JP2010085837A - Hydrophobic silica fine particle and electrophotographic toner composition - Google Patents

Hydrophobic silica fine particle and electrophotographic toner composition Download PDF

Info

Publication number
JP2010085837A
JP2010085837A JP2008256383A JP2008256383A JP2010085837A JP 2010085837 A JP2010085837 A JP 2010085837A JP 2008256383 A JP2008256383 A JP 2008256383A JP 2008256383 A JP2008256383 A JP 2008256383A JP 2010085837 A JP2010085837 A JP 2010085837A
Authority
JP
Japan
Prior art keywords
silica fine
fine particles
toner
particles
hydrophobic silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008256383A
Other languages
Japanese (ja)
Other versions
JP5504600B2 (en
Inventor
Masaatsu Kanae
正敦 金枝
Akira Inoue
晃 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aerosil Co Ltd
Original Assignee
Nippon Aerosil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aerosil Co Ltd filed Critical Nippon Aerosil Co Ltd
Priority to JP2008256383A priority Critical patent/JP5504600B2/en
Priority to EP09817575.5A priority patent/EP2357157B1/en
Priority to US12/998,238 priority patent/US20110177446A1/en
Priority to PCT/JP2009/063494 priority patent/WO2010038538A1/en
Priority to ES09817575T priority patent/ES2784739T3/en
Publication of JP2010085837A publication Critical patent/JP2010085837A/en
Application granted granted Critical
Publication of JP5504600B2 publication Critical patent/JP5504600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide silica fine particles which have small primary particle diameters and are useful as an external additive for a toner, wherein: the silica fine particles do not contain coarse agglomerate particles, which are causative of lowering in the dispersibility in a toner and/or in the fluidity of a toner, and rarely cause the separation from a toner; and the silica fine particles are therefore excellent in the uniform dispersibility in a toner and in the effect of imparting fluidity to a toner, and can inhibit the occurrence of white spots on a printed image. <P>SOLUTION: Hydrophobic silica fine particles obtained by subjecting hydrophilic silica fine particles which are prepared by a gas-phase process and have a mean primary particle diameter of 20 to 100 nm to hydrophobization with either hexamethyldisilazane or a polysiloxane, wherein the hydrophobic silica fine particles are characterized in that the content of agglomerate particles having volume-based particle diameters of 1.5 μm or above is less than a prescribed value 8% as determined when the volume-based diameter of the particles is measured by the laser diffraction method. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、粉体塗料や電子写真用トナー、化粧料等の粉体系材料において、流動性改善、固結防止、帯電調整等の目的で添加される疎水性シリカ微粒子と、この疎水性シリカ微粒子を用いた電子写真用トナー組成物に関する。   The present invention relates to hydrophobic silica fine particles which are added for the purpose of improving fluidity, preventing caking, adjusting the charge, etc. in powder materials such as powder paints, electrophotographic toners and cosmetics, and the hydrophobic silica fine particles The present invention relates to a toner composition for electrophotography using

微細なシリカ、チタニア、アルミナなどの無機酸化物粉末の表面を有機物によって処理して帯電性や疎水性を改善したいわゆるシリカ微粒子は、複写機、レーザープリンタ、普通紙ファクシミリ等を含む電子写真において、トナー流動性改善剤、或いは帯電性調整剤として広く用いられている。   The so-called silica fine particles, which have improved the chargeability and hydrophobicity by treating the surface of inorganic oxide powders such as fine silica, titania, and alumina with organic substances, are used in electrophotography including copying machines, laser printers, plain paper facsimiles, etc. Widely used as a toner fluidity improver or a charge control agent.

従来、このような用途に用いられる無機酸化物粉末のうち、気相法シリカ(乾式法で製造されたシリカ)は、一次粒子径が小さく、その表面処理による帯電性の制御と疎水化処理で、トナー外添剤として優れた機能を奏することが期待され、最も一般的に使用されている(例えば特許文献1〜3)。   Conventionally, among inorganic oxide powders used in such applications, gas phase method silica (silica produced by a dry method) has a small primary particle size, and it is possible to control chargeability by surface treatment and hydrophobization treatment. Therefore, it is expected to exhibit an excellent function as a toner external additive, and is most commonly used (for example, Patent Documents 1 to 3).

しかし、気相法シリカは一次粒子径が小さいものの、一次粒子径が小さいゆえに、凝集し易く、凝集粒子を形成したものが多く、その凝集粒子径は、通常10μmから200μm以上にもなる。   However, although vapor phase silica has a small primary particle size, it is easy to aggregate because of its small primary particle size, and many agglomerated particles are formed, and the aggregated particle size is usually 10 μm to 200 μm or more.

このような凝集粒子は、トナーへの分散工程において強い摩擦力を受けてほぐされながらトナー間に分散するが、強い凝集力で大きな凝集体を形成しているものは、トナーへの分散性も悪く、このような凝集粒子がトナー中に混入することで、流動性を低下させるほか、トナーからも容易に脱落し、紙面上で白点となって現れる異常画像の問題を引き起こす。   Such agglomerated particles are dispersed between the toners while being loosened by receiving a strong frictional force in the dispersion process to the toner. Unfortunately, when such agglomerated particles are mixed in the toner, the fluidity is lowered, and the toner easily drops off from the toner and causes a problem of an abnormal image appearing as a white spot on the paper surface.

なお、特許文献4には、「珪素化合物の燃焼によって得られるシリカ微粒子であって、平均粒子径が0.05μm以上0.1μm未満の範囲であり、且つ、ロジン−ラムラー線図で表示した粒度分布の勾配nが2以上であり、またレーザ回折・散乱法による測定で1μm以上の溶融粒子を含まないことを特徴とするシリカ微粒子。」が記載されているが、このようなシリカ微粒子ではトナー粒子への埋没を抑えることはできるものの、表面処理剤とシリカ微粒子を混合して疎水化などの表面処理を行う過程で凝集粒子が形成されるため、トナーへの十分な分散性および流動性を得ることができない。しかも、100nmを超える一次粒子径を持つシリカ微粒子ではトナーに十分な流動性を付与することができない。
特開2004−145325号公報 特開2006−99006号公報 特開2007−34224号公報 特開2006−206414号公報
Patent Document 4 states that “silica fine particles obtained by combustion of a silicon compound having an average particle diameter in the range of 0.05 μm or more and less than 0.1 μm, and a particle size represented by a rosin-Rammler diagram. Silica fine particles characterized by having a distribution gradient n of 2 or more and not containing molten particles of 1 μm or more as measured by a laser diffraction / scattering method. ” Although the embedding in the particles can be suppressed, aggregated particles are formed in the process of surface treatment such as hydrophobization by mixing the surface treatment agent and silica fine particles, so that the toner has sufficient dispersibility and fluidity. Can't get. In addition, silica fine particles having a primary particle diameter exceeding 100 nm cannot impart sufficient fluidity to the toner.
JP 2004-145325 A JP 2006-99006 A JP 2007-34224 A JP 2006-206414 A

本発明は、トナーへの分散性やトナーの流動性低下の原因となる粗大な凝集粒子を含まず、また、トナーからの脱離を抑制することができ、従って、トナーへの均一分散性と流動性の付与効果に優れ、印刷画像上の白点の発生を抑制できる、トナー外添剤として好適な微細な一次粒子径を有するシリカ微粒子を提供することを目的とする。   The present invention does not include coarse agglomerated particles that cause a decrease in toner dispersibility and toner fluidity, and can prevent detachment from the toner. An object of the present invention is to provide fine silica particles having a fine primary particle size suitable as an external toner additive, which is excellent in fluidity imparting effect and can suppress generation of white spots on a printed image.

本発明はまた、このような高分散性疎水性シリカ微粒子を用いた電子写真用トナー組成物を提供することを目的とする。   Another object of the present invention is to provide an electrophotographic toner composition using such highly dispersible hydrophobic silica fine particles.

本発明者らは、上記課題を解決すべく鋭意検討した結果、気相法シリカ微粒子の平均一次粒子径と、この気相法シリカ微粒子に対して特定の疎水化処理を施してなる疎水性シリカ微粒子の凝集粒子の割合を制御することにより、トナーからの脱離の問題がなく、トナーへの均一分散性と流動性の付与効果に優れ、印刷画像上の白点の発生を抑制できる、トナー外添剤として好適な疎水性シリカ微粒子を得ることができることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that the average primary particle diameter of the vapor-phase method silica fine particles and the hydrophobic silica obtained by subjecting the vapor-phase method silica fine particles to a specific hydrophobic treatment By controlling the ratio of aggregated particles of fine particles, there is no problem of desorption from the toner, it is excellent in the effect of imparting uniform dispersibility and fluidity to the toner, and the generation of white spots on the printed image can be suppressed. It has been found that hydrophobic silica fine particles suitable as an external additive can be obtained, and the present invention has been completed.

即ち、本発明は以下を要旨とする。   That is, the gist of the present invention is as follows.

[1] 気相法により得られた平均一次粒子径が20〜100nmの親水性シリカ微粒子をヘキサメチルジシラザンで疎水化処理してなる疎水性シリカ微粒子であって、レーザー回折法による粒子の体積基準粒子径測定で粒子径1.5μm以上の凝集粒子の割合が8%未満であることを特徴とする疎水性シリカ微粒子。 [1] Hydrophobic silica fine particles obtained by hydrophobizing hydrophilic silica fine particles having an average primary particle diameter of 20 to 100 nm obtained by a gas phase method with hexamethyldisilazane, and the volume of the particles by laser diffraction method Hydrophobic silica fine particles characterized in that the ratio of aggregated particles having a particle size of 1.5 μm or more is less than 8% as measured by reference particle size.

[2] [1]において、親水性シリカ微粒子の平均一次粒子径が50nm未満であることを特徴とする疎水性シリカ微粒子。 [2] Hydrophobic silica fine particles according to [1], wherein the hydrophilic silica fine particles have an average primary particle size of less than 50 nm.

[3] [2]又は[2]において、疎水率が95%以上であることを特徴とする疎水性シリカ微粒子。 [3] Hydrophobic silica fine particles according to [2] or [2], wherein the hydrophobic rate is 95% or more.

[4] [1]ないし[3]のいずれかにおいて、トナー外添用シリカ微粒子であることを特徴とする疎水性シリカ微粒子。 [4] The hydrophobic silica fine particles according to any one of [1] to [3], which are silica fine particles for external toner addition.

[5] [1]ないし[4]のいずれかに記載の疎水性シリカ微粒子を外添したことを特徴とする電子写真用トナー組成物。 [5] A toner composition for electrophotography, wherein the hydrophobic silica fine particles according to any one of [1] to [4] are externally added.

本発明の疎水性シリカ微粒子は、気相法により得られた、平均一次粒子径が20〜100nmと非常に微細な一次粒子よりなる親水性シリカ微粒子をヘキサメチルジシラザンで疎水化処理してなり、しかも、レーザー回折法による粒子の体積基準粒子径測定において、粒子径1.5μm以上の凝集粒子の割合が8%未満と、粗大な凝集粒子を殆ど含まないため、トナー等への均一分散性に優れ、シリカ微粒子本来の流動性改善効果を有効に発揮することができ、また、トナーからの脱落の問題もないため、印刷画像上の白点の発生を抑制することができる。
このような本発明の疎水性シリカ微粒子は、粉体塗料や電子写真用トナー、化粧料等の粉体材料系において、流動性改善、固結防止、帯電調整等の目的で添加されるシリカ微粒子として工業的に極めて有用である。
Hydrophobic silica fine particles of the present invention are obtained by hydrophobizing hydrophilic silica fine particles, which are obtained by a gas phase method, consisting of very fine primary particles having an average primary particle diameter of 20 to 100 nm with hexamethyldisilazane. In addition, since the ratio of aggregated particles having a particle size of 1.5 μm or more is less than 8% in the volume-based particle size measurement by laser diffraction, almost no coarse aggregated particles are contained. In addition, the fluidity improvement effect inherent in silica fine particles can be effectively exhibited, and there is no problem of falling off from the toner, so that the generation of white spots on the printed image can be suppressed.
Such hydrophobic silica fine particles of the present invention are silica fine particles that are added for the purpose of improving fluidity, preventing caking, and adjusting the charge in powder material systems such as powder paints, electrophotographic toners, and cosmetics. As industrially very useful.

本発明に係る親水性シリカ微粒子の平均一次粒子径は50nm以下であることが好ましい(請求項2)。   The average primary particle diameter of the hydrophilic silica fine particles according to the present invention is preferably 50 nm or less (claim 2).

また、本発明の疎水性シリカ微粒子の疎水率は95%以上であることが好ましい(請求項3)。   Further, the hydrophobic rate of the hydrophobic silica fine particles of the present invention is preferably 95% or more (claim 3).

また、本発明の疎水性シリカ微粒子はトナー外添用シリカ微粒子として有効である(請求項4)。   Further, the hydrophobic silica fine particles of the present invention are effective as silica fine particles for external addition of toner (claim 4).

本発明の電子写真用トナー組成物は、このような本発明の疎水性シリカ微粒子を外添したものであり、流動性に優れ、白点画像等の画像欠陥を生じにくい、高特性電子写真用トナー組成物である。   The toner composition for electrophotography of the present invention is an external addition of the hydrophobic silica fine particles of the present invention, and has excellent fluidity and is unlikely to cause image defects such as white spot images. Toner composition.

以下に本発明の疎水性シリカ微粒子及び電子写真用トナー組成物の実施の形態を詳細に説明する。   Hereinafter, embodiments of the hydrophobic silica fine particles and the electrophotographic toner composition of the present invention will be described in detail.

[疎水性シリカ微粒子]
本発明の疎水性シリカ微粒子は、気相法により得られた平均一次粒子径が20〜100nmの親水性シリカ微粒子をヘキサメチルジシラザンで疎水化処理してなる疎水性シリカ微粒子であって、レーザー回折法による粒子の体積基準粒子径測定で粒子径1.5μm以上の凝集粒子の割合が8%未満であることを特徴とする。
[Hydrophobic silica fine particles]
The hydrophobic silica fine particles of the present invention are hydrophobic silica fine particles obtained by hydrophobizing a hydrophilic silica fine particle having an average primary particle diameter of 20 to 100 nm obtained by a gas phase method with hexamethyldisilazane, which is a laser. The ratio of aggregated particles having a particle size of 1.5 μm or more is less than 8% as measured by volume-based particle size of particles by a diffraction method.

<気相法による親水性シリカ微粒子>
本発明に係る気相法による親水性シリカ微粒子は、乾式法シリカとも呼ばれ、その製法は珪素化合物の火炎加水分解、火炎中燃焼法による酸化、あるいはこれらの反応の併用による方法で製造されたものであれば良く、特に制限されない。中でも火炎加水分解法により製造された気相法シリカが好適に用いられる。市販されている製品としては、日本アエロジル社製あるいはエボニックデグサ社製の「アエロジル」、キャボット社製の「キャボジル」、ワッカー社製の「HDK」、トクヤマ社製の「レオロシール」等がある。
<Hydrophilic silica fine particles by vapor phase method>
The hydrophilic silica fine particles by the vapor phase method according to the present invention are also called dry silica, and the production method thereof is manufactured by flame hydrolysis of a silicon compound, oxidation by a flame combustion method, or a combination of these reactions. There is no particular limitation as long as it is a thing. Among these, gas phase method silica produced by a flame hydrolysis method is preferably used. Examples of the commercially available products include “Aerosil” manufactured by Nippon Aerosil Co., Ltd. or Evonik Degussa, “Cabosil” manufactured by Cabot, “HDK” manufactured by Wacker, “Reolosil” manufactured by Tokuyama, and the like.

火炎加水分解法による気相法シリカの製造方法は、例えば、四塩化ケイ素等の原料珪素化合物のガスを不活性ガスと共に燃焼バーナーの混合室に導入し、水素及び空気と混合して所定比率の混合ガスとし、この混合ガスを反応室で1000〜3000℃の温度で燃焼させて生成させ、冷却後、生成したシリカをフィルターで捕集する方法である。火炎加水分解法についてのより詳細な製造方法としては、ドイツ特許第974,793号、同第974,974号及び同第909,339号の各公報に記載の方法を参照することができる。   The method for producing vapor phase silica by the flame hydrolysis method is, for example, introducing a raw material silicon compound gas such as silicon tetrachloride together with an inert gas into a mixing chamber of a combustion burner and mixing it with hydrogen and air at a predetermined ratio. In this method, the mixed gas is produced by burning the mixed gas in a reaction chamber at a temperature of 1000 to 3000 ° C., and after cooling, the produced silica is collected by a filter. As a more detailed production method for the flame hydrolysis method, methods described in German Patent Nos. 974,793, 974,974, and 909,339 can be referred to.

火炎中燃焼法は、アルキルシラン、アルコキシシラン及び/又はその部分加水分解縮合物を火炎中で燃焼分解する方法である。すなわち、アルキルシラン、アルコキシシラン及び/又はその部分加水分解縮合物を加熱蒸発させて窒素ガスなどの不活性ガスに伴流させるか、又は噴霧させて、酸水素火炎などの火炎中に導入し、この火炎中で燃焼分解させる。   The combustion method in flame is a method in which alkylsilane, alkoxysilane and / or a partial hydrolysis condensate thereof are burned and decomposed in a flame. That is, the alkylsilane, alkoxysilane and / or the partial hydrolysis condensate thereof is evaporated by heating and entrained in an inert gas such as nitrogen gas or sprayed and introduced into a flame such as an oxyhydrogen flame, It is burned and decomposed in this flame.

気相法シリカの原料として用いられる珪素化合物としては、各種の無機珪素化合物、有機珪素化合物が挙げられる。例えば、四塩化珪素、三塩化珪素、二塩化珪素などの無機珪素化合物、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ヘキサメチルジシロキサン、オクタメチルトリシロキサンなどのシロキサン、メチルトリメトキシシラン、テトラメトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン、メチルトリブトキシシラン、ジエチルジプロポキシシラン、トリメチルブトキシシランなどのアルコキシシラン、テトラメチルシラン、ジエチルシラン、ヘキサメチルジシラザン、或いはこれらのオリゴマー、ポリマーなどの有機珪素化合物が挙げられる。   Examples of the silicon compound used as a raw material for the vapor phase method silica include various inorganic silicon compounds and organic silicon compounds. For example, inorganic silicon compounds such as silicon tetrachloride, silicon trichloride, silicon dichloride, siloxanes such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, hexamethyldisiloxane, octamethyltrisiloxane, Alkoxysilanes such as methyltrimethoxysilane, tetramethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, methyltributoxysilane, diethyldipropoxysilane, trimethylbutoxysilane, tetramethylsilane, diethylsilane, hexamethyldisilazane Or organic silicon compounds such as oligomers and polymers thereof.

このような珪素化合物の火炎中での加水分解及び燃焼分解は、この珪素化合物を必要に応じて蒸留などで精製した後、加熱蒸発させてこれを窒素ガスなどの不活性ガスに伴流させる気流伴送法や、珪素化合物を霧化させて火炎中に供給する方法で、酸水素火炎などの火炎中に導入し、この火炎中で反応させて行えばよいが、この際には、水素ガス、メタンガスなどのような可燃性ガスを助燃ガスとしてもよい。この助燃ガスとしては残渣の残らないものであればいずれも使用することができ、特に制限はない。   Hydrolysis and combustion decomposition of such a silicon compound in a flame is carried out by purifying the silicon compound by distillation or the like, if necessary, and then evaporating it by heating to wake it with an inert gas such as nitrogen gas. In the entrainment method or the method of atomizing the silicon compound and supplying it into the flame, it may be introduced into a flame such as an oxyhydrogen flame and reacted in this flame. Further, a flammable gas such as methane gas may be used as the auxiliary combustion gas. Any auxiliary combustion gas can be used as long as no residue remains, and there is no particular limitation.

珪素化合物の加水分解又は燃焼分解で生成したシリカは、バグフィルター、サイクロンなど公知の方法で捕集される。   Silica produced by hydrolysis or combustion decomposition of a silicon compound is collected by a known method such as a bag filter or a cyclone.

このような気相法シリカは1種を単独で用いても良く、2種以上を混合して用いても良い。   Such gas phase method silica may be used alone or in combination of two or more.

<平均一次粒子径>
本発明において、気相法により得られ、疎水化処理に供される親水性シリカ微粒子は、平均一次粒子径が20〜100nmであることを特徴とする。親水性シリカ微粒子の平均一次粒子径が100nmより大きいと、得られる疎水性シリカ微粒子のトナーへの分散性が悪く、流動性向上効果に劣るものとなる。平均一次粒子径が20nmより小さい気相法シリカ微粒子は凝集し易く、凝集粒子の割合が多くなるため好ましくない。
<Average primary particle size>
In the present invention, hydrophilic silica fine particles obtained by a gas phase method and subjected to a hydrophobization treatment have an average primary particle diameter of 20 to 100 nm. When the average primary particle diameter of the hydrophilic silica fine particles is larger than 100 nm, the dispersibility of the resulting hydrophobic silica fine particles in the toner is poor and the effect of improving the fluidity is inferior. Vapor phase silica fine particles having an average primary particle size of less than 20 nm are not preferred because they tend to aggregate and the proportion of aggregated particles increases.

特に、流動性付与効果の面から、親水性シリカ微粒子の平均一次粒子径は50nm以下、例えば45nm以下であることが好ましい。
特に、凝集粒子割合の面から、親水性シリカ微粒子の平均一次粒子径は30nm以上であることが好ましい。
In particular, from the viewpoint of fluidity imparting effect, the average primary particle diameter of the hydrophilic silica fine particles is preferably 50 nm or less, for example, 45 nm or less.
In particular, the average primary particle diameter of the hydrophilic silica fine particles is preferably 30 nm or more from the aspect of the aggregate particle ratio.

なお、本発明に係る親水性シリカ微粒子の平均一次粒子径は、後述の実施例の項に示されるように、透過型電子顕微鏡観察により求められる。   In addition, the average primary particle diameter of the hydrophilic silica fine particles according to the present invention is determined by observation with a transmission electron microscope, as shown in the Examples section described later.

<BET比表面積>
気相法により得られる親水性シリカ微粒子のBET比表面積は主に平均一次粒子径に依存するが、本発明の実施において疎水化処理に供される親水性シリカ微粒子のBET比表面積は10〜120m/gが好ましく、さらには15〜90m/gが好ましい。親水性シリカ微粒子のBET比表面積が小さ過ぎると、得られる疎水性シリカ微粒子のトナーへの分散性が悪く、流動性向上効果に劣るものとなる。BET比表面積が大き過ぎる気相法シリカ微粒子は粉砕後に凝集し易く、また凝集力が強いため好ましくない。
<BET specific surface area>
The BET specific surface area of the hydrophilic silica fine particles obtained by the gas phase method mainly depends on the average primary particle diameter, but the BET specific surface area of the hydrophilic silica fine particles subjected to the hydrophobization treatment in the practice of the present invention is 10 to 120 m. 2 / g is preferable, and 15 to 90 m 2 / g is more preferable. When the BET specific surface area of the hydrophilic silica fine particles is too small, the dispersibility of the obtained hydrophobic silica fine particles in the toner is poor and the effect of improving the fluidity is inferior. Vapor-phase silica fine particles having an excessively large BET specific surface area are not preferred because they tend to aggregate after pulverization and have a strong cohesive force.

特に、流動性付与効果の面から、親水性シリカ微粒子のBET比表面積は25〜90m/gであることが好ましい。 In particular, from the viewpoint of fluidity imparting effect, the BET specific surface area of the hydrophilic silica fine particles is preferably 25 to 90 m 2 / g.

なお、本発明に係る親水性シリカ微粒子のBET比表面積は、後述の実施例の項に示されるように、BET法により求められる。   The BET specific surface area of the hydrophilic silica fine particles according to the present invention is determined by the BET method as shown in the Examples section described later.

<疎水化処理>
本発明の疎水性シリカ微粒子は、上述のような平均一次粒子径を有する気相法による親水性シリカ微粒子をヘキサメチルジシラザンで疎水化処理してなるものである。
<Hydrophobic treatment>
The hydrophobic silica fine particles of the present invention are obtained by hydrophobizing hydrophilic silica fine particles by the gas phase method having the above average primary particle diameter with hexamethyldisilazane.

シリカ微粒子の疎水化処理の方法としては、例えば、特許第3229174号公報に記載されるような、シランカップリング剤とシリコーンオイルを用いる方法、特公昭61−50882号公報に記載されるようなオルガノハロゲンシランを用いる方法、特公昭57−2641号公報に記載されるようなオルガノポリシロキサンを用いる方法、特開昭62−171913号公報に記載されるようなシロキサンオリゴマーを用いる方法などが挙げられる。   As a method for hydrophobizing silica fine particles, for example, a method using a silane coupling agent and silicone oil as described in Japanese Patent No. 3229174, or an organo as described in Japanese Patent Publication No. 61-50882. Examples thereof include a method using a halogen silane, a method using an organopolysiloxane as described in JP-B-57-2641, and a method using a siloxane oligomer as described in JP-A-62-171913.

これらのうち、特に、本発明では、疎水性が高くトナーへの流動性の付与効果の高い表面処理方法であるヘキサメチルジシラザンによる方法を採用する。   Among these, in particular, the present invention employs a method using hexamethyldisilazane, which is a surface treatment method having high hydrophobicity and high fluidity-imparting effect.

ヘキサメチルジシラザンによる疎水化処理は、具体的には次のようにして実施される。   Specifically, the hydrophobization treatment with hexamethyldisilazane is performed as follows.

平均一次粒子径20〜100nmの気相法シリカ粉末100重量部を反応容器に入れ、窒素雰囲気下、水0.1〜20重量部と、ヘキサメチルジシラザン0.5〜30重量部をスプレーする。この反応混合物を50〜250℃で0.5〜3時間攪拌し、さらに140〜250℃にて0.5〜3時間程度、窒素気流下で攪拌して乾燥する。これを冷却することにより、疎水化シリカ微粒子を得る。   100 parts by weight of gas phase method silica powder having an average primary particle size of 20 to 100 nm is put in a reaction vessel, and sprayed with 0.1 to 20 parts by weight of water and 0.5 to 30 parts by weight of hexamethyldisilazane in a nitrogen atmosphere. . The reaction mixture is stirred at 50 to 250 ° C. for 0.5 to 3 hours, and further stirred at 140 to 250 ° C. for about 0.5 to 3 hours under a nitrogen stream and dried. By cooling this, hydrophobized silica fine particles are obtained.

このような疎水化処理において、親水性シリカ微粒子100重量部の疎水化処理に用いる水とヘキサメチルジシラザンの量は、疎水化処理に供する親水性シリカ微粒子のBET比表面積に対して、次のような式で算出される量であることが好ましい。
ヘキサメチルジシラザン(重量部)
=親水性シリカ微粒子のBET比表面積(m/g)/H
上記計算式において、Hは3〜30、特に5であることが好ましい。
水(重量部)=親水性シリカ微粒子のBET比表面積(m/g)/W
上記計算式において、Wは5〜200、特に18であることが好ましい。
上記範囲よりもヘキサメチルジシラザンの使用量が多いと疎水化処理後の生成物に凝集物が多く発生し、少ないとトナー外添剤として十分な疎水性が付与されない。また、水の使用量が多いと凝集物が多くなり、さらに十分な疎水性が得られない。水の使用量が少ないとヘキサメチルジシラザンとシリカ表面の反応が十分進行せず、やはり十分な疎水性が得られない。
In such a hydrophobic treatment, the amount of water and hexamethyldisilazane used for the hydrophobic treatment of 100 parts by weight of the hydrophilic silica fine particles is as follows with respect to the BET specific surface area of the hydrophilic silica fine particles subjected to the hydrophobic treatment. It is preferable that it is the quantity calculated by such a formula.
Hexamethyldisilazane (parts by weight)
= BET specific surface area of hydrophilic silica fine particles (m 2 / g) / H
In the above formula, H is preferably 3 to 30, particularly 5.
Water (parts by weight) = BET specific surface area of hydrophilic silica fine particles (m 2 / g) / W
In the above formula, W is preferably 5 to 200, particularly 18.
When the amount of hexamethyldisilazane is larger than the above range, a large amount of aggregates are generated in the product after the hydrophobization treatment, and when it is small, sufficient hydrophobicity as a toner external additive is not imparted. In addition, when the amount of water used is large, the aggregates increase, and further sufficient hydrophobicity cannot be obtained. If the amount of water used is small, the reaction between hexamethyldisilazane and the silica surface does not proceed sufficiently, and sufficient hydrophobicity cannot be obtained.

なお、ヘキサメチルジシラザンと水とは各々別々に親水性シリカ微粒子に対してスプレーしても良いが、アルコールなどの溶媒で希釈してそれぞれスプレーしても良く、またこのような溶媒にヘキサメチルジシラザンと水の両方を溶解させて同時にスプレーしても良い。   Hexamethyldisilazane and water may be sprayed separately on the hydrophilic silica fine particles, but each may be sprayed after being diluted with a solvent such as alcohol. Both disilazane and water may be dissolved and sprayed simultaneously.

本発明では、このような疎水化処理により、後述の実施例の項に記載される方法で測定される疎水率が95%以上、特に97%以上のシリカ微粒子とすることが好ましい。   In the present invention, it is preferable to obtain silica fine particles having a hydrophobicity of 95% or more, particularly 97% or more, measured by the method described in the Examples section below, by such a hydrophobization treatment.

<凝集粒子の割合>
本発明の疎水性シリカ微粒子は、レーザー回折法による粒子の体積基準粒子径測定で粒子径1.5μm以上の凝集粒子の割合(以下、この割合を「レーザー回折法凝集粒子割合」と称す場合がある。)が8%未満であることを特徴とする。即ち、例えば、図1に示すレーザー回折法による粒子の体積基準粒子径測定における回折チャートにおいて、1.5μm以上の凝集粒子の分布割合が8%未満であることを特徴とする。
このレーザー回折法凝集粒子割合が8%以上では、大きな凝集粒子が多いことにより、トナーへの均一分散性に劣り、良好な流動性、白点の少ない良好な印刷画質を得ることができない。
<Ratio of aggregated particles>
The hydrophobic silica fine particles of the present invention have a proportion of agglomerated particles having a particle diameter of 1.5 μm or more as measured by a volume diffracted particle size by a laser diffraction method (hereinafter, this proportion may be referred to as a “laser diffraction method agglomerated particle proportion”). Is less than 8%. That is, for example, in the diffraction chart for measuring the volume-based particle diameter of particles by the laser diffraction method shown in FIG. 1, the distribution ratio of aggregated particles of 1.5 μm or more is less than 8%.
When the ratio of the aggregated particles by laser diffraction method is 8% or more, since there are many large aggregated particles, the uniform dispersibility in the toner is inferior, and good fluidity and good print image quality with few white spots cannot be obtained.

レーザー回折法凝集粒子割合は小さい程好ましく、特に6%以下、とりわけ3%以下であることが好ましい。   The smaller the ratio of agglomerated particles by laser diffraction method, the better. Particularly, it is preferably 6% or less, particularly 3% or less.

なお、このレーザー回折法凝集粒子割合は後述の実施例の項に示されるように、堀場製作所社製レーザー回折式粒度分布計「LA920」を用いて、シリカ微粒子のエタノール分散液に対して測定することにより求められる。   The ratio of the aggregated particles by laser diffraction method is measured with respect to an ethanol dispersion of silica fine particles using a laser diffraction particle size distribution analyzer “LA920” manufactured by Horiba, Ltd. as shown in the Examples section below. Is required.

上述のレーザー回折法凝集粒子割合の本発明の疎水性シリカ微粒子は、前述の気相法により製造された親水性シリカ微粒子をヘキサメチルジシラザンを用いて疎水化処理したものを原料に用い、ピンミル、ジェットミル等の粉砕機で粉砕した後、気流式分級法などにより分級して微粉のみを回収し、この粉砕、分級を必要に応じて繰り返すことにより得ることができる。
この際、分級で分離された粗粒分は、粉砕工程へ循環させることが工程の効率において好ましい。
なお、分級と粉砕が同時に行われる機構を備えた粉砕機や、分級工程が粉砕機に組み込まれた粉砕機を用いる場合、分級が不十分であると判断された場合には、別途分級機を設置して、より高度な分級工程を行うようにすることが好ましい。
The above-mentioned hydrophobic silica fine particles of the present invention having the ratio of the aggregated particles by the laser diffraction method are obtained by using a raw material obtained by hydrophobizing the hydrophilic silica fine particles produced by the gas phase method using hexamethyldisilazane. After pulverization with a pulverizer such as a jet mill, classification is performed by an airflow classification method or the like to collect only fine powder, and this pulverization and classification can be repeated as necessary.
At this time, it is preferable in terms of the efficiency of the process that the coarse particles separated by classification are circulated to the pulverization process.
In addition, when using a pulverizer equipped with a mechanism for performing classification and pulverization at the same time, or using a pulverizer in which the classification process is incorporated into the pulverizer, if it is determined that the classification is insufficient, a separate classifier is used. It is preferable to install and perform a more advanced classification process.

前述の疎水化処理によりシリカ微粒子の凝集が起こることから、疎水化処理はこの粉砕・分級処理に先立ち行い、疎水化処理後に上述の粉砕・分級処理を行う。   Since the silica particles are aggregated by the hydrophobization treatment, the hydrophobization treatment is performed prior to the pulverization / classification treatment, and the pulverization / classification treatment is performed after the hydrophobization treatment.

[電子写真用トナー組成物]
本発明の電子写真用トナー組成物は、上述の本発明の疎水性シリカ微粒子を外添したものであり、その組成やその製造方法には特に制限はなく、公知の組成及び方法を採用することができる。
[Toner composition for electrophotography]
The toner composition for electrophotography of the present invention is obtained by externally adding the above-described hydrophobic silica fine particles of the present invention. There is no particular limitation on the composition and the production method thereof, and a known composition and method should be adopted. Can do.

本発明の電子写真用トナー組成物の製造に当り、本発明の疎水性シリカ微粒子の添加量は、所望の特性向上効果が得られるような添加量であれば良く、特に制限されないが、電子写真用トナー組成物中に、本発明の疎水性シリカ微粒子が0.1〜6.0重量%含有されていることが好ましい。電子写真用トナー組成物中の本発明の疎水性シリカ微粒子の含有量が0.1重量%未満では、このシリカ微粒子を添加したことによる流動性の改善効果や帯電性の安定効果が十分に得られない。また、シリカ微粒子の含有量が6.0重量%を超えるとトナー表面から脱離してシリカ微粒子単独で行動するものが多くなり、画像やクリーニング性に問題が生じてくる。   In the production of the electrophotographic toner composition of the present invention, the amount of the hydrophobic silica fine particles of the present invention added is not particularly limited as long as the desired effect of improving the properties can be obtained. The toner composition preferably contains 0.1 to 6.0% by weight of the hydrophobic silica fine particles of the present invention. When the content of the hydrophobic silica fine particles of the present invention in the electrophotographic toner composition is less than 0.1% by weight, the effect of improving fluidity and the effect of stabilizing the charging property are sufficiently obtained by adding the silica fine particles. I can't. On the other hand, when the content of the silica fine particles exceeds 6.0% by weight, many particles are detached from the surface of the toner and act by the silica fine particles alone, resulting in problems in image and cleaning properties.

電子写真用トナー組成物中の本発明の疎水性シリカ微粒子の含有量S(重量%)はまた、疎水性シリカ微粒子の製造に用いた親水性シリカ微粒子の平均一次粒子径R(nm)に対して、R/40≦S≦R/7の範囲であることが好ましく、特にS=R/20であることが好ましい。   The content S (% by weight) of the hydrophobic silica fine particles of the present invention in the toner composition for electrophotography is also based on the average primary particle diameter R (nm) of the hydrophilic silica fine particles used in the production of the hydrophobic silica fine particles. Thus, R / 40 ≦ S ≦ R / 7 is preferable, and S = R / 20 is particularly preferable.

トナーには一般に熱可塑性樹脂の他、少量の顔料及び電荷制御剤、その他の外添剤が含まれている。本発明では、上記シリカ微粒子が配合されていれば、他の成分は従来と同様で良く、磁性、非磁性の1成分系トナー、2成分系トナーのいずれでも良い。また、負帯電性トナー、正帯電性トナーのいずれでも良く、モノクロ、カラーのどちらでも良い。   In general, the toner contains a small amount of a pigment, a charge control agent, and other external additives in addition to the thermoplastic resin. In the present invention, as long as the silica fine particles are blended, the other components may be the same as those in the past, and may be either a magnetic or nonmagnetic one-component toner or two-component toner. Further, either negatively chargeable toner or positively chargeable toner may be used, and either monochrome or color may be used.

なお、本発明の電子写真用トナー組成物の製造に当り、外添剤としての本発明の疎水性シリカ微粒子は、単独で使用されるに限られず、目的に応じて、他の金属酸化物微粒子と併用しても良い。例えば、上記シリカ微粒子と、他の表面改質された乾式シリカ微粒子や表面改質された乾式酸化チタン微粒子や表面改質された湿式酸化チタン微粒子等を併用することができる。   In the production of the electrophotographic toner composition of the present invention, the hydrophobic silica fine particles of the present invention as an external additive are not limited to being used alone, but may be other metal oxide fine particles depending on the purpose. You may use together. For example, the silica fine particles can be used in combination with other surface-modified dry silica fine particles, surface-modified dry titanium oxide fine particles, surface-modified wet titanium oxide fine particles, and the like.

以下に実施例及び比較例を挙げて、本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

なお、以下の実施例及び比較例におけるシリカ微粒子及びトナー組成物の評価方法は次の通りである。   In addition, the evaluation method of the silica fine particles and the toner composition in the following examples and comparative examples is as follows.

[シリカ微粒子の評価]
<平均一次粒子径>
透過型電子顕微鏡像上で、シリカ微粒子サンプルから無作為の粒子2500個以上の粒子径を測定し、個数平均により平均一次粒子径を求めた。
[Evaluation of silica fine particles]
<Average primary particle size>
On a transmission electron microscope image, the particle diameter of 2500 or more random particles was measured from the silica fine particle sample, and the average primary particle diameter was determined by number average.

<BET比表面積>
BET法により測定した。
<BET specific surface area>
It was measured by the BET method.

<レーザー回折法凝集粒子割合>
凝集粒子割合の測定には、堀場製作所製レーザー回折式粒度分布計「LA920」を用いた。測定溶媒にはエタノールを用いた。疎水性シリカ微粒子サンプル約0.2gを用い、装置所定の方法に従って測定を行った。測定前処理として、強度30Wの超音波を5分間照射してサンプルを分散した。図1に示すような体積平均粒径の測定結果から、粒子径1.5μm以上の凝集粒子の割合を求めた。
<Laser diffraction method aggregated particle ratio>
A laser diffraction particle size distribution analyzer “LA920” manufactured by HORIBA, Ltd. was used for the measurement of the aggregated particle ratio. Ethanol was used as a measurement solvent. Using about 0.2 g of a hydrophobic silica fine particle sample, the measurement was performed according to a method prescribed by the apparatus. As a measurement pretreatment, the sample was dispersed by irradiating with ultrasonic waves of intensity 30 W for 5 minutes. From the measurement result of the volume average particle diameter as shown in FIG. 1, the ratio of aggregated particles having a particle diameter of 1.5 μm or more was determined.

<疎水率>
疎水性シリカ微粒子サンプル1gを200mLの分液ロートに計り採り、これに純水100mLを加えて栓をし、ターブラーミキサーで10分間振盪した。振盪後、10分間静置した。静置後、下層の20〜30mLをロートから抜き取った後に、下層の混合液を10mm石英セルに分取し、純水をブランクとして比色計にかけ、その波長500nmの光の透過率を疎水率とした。
<Hydrophobic rate>
A 1 g sample of hydrophobic silica fine particles was weighed into a 200 mL separatory funnel, 100 mL of pure water was added thereto, the stopper was plugged, and the mixture was shaken with a tumbler mixer for 10 minutes. After shaking, it was allowed to stand for 10 minutes. After standing, after removing 20-30 mL of the lower layer from the funnel, the lower layer mixed solution is dispensed into a 10 mm quartz cell, subjected to a colorimeter using pure water as a blank, and the transmittance of light having a wavelength of 500 nm is determined as the hydrophobicity. It was.

[トナー組成物の評価]
<安息角>
トナー組成物の安息角は、パウダーテスターPT−S(ホソカワミクロン社製)を用いて測定した。約20gのトナーサンプルを目開き355μmの篩に載せ、振動により落下するトナーサンプルを漏斗を通して、この漏斗先端から約6.5cm下方に設置した直径8cmの円形テーブルに堆積させた。円錐状に形成された堆積トナーサンプルの、水平面に対する側面の角度を安息角とした。
測定されたトナー組成物の安息角が小さいほど、シリカ微粒子中の凝集粒子が小さく、流動性に優れる。
本発明においては、安息角39°以下で合格とした。
[Evaluation of Toner Composition]
<Repose angle>
The angle of repose of the toner composition was measured using a powder tester PT-S (manufactured by Hosokawa Micron). About 20 g of the toner sample was placed on a sieve having an opening of 355 μm, and the toner sample dropped by vibration was deposited through a funnel on a circular table having a diameter of 8 cm installed about 6.5 cm below the tip of the funnel. The angle of repose of the side surface of the deposited toner sample formed in a conical shape with respect to the horizontal plane was defined as the repose angle.
The smaller the angle of repose of the measured toner composition, the smaller the aggregated particles in the silica fine particles and the better the fluidity.
In the present invention, the angle of repose was set to 39 ° or less.

<白点画像の評価方法>
トナー組成物を市販の複写機に充填し、1000枚の連続通紙で3cm×3cmのベタ画像を印刷し、その画像上に見られる、直径0.1mm以上の白点の個数をカウントし、1枚あたりの平均個数を計算した。
本発明においては、この白点画像の平均個数が4以下で合格とした。
<Evaluation method of white spot image>
Fill the commercially available copier with the toner composition, print a solid image of 3 cm × 3 cm with 1000 continuous sheets of paper, count the number of white spots with a diameter of 0.1 mm or more seen on the image, The average number per sheet was calculated.
In the present invention, the average number of the white spot images is 4 or less, which is acceptable.

[実施例1]
気相法シリカ微粒子として日本アエロジル(株)製商品名「AEROSIL(登録商標)90」(BET比表面積90m/g、平均一次粒子径20nm)を用い、この気相法シリカ微粒子を、以下の条件で疎水化処理した後、以下の条件で粉砕、分級することにより、表1に示す平均一次粒子径及びレーザー回折法凝集粒子割合のシリカ微粒子を得た。
[Example 1]
The product name “AEROSIL (registered trademark) 90” (BET specific surface area 90 m 2 / g, average primary particle size 20 nm) manufactured by Nippon Aerosil Co., Ltd. was used as the gas phase method silica fine particles. After hydrophobizing under the conditions, pulverization and classification were performed under the following conditions to obtain silica fine particles having the average primary particle diameter and the ratio of laser diffraction aggregated particles shown in Table 1.

<疎水化処理>
気相法シリカ微粒子100重量部を反応容器に入れ、窒素雰囲気下、水5重量部とヘキサメチルジシラザン18重量部をスプレーした。この反応混合物を150℃で2時間攪拌し、さらに220℃にて2時間、窒素気流下で攪拌して乾燥した。これを冷却することにより、疎水化シリカを得た。
<Hydrophobic treatment>
100 parts by weight of vapor phase method silica fine particles were put in a reaction vessel, and sprayed with 5 parts by weight of water and 18 parts by weight of hexamethyldisilazane in a nitrogen atmosphere. The reaction mixture was stirred at 150 ° C. for 2 hours and further stirred at 220 ° C. for 2 hours under a nitrogen stream and dried. This was cooled to obtain hydrophobic silica.

<粉砕・分級処理>
粉砕機としてカウンタージェットミル(ホソカワミクロン社製)を使用し、分級装置としてターボプレックス1000ATP(ホソカワミクロン社製)を用いて粉砕・分級処理を行った。分離した粗粉は配管を通じてジェットミルに連続的に循環導入して、再度粉砕・分級処理に供した。
<Crushing and classification processing>
Using a counter jet mill (manufactured by Hosokawa Micron Corporation) as a pulverizer and a turboplex 1000ATP (manufactured by Hosokawa Micron Corporation) as a classifier, pulverization / classification treatment was performed. The separated coarse powder was continuously circulated and introduced into a jet mill through a pipe and again subjected to pulverization and classification.

得られた疎水化・低凝集化シリカ微粒子について、凝集粒子割合及び疎水率の評価を行って結果を表1に示した。   The obtained hydrophobized / low-aggregated silica fine particles were evaluated for the ratio of aggregated particles and the hydrophobicity, and the results are shown in Table 1.

また、このシリカ微粒子を用いて、以下の配合でトナー組成物を調製し、その評価を行って結果を表1で示した。   Further, a toner composition was prepared by using the silica fine particles with the following composition, evaluated, and the results are shown in Table 1.

<トナー組成物の調製>
粉砕法により製造された平均粒子径8μmの負帯電スチレン−アクリル樹脂2成分トナー(三笠産業社製)を使用し、このトナーとシリカ微粒子との合計100重量部に対して、シリカ微粒子の配合量が以下の割合となるように混合した。
シリカ微粒子配合量(重量部)
=親水性シリカ微粒子の平均一次粒子径(nm)/20
上記混合物をヘンシェルタイプのミキサーに入れ、600回転/分で1分間攪拌し、さらに3000回転/分で3分間攪拌してシリカ微粒子をトナー表面に分散させることによって、トナー組成物を調製した。
<Preparation of toner composition>
A negatively charged styrene-acrylic resin two-component toner (manufactured by Mikasa Sangyo Co., Ltd.) having an average particle diameter of 8 μm produced by a pulverization method is used, and the amount of silica fine particles blended with respect to a total of 100 parts by weight of the toner and silica fine particles. Were mixed so as to have the following ratio.
Silica fine particle content (parts by weight)
= Average primary particle diameter of hydrophilic silica fine particles (nm) / 20
The mixture was placed in a Henschel-type mixer, stirred at 600 rpm for 1 minute, and further stirred at 3000 rpm for 3 minutes to disperse the silica fine particles on the toner surface to prepare a toner composition.

[実施例2〜4、比較例1〜4]
実施例1において、気相法シリカ微粒子として、表1に示すものを用い、疎水化、粉砕・分級条件を変えて疎水化・分級シリカ微粒子を製造し、このシリカ微粒子を用いて同様にトナー組成物を調製した。
[Examples 2 to 4, Comparative Examples 1 to 4]
In Example 1, as the vapor-phase process silica fine particles, those shown in Table 1 were used to produce hydrophobized / classified silica fine particles by changing the hydrophobization, pulverization / classification conditions, and the same toner composition using the silica fine particles. A product was prepared.

なお、疎水化処理におけるシリカ微粒子100重量部当たりのヘキサメチルジシラザンと水の使用量は、疎水化処理に供したシリカ微粒子のBET比表面積に応じて、次の式で算出される量とした。
ヘキサメチルジシラザン(重量部)
=親水性シリカ微粒子のBET比表面積(m/g)/5
水(重量部)=親水性シリカ微粒子のBET比表面積(m/g)/18
得られたシリカ微粒子及びトナー組成物の評価結果を表1に示した。
The amount of hexamethyldisilazane and water used per 100 parts by weight of the silica fine particles in the hydrophobization treatment was an amount calculated by the following formula according to the BET specific surface area of the silica fine particles subjected to the hydrophobization treatment. .
Hexamethyldisilazane (parts by weight)
= BET specific surface area of hydrophilic silica fine particles (m 2 / g) / 5
Water (parts by weight) = BET specific surface area of hydrophilic silica fine particles (m 2 / g) / 18
The evaluation results of the obtained silica fine particles and the toner composition are shown in Table 1.

なお、比較例4で得られた疎水化・分級シリカ微粒子のレーザー回折法による粒子の体積基準粒子径測定における粒度分布を図1に示した。   The particle size distribution of the hydrophobized / classified silica fine particles obtained in Comparative Example 4 in the volume-based particle size measurement by laser diffraction method is shown in FIG.

Figure 2010085837
Figure 2010085837

表1より、本発明によれば、凝集粒子が小さくかつ少なく、トナーへの均一分散性に優れた均一粒子径のシリカ微粒子により、良好な流動性及び画像品質の高いトナー組成物を実現することができることが分かる。   From Table 1, according to the present invention, a toner composition having good fluidity and high image quality can be realized by using silica fine particles having a uniform particle diameter with small and few aggregated particles and excellent uniform dispersibility in the toner. You can see that

レーザー回折法による粒子の体積基準粒子径測定における比較例4のシリカ微粒子の粒度分布を示す図である。It is a figure which shows the particle size distribution of the silica fine particle of the comparative example 4 in the volume reference | standard particle diameter measurement of the particle | grains by the laser diffraction method.

Claims (5)

気相法により得られた平均一次粒子径が20〜100nmの親水性シリカ微粒子をヘキサメチルジシラザンで疎水化処理してなる疎水性シリカ微粒子であって、レーザー回折法による粒子の体積基準粒子径測定で粒子径1.5μm以上の凝集粒子の割合が8%未満であることを特徴とする疎水性シリカ微粒子。   Hydrophobic silica fine particles obtained by hydrophobizing hydrophilic silica fine particles having an average primary particle diameter of 20 to 100 nm obtained by a gas phase method with hexamethyldisilazane, and the volume-based particle size of the particles by laser diffraction method Hydrophobic silica fine particles characterized in that the proportion of aggregated particles having a particle diameter of 1.5 μm or more is less than 8% by measurement. 請求項1において、親水性シリカ微粒子の平均一次粒子径が50nm以下であることを特徴とする疎水性シリカ微粒子。   The hydrophobic silica fine particles according to claim 1, wherein the hydrophilic silica fine particles have an average primary particle diameter of 50 nm or less. 請求項1又は2において、疎水率が95%以上であることを特徴とする疎水性シリカ微粒子。   3. Hydrophobic silica fine particles according to claim 1, wherein the hydrophobic rate is 95% or more. 請求項1ないし3のいずれか1項において、トナー外添用シリカ微粒子であることを特徴とする疎水性シリカ微粒子。   4. Hydrophobic silica fine particles according to claim 1, which are silica fine particles for external toner addition. 請求項1ないし4のいずれか1項に記載の疎水性シリカ微粒子を外添したことを特徴とする電子写真用トナー組成物。   An electrophotographic toner composition, wherein the hydrophobic silica fine particles according to any one of claims 1 to 4 are externally added.
JP2008256383A 2008-10-01 2008-10-01 Hydrophobic silica fine particles and electrophotographic toner composition Active JP5504600B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008256383A JP5504600B2 (en) 2008-10-01 2008-10-01 Hydrophobic silica fine particles and electrophotographic toner composition
EP09817575.5A EP2357157B1 (en) 2008-10-01 2009-07-29 Hydrophobic silica fine particles and electrophotographic toner composition
US12/998,238 US20110177446A1 (en) 2008-10-01 2009-07-29 Hydrophobic silica microparticles and composition for electrophotographic toner
PCT/JP2009/063494 WO2010038538A1 (en) 2008-10-01 2009-07-29 Hydrophobic silica fine particles and electrophotographic toner composition
ES09817575T ES2784739T3 (en) 2008-10-01 2009-07-29 Hydrophobic Silica Fine Particles and Electrophotographic Toner Composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256383A JP5504600B2 (en) 2008-10-01 2008-10-01 Hydrophobic silica fine particles and electrophotographic toner composition

Publications (2)

Publication Number Publication Date
JP2010085837A true JP2010085837A (en) 2010-04-15
JP5504600B2 JP5504600B2 (en) 2014-05-28

Family

ID=42249835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256383A Active JP5504600B2 (en) 2008-10-01 2008-10-01 Hydrophobic silica fine particles and electrophotographic toner composition

Country Status (1)

Country Link
JP (1) JP5504600B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012155107A (en) * 2011-01-25 2012-08-16 Kyocera Document Solutions Inc Toner for electrostatic latent image development and image forming method
KR20130009584A (en) * 2011-07-06 2013-01-23 후지제롯쿠스 가부시끼가이샤 Silica particles, manufacturing method thereof and resin particles
JP2014162681A (en) * 2013-02-26 2014-09-08 Nippon Aerosil Co Ltd Surface-treated silica powder and method for manufacturing the same
JP2017124965A (en) * 2015-12-09 2017-07-20 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Hydrophobic silica for electrophotographic toner composition
KR20190013588A (en) * 2017-08-01 2019-02-11 신에쓰 가가꾸 고교 가부시끼가이샤 Granulation treated silica and preparing method thereof
WO2022176388A1 (en) 2021-02-18 2022-08-25 信越化学工業株式会社 Method for manufacturing surface-treated vapor phase silica particles, surface-treated vapor phase silica particles, and external additive for toner for electrostatic charge image development

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710524A (en) * 1993-06-23 1995-01-13 Tokuyama Corp Hydrophobic fine silica and production thereof
JPH0959533A (en) * 1995-08-21 1997-03-04 Nippon Aerojiru Kk Fine powder of surface-modified metal oxide and its production
JP2000258947A (en) * 1999-03-05 2000-09-22 Shin Etsu Chem Co Ltd Electrostatic charge image developing agent
JP2004145325A (en) * 2002-10-02 2004-05-20 Canon Inc Fine silica particle, toner, two-component developer and image forming method
JP2004212520A (en) * 2002-12-27 2004-07-29 Canon Inc Toner and image forming method
JP2006206414A (en) * 2005-01-31 2006-08-10 Tokuyama Corp Silica particulate
JP2006206413A (en) * 2005-01-31 2006-08-10 Tokuyama Corp Surface-treated silica microparticle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710524A (en) * 1993-06-23 1995-01-13 Tokuyama Corp Hydrophobic fine silica and production thereof
JPH0959533A (en) * 1995-08-21 1997-03-04 Nippon Aerojiru Kk Fine powder of surface-modified metal oxide and its production
JP2000258947A (en) * 1999-03-05 2000-09-22 Shin Etsu Chem Co Ltd Electrostatic charge image developing agent
JP2004145325A (en) * 2002-10-02 2004-05-20 Canon Inc Fine silica particle, toner, two-component developer and image forming method
JP2004212520A (en) * 2002-12-27 2004-07-29 Canon Inc Toner and image forming method
JP2006206414A (en) * 2005-01-31 2006-08-10 Tokuyama Corp Silica particulate
JP2006206413A (en) * 2005-01-31 2006-08-10 Tokuyama Corp Surface-treated silica microparticle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012155107A (en) * 2011-01-25 2012-08-16 Kyocera Document Solutions Inc Toner for electrostatic latent image development and image forming method
KR20130009584A (en) * 2011-07-06 2013-01-23 후지제롯쿠스 가부시끼가이샤 Silica particles, manufacturing method thereof and resin particles
KR101583688B1 (en) 2011-07-06 2016-01-08 후지제롯쿠스 가부시끼가이샤 Silica particles, manufacturing method thereof and resin particles
JP2014162681A (en) * 2013-02-26 2014-09-08 Nippon Aerosil Co Ltd Surface-treated silica powder and method for manufacturing the same
JP2017124965A (en) * 2015-12-09 2017-07-20 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Hydrophobic silica for electrophotographic toner composition
JP7026436B2 (en) 2015-12-09 2022-02-28 エボニック オペレーションズ ゲーエムベーハー Hydrophobic silica for electrophotographic toner composition
KR20190013588A (en) * 2017-08-01 2019-02-11 신에쓰 가가꾸 고교 가부시끼가이샤 Granulation treated silica and preparing method thereof
US11603470B2 (en) 2017-08-01 2023-03-14 Shin-Etsu Chemical Co., Ltd. Method for manufacturing granulated silica
KR102566641B1 (en) * 2017-08-01 2023-08-14 신에쓰 가가꾸 고교 가부시끼가이샤 Granulation treated silica and preparing method thereof
WO2022176388A1 (en) 2021-02-18 2022-08-25 信越化学工業株式会社 Method for manufacturing surface-treated vapor phase silica particles, surface-treated vapor phase silica particles, and external additive for toner for electrostatic charge image development
KR20230145354A (en) 2021-02-18 2023-10-17 신에쓰 가가꾸 고교 가부시끼가이샤 Manufacturing method of surface-treated vapor-processed silica particles, surface-treated vapor-processed silica particles, and toner external additive for electrostatic image development

Also Published As

Publication number Publication date
JP5504600B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
US6800413B2 (en) Low-silanol silica
JP4758655B2 (en) Surface-treated silica fine particles
JP5504600B2 (en) Hydrophobic silica fine particles and electrophotographic toner composition
WO2010038538A1 (en) Hydrophobic silica fine particles and electrophotographic toner composition
KR101206685B1 (en) Dry-process fine silica particle
JP5407185B2 (en) Surface-modified inorganic oxide powder and toner composition for electrophotography
WO2001042372A1 (en) Fine metal oxide powder having high dispersibility and toner composition comprising the same
JP2007099582A (en) Highly hydrophobic spherical sol-gel silica fine particle, method for producing the same, toner external additive for electrostatic charge image development composed of the fine particle, and developer using the toner external additive
JP6030059B2 (en) Spherical silica fine powder and toner external additive for developing electrostatic image using spherical silica fine powder
JP2007171713A (en) Modified silica powder
WO2020179559A1 (en) Hydrophobic silica powder and toner resin particle
JP5989201B2 (en) Silicone oil-treated silica particles and electrophotographic toner
JP2012027142A (en) External additive for electrophotographic toner and electrophotographic toner
JP3278278B2 (en) Hydrophobic titanium oxide fine powder
JP4346403B2 (en) Surface-treated silica particles and uses thereof
JP5871718B2 (en) Surface treatment method for hydrophilic sol-gel silica particles and method for producing hydrophobic sol-gel silica powder
JP5568864B2 (en) Hydrophobic silica fine particles and electrophotographic toner composition
JP4099748B2 (en) Surface modified inorganic oxide powder
KR20230150276A (en) Manufacturing method of surface-treated sol-gel silica particles, surface-treated sol-gel silica particles, and toner external additive for electrostatic charge image development
JP7456957B2 (en) Method for producing surface-treated vapor-phase silica particles, surface-treated vapor-phase silica particles, and toner external additive for electrostatic image development
JP2020147467A (en) Method for producing silicone oil-treated silica particles
WO2016117344A1 (en) Silicone oil-treated silica particles and toner for electrophotography
CN101206413A (en) Fine metallic oxide powder with high dispersancy and toning agent combination containing same
JP4936237B2 (en) Positively charged hydrophobic titanium oxide fine powder and its production and use
JP6817916B2 (en) Manufacturing method of toner external preparation for static charge image development

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5504600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250