JP2014162681A - Surface-treated silica powder and method for manufacturing the same - Google Patents

Surface-treated silica powder and method for manufacturing the same Download PDF

Info

Publication number
JP2014162681A
JP2014162681A JP2013035356A JP2013035356A JP2014162681A JP 2014162681 A JP2014162681 A JP 2014162681A JP 2013035356 A JP2013035356 A JP 2013035356A JP 2013035356 A JP2013035356 A JP 2013035356A JP 2014162681 A JP2014162681 A JP 2014162681A
Authority
JP
Japan
Prior art keywords
silica powder
silicone oil
treated
mass
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013035356A
Other languages
Japanese (ja)
Inventor
Akira Inoue
晃 井上
Hideaki Tashiro
英昭 田代
Hirotaka Mori
裕貴 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aerosil Co Ltd
Original Assignee
Nippon Aerosil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aerosil Co Ltd filed Critical Nippon Aerosil Co Ltd
Priority to JP2013035356A priority Critical patent/JP2014162681A/en
Publication of JP2014162681A publication Critical patent/JP2014162681A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-treated silica powder having high fluidity and hydrophobicity manufactured by a single-step heat treatment with a small quantity of a silicone oil.SOLUTION: The provided surface-treated silica powder is obtained by adhering, to the surface of a raw silica powder having a BET specific surface area of 30-400 m/g and obtained by the vapor phase method, a non-reactive silicone oil at a ratio, per 1 mof the silica powder, of 0.05-0.09 part.mass with respect to 100 parts.mass of the silica powder and then heat-treating the adhered powder within an inert gas atmosphere within a temperature range of 335 to 360°C. The carbon content per 1 mof the surface-treated silica powder in a case where the content of carbon included within the surface-treated silica powder is defined as C (mass%) and the specific surface area of the raw silica powder (m/g) as S (C/S) is 0.02 or below. The hydrophobicity rate thereof is 85% or above.

Description

本発明は、粉末表面を改質処理したシリカ粉末及びその製造方法に関する。更に詳しくは、粉体塗料、電子写真用トナー、化粧料等の粉体系材料にその流動性を改善し、固結を防止し、帯電性を調整するなどの目的で添加される表面処理シリカ粉末及びその製造方法に関するものである。   The present invention relates to a silica powder having a powder surface modified and a method for producing the same. More specifically, surface-treated silica powder added to powder-based materials such as powder paints, electrophotographic toners, cosmetics, etc. for the purpose of improving fluidity, preventing caking and adjusting charging properties. And a manufacturing method thereof.

微細なシリカ、チタニア、アルミナなどの無機酸化物粉末の表面を有機物によって処理して帯電性や疎水性を改善したいわゆる表面改質無機酸化物粉末は、複写機、レーザープリンタ、普通紙ファクシミリ等を含む電子写真に用いられるトナーの流動性改善剤、或いは帯電性調整剤として広く用いられている。   So-called surface-modified inorganic oxide powders that have been improved in chargeability and hydrophobicity by treating the surface of fine inorganic oxide powders such as silica, titania, and alumina with organic substances can be used in copying machines, laser printers, plain paper facsimiles, etc. It is widely used as a fluidity improving agent or chargeability adjusting agent for toners used in electrophotography.

従来、無機酸化物粉末の表面処理剤としては、ジメチルジクロロシラン、ヘキサメチルジシラザン、シリコーンオイル等の有機ケイ素化合物が用いられている。これらの有機ケイ素化合物のうち、シリコーンオイルが、十分な疎水性を示し、かつ、トナーに含有されたときに該トナーが優れた転写性を示すことなどから、好ましい表面処理剤として知られている。しかしながら、シリコーンオイルは均一な表面処理が難しく、表面処理時にシリカ微粒子が凝集し易いという問題点があった。この問題を解決するために、無機微粒子の粒径を一般に使用される範囲より大きく、具体的には30nm以上100nm以下とすることで凝集体の量を少なくすることが知られている(例えば特許文献1、2参照。)。   Conventionally, organic silicon compounds such as dimethyldichlorosilane, hexamethyldisilazane, and silicone oil have been used as surface treatment agents for inorganic oxide powders. Of these organosilicon compounds, silicone oil is known as a preferred surface treating agent because it exhibits sufficient hydrophobicity and the toner exhibits excellent transferability when contained in the toner. . However, silicone oil has a problem that uniform surface treatment is difficult and silica fine particles are likely to aggregate during the surface treatment. In order to solve this problem, it is known to reduce the amount of aggregates by setting the particle size of the inorganic fine particles to be larger than a generally used range, specifically, 30 nm to 100 nm (for example, patents). References 1 and 2).

また、疎水性を付与するためには過剰のシリコーンオイルが必要となり、これによる流動性の悪化も問題となっている。この問題を解決するために、シリカ粉末をシリコーンオイルであるポリシロキサンにより表面処理した後に、ヘキサメチルジシラザンで表面処理した疎水性シリカ粉末で、トリメチルシリル基が原体シリカ粉末の表面積1nm当り0.3〜1.5個の割合で存在し、且つ、ポリシロキサンが原体シリカ粉末100重量部に対して、A/20〜A/5重量部(但し、Aは原体シリカ粉末の比表面積(m/g)である。)とすることで、優れた疎水性と流動性を有するとともに、クロロホルム溶媒による抽出試験におけるポリシロキサンの抽出量が極めて少ない、化学的に極めて安定化した疎水性シリカ粉末が得られることが知られている(例えば特許文献3参照。)。特許文献3の疎水性シリカ粉末の製造方法では、ポリシロキサンによる表面処理が200〜300℃で行われる。更に無機酸化物粉末にシリコーンオイルを添加して熱処理することにより、シリコーンオイルの固定化率が高く、高疎水性の表面改質無機酸化物粉末を得る方法が示される(例えば、特許文献4参照。)。この方法では、シリコーンオイルとして反応性シリコーンオイルを用いている。この方法では、まず比較的低い温度(150〜280℃)で1次処理を行い、次いで、1次処理より高い温度(280〜330℃)で2次処理を行っている。この方法では、過剰のシリコーンオイルを無機酸化物粉末に添加した後、1次処理してシリコーンオイルを粉末に固定化し、1次処理で固定化されなかった余剰のシリコーンオイルを2次処理で除去している。これにより、シリコーンオイルの固定化率が高く、高疎水性の表面改質無機酸化物粉末を得ている。 In addition, in order to impart hydrophobicity, an excessive amount of silicone oil is required, and deterioration of fluidity due to this is also a problem. In order to solve this problem, the silica powder is surface-treated with polysiloxane, which is a silicone oil, and then surface-treated with hexamethyldisilazane. The trimethylsilyl group is 0 per 1 nm 2 of surface area of the original silica powder. 3 to 1.5, and polysiloxane is A / 20 to A / 5 parts by weight with respect to 100 parts by weight of the raw silica powder (where A is the specific surface area of the raw silica powder) (M 2 / g)), and having excellent hydrophobicity and fluidity, the amount of polysiloxane extracted in an extraction test with a chloroform solvent is extremely small, and the hydrophobicity is extremely stabilized chemically. It is known that silica powder can be obtained (see, for example, Patent Document 3). In the method for producing hydrophobic silica powder of Patent Document 3, the surface treatment with polysiloxane is performed at 200 to 300 ° C. Furthermore, a method for obtaining a highly hydrophobic surface-modified inorganic oxide powder having a high silicone oil immobilization ratio by adding silicone oil to the inorganic oxide powder and heat-treating is shown (for example, see Patent Document 4). .) In this method, a reactive silicone oil is used as the silicone oil. In this method, first, a primary treatment is performed at a relatively low temperature (150 to 280 ° C.), and then a secondary treatment is performed at a higher temperature (280 to 330 ° C.) than the primary treatment. In this method, after adding excess silicone oil to the inorganic oxide powder, primary treatment is performed to fix the silicone oil to the powder, and excess silicone oil that has not been fixed by the primary treatment is removed by the secondary treatment. doing. Thereby, the immobilization rate of silicone oil is high, and a highly hydrophobic surface-modified inorganic oxide powder is obtained.

特開昭61−277964(特許請求の範囲)JP-A 61-277964 (Claims) 特開平7−271087(請求項1、段落[0005]、[0006]、[0009]、[0016])JP-A-7-271087 (Claim 1, paragraphs [0005], [0006], [0009], [0016]) 特開2002−256170(請求項1、請求項5、段落[0007]、[0050])JP 2002-256170 (Claims 1, 5, paragraphs [0007], [0050]) 特開2009−292915(要約、請求項1、請求項5、請求項6)JP 2009-292915 (Abstract, Claims 1, 5 and 6)

前述したシリコーンオイルによる無機酸化物粉末の表面処理において、均一な表面処理が難しく、かつ無機酸化物微粒子が凝集し易い理由は、シリコーンオイルが高分子物質であり、表面処理時に加熱してもシリコーンオイルが気化しないためである。そのため所望の疎水性を付与するためには過剰のシリコーンオイルを添加しなければならず、このことが無機酸化物の凝集を更に加速させる原因となっている。従って、無機微粒子の粒径を大きくしたり、シリコーンオイルとヘキサメチルジシラザンを所定量処理したとしても、このようなシリコーンオイル処理時の問題の抜本的解決には至っておらず、効果としては不十分であり、また、原体の粒子サイズや処理の割合が限定されてしまうという問題があった。また特許文献3の疎水性シリカ粉末の製造方法では、ポリシロキサンによる表面処理が200〜300℃で行われるため、所望の疎水性を付与するためには過剰のシリコーンオイルを添加しなければならないという不具合があった。   In the surface treatment of inorganic oxide powder with silicone oil as described above, uniform surface treatment is difficult and inorganic oxide fine particles are likely to aggregate. This is because the oil does not vaporize. Therefore, in order to impart the desired hydrophobicity, it is necessary to add an excess of silicone oil, which causes further aggregation of the inorganic oxide. Therefore, even if the particle size of the inorganic fine particles is increased or a predetermined amount of silicone oil and hexamethyldisilazane is treated, the problem of such silicone oil treatment has not been drastically solved. In addition, there is a problem that the particle size of the raw material and the processing rate are limited. Moreover, in the manufacturing method of the hydrophobic silica powder of patent document 3, since surface treatment by polysiloxane is performed at 200-300 degreeC, in order to provide desired hydrophobicity, it is said that excess silicone oil must be added. There was a bug.

更に特許文献4に示される無機酸化物粉末の表面改質方法では、シリコーンオイルとして反応性シリコーンオイルを用い、かつ疎水性を高めるために過剰の反応性シリコーンオイルを粉末に添加しているため、1次処理で固定化されなかった余剰の反応性シリコーンオイルを除去するために2次処理を行うという2段階にわたる加熱処理が必要であった。それに加えて、反応性シリコーンオイルが分解し疎水率が低下する等の理由で2次処理の温度を330℃以下で行う必要があった。   Furthermore, in the surface modification method of the inorganic oxide powder shown in Patent Document 4, a reactive silicone oil is used as the silicone oil, and an excessive amount of reactive silicone oil is added to the powder in order to increase hydrophobicity. In order to remove excess reactive silicone oil that was not immobilized by the primary treatment, a heat treatment in two stages was required in which the secondary treatment was performed. In addition, the temperature of the secondary treatment has to be performed at 330 ° C. or lower because the reactive silicone oil is decomposed and the hydrophobicity is lowered.

本発明の目的は、凝集性が低く疎水性の高い表面処理シリカ粉末を提供することにある。本発明の別の目的は、少ないシリコーンオイル量でかつ1段の熱処理で、凝集性が低く疎水性の高い表面処理シリカ粉末を製造する方法を提供することにある。   An object of the present invention is to provide a surface-treated silica powder having low cohesiveness and high hydrophobicity. Another object of the present invention is to provide a method for producing a surface-treated silica powder having low cohesiveness and high hydrophobicity with a small amount of silicone oil and a single heat treatment.

本発明者らは、上記課題を解決すべく鋭意検討した結果、シリコーンオイルとして非反応性シリコーンオイルを用いて、この非反応性シリコーンオイルで処理する時に、335〜360℃の温度で表面処理を行うことにより、少ないシリコーンオイル量でかつ1段の熱処理にもかかわらず、凝集性が低く疎水性の高い表面処理シリカ粉末を得ることができることを見出し、本発明をなすに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have used a non-reactive silicone oil as a silicone oil, and a surface treatment is performed at a temperature of 335 to 360 ° C. when the non-reactive silicone oil is treated. As a result, it was found that a surface-treated silica powder having low cohesiveness and high hydrophobicity can be obtained in spite of a small amount of silicone oil and one-step heat treatment, and the present invention has been made.

本発明の第1の観点は、原体シリカ粉末を非反応性シリコーンオイルにより表面処理したシリカ粉末であって、前記表面処理シリカ粉末に含まれるカーボン量をC(質量%)、前記原体シリカ粉末の比表面積(m/g)をSとするとき、前記表面処理シリカ粉末の1m当りのカーボン量(C/S)が0.02以下であり、疎水率が85%以上であることを特徴とする表面処理シリカ粉末である。 A first aspect of the present invention is a silica powder obtained by surface-treating a raw silica powder with a non-reactive silicone oil, wherein the amount of carbon contained in the surface-treated silica powder is C (mass%), and the raw silica When the specific surface area (m 2 / g) of the powder is S, the carbon amount (C / S) per 1 m 2 of the surface-treated silica powder is 0.02 or less, and the hydrophobicity is 85% or more. A surface-treated silica powder characterized by the following.

本発明の第2の観点は、気相法で得られたBET比表面積30〜400m/gの原体シリカ粉末の表面に非反応性シリコーンオイルを前記シリカ粉末100質量部に対し前記シリカ粉末の1m当り0.05〜0.09質量部付着させて、不活性ガス雰囲気下、335〜360℃の温度で熱処理することを特徴とするシリカ粉末の表面処理方法である。なお、シリコーンオイルの付着量であるシリカ粉末の1m当り0.05〜0.09質量部は、シリコーンオイルの質量部をシリカ粉末の比表面積Sで除した値(オイル部/S)が0.05〜0.09であることを意味する。 According to a second aspect of the present invention, non-reactive silicone oil is added to the surface of a raw silica powder having a BET specific surface area of 30 to 400 m 2 / g obtained by a gas phase method, with respect to 100 parts by mass of the silica powder. A surface treatment method of silica powder, characterized in that 0.05 to 0.09 parts by mass of 1 m 2 is adhered and heat-treated at a temperature of 335 to 360 ° C. in an inert gas atmosphere. Incidentally, 1 m 2 per 0.05 to 0.09 parts by weight of the silica powder is adhered amount of the silicone oil, the value obtained by dividing the weight of the silicone oil in the specific surface area S of the silica powder (oil unit / S) is 0 It means 0.05 to 0.09.

本発明の第3の観点は、第2の観点に基づく発明であって、前記原体シリカ粉末表面への前記非反応性シリコーンオイルの付着は、前記原体シリカ粉末を反応容器に入れ、不活性ガス雰囲気下、前記粉末を流動状態にして前記非反応性シリコーンオイルを噴霧することにより行われるシリカ粉末の表面処理方法である。   A third aspect of the present invention is an invention based on the second aspect, wherein the non-reactive silicone oil adheres to the surface of the active silica powder by placing the active silica powder in a reaction vessel. This is a surface treatment method for silica powder, which is carried out by spraying the non-reactive silicone oil with the powder in a fluid state under an active gas atmosphere.

本発明の第4の観点は、第2又は第3の観点に基づく発明であって、前記非反応性シリコーンオイルで原体シリカ粉末を表面処理した後にシランカップリング剤、ヘキサメチルジシラザン又はこれらの混合物で表面処理するシリカ粉末の表面処理方法である。   A fourth aspect of the present invention is an invention based on the second or third aspect, wherein the raw silica powder is surface-treated with the non-reactive silicone oil and then a silane coupling agent, hexamethyldisilazane, or these This is a surface treatment method of silica powder that is surface-treated with a mixture of the above.

本発明の第5の観点は、第1の観点に基づく発明であって、前記疎水率が90%以上である表面処理シリカ粉末である。   A fifth aspect of the present invention is the surface-treated silica powder according to the first aspect, wherein the hydrophobic rate is 90% or more.

本発明の第6の観点は、第1の観点に基づく発明であって、前記原体シリカ粉末がヒュームドシリカである表面処理シリカ粉末である。   A sixth aspect of the present invention is an invention based on the first aspect, and is a surface-treated silica powder in which the raw silica powder is fumed silica.

本発明の第7の観点は、第1の観点に基づく発明であって、前記シリコーンオイルがジメチルシリコーンオイルである表面処理シリカ粉末である。   A seventh aspect of the present invention is an invention based on the first aspect, and is a surface-treated silica powder in which the silicone oil is dimethyl silicone oil.

本発明の第8の観点は、第1、5ないし7のいずれか1つの表面処理シリカ粉末、又は第2ないし4のいずれか1つの方法により製造された表面処理シリカ粉末を外添することを特徴とする電子写真用トナー組成物である。   The eighth aspect of the present invention is to externally add the surface-treated silica powder according to any one of the first, fifth to seventh, or the surface-treated silica powder produced by any one of the second to fourth methods. The toner composition for electrophotography is characterized.

本発明の第1の観点によれば、表面処理シリカ粉末の1m当りのカーボン量(C/S)が0.02以下であるため、表面処理シリカは凝集性が低い。また疎水率が85%以上であるため、表面処理シリカは疎水性に優れる。 According to the first aspect of the present invention, since the carbon amount (C / S) per 1 m 2 of the surface-treated silica powder is 0.02 or less, the surface-treated silica has low cohesiveness. Moreover, since the hydrophobicity is 85% or more, the surface-treated silica is excellent in hydrophobicity.

本発明の第2の観点によれば、気相法で得られたBET比表面積30〜400m/gの原体シリカ粉末の表面に非反応性シリコーンオイルを前記シリカ粉末100質量部に対して前記シリカ粉末の1m当り0.05〜0.09質量部付着させるため、表面処理シリカ粉末の1m当りのカーボン量(C/S)が0.02以下にすることができ、また不活性ガス雰囲気下、335〜360℃の比較的高温で1段の熱処理を行うことにより、少ないシリコーンオイル量にもかかわらず疎水率を85%以上にすることができる。 According to the second aspect of the present invention, non-reactive silicone oil is added to the surface of a raw silica powder having a BET specific surface area of 30 to 400 m 2 / g obtained by a gas phase method with respect to 100 parts by mass of the silica powder. Since 0.05 to 0.09 part by mass of 1 m 2 of silica powder is adhered, the carbon amount (C / S) per 1 m 2 of the surface-treated silica powder can be 0.02 or less, and it is inactive. By performing one-stage heat treatment at a relatively high temperature of 335 to 360 ° C. in a gas atmosphere, the hydrophobicity can be increased to 85% or more despite a small amount of silicone oil.

本発明の第3の観点によれば、原体シリカ粉末表面への非反応性シリコーンオイルの付着が乾式処理であるため、原体シリカ粉末の凝集がなく、非反応性シリコーンオイルの付着量を所望の範囲に容易に調整することができる。   According to the third aspect of the present invention, since the non-reactive silicone oil adheres to the surface of the active silica powder is a dry treatment, there is no aggregation of the active silica powder, and the amount of the non-reactive silicone oil attached is reduced. It can be easily adjusted to a desired range.

次に本発明を実施するための形態を説明する。
〔原体シリカ粉末〕
本発明の非反応性シリコーンオイルで表面処理される前のシリカ粉末(以下、原体シリカ粉末という。)は、BET法により測定される30〜400m/gの範囲の比表面積を有する。この比表面積から計算される原体シリカ粉末の一次粒子径は約5〜150nmの範囲にある。この原体シリカ粉末は、乾式法(又は気相法)、湿式法又はゾルゲル法により製造される。乾式法シリカ又は気相法シリカは、ケイ素ハロゲン化合物の蒸気相酸化により生成される。特に、四塩化ケイ素等のケイ素化合物や金属ケイ素を火炎中、例えば酸水素火炎中で燃焼して製造されるヒュームドシリカが、溶媒を使用せず、乾燥時に凝集粒子を生成しないため、好ましい。湿式法シリカは沈殿法により、またゾルゲル法シリカはテトラメトキシシラン、テトラエトキシシラン等のケイ素アルコキシドを酸性又はアルカリ性の含水有機溶媒中で加水分解することにより作られる。溶媒を用いない点で乾式法が好ましい。
Next, the form for implementing this invention is demonstrated.
[Original silica powder]
The silica powder before being surface-treated with the non-reactive silicone oil of the present invention (hereinafter referred to as raw silica powder) has a specific surface area in the range of 30 to 400 m 2 / g measured by the BET method. The primary particle diameter calculated from the specific surface area is in the range of about 5 to 150 nm. This raw silica powder is produced by a dry method (or a gas phase method), a wet method or a sol-gel method. Dry or vapor phase silica is produced by vapor phase oxidation of silicon halogen compounds. In particular, fumed silica produced by burning a silicon compound such as silicon tetrachloride or metal silicon in a flame, for example, an oxyhydrogen flame, is preferable because it does not use a solvent and does not produce aggregated particles when dried. Wet silica is produced by precipitation, and sol-gel silica is produced by hydrolyzing a silicon alkoxide such as tetramethoxysilane or tetraethoxysilane in an acidic or alkaline water-containing organic solvent. The dry method is preferred in that no solvent is used.

〔シリコーンオイルによる表面処理〕
本発明の非反応性シリコーンオイルによる表面処理は、乾式処理法により行われる。即ち、非反応性シリコーンオイル(液体)を原体シリカ粉末(固体)の表面に付着させて、窒素、アルゴンガス等の不活性ガス雰囲気下、335〜360℃、好ましくは340〜360℃の温度で行われる。この温度に到達した後、この温度を保持しても、或いは保持しなくてもよい。保持する場合には、生産性の低下を防ぐために、120分間を限度に保持することが好ましい。また熱処理温度が上記下限値未満では疎水率が低くなるという不具合があり、上限値を超えると非反応性シリコーンオイルの分解が顕著になり好ましくない。
[Surface treatment with silicone oil]
The surface treatment with the non-reactive silicone oil of the present invention is performed by a dry treatment method. That is, a non-reactive silicone oil (liquid) is attached to the surface of the raw silica powder (solid) and the temperature is 335 to 360 ° C., preferably 340 to 360 ° C. in an inert gas atmosphere such as nitrogen or argon gas. Done in After reaching this temperature, this temperature may or may not be maintained. In the case of holding, it is preferable to hold for 120 minutes in order to prevent a decrease in productivity. Further, when the heat treatment temperature is less than the lower limit, there is a problem that the hydrophobicity is lowered, and when the heat treatment temperature exceeds the upper limit, the decomposition of the non-reactive silicone oil becomes remarkable.

乾式処理法では、不活性ガス雰囲気下、原体シリカ粉末を反応容器で流動させた状態にしておき、この流動状態の原体シリカ粉末に非反応性シリコーンオイルを噴霧し、上記条件下で熱処理する。ここで、非反応性シリコーンオイルはヘキサンやトルエン等の各種溶媒で希釈して原体シリカ粉末に噴霧しても良い。乾式処理法による非反応性シリコーンオイルの付着量が原体シリカ粉末の1m当り0.05〜0.09質量部の範囲になるようにシリコーンオイルを噴霧する。上記範囲の下限値未満では表面処理シリカ粉末の疎水率が85%未満になり、表面処理シリカ粉末の疎水性が低下する。また上限値を超えると表面処理シリカ粉末のカーボン量が多くなりすぎ、表面処理シリカ粉末のC/Sが0.02を超え、表面処理シリカ粉末の流動性が低下する。 In the dry processing method, the raw silica powder is allowed to flow in a reaction vessel under an inert gas atmosphere, and non-reactive silicone oil is sprayed on the raw silica powder in a fluid state, followed by heat treatment under the above conditions. To do. Here, the non-reactive silicone oil may be diluted with various solvents such as hexane and toluene and sprayed onto the raw silica powder. The silicone oil is sprayed so that the amount of non-reactive silicone oil deposited by the dry treatment method is in the range of 0.05 to 0.09 parts by mass per 1 m 2 of the raw silica powder. Below the lower limit of the above range, the hydrophobicity of the surface-treated silica powder becomes less than 85%, and the hydrophobicity of the surface-treated silica powder decreases. On the other hand, if the upper limit is exceeded, the amount of carbon in the surface-treated silica powder becomes excessive, the C / S of the surface-treated silica powder exceeds 0.02, and the fluidity of the surface-treated silica powder decreases.

本発明のシリコーンオイルとしては、ジメチルポリシロキサン(ジメチルシリコーンオイル)、フェニル変性シリコーンオイル、アルキル変性シリコーンオイルといった非反応性シリコーンオイルが挙げられる。そのうち、安価で、取扱いが容易なジメチルポリシロキサンが最も好適である。上記シリコーンオイルは、粘度が20〜500csの範囲にあるものが好ましい。この粘度が下限値未満では、シリコーンオイルが揮発し易く、所定量のシリコーンオイルを原体シリカ粉末の表面に付着することが困難になり、この粘度が上限値を超えると、処理が不均一になり易い。またシリコーンオイルは上記例示したものを2種類以上混合しして用いても良い。   Examples of the silicone oil of the present invention include non-reactive silicone oils such as dimethylpolysiloxane (dimethylsilicone oil), phenyl-modified silicone oil, and alkyl-modified silicone oil. Of these, dimethylpolysiloxane, which is inexpensive and easy to handle, is most preferred. The silicone oil preferably has a viscosity in the range of 20 to 500 cs. If this viscosity is less than the lower limit, the silicone oil tends to volatilize, making it difficult to attach a predetermined amount of silicone oil to the surface of the raw silica powder. If this viscosity exceeds the upper limit, the treatment becomes uneven. Easy to be. Further, two or more types of silicone oils exemplified above may be mixed and used.

〔シリコーンオイルによる表面処理後の処理〕
非反応性シリコーンオイルで表面処理したシリカ粉末は、更にシラン化合物、ヘキサメチルジシラザン又はこれらの混合物で表面処理することが好ましい。具体的には、シリコーンオイルで表面処理したシリカ粉末を反応容器に入れ、シラン化合物、ヘキサメチルジシラザン又はこれらの混合物を一定量反応容器に導入し、窒素、アルゴンガス等の不活性ガス雰囲気下、所定の温度で一定時間保持することにより行われる。例えば、ヘキサメチルジシラザンを用いた場合は、非反応性シリコーンオイルで表面処理したシリカ粉末に水とヘキサメチルジシラザンを噴霧し、窒素雰囲気下で150〜250℃で加熱処理する。なお、ヘキサメチルジシラザンと水とは各々別々に親水性シリカ微粒子に対してスプレーしても良いが、アルコールなどの溶媒で希釈してそれぞれスプレーしても良く、またこのような溶媒にヘキサメチルジシラザンと水の両方を溶解させて同時にスプレーしても良い。
[Treatment after surface treatment with silicone oil]
The silica powder surface-treated with non-reactive silicone oil is preferably further surface-treated with a silane compound, hexamethyldisilazane or a mixture thereof. Specifically, silica powder surface-treated with silicone oil is placed in a reaction vessel, a certain amount of silane compound, hexamethyldisilazane or a mixture thereof is introduced into the reaction vessel, and an inert gas atmosphere such as nitrogen or argon gas is introduced. , By holding at a predetermined temperature for a certain time. For example, when hexamethyldisilazane is used, water and hexamethyldisilazane are sprayed on silica powder surface-treated with a non-reactive silicone oil and heat-treated at 150 to 250 ° C. in a nitrogen atmosphere. Hexamethyldisilazane and water may be sprayed separately on the hydrophilic silica fine particles, but each may be sprayed after being diluted with a solvent such as alcohol. Both disilazane and water may be dissolved and sprayed simultaneously.

シラン化合物としては、モノメチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、モノエチルトリメトキシシラン、ジエチルジメトキシシラン、トリエチルメトキシシラン、プロピルトリメトキシシラン、イソプロピルトリメトキシシラン、ブチルトリメトキシシラン、イソブチルトリメトキシシラン、デシルトリメトキシシラン等のアルキルアルコキシシラン化合物やモノメチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン等のクロロシラン化合物や3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、ビニルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン等のシランカップリング剤が例示される。   Examples of silane compounds include monomethyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, monoethyltrimethoxysilane, diethyldimethoxysilane, triethylmethoxysilane, propyltrimethoxysilane, isopropyltrimethoxysilane, butyltrimethoxysilane, and isobutyltrimethoxy. Alkyl alkoxysilane compounds such as silane and decyltrimethoxysilane, chlorosilane compounds such as monomethyltrichlorosilane, dimethyldichlorosilane and trimethylchlorosilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, vinyltrimethoxysilane, 3 -A silane coupling agent such as glycidoxypropyltrimethoxysilane is exemplified.

〔電子写真トナー用外添剤〕
本発明で表面処理されてシリカ粉末は電子写真トナー用外添剤として使用される。このトナーとしては、黒トナー、カラートナーのいずれにも使用できる。また磁性一成分、非磁性一成分、二成分などのいずれの電子写真システムにも使用できる。トナーのバインダ樹脂は一般的に使用されるスチレン/アクリル共重合体樹脂、ポリエステル樹脂、エポキシ樹脂等を用いることができる。トナーの製造方法としては、粉砕・混練法、懸濁重合法、乳化重合法等が挙げられる。本発明の外添剤以外のトナーの構成材料としては、黒の着色剤、シアン、マゼンタ、イエロー等のカラー着色剤、正帯電及び負帯電の帯電制御剤、ワックス等の離型剤が挙げられる。電子写真トナーに対する本発明の外添剤の添加は公知の方法で行われ、その添加量は0.05〜5質量%、好ましくは0.1〜4質量%である。
[External additive for electrophotographic toner]
The silica powder surface-treated in the present invention is used as an external additive for an electrophotographic toner. As this toner, either black toner or color toner can be used. Further, it can be used in any one of the electrophotographic systems such as magnetic one component, non-magnetic one component, and two component. As the binder resin for the toner, commonly used styrene / acrylic copolymer resins, polyester resins, epoxy resins and the like can be used. Examples of the toner production method include a pulverization / kneading method, a suspension polymerization method, and an emulsion polymerization method. Examples of the constituent material of the toner other than the external additive of the present invention include black colorants, color colorants such as cyan, magenta, and yellow, positive and negative charge control agents, and release agents such as wax. . The external additive of the present invention is added to the electrophotographic toner by a known method, and the addition amount is 0.05 to 5% by mass, preferably 0.1 to 4% by mass.

〔原体シリカ粉末の比表面積の測定〕
原体シリカ粉末の比表面積Sは、原体シリカ粉末の表面に占有面積が既知の気体分子(窒素分子)を吸着させて、この気体分子の吸着量から原体シリカ粉末の表面積を求める気相吸着法により測定した。具体的には、マウンテック社製のBET比表面積測定装置(商品名 Macsorb; HM Model−1210)を用いて、脱気を160℃、10分の条件で測定した。
[Measurement of specific surface area of active silica powder]
The specific surface area S of the active silica powder is a gas phase in which gas molecules (nitrogen molecules) having a known occupation area are adsorbed on the surface of the active silica powder, and the surface area of the active silica powder is determined from the amount of adsorption of the gas molecules. Measured by adsorption method. Specifically, deaeration was measured at 160 ° C. for 10 minutes using a BET specific surface area measuring device (trade name: Macsorb; HM Model-1210) manufactured by Mountec.

〔原体シリカ粉末の平均一次粒子径の測定〕
原体シリカ粉末の平均一次粒子径は、走査電子顕微鏡にて撮影した画像を解析して求めた。具体的には、倍率10万倍の走査電子顕微鏡において、視野を変えて50の画像を撮影し、2500個の原体シリカ粉末についてその平均一次粒子径を画像解析し、個数平均を求めた。
[Measurement of average primary particle size of active silica powder]
The average primary particle diameter of the raw silica powder was obtained by analyzing an image taken with a scanning electron microscope. Specifically, in a scanning electron microscope with a magnification of 100,000, 50 images were taken while changing the field of view, and the average primary particle diameter of 2500 raw silica powders was image-analyzed to determine the number average.

〔カーボン量の測定〕
表面処理したシリカ粉末のカーボン量Cは、住化分析センター製の炭素分析装置(商品名:SUMIGRAPH NC−22)を用いて、次の条件により測定した。
検出器の条件:「INJ/DET」=100℃、「COL」=70℃
ガス流速:O=350ml/min、He=80ml/min
[Measurement of carbon content]
The carbon amount C of the surface-treated silica powder was measured under the following conditions using a carbon analyzer (trade name: SUMIGRAPH NC-22) manufactured by Sumika Chemical Analysis Center.
Detector conditions: “INJ / DET” = 100 ° C., “COL” = 70 ° C.
Gas flow rate: O 2 = 350 ml / min, He = 80 ml / min

〔疎水率の測定〕
表面処理したシリカ粉末の疎水率の測定は、次の方法により行った。先ず表面処理したシリカ粉末1gを200mLの分液ロートに計り採り、これに純水100mLを加えて栓をし、ターブラーミキサーにて90rpmで10分間振とう後、10分間静置した。静置後、下層の混合液を10mm石英セルに採取し、純水をブランクとして、波長500nmの光の透過率を分光光度計にて測定し、この値を疎水率とした。
[Measurement of hydrophobicity]
The hydrophobicity of the surface-treated silica powder was measured by the following method. First, 1 g of the surface-treated silica powder was weighed out in a 200 mL separatory funnel, 100 mL of pure water was added thereto, stoppered, shaken with a tumbler mixer at 90 rpm for 10 minutes, and then allowed to stand for 10 minutes. After allowing to stand, the lower layer mixed solution was collected in a 10 mm quartz cell, pure water was used as a blank, the light transmittance at a wavelength of 500 nm was measured with a spectrophotometer, and this value was defined as the hydrophobicity.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
気相法で得られたシリカ粉末(日本アエロジル(株)製 商品名「AEROSIL(登録商標)50」(BET比表面積50m/g、平均粒径30nm))を原体シリカ粉末として用い、非反応性シリコーンオイルであるジメチルポリシロキサン(信越化学工業製 商品名「KF96−50cs」(粘度50cs))を用いた。この原体シリカ粉末100質量部を反応容器に入れ、窒素雰囲気下、攪拌により粉末を流動状態とし、このジメチルポリシロキサン5質量部を噴霧した。攪拌を継続した状態で室温から340℃まで昇温し、そこで30分間保持した。これを冷却することにより、表面処理シリカ粉末を得た。
<Example 1>
Silica powder obtained by vapor phase method (trade name “AEROSIL (registered trademark) 50” (BET specific surface area 50 m 2 / g, average particle size 30 nm) manufactured by Nippon Aerosil Co., Ltd.) Dimethylpolysiloxane (trade name “KF96-50cs” (viscosity 50 cs) manufactured by Shin-Etsu Chemical Co., Ltd.), which is a reactive silicone oil, was used. 100 parts by mass of the raw silica powder was put in a reaction vessel, and the powder was made into a fluid state by stirring under a nitrogen atmosphere, and 5 parts by mass of this dimethylpolysiloxane was sprayed. While stirring was continued, the temperature was raised from room temperature to 340 ° C. and held there for 30 minutes. By cooling this, a surface-treated silica powder was obtained.

<実施例2>
原体シリカ粉末としてシリカ粉末(日本アエロジル(株)製 商品名「AEROSIL(登録商標)200」(BET比表面積200m/g、平均粒径12nm))を用い、非反応性シリコーンオイルであるジメチルポリシロキサン(信越化学工業製 商品名「KF96−100cs」(粘度100cs))を用い、このジメチルポリシロキサン13質量部を噴霧した以外は、実施例1と同様にして表面処理シリカ粉末を得た。
<Example 2>
Silica powder (trade name “AEROSIL (registered trademark) 200” manufactured by Nippon Aerosil Co., Ltd. (BET specific surface area 200 m 2 / g, average particle size 12 nm)) is used as the active silica powder, and dimethyl, which is a non-reactive silicone oil A surface-treated silica powder was obtained in the same manner as in Example 1 except that polysiloxane (trade name “KF96-100cs” (viscosity 100 cs) manufactured by Shin-Etsu Chemical Co., Ltd.) was used and 13 parts by mass of this dimethylpolysiloxane was sprayed.

<実施例3>
原体シリカ粉末として実施例2と同じシリカ粉末(日本アエロジル(株)製 商品名「AEROSIL(登録商標)200」(BET比表面積200m/g、平均粒径12nm))を用い、実施例2と同じジメチルポリシロキサン(信越化学工業製 商品名「KF96−100cs」(粘度100cs))を用い、このジメチルポリシロキサン13質量部を噴霧し、室温から昇温して360℃に到達した時点で、この温度で保持することなく冷却した以外は、実施例1と同様にして表面処理シリカ粉末を得た。
<Example 3>
The same silica powder as in Example 2 (trade name “AEROSIL (registered trademark) 200” (BET specific surface area 200 m 2 / g, average particle size 12 nm) manufactured by Nippon Aerosil Co., Ltd.) was used as the base silica powder. When the same dimethylpolysiloxane (trade name “KF96-100cs” (viscosity 100 cs) manufactured by Shin-Etsu Chemical Co., Ltd.) is sprayed with 13 parts by mass of this dimethylpolysiloxane and heated from room temperature to reach 360 ° C., A surface-treated silica powder was obtained in the same manner as in Example 1 except that cooling was performed without maintaining at this temperature.

<実施例4>
原体シリカ粉末として実施例2と同じシリカ粉末(日本アエロジル(株)製 商品名「AEROSIL(登録商標)200」(BET比表面積200m/g、平均粒径12nm))を用い、実施例2と同じジメチルポリシロキサン(信越化学工業製 商品名「KF96−100cs」(粘度100cs))を用い、このジメチルポリシロキサン13質量部を噴霧し、室温から360℃まで昇温し、そこで30分間保持した以外は、実施例1と同様にして表面処理シリカ粉末を得た。
<Example 4>
The same silica powder as in Example 2 (trade name “AEROSIL (registered trademark) 200” (BET specific surface area 200 m 2 / g, average particle size 12 nm) manufactured by Nippon Aerosil Co., Ltd.) was used as the base silica powder. The same dimethylpolysiloxane (trade name “KF96-100cs” (viscosity 100 cs) manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed with 13 parts by mass of this dimethylpolysiloxane, the temperature was raised from room temperature to 360 ° C., and held there for 30 minutes. Except for the above, a surface-treated silica powder was obtained in the same manner as in Example 1.

<実施例5>
原体シリカ粉末として実施例2と同じシリカ粉末(日本アエロジル(株)製 商品名「AEROSIL(登録商標)200」(BET比表面積200m/g、平均粒径12nm))を用い、実施例2と同じジメチルポリシロキサン(信越化学工業製 商品名「KF96−100cs」(粘度100cs))を用い、このジメチルポリシロキサン13質量部を噴霧し、室温から360℃まで昇温し、そこで120分間保持した以外は、実施例1と同様にして表面処理シリカ粉末を得た。
<Example 5>
The same silica powder as in Example 2 (trade name “AEROSIL (registered trademark) 200” (BET specific surface area 200 m 2 / g, average particle size 12 nm) manufactured by Nippon Aerosil Co., Ltd.) was used as the base silica powder. The same dimethylpolysiloxane (trade name “KF96-100cs” (viscosity 100 cs) manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed with 13 parts by mass of this dimethylpolysiloxane, the temperature was raised from room temperature to 360 ° C., and held there for 120 minutes. Except for the above, a surface-treated silica powder was obtained in the same manner as in Example 1.

<実施例6>
原体シリカ粉末としてシリカ粉末(日本アエロジル(株)製 商品名「AEROSIL(登録商標)300」(BET比表面積300m/g、平均粒径7nm))を用い、実施例1と同じジメチルポリシロキサン(信越化学工業製 商品名「KF96−50cs」(粘度50cs))を用い、このジメチルポリシロキサン20質量部を噴霧した以外は、実施例1と同様にして表面処理シリカ粉末を得た。
<Example 6>
The same dimethylpolysiloxane as in Example 1 using silica powder (trade name “AEROSIL (registered trademark) 300” (BET specific surface area 300 m 2 / g, average particle size 7 nm) manufactured by Nippon Aerosil Co., Ltd.) as the raw silica powder. (Shin-Etsu Chemical Co., Ltd., trade name “KF96-50cs” (viscosity 50 cs)) was used in the same manner as in Example 1 except that 20 parts by mass of this dimethylpolysiloxane was sprayed to obtain a surface-treated silica powder.

<実施例7>
原体シリカ粉末としてシリカ粉末(日本アエロジル(株)製 商品名「AEROSIL(登録商標)380S」(BET比表面積380m/g、平均粒径7nm))を用い、実施例2と同じジメチルポリシロキサン(信越化学工業製 商品名「KF96−100cs」(粘度100cs))を用い、このジメチルポリシロキサン30質量部を噴霧した以外は、実施例1と同様にして表面処理シリカ粉末を得た。
<Example 7>
The same dimethylpolysiloxane as in Example 2 using silica powder (trade name “AEROSIL (registered trademark) 380S” (BET specific surface area 380 m 2 / g, average particle size 7 nm) manufactured by Nippon Aerosil Co., Ltd.) as the raw silica powder (Shin-Etsu Chemical Co., Ltd., trade name “KF96-100cs” (viscosity 100 cs)) was used in the same manner as in Example 1 except that 30 parts by mass of this dimethylpolysiloxane was sprayed to obtain a surface-treated silica powder.

<実施例8>
原体シリカ粉末として実施例7と同じシリカ粉末(日本アエロジル(株)製 商品名「AEROSIL(登録商標)380S」(BET比表面積380m/g、平均粒径7nm))を用い、非反応性シリコーンオイルであるジメチルポリシロキサン(信越化学工業製 商品名「KF96−20cs」(粘度20cs))を用い、このジメチルポリシロキサン30質量部を噴霧し、室温から335℃まで昇温し、そこで30分間保持した以外は、実施例1と同様にして表面処理シリカ粉末を得た。
<Example 8>
The same silica powder as in Example 7 (trade name “AEROSIL (registered trademark) 380S” (BET specific surface area 380 m 2 / g, average particle size 7 nm) manufactured by Nippon Aerosil Co., Ltd.) was used as the raw silica powder and was non-reactive. Using silicone oil dimethylpolysiloxane (trade name “KF96-20cs” (viscosity 20 cs) manufactured by Shin-Etsu Chemical Co., Ltd.), 30 parts by mass of this dimethylpolysiloxane is sprayed and the temperature is raised from room temperature to 335 ° C. for 30 minutes. A surface-treated silica powder was obtained in the same manner as in Example 1 except that this was retained.

<実施例9>
原体シリカ粉末として実施例6と同じシリカ粉末(日本アエロジル(株)製 商品名「AEROSIL(登録商標)300」(BET比表面積300m/g、平均粒径7nm))を用い、非反応性シリコーンオイルとしてフェニル変性シリコーンオイル(信越化学工業製 商品名「KF50−100cs」(粘度100cs))を17質量部用いた以外は、実施例4と同様にして表面処理シリカ粉末を得た。
<Example 9>
The same silica powder as in Example 6 (trade name “AEROSIL (registered trademark) 300” manufactured by Nippon Aerosil Co., Ltd. (BET specific surface area 300 m 2 / g, average particle size 7 nm)) was used as the raw silica powder, and was non-reactive. A surface-treated silica powder was obtained in the same manner as in Example 4 except that 17 parts by mass of phenyl-modified silicone oil (trade name “KF50-100cs” (viscosity 100 cs) manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the silicone oil.

<比較例1>
原体シリカ粉末として実施例2と同じシリカ粉末(日本アエロジル(株)製 商品名「AEROSIL(登録商標)200」(BET比表面積200m/g、平均粒径12nm))を用い、実施例2と同じシリコーンオイルであるジメチルポリシロキサン(信越化学工業製 商品名「KF96−100cs」(粘度100cs))を用い、このジメチルポリシロキサン13質量部を噴霧し、室温から300℃まで昇温し、そこで30分間保持した以外は、実施例1と同様にして表面処理シリカ粉末を得た。
<Comparative Example 1>
The same silica powder as in Example 2 (trade name “AEROSIL (registered trademark) 200” (BET specific surface area 200 m 2 / g, average particle size 12 nm) manufactured by Nippon Aerosil Co., Ltd.) was used as the base silica powder. Dimethylpolysiloxane (trade name “KF96-100cs” (viscosity 100 cs) manufactured by Shin-Etsu Chemical Co., Ltd.), which is the same silicone oil as above, is sprayed on 13 parts by mass of this dimethylpolysiloxane, and the temperature is raised from room temperature to 300 ° C. A surface-treated silica powder was obtained in the same manner as in Example 1 except that it was held for 30 minutes.

<比較例2>
原体シリカ粉末として実施例6と同じシリカ粉末(日本アエロジル(株)製 商品名「AEROSIL(登録商標)300」(BET比表面積300m/g、平均粒径7nm))を用い、実施例1と同じジメチルポリシロキサン(信越化学工業製 商品名「KF96−50cs」(粘度50cs))を用い、このジメチルポリシロキサン20質量部を噴霧し、室温から280℃まで昇温し、そこで30分間保持した以外は、実施例1と同様にして表面処理シリカ粉末を得た。
<Comparative example 2>
The same silica powder as in Example 6 (trade name “AEROSIL (registered trademark) 300” (BET specific surface area 300 m 2 / g, average particle size 7 nm) manufactured by Nippon Aerosil Co., Ltd.) was used as the base silica powder. Dimethylpolysiloxane (trade name “KF96-50cs” (viscosity 50 cs) manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed with 20 parts by mass of this dimethylpolysiloxane, the temperature was raised from room temperature to 280 ° C., and held there for 30 minutes. Except for the above, a surface-treated silica powder was obtained in the same manner as in Example 1.

<比較例3>
原体シリカ粉末として実施例7と同じシリカ粉末(日本アエロジル(株)製 商品名「AEROSIL(登録商標)380S」(BET比表面積380m/g、平均粒径7nm))を用い、実施例2と同じジメチルポリシロキサン(信越化学工業製 商品名「KF96−100cs」(粘度100cs))を用い、このジメチルポリシロキサン20質量部を噴霧し、室温から310℃まで昇温し、そこで30分間保持した以外は、実施例1と同様にして表面処理シリカ粉末を得た。
<Comparative Example 3>
The same silica powder as in Example 7 (trade name “AEROSIL (registered trademark) 380S” (BET specific surface area 380 m 2 / g, average particle size 7 nm) manufactured by Nippon Aerosil Co., Ltd.) was used as the base silica powder. The same dimethylpolysiloxane (trade name “KF96-100cs” (viscosity 100 cs) manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed with 20 parts by mass of this dimethylpolysiloxane, the temperature was raised from room temperature to 310 ° C., and held there for 30 minutes. Except for the above, a surface-treated silica powder was obtained in the same manner as in Example 1.

<比較例4>
原体シリカ粉末として実施例2と同じシリカ粉末(日本アエロジル(株)製 商品名「AEROSIL(登録商標)200」(BET比表面積200m/g、平均粒径12nm))を用い、実施例2と同じジメチルポリシロキサン(信越化学工業製 商品名「KF96−100cs」(粘度100cs))を用い、このジメチルポリシロキサン20質量部を噴霧し、室温から300℃まで昇温し、そこで30分間保持した以外は、実施例1と同様にして表面処理シリカ粉末を得た。
<Comparative example 4>
The same silica powder as in Example 2 (trade name “AEROSIL (registered trademark) 200” (BET specific surface area 200 m 2 / g, average particle size 12 nm) manufactured by Nippon Aerosil Co., Ltd.) was used as the base silica powder. The same dimethylpolysiloxane (trade name “KF96-100cs” (viscosity 100 cs) manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed with 20 parts by mass of this dimethylpolysiloxane, the temperature was raised from room temperature to 300 ° C., and held there for 30 minutes. Except for the above, a surface-treated silica powder was obtained in the same manner as in Example 1.

<比較例5>
原体シリカ粉末として実施例6と同じシリカ粉末(日本アエロジル(株)製 商品名「AEROSIL(登録商標)300」(BET比表面積300m/g、平均粒径7nm))を用い、実施例2と同じであるジメチルポリシロキサン(信越化学工業製 商品名KF96−50cs」(粘度50cs))を用い、ジメチルポリシロキサン10質量部を噴霧した以外は、実施例1と同様にして表面処理シリカ粉末を得た。
<Comparative Example 5>
The same silica powder as in Example 6 (trade name “AEROSIL (registered trademark) 300” (BET specific surface area 300 m 2 / g, average particle size 7 nm) manufactured by Nippon Aerosil Co., Ltd.) was used as the base silica powder. The surface-treated silica powder was prepared in the same manner as in Example 1 except that 10 parts by mass of dimethylpolysiloxane was sprayed using the same dimethylpolysiloxane (trade name KF96-50cs manufactured by Shin-Etsu Chemical Co., Ltd.) (viscosity 50 cs). Obtained.

<比較例6>
原体シリカ粉末として実施例7と同じシリカ粉末(日本アエロジル(株)製 商品名「AEROSIL(登録商標)380S」(BET比表面積380m/g、平均粒径7nm))を用い、実施例2と同じジメチルポリシロキサン(信越化学工業製 商品名「KF96−100cs」(粘度100cs))を用い、ジメチルポリシロキサン45質量部を噴霧した以外は、実施例1と同様にして表面処理シリカ粉末を得た。
<Comparative Example 6>
The same silica powder as in Example 7 (trade name “AEROSIL (registered trademark) 380S” (BET specific surface area 380 m 2 / g, average particle size 7 nm) manufactured by Nippon Aerosil Co., Ltd.) was used as the base silica powder. Surface treated silica powder was obtained in the same manner as in Example 1 except that 45 parts by mass of dimethylpolysiloxane was sprayed using the same dimethylpolysiloxane (trade name “KF96-100cs” (viscosity 100 cs) manufactured by Shin-Etsu Chemical Co., Ltd.). It was.

<比較試験>
実施例1〜9及び比較例1〜6におけるシリコーンオイルの付着量である原体シリカ粉末の1m当りの質量部(シリコーンオイルの質量部を原体シリカ粉末のBET比表面積Sで除した値(オイル部/S))を求めた後で、実施例1〜9及び比較例1〜6によって得られた表面処理シリカ粉末のカーボン量と、疎水率を測定した。このカーボン量及び疎水率は前述した方法により測定した。これらの結果を表1に示す。
<Comparison test>
Mass parts per 1 m 2 of the raw silica powder, which is the adhesion amount of the silicone oil in Examples 1 to 9 and Comparative Examples 1 to 6 (value obtained by dividing the mass part of the silicone oil by the BET specific surface area S of the raw silica powder) After determining (oil part / S)), the carbon amount and the hydrophobicity of the surface-treated silica powder obtained in Examples 1 to 9 and Comparative Examples 1 to 6 were measured. The amount of carbon and the hydrophobicity were measured by the method described above. These results are shown in Table 1.

Figure 2014162681
Figure 2014162681

<評価>
処理温度が335℃未満の比較例1、2及び3の表面処理シリカ粉末は疎水率が81.3%、66.4%及び55.0%と低かった。またBET比表面積が200m/gの原体シリカ粉末に対して比較的多量のシリコーンオイルを噴霧した(噴霧量20質量部)比較例4の表面処理シリカ粉末はC/Sが0.02を上回り凝集性が高かった。またシリコーンオイルの噴霧量が少ない(10質量部)比較例5の表面処理シリカ粉末は温度と時間を十分かけて処理しても疎水率が5.2%と極めて低かった。またBET比表面積が380m/gの原体シリカ粉末に対して比較的多量のシリコーンオイルを噴霧した(噴霧量45質量部)比較例6の表面処理シリカ粉末はC/Sが0.02を上回り凝集性が高かった。
<Evaluation>
The surface-treated silica powders of Comparative Examples 1, 2 and 3 having a treatment temperature of less than 335 ° C. had low hydrophobicity of 81.3%, 66.4% and 55.0%. A relatively large amount of silicone oil was sprayed on the base silica powder having a BET specific surface area of 200 m 2 / g (spray amount 20 parts by mass), and the surface-treated silica powder of Comparative Example 4 had a C / S of 0.02. The upper cohesiveness was high. Further, the surface-treated silica powder of Comparative Example 5 having a small amount of sprayed silicone oil (10 parts by mass) had an extremely low hydrophobicity of 5.2% even when treated with sufficient temperature and time. In addition, a relatively large amount of silicone oil was sprayed on the base silica powder having a BET specific surface area of 380 m 2 / g (amount of spray: 45 parts by mass), and the surface-treated silica powder of Comparative Example 6 had a C / S of 0.02. The upper cohesiveness was high.

これに対して、BET比表面積の値に応じて原体シリカ粉末へのシリコーンオイルの噴霧量(オイル部/S)を0.05〜0.09の範囲に調整し、335〜360℃、5〜120分の条件で処理した実施例1〜9の表面処理シリカ粉末は、1段の熱処理でありながら、C/Sが0.02以下であり凝集性が低かった。またこれらの疎水率は85%以上と高かった。   On the other hand, according to the value of the BET specific surface area, the spray amount (oil part / S) of the silicone oil onto the raw silica powder is adjusted to the range of 0.05 to 0.09, and the 335 to 360 ° C., 5 The surface-treated silica powders of Examples 1 to 9 treated under the conditions of ˜120 minutes had C / S of 0.02 or less and low cohesion, although they were one-stage heat treatment. Their hydrophobicity was as high as 85% or more.

本発明の表面処理シリカ粉末は、このシリカ粉末を外添する電子写真用トナー組成物に利用できる。   The surface-treated silica powder of the present invention can be used in an electrophotographic toner composition to which the silica powder is externally added.

Claims (8)

原体シリカ粉末を非反応性シリコーンオイルにより表面処理したシリカ粉末であって、
前記表面処理シリカ粉末に含まれるカーボン量をC(質量%)、前記原体シリカ粉末の比表面積(m/g)をSとするとき、前記表面処理シリカ粉末の1m当りのカーボン量(C/S)が0.02以下であり、疎水率が85%以上であることを特徴とする表面処理シリカ粉末。
A silica powder obtained by surface-treating a raw silica powder with a non-reactive silicone oil,
When the amount of carbon contained in the surface-treated silica powder is C (mass%) and the specific surface area (m 2 / g) of the raw silica powder is S, the amount of carbon per 1 m 2 of the surface-treated silica powder ( A surface-treated silica powder having a C / S) of 0.02 or less and a hydrophobicity of 85% or more.
気相法で得られたBET比表面積30〜400m/gの原体シリカ粉末の表面に非反応性シリコーンオイルを前記シリカ粉末100質量部に対して前記シリカ粉末の1m当り0.05〜0.09質量部付着させて、不活性ガス雰囲気下、335〜360℃の温度で熱処理することを特徴とするシリカ粉末の表面処理方法。 A non-reactive silicone oil is added to the surface of a raw silica powder having a BET specific surface area of 30 to 400 m 2 / g obtained by a gas phase method, and 0.05 to 1 mass 2 of the silica powder with respect to 100 parts by mass of the silica powder. A method for surface treatment of silica powder, comprising 0.09 parts by mass and heat-treating at a temperature of 335 to 360 ° C. in an inert gas atmosphere. 前記原体シリカ粉末表面への前記非反応性シリコーンオイルの付着は、前記原体シリカ粉末を反応容器に入れ、不活性ガス雰囲気下、前記粉末を流動状態にして前記非反応性シリコーンオイルを噴霧することにより行われる請求項2記載のシリカ粉末の表面処理方法。   The non-reactive silicone oil adheres to the surface of the raw silica powder by placing the raw silica powder in a reaction vessel and spraying the non-reactive silicone oil in an inert gas atmosphere with the powder flowing. The method for treating the surface of silica powder according to claim 2, wherein the method is performed. 前記非反応性シリコーンオイルで原体シリカ粉末を表面処理した後にシラン化合物、ヘキサメチルジシラザン又はこれらの混合物で表面処理する請求項2又は3記載のシリカ粉末の表面処理方法。   The surface treatment method of the silica powder according to claim 2 or 3, wherein the raw silica powder is surface-treated with the non-reactive silicone oil and then surface-treated with a silane compound, hexamethyldisilazane or a mixture thereof. 前記疎水率が90%以上である請求項1記載の表面処理シリカ粉末。   The surface-treated silica powder according to claim 1, wherein the hydrophobicity is 90% or more. 前記原体シリカ粉末がヒュームドシリカである請求項1記載の表面処理シリカ粉末。   The surface-treated silica powder according to claim 1, wherein the raw silica powder is fumed silica. 前記非反応性シリコーンオイルがジメチルシリコーンオイルである請求項1記載の表面処理シリカ粉末。   The surface-treated silica powder according to claim 1, wherein the non-reactive silicone oil is dimethyl silicone oil. 請求項1、5ないし7のいずれか1項に記載の表面処理シリカ粉末又は請求項2ないし4のいずれか1項の方法により製造された表面処理シリカ粉末を外添することを特徴とする電子写真用トナー組成物。   Electron characterized by externally adding the surface-treated silica powder according to any one of claims 1, 5 to 7, or the surface-treated silica powder produced by the method according to any one of claims 2 to 4. Photographic toner composition.
JP2013035356A 2013-02-26 2013-02-26 Surface-treated silica powder and method for manufacturing the same Pending JP2014162681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013035356A JP2014162681A (en) 2013-02-26 2013-02-26 Surface-treated silica powder and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013035356A JP2014162681A (en) 2013-02-26 2013-02-26 Surface-treated silica powder and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014162681A true JP2014162681A (en) 2014-09-08

Family

ID=51613626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013035356A Pending JP2014162681A (en) 2013-02-26 2013-02-26 Surface-treated silica powder and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014162681A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191769A (en) * 2015-03-31 2016-11-10 キヤノン株式会社 Image-forming method
JP2017219805A (en) * 2016-06-10 2017-12-14 富士ゼロックス株式会社 Electrostatic charge image developer, process cartridge, image forming apparatus, and image forming method
JP2021084843A (en) * 2019-11-29 2021-06-03 富士フイルムビジネスイノベーション株式会社 Organic-adhered porous inorganic oxide particle
CN115838176A (en) * 2022-08-18 2023-03-24 杭州应星新材料有限公司 Preparation method of hydrophobic silicon dioxide treated by silicone oil and silicon dioxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256170A (en) * 2001-03-05 2002-09-11 Tokuyama Corp Hydrophobic silica powder and its manufacturing method
WO2004060803A1 (en) * 2002-12-27 2004-07-22 Nippon Aerosil Co., Ltd. Highly dispersible, fine, hydrophobic silica powder and process for producing the same
JP2007217249A (en) * 2006-02-17 2007-08-30 Nippon Aerosil Co Ltd Hydrophobized surface-modified dry process silica powder
JP2010085837A (en) * 2008-10-01 2010-04-15 Nippon Aerosil Co Ltd Hydrophobic silica fine particle and electrophotographic toner composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256170A (en) * 2001-03-05 2002-09-11 Tokuyama Corp Hydrophobic silica powder and its manufacturing method
WO2004060803A1 (en) * 2002-12-27 2004-07-22 Nippon Aerosil Co., Ltd. Highly dispersible, fine, hydrophobic silica powder and process for producing the same
JP2007217249A (en) * 2006-02-17 2007-08-30 Nippon Aerosil Co Ltd Hydrophobized surface-modified dry process silica powder
JP2010085837A (en) * 2008-10-01 2010-04-15 Nippon Aerosil Co Ltd Hydrophobic silica fine particle and electrophotographic toner composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191769A (en) * 2015-03-31 2016-11-10 キヤノン株式会社 Image-forming method
JP2017219805A (en) * 2016-06-10 2017-12-14 富士ゼロックス株式会社 Electrostatic charge image developer, process cartridge, image forming apparatus, and image forming method
JP2021084843A (en) * 2019-11-29 2021-06-03 富士フイルムビジネスイノベーション株式会社 Organic-adhered porous inorganic oxide particle
US11535757B2 (en) 2019-11-29 2022-12-27 Fujifilm Business Innovation Corp. Organic substance-attached porous inorganic oxide particle
JP7467895B2 (en) 2019-11-29 2024-04-16 富士フイルムビジネスイノベーション株式会社 Organic-substance-attached porous inorganic oxide particles
CN115838176A (en) * 2022-08-18 2023-03-24 杭州应星新材料有限公司 Preparation method of hydrophobic silicon dioxide treated by silicone oil and silicon dioxide

Similar Documents

Publication Publication Date Title
US8895145B2 (en) Hydrophobic silica particles and method of producing same
JP4688895B2 (en) Silica with low silanol group content
JP4615952B2 (en) Modified hydrophobized silica and method for producing the same
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP5230067B2 (en) Surface-coated silica and method for producing the same
JP2014185069A (en) Method of producing silica particles, and silica particles
JP2016006547A (en) Toner composition and method of preparing the same
JP2006206413A (en) Surface-treated silica microparticle
JP2001281914A (en) Surface modified metal oxide fine powder, method for manufacturing the same and use thereof
JP2014114175A (en) Surface-hydrophobized spherical silica fine particle, method for producing the same, and toner external additive, obtained by using the particle, for developing electrostatic charge image
JP2014162681A (en) Surface-treated silica powder and method for manufacturing the same
JP5133993B2 (en) Surface-treated metal oxide particles
JP5020224B2 (en) Method for producing surface-treated silica
JP6382608B2 (en) Positively chargeable silica particles and method for producing the same
TWI744263B (en) Hydrophobic silica powder, process for preparing the same and toner composition for electrophotographic containing the same
JP4346403B2 (en) Surface-treated silica particles and uses thereof
JP5871718B2 (en) Surface treatment method for hydrophilic sol-gel silica particles and method for producing hydrophobic sol-gel silica powder
JP6008137B2 (en) Surface organic resin-coated hydrophobic spherical silica fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP2014136670A (en) Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP5683101B2 (en) Surface-treated silica
JP2005292592A (en) Surface-treated silica
JP2018095496A (en) Inorganic oxide powder with processed surface and method for surface treatment of inorganic oxide powder
JP2018054881A (en) Amorphous aluminosilicate-based toner external additive
JP2022136773A (en) Surface modified inorganic oxide powder and method for producing the same
JP2022150873A (en) Surface-modified inorganic oxide powder and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170124