質量%であり、好ましくは2〜5質量%、特に好ましくは3〜5質量%である。ヒドロカルビルオキシ基含量が0.3質量%未満では、トナーの帯電の環境安定性が悪くなり、5質量%を超えると、この極性基の影響でトナーの流動性が不十分となったり、帯電量が低くなったりする。   The hydrocarbyloxy group content of the silica fine particles is 0.3 to 5% by mass, preferably 2 to 5% by mass, and particularly preferably 3 to 5% by mass. When the hydrocarbyloxy group content is less than 0.3% by mass, the environmental stability of charging of the toner is deteriorated. When the hydrocarbyloxy group content exceeds 5% by mass, the fluidity of the toner becomes insufficient due to the influence of this polar group, or the charge amount Is lowered.

本発明の疎水性球状シリカ微粒子について、「球状」とは、真球だけでなく、若干歪んだ球も含む。具体的には、「球状」であるとは粒子を二次元に投影したときの円形度が0.8〜1の範囲にあることを意味する。ここで円形度とは、(実際の粒子を二次元投影したときの図形の面積と等しい真円の周囲長)/(実際の粒子を二次元投影したときの図形の面積の周囲長)を意味する。   With respect to the hydrophobic spherical silica fine particles of the present invention, “spherical” includes not only true spheres but also slightly distorted spheres. Specifically, “spherical” means that the circularity when particles are projected two-dimensionally is in the range of 0.8-1. Here, the circularity means (peripheral length of a perfect circle equal to the area of the figure when an actual particle is projected two-dimensionally) / (perimeter of the area of the figure when an actual particle is projected two-dimensionally) To do.

上記微粒子の粒子径は0.01〜5μmであり、好ましくは0.05〜0.5μm、特に好ましくは0.1〜0.2μmである。この粒子径が0.01μmより小さい場合には、上記微粒子が凝集することにより、現像剤の流動性、耐ケーキング性、定着性等が不十分なものとなり、5μmより大きい場合には、感光体の変質や削れ、上記微粒子のトナーへの付着性の低下等の不都合を生ずる。なお、ここで「粒子径」とは体積基準メジアン径を意味する。   The particle diameter of the fine particles is 0.01 to 5 μm, preferably 0.05 to 0.5 μm, and particularly preferably 0.1 to 0.2 μm. When the particle diameter is smaller than 0.01 μm, the fine particles aggregate to cause insufficient developer fluidity, caking resistance, fixing properties, and the like. This causes inconveniences such as deterioration or shaving of the toner and a decrease in adhesion of the fine particles to the toner. Here, “particle diameter” means a volume-based median diameter.

<疎水性球状シリカ微粒子の合成>
次に、本発明の疎水性球状シリカ微粒子の製造方法について詳細に説明する。該疎水性球状シリカ微粒子は、例えば、ゾルゲル法によりヒドロカルビルオキシ基の多い親水性球状シリカ微粒子を製造する工程((A)工程)と、該親水性球状シリカ微粒子の表面を第一段階の疎水化処理をする工程((B)工程)と、得られた第一次疎水性球状シリカ微粒子の表面をトリオルガノシリル化、即ち、第二段階の疎水化処理をする工程((C)工程)とを有する方法により得られる。以下、各工程を説明する。
<Synthesis of hydrophobic spherical silica fine particles>
Next, the method for producing the hydrophobic spherical silica fine particles of the present invention will be described in detail. The hydrophobic spherical silica fine particles are, for example, a step of producing hydrophilic spherical silica fine particles having many hydrocarbyloxy groups by a sol-gel method (step (A)), and the surface of the hydrophilic spherical silica fine particles is hydrophobized in the first stage. A step of treating (step (B)), a step of triorganosilylation of the surface of the obtained primary hydrophobic spherical silica fine particles, ie, a second step of hydrophobizing treatment (step (C)), and It is obtained by a method having Hereinafter, each process will be described.

−親水性球状シリカ微粒子の合成((A)工程)−
(A)工程は、下記一般式(1):
Si(OR14 (1)
(式中、R1は同一又は異なり、炭素原子数1〜6の1価炭化水素基である。)
で示される4官能性シラン化合物及び/又はその部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を、塩基性物質の存在下で親水性有機溶媒と水との混合媒体中で加水分解、縮合して、親水性球状シリカ微粒子を生成させ、水含有量が20質量%以下である親水性球状シリカ微粒子混合媒体分散液を得る工程である。
-Synthesis of hydrophilic spherical silica fine particles (step (A))-
(A) A process is the following general formula (1):
Si (OR 1 ) 4 (1)
(In the formula, R 1 are identical or different, is a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
In a mixed medium of a hydrophilic organic solvent and water in the presence of a basic substance, at least one compound selected from the group consisting of a tetrafunctional silane compound and / or a partially hydrolyzed condensation product thereof In this step, hydrophilic spherical silica fine particles are produced by hydrolysis and condensation to obtain a hydrophilic spherical silica fine particle mixed medium dispersion having a water content of 20% by mass or less.

上記工程において、水含有量が20質量%を超えると、分散液中の水の量が多いためヒドロカルビルオキシ基の加水分解が十分進行して、シリカ微粒子中の残存ヒドロカルビルオキシ基含量が少なくなってしまう。   In the above process, when the water content exceeds 20% by mass, the hydrocarbyloxy group is sufficiently hydrolyzed because the amount of water in the dispersion is large, and the residual hydrocarbyloxy group content in the silica fine particles is reduced. End up.

前記加水分解性基OR1は、ヒドロカルビルオキシ基であり、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基、フェノキシ基等が挙げられ、好ましくは、メトキシ基、エトキシ基が挙げられる。 The hydrolyzable group OR 1 is a hydrocarbyloxy group, and examples thereof include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a hexyloxy group, and a phenoxy group, preferably a methoxy group and an ethoxy group. It is done.

上記一般式(1)中、R1は、好ましくは炭素原子数1〜6、より好ましくは1〜4、更に好ましくは1〜2の1価炭化水素基である。R1で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、フェニル基等、好ましくは、メチル基、エチル基、プロピル基、ブチル基、特に好ましくは、メチル基、エチル基が挙げられる。 In the general formula (1), R 1 is preferably a monovalent hydrocarbon group having 1 to 6 carbon atoms, more preferably 1 to 4, and still more preferably 1 to 2. Examples of the monovalent hydrocarbon group represented by R 1 include a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group, preferably a methyl group, an ethyl group, a propyl group, and a butyl group, and particularly preferably , Methyl group, and ethyl group.

上記一般式(1)で示される4官能性シラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン、テトラフェノキシシラン等、好ましくは、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、特に好ましくは、テトラメトキシシラン、テトラエトキシシランが挙げられる。また、一般式(1)で示される4官能性シラン化合物の部分加水分解縮合生成物としては、例えば、メチルシリケート、エチルシリケート等が挙げられる。   Examples of the tetrafunctional silane compound represented by the general formula (1) include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, tetraphenoxysilane, and the like. Silane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, particularly preferably tetramethoxysilane and tetraethoxysilane. Examples of the partial hydrolysis-condensation product of the tetrafunctional silane compound represented by the general formula (1) include methyl silicate and ethyl silicate.

前記親水性有機溶媒としては、一般式(1)で示される4官能性シラン化合物と、この部分加水分解縮合生成物と、水とを溶解するものであれば特に制限されず、例えば、アルコール類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、酢酸セロソルブ等のセロソルブ類、アセトン、メチルエチルケトン等のケトン類、ジオキサン、テトラヒドロフラン等のエーテル類等、好ましくは、アルコール類、セロソルブ類、特に好ましくはアルコール類が挙げられる。アルコール類としては、下記一般式(2):
3OH (2)
(式中、R3は炭素原子数1〜6の1価炭化水素基である。)
で示されるアルコールが挙げられる。
The hydrophilic organic solvent is not particularly limited as long as it dissolves the tetrafunctional silane compound represented by the general formula (1), the partial hydrolysis-condensation product, and water. For example, alcohols Cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, and cellosolve acetate, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane and tetrahydrofuran, preferably alcohols and cellosolves, particularly preferably alcohols . As alcohols, the following general formula (2):
R 3 OH (2)
(In the formula, R 3 is a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
The alcohol shown by is mentioned.

上記一般式(2)中、R3は、好ましくは炭素原子数1〜4、特に好ましくは1〜2の1価炭化水素基である。R3で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、より好ましくはメチル基、エチル基が挙げられる。一般式(2)で示されるアルコールとしては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等、好ましくは、メタノール、エタノールが挙げられる。アルコールの炭素原子数が増えると、生成する球状シリカ微粒子の粒子径が大きくなる。従って、目的とする球状シリカ微粒子の粒子径によりアルコールの種類を選択することが望ましい。 In the general formula (2), R 3 is preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms. Examples of the monovalent hydrocarbon group represented by R 3 include alkyl groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group, preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, More preferably, a methyl group and an ethyl group are mentioned. Examples of the alcohol represented by the general formula (2) include methanol, ethanol, propanol, isopropanol, butanol and the like, preferably methanol and ethanol. As the number of carbon atoms in the alcohol increases, the particle size of the spherical silica fine particles to be generated increases. Therefore, it is desirable to select the type of alcohol according to the particle diameter of the target spherical silica fine particles.

また、上記塩基性物質としてはアンモニア、及びジメチルアミン、ジエチルアミン等のジ低級アルキルアミン、好ましくは、アンモニア及びジエチルアミン、特に好ましくはアンモニアが挙げられる。これらの塩基性物質は、所要量を水に溶解した後、得られた水溶液(塩基性)を前記親水性有機溶媒と混合すればよい。   Examples of the basic substance include ammonia and di-lower alkylamines such as dimethylamine and diethylamine, preferably ammonia and diethylamine, and particularly preferably ammonia. These basic substances may be dissolved in water in a required amount, and the obtained aqueous solution (basic) may be mixed with the hydrophilic organic solvent.

この加水分解反応において使用される水の合計量は、一般式(1)で示される4官能性シラン化合物及び/又はその部分加水分解縮合生成物のヒドロカルビルオキシ基の合計1モルに対して0.5〜5モルであることが好ましく、0.6〜2モルであることがより好ましく、0.7〜1モルであることが特に好ましい。水に対する親水性有機溶媒の比率は、質量比で0.5〜10であることが好ましく、1〜5であることがより好ましく、1.5〜2であることが特に好ましい。塩基性物質の量は、一般式(1)で示される4官能性シラン化合物及び/又はその部分加水分解縮合生成物のヒドロカルビルオキシ基の合計1モルに対して0.01〜2モルであることが好ましく、0.5〜1.5モルであることがより好ましく、1.0〜1.2モルであることが特に好ましい。   The total amount of water used in this hydrolysis reaction is 0. 0 with respect to a total of 1 mol of the hydrocarbyloxy group of the tetrafunctional silane compound represented by the general formula (1) and / or its partial hydrolysis condensation product. It is preferably 5 to 5 mol, more preferably 0.6 to 2 mol, and particularly preferably 0.7 to 1 mol. The ratio of the hydrophilic organic solvent to water is preferably 0.5 to 10 by mass ratio, more preferably 1 to 5, and particularly preferably 1.5 to 2. The amount of the basic substance is 0.01 to 2 mol with respect to 1 mol in total of the hydrocarbyloxy groups of the tetrafunctional silane compound represented by the general formula (1) and / or the partial hydrolysis condensation product thereof. Is more preferable, 0.5 to 1.5 mol is more preferable, and 1.0 to 1.2 mol is particularly preferable.

一般式(1)で示される4官能性シラン化合物等の加水分解及び縮合は、周知の方法、即ち、塩基性物質を含む親水性有機溶媒と水との混合物中に、一般式(1)で示される4官能性シラン化合物等を添加することにより行われる。この場合、加水分解、縮合の温度は通常10〜60℃、特に20〜50℃とすることができ、また時間は特に制限されないが、通常1〜10時間である。   Hydrolysis and condensation of the tetrafunctional silane compound or the like represented by the general formula (1) can be carried out by a well-known method, that is, in a mixture of a hydrophilic organic solvent containing a basic substance and water by the general formula (1). It is performed by adding a tetrafunctional silane compound or the like shown. In this case, the hydrolysis and condensation temperatures are usually 10 to 60 ° C., particularly 20 to 50 ° C., and the time is not particularly limited, but is usually 1 to 10 hours.

このようにして得られる親水性球状シリカ微粒子は、(B)工程で第一段階の疎水化処理に供される。   The hydrophilic spherical silica fine particles obtained in this manner are subjected to a first-stage hydrophobization treatment in the step (B).

−親水性球状シリカ微粒子の表面疎水化処理((B)工程)−
(B)工程は、上記親水性球状シリカ微粒子の表面にR4SiO3/2単位(式中、R4は置換又は非置換の炭素原子数1〜20の1価炭化水素基である。)を導入して第一次疎水性球状シリカ微粒子を得る工程、即ち、第一段階の疎水化処理を行う工程である。例えば、上記親水性球状シリカ微粒子を含み、水含有量が20質量%以下である混合媒体分散液に、下記一般式(3):
4Si(OR53 (3)
(式中、R4は前記と同じであり、R5は同一又は異なり、炭素原子数1〜6の1価炭化水素基である。)
で示される3官能性シラン化合物もしくはその部分加水分解縮合生成物又はこれらの混合物を添加して、親水性球状シリカ微粒子表面を処理し、第一次疎水性球状シリカ微粒子の混合媒体分散液を得る。
-Surface hydrophobization treatment of hydrophilic spherical silica fine particles (step (B))-
In the step (B), R 4 SiO 3/2 units are formed on the surface of the hydrophilic spherical silica fine particles (wherein R 4 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms). Is a step of obtaining primary hydrophobic spherical silica fine particles, that is, a step of performing a first-stage hydrophobic treatment. For example, in the mixed medium dispersion containing the hydrophilic spherical silica fine particles and having a water content of 20% by mass or less, the following general formula (3):
R 4 Si (OR 5 ) 3 (3)
(In the formula, R 4 is the same as above, and R 5 is the same or different and is a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
The surface of the hydrophilic spherical silica fine particles is treated by adding a trifunctional silane compound represented by the formula (1) or a partially hydrolyzed condensation product thereof, or a mixture thereof to obtain a mixed medium dispersion of primary hydrophobic spherical silica fine particles. .

上記一般式(3)中、R4は、好ましくは炭素原子数1〜3、特に好ましくは1〜2の1価炭化水素基である。R4で表される1価炭化水素基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ヘキシル基等のアルキル基等、好ましくは、メチル基、エチル基、n−プロピル基、イソプロピル基、特に好ましくは、メチル基、エチル基が挙げられる。また、これらの1価炭化水素基の水素原子の一部又は全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくはフッ素原子で置換されていてもよい。 In the general formula (3), R 4 is preferably a monovalent hydrocarbon group having 1 to 3 carbon atoms, particularly preferably 1 to 2 carbon atoms. Examples of the monovalent hydrocarbon group represented by R 4 include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, and a hexyl group, preferably a methyl group, an ethyl group, An n-propyl group and an isopropyl group, particularly preferably a methyl group and an ethyl group are exemplified. Further, some or all of the hydrogen atoms of these monovalent hydrocarbon groups may be substituted with halogen atoms such as fluorine atom, chlorine atom, bromine atom, preferably fluorine atom.

上記一般式(3)中、R5は、好ましくは炭素原子数1〜3、特に好ましくは1〜2の1価炭化水素基である。R5で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等のアルキル基等、好ましくは、メチル基、エチル基、プロピル基、特に好ましくは、メチル基、エチル基が挙げられる。 In the general formula (3), R 5 is preferably a monovalent hydrocarbon group having 1 to 3 carbon atoms, particularly preferably 1 to 2 carbon atoms. Examples of the monovalent hydrocarbon group represented by R 5 include an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group, preferably a methyl group, an ethyl group, and a propyl group, and particularly preferably a methyl group. Group and ethyl group.

一般式(3)で示される3官能性シラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ヘキシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン等のトリアルコキシシラン等、好ましくは、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、より好ましくは、メチルトリメトキシシラン、メチルトリエトキシシラン、又はこれらの部分加水分解縮合生成物が挙げられる。   Examples of the trifunctional silane compound represented by the general formula (3) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, and n-propyltriethoxy. Trialkoxysilanes such as silane, isopropyltrimethoxysilane, isopropyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, hexyltrimethoxysilane, trifluoropropyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, etc., preferably , Methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, more preferably methyltrimethoxysilane, methyltriethoxysilane, These partial hydrolysis-condensation product thereof.

一般式(3)で示される3官能性シラン化合物の添加量は、使用された親水性球状シリカ微粒子のSiO2単位1モル当り0.001〜1モル、好ましくは0.01〜0.1モル、特に好ましくは0.01〜0.05モルである。また、この工程において、処理温度は10〜70℃、特に20〜60℃とすることができ、処理時間は特に制限されないが、通常1〜5時間である。 The addition amount of the trifunctional silane compound represented by the general formula (3) is 0.001 to 1 mol, preferably 0.01 to 0.1 mol, per mol of SiO 2 unit of the hydrophilic spherical silica fine particles used. Especially preferably, it is 0.01-0.05 mol. In this step, the treatment temperature can be 10 to 70 ° C., particularly 20 to 60 ° C., and the treatment time is not particularly limited, but is usually 1 to 5 hours.

−疎水性球状シリカ微粒子の表面トリオルガノシリル化処理((C)工程)−
(C)工程は、上記(B)工程で得られた第一次疎水性球状シリカ微粒子の表面にR6 3SiO1/2単位(式中、R6は同一又は異なり、置換又は非置換の炭素原子数1〜6の1価炭化水素基である。)を導入する工程、即ち、第二段階の疎水化処理を行う工程である。例えば、前記疎水性球状シリカ微粒子混合媒体分散液の分散媒をケトン系溶媒に変換し、疎水性球状シリカ微粒子のケトン系溶媒分散液を得ることと、該疎水性球状シリカ微粒子のケトン系溶媒分散液に下記一般式(4):
6 3SiNHSiR6 3 (4)
(式中、R6は上記と同じである。)
で示されるシラザン化合物、もしくは、下記一般式(5):
6 3SiX (5)
(式中、R6は上記と同じであり、XはOH基又は加水分解性基である。)
で示される1官能性シラン化合物、又はこれらの混合物を添加し、前記疎水性球状シリカ微粒子表面に残存する反応性基をトリオルガノシリル化する工程である。
-Surface triorganosilylation treatment of hydrophobic spherical silica fine particles (step (C))-
In the step (C), R 6 3 SiO 1/2 units (wherein R 6 is the same or different and substituted or unsubstituted are present on the surface of the primary hydrophobic spherical silica fine particles obtained in the step (B). A monovalent hydrocarbon group having 1 to 6 carbon atoms), that is, a step of performing a second-stage hydrophobization treatment. For example, the dispersion medium of the hydrophobic spherical silica fine particle mixed medium dispersion is converted into a ketone solvent to obtain a ketone solvent dispersion of the hydrophobic spherical silica fine particles, and the ketone solvent dispersion of the hydrophobic spherical silica fine particles. The following general formula (4):
R 6 3 SiNHSiR 6 3 (4)
(Wherein R 6 is the same as above)
Or a silazane compound represented by the following general formula (5):
R 6 3 SiX (5)
(In the formula, R 6 is the same as above, and X is an OH group or a hydrolyzable group.)
The monofunctional silane compound shown by these, or a mixture thereof, is added, and the reactive group which remains on the surface of the hydrophobic spherical silica fine particles is triorganosilylated.

上記一般式(4)及び(5)中、R6は、好ましくは炭素原子数1〜4、特に好ましくは1〜2の1価炭化水素基である。R6で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等、好ましくは、メチル基、エチル基、プロピル基、特に好ましくは、メチル基、エチル基が挙げられる。また、これらの1価炭化水素基の水素原子の一部又は全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくは、フッ素原子で置換されていてもよい。 In the general formulas (4) and (5), R 6 is preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms. The monovalent hydrocarbon group represented by R 6 is, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group, preferably a methyl group, an ethyl group, or a propyl group. Includes a methyl group and an ethyl group. Further, some or all of the hydrogen atoms of these monovalent hydrocarbon groups may be substituted with halogen atoms such as fluorine atom, chlorine atom, bromine atom, preferably fluorine atom.

Xで表される加水分解性基としては、例えば、塩素原子、メトキシ基、エトキシ基等のアルコキシ基、アミノ基、アセトキシ基、プロピオニルオキシ基等のアシルオキシ基等、好ましくは、アルコキシ基、アミノ基、特に好ましくは、アルコキシ基が挙げられる。   Examples of the hydrolyzable group represented by X include an alkoxy group such as a chlorine atom, a methoxy group and an ethoxy group, an acyloxy group such as an amino group, an acetoxy group and a propionyloxy group, preferably an alkoxy group and an amino group. Particularly preferred is an alkoxy group.

球状シリカ微粒子混合媒体分散液の分散媒をケトン系溶媒に変換するには、該分散液にケトン系溶媒を添加し、前記混合物から混合溶媒を留去する操作(必要に応じてこの操作を繰り返す)により行うことができる。   In order to convert the dispersion medium of the spherical silica fine particle mixed medium dispersion into a ketone solvent, an operation of adding a ketone solvent to the dispersion liquid and distilling off the mixed solvent from the mixture (repeating this operation as necessary) ).

このとき添加されるケトン系溶媒の量は、前記球状シリカ微粒子混合媒体分散液中の親水性球状シリカ微粒子に対して質量比で0.5〜5倍量、好ましくは2〜5倍量、特に好ましくは3〜4倍量である。このケトン系溶媒としては、例えば、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン等が挙げられ、好ましくはメチルイソブチルケトンである。   The amount of the ketone solvent added at this time is 0.5 to 5 times, preferably 2 to 5 times, particularly, 2 to 5 times by mass with respect to the hydrophilic spherical silica fine particles in the spherical silica fine particle mixed medium dispersion. The amount is preferably 3 to 4 times. Examples of the ketone solvent include methyl ethyl ketone, methyl isobutyl ketone, and acetylacetone, and methyl isobutyl ketone is preferable.

一般式(4)で示されるシラザン化合物としては、例えば、ヘキサメチルジシラザン、ヘキサエチルジシラザン等が挙げられ、好ましくはヘキサメチルジシラザンである。一般式(5)で示される1官能性シラン化合物としては、例えば、トリメチルシラノール、トリエチルシラノール等のモノシラノール化合物、トリメチルクロロシラン、トリエチルクロロシラン等のモノクロロシラン、トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン、トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミン等のモノアミノシラン、トリメチルアセトキシシラン等のモノアシルオキシシランが挙げられ、好ましくはトリメチルシラノール、トリメチルメトキシシラン、トリメチルシリルジエチルアミンであり、特に好ましくはトリメチルシラノール、トリメチルメトキシシランである。   Examples of the silazane compound represented by the general formula (4) include hexamethyldisilazane and hexaethyldisilazane, and hexamethyldisilazane is preferable. Examples of the monofunctional silane compound represented by the general formula (5) include monosilanol compounds such as trimethylsilanol and triethylsilanol, monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane, and monoalkoxy such as trimethylmethoxysilane and trimethylethoxysilane. Examples include monoaminosilanes such as silane, trimethylsilyldimethylamine, and trimethylsilyldiethylamine, and monoacyloxysilanes such as trimethylacetoxysilane, preferably trimethylsilanol, trimethylmethoxysilane, and trimethylsilyldiethylamine, and particularly preferably trimethylsilanol and trimethylmethoxysilane. .

これらの使用量は、使用した親水性球状シリカ微粒子のSiO2単位1モルに対して0.05〜0.5モル、好ましくは0.1〜0.3モル、特に好ましくは0.15〜0.25モルである。この工程において、処理温度は通常40〜140℃、特に60〜120℃とすることができる。また処理時間は特に制限されないが、通常1〜10時間である。 These are used in an amount of 0.05 to 0.5 mol, preferably 0.1 to 0.3 mol, particularly preferably 0.15 to 0 mol, based on 1 mol of SiO 2 units of the hydrophilic spherical silica fine particles used. .25 moles. In this step, the processing temperature is usually 40 to 140 ° C, particularly 60 to 120 ° C. The treatment time is not particularly limited, but is usually 1 to 10 hours.

上記疎水性球状シリカ微粒子は、常法によって粉体として得てもよいし、シラザンとの反応後に有機化合物を添加して分散体として得てもよい。   The hydrophobic spherical silica fine particles may be obtained as a powder by a conventional method, or may be obtained as a dispersion by adding an organic compound after reaction with silazane.

<疎水性球状シリカ微粒子からなるトナー外添剤>
本発明の疎水性球状シリカ微粒子は、トナー外添剤等として有用である。該微粒子からなるトナー外添剤(以下、単に「微粒子」ともいう)のトナーに対する配合量は、トナー100質量部に対して、通常0.01〜20質量部であり、好ましくは0.1〜5質量部、特に好ましくは1〜2質量部である。この配合量が少なすぎると、トナーへの付着量が少なく、十分な流動性が得られず、多すぎるとトナーの帯電性に悪影響を及ぼす。
<Toner external additive comprising hydrophobic spherical silica fine particles>
The hydrophobic spherical silica fine particles of the present invention are useful as an external toner additive. The blending amount of the toner external additive composed of fine particles (hereinafter also simply referred to as “fine particles”) with respect to the toner is usually 0.01 to 20 parts by mass, preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the toner. 5 parts by mass, particularly preferably 1 to 2 parts by mass. If the blending amount is too small, the adhesion amount to the toner is small and sufficient fluidity cannot be obtained, and if it is too large, the chargeability of the toner is adversely affected.

該微粒子のトナー粒子表面への付着状態は、単に機械的に付着していても、ゆるく固着されていてもよい。また、この付着した微粒子は、トナー粒子の表面全体を覆っていても、一部だけを覆っていてもよい。更に、該微粒子は、その一部が凝集体を形成してトナー粒子の表面を覆っていてもよいが、単層粒子の状態で覆っていることが好ましい。   The adhesion state of the fine particles to the toner particle surface may be merely mechanically adhered or may be loosely fixed. The adhered fine particles may cover the entire surface of the toner particles or only a part thereof. Further, the fine particles may partially form aggregates and cover the surface of the toner particles, but are preferably covered in the form of single layer particles.

本発明の微粒子を適用可能なトナー粒子としては、結着樹脂と着色剤とを主成分として含有する公知のトナー粒子等が挙げられ、必要に応じて、更に帯電制御剤等が添加されていてもよい。   Examples of the toner particles to which the fine particles of the present invention can be applied include known toner particles containing a binder resin and a colorant as main components, and a charge control agent or the like is further added as necessary. Also good.

本発明の微粒子からなるトナー外添剤が添加されたトナーは、例えば、電子写真法、静電記録法等により、静電荷像を現像するために使用される静電荷像現像用等に使用される。前記トナーは、一成分現像剤として使用することができるが、それをキャリアと混合し、二成分現像剤として使用することもできる。二成分現像剤として使用する場合には、上記トナー外添剤を予めトナー粒子に添加せず、トナーとキャリアとの混合時に添加してトナーの表面被覆を行ってもよい。該キャリアとしては、公知のもの、例えば、フェライト、鉄粉等、又はそれらの表面に樹脂コーティングされたもの等が使用できる。   The toner to which the toner external additive comprising fine particles of the present invention is added is used, for example, for developing an electrostatic image used for developing an electrostatic image by electrophotography, electrostatic recording method or the like. The The toner can be used as a one-component developer, but it can also be used as a two-component developer by mixing it with a carrier. When used as a two-component developer, the toner external coating may not be added to the toner particles in advance, but may be added when the toner and the carrier are mixed to cover the surface of the toner. As the carrier, known ones, for example, ferrite, iron powder and the like, or those coated on the surface thereof can be used.

以下、実施例及び比較例を用いて本発明を具体的に説明する。なお、下記の実施例は、本発明を何ら制限するものではない。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The following examples do not limit the present invention.

[実施例1]
[疎水性球状シリカ系微粒子の合成]
−親水性球状シリカ微粒子の合成((A)工程)−
攪拌機と、滴下ロートと、温度計とを備えた3リットルのガラス製反応器にメタノール690gと、水26gと、25質量%アンモニア水58gとを入れて混合した。この溶液を30℃となるように調整し、攪拌しながらテトラメトキシシラン1,200g(7.88モル)及び5.4質量%アンモニア水432gを同時に添加し始め、それぞれを5時間かけて滴下した。それらの滴下が終了した後も、更に0.5時間攪拌を継続して加水分解、縮合を行うことにより、親水性球状シリカ微粒子の混合媒体分散液を得た。このとき、ガスクロマトグラフ分析によると混合媒体分散液中の水含有量は16.1質量%であった。
[Example 1]
[Synthesis of hydrophobic spherical silica-based fine particles]
-Synthesis of hydrophilic spherical silica fine particles (step (A))-
In a 3 liter glass reactor equipped with a stirrer, a dropping funnel, and a thermometer, 690 g of methanol, 26 g of water, and 58 g of 25 mass% aqueous ammonia were mixed. The solution was adjusted to 30 ° C., and 1,200 g (7.88 mol) of tetramethoxysilane and 432 g of 5.4 mass% ammonia water were simultaneously added while stirring, and each was added dropwise over 5 hours. . Even after the completion of the dropwise addition, the mixture was further stirred for 0.5 hour for hydrolysis and condensation to obtain a mixed medium dispersion of hydrophilic spherical silica fine particles. At this time, according to gas chromatographic analysis, the water content in the mixed medium dispersion was 16.1% by mass.

−親水性球状シリカ微粒子の表面疎水化処理(第一段階疎水化工程)((B)工程)−
この混合媒体分散液に室温でメチルトリメトキシシラン12g(0.088モル)を0.5時間かけて滴下した後、50℃に加熱して1時間反応させ、シリカ微粒子表面を疎水化処理することにより、疎水性球状シリカ微粒子混合媒体分散液を得た。
-Surface hydrophobization treatment of hydrophilic spherical silica fine particles (first step hydrophobization step) ((B) step)-
To this mixed medium dispersion liquid, 12 g (0.088 mol) of methyltrimethoxysilane was added dropwise at room temperature over 0.5 hours, and then heated to 50 ° C. for 1 hour to hydrophobize the surface of silica fine particles. Thus, a hydrophobic spherical silica fine particle mixed medium dispersion was obtained.

−疎水性球状シリカ微粒子の表面トリオルガノシリル化処理(第二段階疎水化工程)
((C)工程)−
次いで、ガラス製反応器にエステルアダプターと冷却管とを取り付け、前記懸濁液を60〜70℃に加熱してメタノールと水との混合物345gを留去し、その後、メチルイソブチルケトンを添加しながら、メタノールと水とメチルイソブチルケトンとの混合物を同時に、この分散液が115℃になるまで留去した。このときメチルイソブチルケトンの添加量は1,954g、留去物量は1,954gであった。得られたメチルイソブチルケトン分散液に、室温において、ヘキサメチルジシラザン150g(0.93モル)を添加した後、この分散液を110℃に加熱し、3時間反応させることにより、分散液中のシリカ微粒子をトリメチルシリル化した。次いで、この分散液中の溶媒を80℃、減圧下(6,650Pa)で留去することにより、疎水性球状シリカ系微粒子466gを得た。
-Surface triorganosilylation treatment of hydrophobic spherical silica particles (second stage hydrophobization process)
(Step (C))-
Next, an ester adapter and a condenser tube are attached to a glass reactor, and the suspension is heated to 60 to 70 ° C. to distill off 345 g of a mixture of methanol and water, and then methyl isobutyl ketone is added. A mixture of methanol, water and methyl isobutyl ketone was distilled off simultaneously until the dispersion reached 115 ° C. At this time, the amount of methyl isobutyl ketone added was 1,954 g, and the amount of distillate was 1,954 g. After adding 150 g (0.93 mol) of hexamethyldisilazane to the obtained methyl isobutyl ketone dispersion at room temperature, this dispersion is heated to 110 ° C. and allowed to react for 3 hours. Silica fine particles were trimethylsilylated. Next, the solvent in this dispersion was distilled off at 80 ° C. under reduced pressure (6,650 Pa) to obtain 466 g of hydrophobic spherical silica-based fine particles.

上記の工程により得られた最終的な疎水性球状シリカ微粒子について、下記の測定方法1〜4に従って、炭素含量、アルコキシ基含量、粒子径、及び形状の測定を行った。なお、得られた結果を表1に示す。   The final hydrophobic spherical silica fine particles obtained by the above steps were measured for carbon content, alkoxy group content, particle size, and shape according to the following measurement methods 1 to 4. The obtained results are shown in Table 1.

・測定方法1:疎水性球状シリカ微粒子の炭素含量
測定は燃焼法により堀場製作所製 EMIA−110を用いて行った。試料0.1gを磁性ボードに精評し、約1,200℃で燃焼し、CO2量より炭素量を換算し求めた。
Measurement method 1: Carbon content of hydrophobic spherical silica fine particles The measurement was performed using EMIA-110 manufactured by Horiba, Ltd. by a combustion method. A sample of 0.1 g was carefully evaluated as a magnetic board, burned at about 1,200 ° C., and the amount of carbon was calculated from the amount of CO 2 .

・測定方法2:疎水性球状シリカ微粒子のアルコキシ基含量
シリカ微粒子5gに1N水酸化カリウム−イソプロピルアルコール溶液10gを添加し、70℃で1時間加熱してシリカの分解を行い、その後、液体分を蒸留して取った。この留分をガスクロマトグラフ分析し含有されるメタノール量を定量することで、シリカ微粒子に含有されるアルコキシ基量を定量した。
Measurement method 2: Alkoxy group content of hydrophobic spherical silica fine particles 10 g of 1N potassium hydroxide-isopropyl alcohol solution is added to 5 g of silica fine particles, heated at 70 ° C. for 1 hour to decompose the silica, and then the liquid content is reduced. Taken by distillation. The fraction of the alkoxy groups contained in the silica fine particles was quantified by gas chromatographic analysis of this fraction and quantifying the amount of methanol contained.

・測定方法3:疎水性球状シリカ微粒子の粒子径測定
メタノールにシリカ微粒子を、0.5質量%となるように添加し、10分間超音波にかけることにより、該微粒子を分散させた。このように処理した微粒子の粒度分布を、レーザー回折散乱式粒度分布測定装置(堀場製作所製、商品名:LA910)により測定し、その体積基準メジアン径を粒子径とした。なお、メジアン径とは粒径分布を累積分布として表したときの累積50%に相当する粒子径である。
Measurement method 3: Measurement of particle diameter of hydrophobic spherical silica fine particles Silica fine particles were added to methanol so as to be 0.5% by mass and subjected to ultrasonic waves for 10 minutes to disperse the fine particles. The particle size distribution of the fine particles treated in this way was measured with a laser diffraction / scattering particle size distribution analyzer (trade name: LA910, manufactured by Horiba, Ltd.), and the volume-based median diameter was defined as the particle size. The median diameter is a particle diameter corresponding to 50% cumulative when the particle size distribution is expressed as a cumulative distribution.

・測定方法4:疎水性球状シリカ微粒子の形状測定
電子顕微鏡(日立製作所製、商品名:S−4700型、倍率:10万倍)によって観察を行い、形状を確認した。「球状」であるとは、前述したように、粒子を二次元に投影したときの円形度が0.8〜1の範囲にあることを意味する。
Measurement method 4: Shape measurement of hydrophobic spherical silica fine particles The shape was confirmed by observation with an electron microscope (manufactured by Hitachi, trade name: S-4700 type, magnification: 100,000 times). “Spherical” means that the degree of circularity when the particles are projected two-dimensionally is in the range of 0.8 to 1, as described above.

[外添剤混合トナーの作製]
ガラス転移温度Tg60℃、軟化点110℃であるポリエステル樹脂96質量部と、着色剤(住友カラー(株)製、商品名:カーミン6BC)4質量部とを、溶融混練、粉砕及び分級することにより、平均粒径7μmのトナーを得た。このトナー40gに上記表面処理球状疎水性シリカ微粒子1gをサンプルミルにより混合し、外添剤混合トナーとした。
[Preparation of external additive mixed toner]
96 parts by mass of a polyester resin having a glass transition temperature T g of 60 ° C. and a softening point of 110 ° C. and 4 parts by mass of a colorant (manufactured by Sumitomo Color Co., Ltd., trade name: Carmine 6BC) are melt-kneaded, pulverized and classified. As a result, a toner having an average particle diameter of 7 μm was obtained. 40 g of this toner was mixed with 1 g of the above surface-treated spherical hydrophobic silica fine particles by a sample mill to obtain an external additive mixed toner.

[現像剤の調製]
上で調製した外添剤混合トナー5質量部と、平均粒径85μmのフェライトコアにパーフルオロアルキルアクリレート樹脂及びアクリル樹脂をポリブレンドしたポリマーでコーティングしたキャリア95質量部とを混合して、現像剤を調製した。この現像剤を用いて、下記の測定方法5〜7に従って、トナー帯電量及び感光体へのトナー付着、トナー流動性について測定した。なお、得られた結果を表1に示す。
[Developer preparation]
5 parts by weight of the external additive mixed toner prepared above and 95 parts by weight of a carrier coated with a polymer obtained by polyblending a perfluoroalkyl acrylate resin and an acrylic resin on a ferrite core having an average particle diameter of 85 μm are mixed together to prepare a developer. Was prepared. Using this developer, the toner charge amount, toner adhesion to the photoreceptor, and toner fluidity were measured according to the following measurement methods 5 to 7. The obtained results are shown in Table 1.

・測定方法5:トナー帯電量の測定
上記現像剤を高温高湿(30℃、90%RH)又は低温低湿(10℃、15%RH)の条件下に1日放置した後、振とう機により30秒間混合して、摩擦帯電を行った。それぞれの試料の帯電量を、同一条件下で、ブローオフ粉体帯電量測定装置(東芝ケミカル(株)製、商品名:TB−200型)を用いて測定した。上記2つの条件におけるトナー帯電量の差を求めることにより、該トナーの環境依存性について評価した。
Measurement method 5: Measurement of toner charge amount The developer is left for one day under conditions of high temperature and high humidity (30 ° C., 90% RH) or low temperature and low humidity (10 ° C., 15% RH), and then shaken. The mixture was mixed for 30 seconds to perform tribocharging. The charge amount of each sample was measured using a blow-off powder charge amount measuring device (trade name: TB-200, manufactured by Toshiba Chemical Corporation) under the same conditions. By determining the difference in toner charge amount under the above two conditions, the environmental dependency of the toner was evaluated.

・測定方法6:感光体へのトナー付着測定
上記現像剤を有機感光体が備えられた二成分改造現像機に入れ、30,000枚のプリントテストを行った。該感光体へのトナーの付着不良は、全ベタ画像での白抜けとして感知できる。白抜けの程度を次の基準で評価した。
白抜け10個以上/cm2:多い
白抜け1〜9個/cm2:少ない
白抜け0個/cm2:なし
Measurement method 6: Measurement of toner adhesion to the photoconductor The above developer was placed in a two-component modified developer equipped with an organic photoconductor, and a 30,000 print test was performed. The poor adhesion of toner to the photoreceptor can be detected as white spots in all solid images. The degree of white spots was evaluated according to the following criteria.
White spots more than 10 / cm 2: many white spots 1 to 9 / cm 2: little white spots 0 / cm 2: None

・測定方法7:トナー流動性の測定
トナーの流動性は、粉体流動性分析装置FT−4(シスメックス(株)製)を用いて測定した。この装置の測定原理を説明する。垂直に置かれた筒状容器に粉体を充填し、該粉体中を垂直な軸棒の先端に設けられた二枚の回転翼(ブレード)を回転させながら一定の距離(高さH1からH2まで)下降させた。このときに粉体から受ける力をトルク成分と荷重成分とに分けて測定することにより、ブレードがH1からH2まで下降するのに伴うそれぞれの仕事量(エネルギー)を求め、次いで両者のトータルエネルギー量を求めた。こうして測定されたトータルエネルギー量が小さいほど粉体の流動性が良好であることを意味するので、粉体流動性の指標として使用した。
・・条件:
容器:試験では、容積120ml、内径80mm、長さ60mmのガラス製円筒型容器を使用した。
ブレード:円筒型容器内の中央に鉛直に装入されるステンレス製の軸棒の先端に水平に対向する形で二枚取り付けられていた。ブレードは、容積120mlの容器の場合は直径48mmのものを使用した。
H1からH2までの長さ:容積120mlの容器の場合は50mm。
・・安定性試験:
上記のようにして、測定容器に充填した粉体を静置した状態から流動させた場合の粉体流動特性をみた。ブレード先端の回転速度を100mm/secの条件とし、トータルエネルギー量を7回連続して測定した。7回目のトータルエネルギー量(最も安定した状態であるので基本流動性エネルギーと称される)を表1に示す。
Measurement method 7: Measurement of toner fluidity The toner fluidity was measured using a powder fluidity analyzer FT-4 (manufactured by Sysmex Corporation). The measurement principle of this apparatus will be described. A cylindrical container placed vertically is filled with powder, and while rotating two rotating blades (blades) provided at the tip of a vertical shaft rod in the powder, a certain distance (from height H1) Down to H2. The force received from the powder at this time is measured separately for the torque component and the load component, so that each work (energy) associated with the blade descending from H1 to H2 is obtained, and then the total energy amount of both Asked. The smaller the total energy measured in this way, the better the fluidity of the powder, so it was used as an index of powder fluidity.
··conditions:
Container: In the test, a glass cylindrical container having a volume of 120 ml, an inner diameter of 80 mm, and a length of 60 mm was used.
Blade: Two blades were attached horizontally facing the tip of a stainless steel shaft rod inserted vertically into the center of the cylindrical container. A blade having a diameter of 48 mm was used in the case of a container having a volume of 120 ml.
Length from H1 to H2: 50 mm for a container with a volume of 120 ml.
..Stability test:
As described above, the powder flow characteristics were observed when the powder filled in the measurement container was allowed to flow from a stationary state. The total energy amount was continuously measured 7 times under the condition that the rotational speed of the blade tip was 100 mm / sec. Table 7 shows the total amount of energy for the seventh time (referred to as basic fluidity energy because it is the most stable state).

[実施例2]
親水性球状シリカ微粒子の合成工程((A)工程)の加水分解温度を35℃に変えて親水性球状シリカ微粒子の混合媒体分散液を得たこと以外は実施例1と同様にして、疎水性球状シリカ微粒子461gを乾燥粉体として得た。この疎水性球状シリカ微粒子を用いて実施例1と同様に測定した。この結果を表1に示す。
[Example 2]
Hydrophobic hydrophobicity was obtained in the same manner as in Example 1 except that the hydrophilic spherical silica fine particle synthesis step (step (A)) was changed to a hydrolysis temperature of 35 ° C. to obtain a mixed medium dispersion of hydrophilic spherical silica fine particles. 461 g of spherical silica fine particles were obtained as a dry powder. Measurement was performed in the same manner as in Example 1 using the hydrophobic spherical silica fine particles. The results are shown in Table 1.

[比較例1]
実施例1における親水性球状シリカ微粒子の合成工程((A)工程)で得られた親水性球状シリカ微粒子の混合媒体分散液を60〜70℃に加熱してメタノール1,132gを留去し、その後、水1,200gを添加して、次いで、更に70〜90℃に加熱しメタノール273gを留去し、親水性球状シリカ微粒子の水性懸濁液(水含有量87.2質量%)を得た。
この水性懸濁液を実施例1と同様に第一段階疎水化工程((B)工程)、第二段階疎水化工程((C)工程)を行い、疎水性球状シリカ微粒子472gを乾燥粉体として得た。この疎水性球状シリカ微粒子を用いて、実施例1と同様に評価した。この結果を表1に示す。
[Comparative Example 1]
The mixed medium dispersion of the hydrophilic spherical silica fine particles obtained in the step of synthesizing the hydrophilic spherical silica fine particles in Example 1 (step (A)) is heated to 60 to 70 ° C. to distill off 1,132 g of methanol. Thereafter, 1,200 g of water was added, and then the mixture was further heated to 70 to 90 ° C. to distill away 273 g of methanol to obtain an aqueous suspension of hydrophilic spherical silica fine particles (water content: 87.2% by mass). It was.
This aqueous suspension was subjected to the first step hydrophobization step ((B) step) and the second step hydrophobization step ((C) step) in the same manner as in Example 1, and 472 g of the hydrophobic spherical silica fine particles were dried into powder. Got as. Evaluation was performed in the same manner as in Example 1 using the hydrophobic spherical silica fine particles. The results are shown in Table 1.

[比較例2]
実施例1における親水性球状シリカ微粒子の合成工程((A)工程)で得られた親水性球状シリカ微粒子の混合媒体分散液に、室温でヘキサメチルジシラザン240gを添加し、120℃に加熱し、3時間反応させることにより、シリカ微粒子をトリメチルシリル化した。次いで、水を120℃、減圧下(6,650Pa)で留去して、疎水性球状シリカ微粒子448gを乾燥粉体として得た。この疎水性球状シリカ微粒子を用いて、実施例1と同様に評価した。この結果を表1に示す。
[Comparative Example 2]
240 g of hexamethyldisilazane was added at room temperature to the mixed medium dispersion of the hydrophilic spherical silica fine particles obtained in the step of synthesizing the hydrophilic spherical silica fine particles (step (A)) in Example 1, and heated to 120 ° C. The silica fine particles were trimethylsilylated by reacting for 3 hours. Subsequently, water was distilled off at 120 ° C. under reduced pressure (6,650 Pa) to obtain 448 g of hydrophobic spherical silica fine particles as a dry powder. Evaluation was performed in the same manner as in Example 1 using the hydrophobic spherical silica fine particles. The results are shown in Table 1.

[比較例3]
比較例1で得られた親水性球状シリカ微粒子の水性懸濁液(水含有量87.3質量%)に、室温でヘキサメチルジシラザン240gを添加し、120℃に加熱し、3時間反応させることにより、シリカ微粒子をトリメチルシリル化した。次いで、メタノールと水との混合物を80℃、減圧下(6,650Pa)で留去して、疎水性球状シリカ微粒子463gを乾燥粉体として得た。この疎水性球状シリカ微粒子を用いて、実施例1と同様に評価した。この結果を表1に示す。
[Comparative Example 3]
240 g of hexamethyldisilazane is added at room temperature to the aqueous suspension of hydrophilic spherical silica fine particles obtained in Comparative Example 1 (water content: 87.3% by mass), heated to 120 ° C., and reacted for 3 hours. As a result, the silica fine particles were trimethylsilylated. Subsequently, the mixture of methanol and water was distilled off at 80 ° C. under reduced pressure (6,650 Pa) to obtain 463 g of hydrophobic spherical silica fine particles as a dry powder. Evaluation was performed in the same manner as in Example 1 using the hydrophobic spherical silica fine particles. The results are shown in Table 1.

[比較例4]
実施例1において、第一段階疎水化工程であるメチルトリメトキシシランを用いたシリカ微粒子の表面疎水化処理((B)工程)を省略し、親水性球状シリカ微粒子の合成工程((A)工程)で得られた親水性球状シリカ微粒子の混合媒体分散液(水含有量16.6質量%)を直接第二段階疎水化工程((C)工程)に供し、メチルイソブチルケトン1,440gを添加した後に、80〜110℃に加熱し、メタノールと水との混合物800gとを6時間かけて留去したところ、親水性球状シリカ微粒子の分散体が凝固した。
[Comparative Example 4]
In Example 1, the surface hydrophobization treatment (step (B)) of silica fine particles using methyltrimethoxysilane which is the first step hydrophobization step is omitted, and the step of synthesizing hydrophilic spherical silica fine particles (step (A)) ) To the second-stage hydrophobizing step (step (C)) and adding 1,440 g of methyl isobutyl ketone. Then, the mixture was heated to 80 to 110 ° C. and 800 g of a mixture of methanol and water was distilled off over 6 hours. As a result, the dispersion of hydrophilic spherical silica fine particles coagulated.

[比較例5]
実施例1において、第一段階疎水化工程であるメチルトリメトキシシランを用いたシリカ微粒子の表面疎水化処理((B)工程)を省略し、比較例1で得られた親水性球状シリカ微粒子の水性懸濁液(水含有量87.0質量%)を直接第二段階疎水化工程((C)工程)に供し、メチルイソブチルケトン1,440gを添加した後に、80〜110℃に加熱し、メタノールと水との混合物820gを6時間かけて留去したところ、親水性球状シリカ微粒子の分散体が凝固した。
[Comparative Example 5]
In Example 1, the surface hydrophobization treatment (step (B)) of silica fine particles using methyltrimethoxysilane, which is the first step hydrophobization step, was omitted, and the hydrophilic spherical silica fine particles obtained in Comparative Example 1 were omitted. The aqueous suspension (water content 87.0% by mass) was directly subjected to the second-stage hydrophobization step (step (C)), 1,440 g of methyl isobutyl ketone was added, and then heated to 80 to 110 ° C., When 820 g of a mixture of methanol and water was distilled off over 6 hours, a dispersion of hydrophilic spherical silica fine particles coagulated.

[比較例6]
攪拌機と温度計とを備えた0.3リットルのガラス製反応器に爆燃法シリカ(商品名:SO−C1、アドマテクス社製)100gを仕込み、純水1gを攪拌下で添加し、密閉後、更に60℃で10時間攪拌した。次いで、室温まで冷却した後、ヘキサメチルジシラザン2gを攪拌下で添加し、密閉後、更に24時間攪拌した。120℃に昇温し、窒素ガスを通気しながら残存原料及び生成したアンモニアを除去し、疎水性球状シリカ微粒子100gを得た。この疎水性球状シリカ微粒子を用いて、実施例1と同様に評価した。この結果を表2に示す。
[Comparative Example 6]
A 0.3-liter glass reactor equipped with a stirrer and a thermometer was charged with 100 g of deflagration silica (trade name: SO-C1, manufactured by Admatechs), 1 g of pure water was added under stirring, and after sealing, Furthermore, it stirred at 60 degreeC for 10 hours. Next, after cooling to room temperature, 2 g of hexamethyldisilazane was added with stirring, and after sealing, the mixture was further stirred for 24 hours. The temperature was raised to 120 ° C., and the remaining raw material and generated ammonia were removed while ventilating nitrogen gas to obtain 100 g of hydrophobic spherical silica fine particles. Evaluation was performed in the same manner as in Example 1 using the hydrophobic spherical silica fine particles. The results are shown in Table 2.

[比較例7]
実施例1で調製した疎水性球状シリカ微粒子の代わりに、ヒュームドシリカを疎水化処理した疎水性シリカ(商品名:アエロジルR972、日本アエロジル(株)製、一次粒子の凝集体、ジメチルジクロロシラン処理品)を用いて、実施例1と同様に評価した。この結果を表2に示す。
[Comparative Example 7]
Hydrophobic silica obtained by hydrophobizing fumed silica (trade name: Aerosil R972, manufactured by Nippon Aerosil Co., Ltd., primary particle aggregate, dimethyldichlorosilane treatment instead of the hydrophobic spherical silica fine particles prepared in Example 1 Product) was evaluated in the same manner as in Example 1. The results are shown in Table 2.

[比較例8]
実施例1で調製した疎水性球状シリカ微粒子の代わりに、沈降法シリカ表面を疎水化処理した疎水性シリカ(商品名:ニプシルSS50F、日本シリカ(株)製、一次粒子の凝集体)を用いて、実施例1と同様に評価した。この結果を表2に示す。
[Comparative Example 8]
Instead of the hydrophobic spherical silica fine particles prepared in Example 1, hydrophobic silica (trade name: Nipsil SS50F, manufactured by Nippon Silica Co., Ltd., primary particle aggregate) whose surface was subjected to a hydrophobization treatment was used. Evaluation was conducted in the same manner as in Example 1. The results are shown in Table 2.

Figure 2011032114
Figure 2011032114

Figure 2011032114
Figure 2011032114

<評価>
実施例1及び実施例2では、本発明の条件を満たす疎水性球状シリカ微粒子が得られたため、目的とする諸特性を有するトナー外添剤が得られた。
比較例1では、工程(A)において、親水性球状シリカ微粒子の水性懸濁液中の水含有量が高いために、得られる疎水性球状シリカ微粒子は、炭素含量の点で本発明の条件を満たさず、その結果、該微粒子からなるトナー外添剤は、良好な流動性及び環境状態に依存しない帯電性をトナーに付与することができなかった。
比較例2では、工程(A)で得られた親水性球状シリカ微粒子を本発明の方法で必須である第一段階の疎水化処理を行わず、低い水含有量の水懸濁液中でトリメチルシリル化したものである。該微粒子からなるトナー外添剤は、良好な流動性及び環境状態に依存しない帯電性をトナーに付与することができず、更に、感光体へのトナー付着等が生じるものであった。
比較例3では、工程(A)で得られた親水性球状シリカ微粒子を高い水含有量の水懸濁液中で、本発明の方法で必須である第一段階の疎水化処理に該当しないトリメチルシリル化処理をしたものである。得られた疎水性球状シリカ微粒子は、炭素含量の点で本発明の条件を満たさなかった。その結果、該微粒子からなるトナー外添剤は、良好な流動性をトナーに付与することができず、更に、感光体へのトナー付着等が生じるものであった。
比較例4では、本発明の方法で必須である第一段階の疎水化処理を行わず、第二段階の疎水化処理を直接行った例である。親水性球状シリカ微粒子の分散体が該疎水化処理中に凝固した。
比較例5では、工程(B)であるメチルトリメトキシシランを用いたシリカ微粒子の表面疎水化処理工程を省略し、比較例1で得られる親水性球状シリカ微粒子の水性懸濁液(高い含水量)を直接工程(C)に供しものであるが、親水性球状シリカ微粒子の分散体が工程(C)中に凝固した。
比較例6では、爆燃法のシリカをトリメチルシリル化したものであるが、得られる疎水性球状シリカ微粒子は、ゾルゲル法シリカでない点及びR4SiO3/2単位で疎水化処理されていない点で本発明の条件を満たさず、その結果、該微粒子からなるトナー外添剤は、良好な流動性及び環境状態に依存しない帯電性をトナーに付与することができず、更に、感光体へのトナー付着等が生じるものであった。
比較例7及び8では、それぞれ、ヒュームドシリカ、沈降法シリカを疎水化処理したものであるが、これらの疎水性シリカ微粒子は、凝集したため不定形となった点、ゾルゲル法シリカでない点及びR4SiO3/2単位で疎水化処理されていない点で本発明の条件を満たさず、その結果、該微粒子からなるトナー外添剤は、良好な流動性及び環境状態に依存しない帯電性をトナーに付与することができず、更に、感光体へのトナー付着等が生じるものであった。
<Evaluation>
In Examples 1 and 2, hydrophobic spherical silica fine particles satisfying the conditions of the present invention were obtained, and thus a toner external additive having desired characteristics was obtained.
In Comparative Example 1, since the water content in the aqueous suspension of hydrophilic spherical silica fine particles is high in the step (A), the obtained hydrophobic spherical silica fine particles satisfy the conditions of the present invention in terms of carbon content. As a result, the toner external additive composed of the fine particles could not impart good fluidity and chargeability independent of environmental conditions to the toner.
In Comparative Example 2, the hydrophilic spherical silica fine particles obtained in the step (A) were not subjected to the first-stage hydrophobization treatment essential in the method of the present invention, and trimethylsilyl in an aqueous suspension having a low water content. It has become. The toner external additive composed of the fine particles cannot impart good fluidity and chargeability independent of environmental conditions to the toner, and further causes toner adhesion to the photoreceptor.
In Comparative Example 3, trimethylsilyl which does not correspond to the first-stage hydrophobization treatment, which is essential in the method of the present invention, in the water suspension containing the hydrophilic spherical silica fine particles obtained in the step (A). It has been processed. The obtained hydrophobic spherical silica fine particles did not satisfy the conditions of the present invention in terms of carbon content. As a result, the toner external additive composed of the fine particles cannot impart good fluidity to the toner, and further causes toner adhesion to the photoreceptor.
Comparative Example 4 is an example in which the first-stage hydrophobic treatment, which is essential in the method of the present invention, is not performed, and the second-stage hydrophobic treatment is directly performed. A dispersion of hydrophilic spherical silica fine particles coagulated during the hydrophobic treatment.
In Comparative Example 5, the surface hydrophobization treatment step of silica fine particles using methyltrimethoxysilane as the step (B) is omitted, and an aqueous suspension (high water content) of hydrophilic spherical silica fine particles obtained in Comparative Example 1 is used. ) Directly subjected to step (C), but the dispersion of hydrophilic spherical silica fine particles coagulated during step (C).
In Comparative Example 6, deflagration method silica was trimethylsilylated, but the obtained hydrophobic spherical silica fine particles were not sol-gel method silica and were not hydrophobized with R 4 SiO 3/2 units. The toner external additive composed of the fine particles does not satisfy the conditions of the invention, and as a result, it cannot impart good fluidity and chargeability independent of environmental conditions to the toner, and furthermore, the toner adheres to the photoreceptor. Etc. occurred.
In Comparative Examples 7 and 8, respectively, fumed silica and precipitated silica were hydrophobized, but these hydrophobic silica fine particles were agglomerated due to aggregation, were not sol-gel silica, and R 4 The toner external additive comprising fine particles does not satisfy the conditions of the present invention in that it is not hydrophobized with SiO 3/2 units. As a result, the toner external additive comprising the fine particles has good fluidity and chargeability independent of environmental conditions. In addition, toner adheres to the photosensitive member.

Claims (8)

下記一般式(1):
Si(OR14 (1)
(式中、R1は同一又は異なり、炭素原子数1〜6の1価炭化水素基である。)
で示されるテトラヒドロカルビルオキシシラン化合物及びその部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を加水分解及び縮合することによって得られたSiO2単位からなる親水性球状シリカ微粒子の表面にR4SiO3/2単位(式中、R4は置換又は非置換の炭素原子数1〜20の1価炭化水素基である。)を導入し、更にR6 3SiO1/2単位(式中、R6は同一又は異なり、置換又は非置換の炭素原子数1〜20の1価炭化水素基である。)を導入する疎水化処理により得られた疎水性球状シリカ微粒子であって、炭素含量が2〜5質量%であり、ヒドロカルビルオキシ基含量が0.3〜5質量%であり、粒子径が0.01〜5μmであることを特徴とする疎水性球状シリカ微粒子。
The following general formula (1):
Si (OR 1 ) 4 (1)
(In the formula, R 1 are identical or different, is a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
Surface of hydrophilic spherical silica fine particles comprising SiO 2 units obtained by hydrolyzing and condensing at least one compound selected from the group consisting of tetrahydrocarbyloxysilane compounds and partial hydrolysis-condensation products thereof R 4 SiO 3/2 unit (wherein R 4 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms) is further introduced into R 6 3 SiO 1/2 unit ( In which R 6 is the same or different and is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.) Hydrophobic spherical silica fine particles having a carbon content of 2 to 5% by mass, a hydrocarbyloxy group content of 0.3 to 5% by mass, and a particle size of 0.01 to 5 μm.
(A)下記一般式(1):
Si(OR14 (1)
(式中、R1は同一又は異なり、炭素原子数1〜6の1価炭化水素基である。)
で示される4官能性シラン化合物及びその部分加水分解縮合生成物からなる群から選ばれる少なくとも1種の化合物を、塩基性物質の存在下で親水性有機溶媒と水との混合媒体中で加水分解、縮合して、親水性球状シリカ微粒子を生成させ、水含有量が20質量%以下である親水性球状シリカ微粒子混合媒体分散液を得る工程と、
(B)前記親水性球状シリカ微粒子混合媒体分散液中の親水性球状シリカ微粒子の表面にR4SiO3/2単位(式中、R4は置換又は非置換の炭素原子数1〜20の1価炭化水素基である。)を導入し、第一次疎水性球状シリカ微粒子を得る工程と、
(C)得られた第一次疎水性球状シリカ微粒子の表面にR6 3SiO1/2単位(式中、R6は同一又は異なり、置換又は非置換の炭素原子数1〜6の1価炭化水素基である。)を導入して第二次疎水性シリカ微粒子を得る工程と、
を有する請求項1記載の疎水性球状シリカ微粒子の製造方法。
(A) The following general formula (1):
Si (OR 1 ) 4 (1)
(In the formula, R 1 are identical or different, is a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
Hydrolysis of at least one compound selected from the group consisting of a tetrafunctional silane compound and a partial hydrolysis-condensation product thereof in a mixed medium of a hydrophilic organic solvent and water in the presence of a basic substance And condensing to produce hydrophilic spherical silica fine particles to obtain a hydrophilic spherical silica fine particle mixed medium dispersion having a water content of 20% by mass or less;
(B) R 4 SiO 3/2 units on the surface of the hydrophilic spherical silica fine particles in the hydrophilic spherical silica fine particle mixed medium dispersion (wherein R 4 is a substituted or unsubstituted 1 to 20 carbon atom number 1). A first-order hydrophobic spherical silica fine particle,
(C) R 6 3 SiO 1/2 unit (wherein R 6 is the same or different and is substituted or unsubstituted monovalent monovalent having 1 to 6 carbon atoms) on the surface of the obtained primary hydrophobic spherical silica fine particles. A hydrocarbon group) to obtain secondary hydrophobic silica fine particles,
The method for producing hydrophobic spherical silica fine particles according to claim 1, comprising:
前記親水性有機溶媒が、下記一般式(2):
3OH (2)
(式中、R3は炭素原子数1〜6の1価炭化水素基である。)
で示されるアルコール溶媒である請求項2記載の製造方法。
The hydrophilic organic solvent is represented by the following general formula (2):
R 3 OH (2)
(In the formula, R 3 is a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
The production method according to claim 2, which is an alcohol solvent represented by the formula:
前記塩基性物質がアンモニアである請求項2又は3記載の製造方法。   The method according to claim 2 or 3, wherein the basic substance is ammonia. 前記(B)工程が、前記親水性球状シリカ微粒子の混合媒体分散液に、下記一般式(3):
4Si(OR53 (3)
(式中、R4は上記と同じであり、R5は同一又は異なり、炭素原子数1〜6の1価炭化水素基である。)
で示される3官能性シラン化合物もしくはその部分加水分解縮合生成物又はこれらの混合物を添加して、前記親水性球状シリカ微粒子の表面を処理し、第一次疎水性球状シリカ微粒子の混合媒体分散液を得ることを含む請求項2乃至4のいずれか1項記載の製造方法。
In the step (B), the hydrophilic spherical silica fine particle mixed medium dispersion is subjected to the following general formula (3):
R 4 Si (OR 5 ) 3 (3)
(In the formula, R 4 is the same as above, and R 5 is the same or different and is a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
A mixed medium dispersion of primary hydrophobic spherical silica fine particles by treating the surface of the hydrophilic spherical silica fine particles by adding a trifunctional silane compound represented by the formula (1) or a partial hydrolysis condensation product thereof or a mixture thereof. The manufacturing method of any one of Claims 2 thru | or 4 including obtaining.
前記(C)工程が、前記第一次疎水性球状シリカ微粒子の混合媒体分散液の分散媒をケトン系溶媒に変換し、第一次疎水性球状シリカ微粒子のケトン系溶媒分散液を得ることと、該第一次疎水性球状シリカ微粒子のケトン系溶媒分散液に下記一般式(4):
6 3SiNHSiR6 3 (4)
(式中、R6は同一又は異なり、置換又は非置換の炭素原子数1〜6の1価炭化水素基である。)
で示されるシラザン化合物、もしくは、下記一般式(5):
6 3SiX (5)
(式中、R6は上記と同じであり、XはOH基又は加水分解性基である。)
で示される1官能性シラン化合物、又はこれらの混合物を添加し、前記第一次疎水性球状シリカ微粒子の表面に残存する反応性基をトリオルガノシリル化することと、を含む請求項2乃至5のいずれか1項記載の製造方法。
The step (C) converts the dispersion medium of the mixed medium dispersion of the primary hydrophobic spherical silica fine particles into a ketone solvent to obtain a ketone solvent dispersion of the primary hydrophobic spherical silica fine particles. In the ketone solvent dispersion of the primary hydrophobic spherical silica fine particles, the following general formula (4):
R 6 3 SiNHSiR 6 3 (4)
(In the formula, R 6 is the same or different and is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms.)
Or a silazane compound represented by the following general formula (5):
R 6 3 SiX (5)
(In the formula, R 6 is the same as above, and X is an OH group or a hydrolyzable group.)
And adding a monofunctional silane compound represented by the formula (1) or a mixture thereof to triorganosilylate reactive groups remaining on the surface of the primary hydrophobic spherical silica fine particles. The manufacturing method of any one of these.
前記ケトン系溶媒が、メチルイソブチルケトンである請求項6記載の製造方法。   The production method according to claim 6, wherein the ketone solvent is methyl isobutyl ketone. 請求項1に記載の疎水性球状シリカ微粒子からなる静電荷像現像用トナー外添剤。   A toner external additive for developing electrostatic images comprising the hydrophobic spherical silica fine particles according to claim 1.
JP2009177905A 2009-07-30 2009-07-30 Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same Pending JP2011032114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009177905A JP2011032114A (en) 2009-07-30 2009-07-30 Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009177905A JP2011032114A (en) 2009-07-30 2009-07-30 Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same

Publications (1)

Publication Number Publication Date
JP2011032114A true JP2011032114A (en) 2011-02-17

Family

ID=43761564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177905A Pending JP2011032114A (en) 2009-07-30 2009-07-30 Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same

Country Status (1)

Country Link
JP (1) JP2011032114A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092692A (en) * 2011-10-26 2013-05-16 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2013163622A (en) * 2012-02-13 2013-08-22 Shin-Etsu Chemical Co Ltd Method for producing associated silica
JP2013195621A (en) * 2012-03-19 2013-09-30 Ricoh Co Ltd Toner for electrostatic charge image development, two-component developer, and image forming apparatus
JP2014137529A (en) * 2013-01-18 2014-07-28 Shin Etsu Chem Co Ltd Method for manufacturing silica based fine particle toner external additive for electrostatic charge development having high dispersibility and low cohesiveness
JP2014136670A (en) * 2013-01-18 2014-07-28 Shin Etsu Chem Co Ltd Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP2014162678A (en) * 2013-02-25 2014-09-08 Fuji Xerox Co Ltd Sol-gel silica particles and method of producing the same
CN104282936A (en) * 2013-07-05 2015-01-14 信越化学工业株式会社 Nonaqueous electrolyte secondary battery
JP2015059054A (en) * 2013-09-18 2015-03-30 信越化学工業株式会社 Surface organic resin-coated hydrophobic spherical silica fine particle, production method of the same, and toner external additive for electrostatic charge image development using the same
JP2020504070A (en) * 2016-12-31 2020-02-06 ティリウム・カンパニー・リミテッド Method for producing micron-sized spherical silica airgel
WO2022181018A1 (en) * 2021-02-24 2022-09-01 信越化学工業株式会社 Surface-treated sol-gel silica particle manufacturing method, surface-treated sol-gel silica particles, and toner external additive for electrostatic charge image development
CN115611286A (en) * 2021-07-16 2023-01-17 万华化学集团电子材料有限公司 Preparation method of peanut-shaped ultra-high-purity silica sol, ultra-high-purity silica sol and application of ultra-high-purity silica sol
CN115611287A (en) * 2021-07-16 2023-01-17 万华化学集团电子材料有限公司 Preparation method of ultra-high-purity silica sol with adjustable association degree, ultra-high-purity silica sol and application of ultra-high-purity silica sol

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273757A (en) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273757A (en) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092692A (en) * 2011-10-26 2013-05-16 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2013163622A (en) * 2012-02-13 2013-08-22 Shin-Etsu Chemical Co Ltd Method for producing associated silica
JP2013195621A (en) * 2012-03-19 2013-09-30 Ricoh Co Ltd Toner for electrostatic charge image development, two-component developer, and image forming apparatus
JP2014137529A (en) * 2013-01-18 2014-07-28 Shin Etsu Chem Co Ltd Method for manufacturing silica based fine particle toner external additive for electrostatic charge development having high dispersibility and low cohesiveness
JP2014136670A (en) * 2013-01-18 2014-07-28 Shin Etsu Chem Co Ltd Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP2014162678A (en) * 2013-02-25 2014-09-08 Fuji Xerox Co Ltd Sol-gel silica particles and method of producing the same
US10153493B2 (en) * 2013-07-05 2018-12-11 Shin-Etsu Chemical Co., Ltd. Nonaqueous electrolyte secondary battery
CN104282936A (en) * 2013-07-05 2015-01-14 信越化学工业株式会社 Nonaqueous electrolyte secondary battery
JP2015015171A (en) * 2013-07-05 2015-01-22 信越化学工業株式会社 Nonaqueous electrolyte secondary battery
US20170170482A1 (en) * 2013-07-05 2017-06-15 Shin-Etsu Chemical Co., Ltd. Nonaqueous electrolyte secondary battery
CN104282936B (en) * 2013-07-05 2018-09-07 信越化学工业株式会社 Non-aqueous electrolyte secondary battery
JP2015059054A (en) * 2013-09-18 2015-03-30 信越化学工業株式会社 Surface organic resin-coated hydrophobic spherical silica fine particle, production method of the same, and toner external additive for electrostatic charge image development using the same
JP2020504070A (en) * 2016-12-31 2020-02-06 ティリウム・カンパニー・リミテッド Method for producing micron-sized spherical silica airgel
WO2022181018A1 (en) * 2021-02-24 2022-09-01 信越化学工業株式会社 Surface-treated sol-gel silica particle manufacturing method, surface-treated sol-gel silica particles, and toner external additive for electrostatic charge image development
CN115611286A (en) * 2021-07-16 2023-01-17 万华化学集团电子材料有限公司 Preparation method of peanut-shaped ultra-high-purity silica sol, ultra-high-purity silica sol and application of ultra-high-purity silica sol
CN115611287A (en) * 2021-07-16 2023-01-17 万华化学集团电子材料有限公司 Preparation method of ultra-high-purity silica sol with adjustable association degree, ultra-high-purity silica sol and application of ultra-high-purity silica sol

Similar Documents

Publication Publication Date Title
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP4579265B2 (en) Hydrophobic spherical silica fine particles having high fluidity, method for producing the same, toner external additive for developing electrostatic image using the same, and organic resin composition containing the same
JP2011032114A (en) Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
JP2008174430A (en) Hydrophobic spherical silica fine particle, its manufacturing method and toner external additive for electrostatic charge image development
JP3988936B2 (en) Silane surface-treated spherical silica titania fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP5631699B2 (en) Method for producing irregular shaped silica fine particles and toner external additive for developing electrostatic image
JP3927741B2 (en) Toner external additive for electrostatic image development
JP2011185998A (en) Electrostatic image-developing toner and electric charge-controlling particle for external addition
JP5439308B2 (en) Method for producing associated silica fine particles
JP2013166667A (en) Fluidizing agent for power and method for producing the same
JP2014114175A (en) Surface-hydrophobized spherical silica fine particle, method for producing the same, and toner external additive, obtained by using the particle, for developing electrostatic charge image
JP5655800B2 (en) Method for producing associated silica
JP6962296B2 (en) Positively charged hydrophobic spherical silica particles, a method for producing the same, and a positively charged toner composition using the same.
JP4060241B2 (en) Hydrophobic spherical silica-based fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
TWI804672B (en) Positively charged hydrophobic spherical silica particles, method for producing same, and positively charged toner composition using the positively charged hydrophobic spherical silica particles
JP4347201B2 (en) Toner external additive and toner for developing electrostatic image
JP6008137B2 (en) Surface organic resin-coated hydrophobic spherical silica fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP3767788B2 (en) Toner external additive for electrostatic image development
WO2022181018A1 (en) Surface-treated sol-gel silica particle manufacturing method, surface-treated sol-gel silica particles, and toner external additive for electrostatic charge image development
JP4628760B2 (en) Spherical hydrophobic polydiorganosiloxane-containing silica fine particles, toner additive for developing electrostatic image and toner
JP2014136670A (en) Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP3856744B2 (en) Toner external additive for electrostatic image development
JP4611006B2 (en) Spherical silica fine particles, toner external additive for developing electrostatic image and toner
JP3930236B2 (en) Toner external additive for electrostatic image development
JP5915550B2 (en) Method for producing silica-based fine particle electrostatic charge developing toner external additive having high dispersibility and low cohesiveness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312