JP2006206414A - Silica particulate - Google Patents

Silica particulate Download PDF

Info

Publication number
JP2006206414A
JP2006206414A JP2005023946A JP2005023946A JP2006206414A JP 2006206414 A JP2006206414 A JP 2006206414A JP 2005023946 A JP2005023946 A JP 2005023946A JP 2005023946 A JP2005023946 A JP 2005023946A JP 2006206414 A JP2006206414 A JP 2006206414A
Authority
JP
Japan
Prior art keywords
fine particles
silica fine
particle size
particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005023946A
Other languages
Japanese (ja)
Other versions
JP4758656B2 (en
Inventor
Yukihiro Takada
幸宏 高田
Masakazu Ohara
雅和 大原
Hiroo Aoki
博男 青木
Yoshiyuki Ogino
祥之 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2005023946A priority Critical patent/JP4758656B2/en
Publication of JP2006206414A publication Critical patent/JP2006206414A/en
Application granted granted Critical
Publication of JP4758656B2 publication Critical patent/JP4758656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide silica particulates, maintaining satisfactory fluidity by suppressing the burying thereof into toner particles, also preventing a filming phenomenon by the defect in the scraping of a cleaning blade, and also suppressing the variation in toner electrification quantity, when used as a toner external addition agent for electrophotography. <P>SOLUTION: In the silica particulates obtained by the combustion of a silicon compound, the average particle diameter lies in the range of 0.05 to <0.1 μm, also, the value of the gradient n in a particle size distribution expressed by a Rosin-Rammler diagram is ≥2, and also, molten particles of ≥1 μm are not contained according to measurement by a laser diffraction scattering method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、新規なシリカ微粒子に関する。詳しくは平均粒子径が0.05μm以上0.1μm未満の範囲であり、かつ粒度分布がシャープであり、かつ、粗大溶融粒子を実質的に含まない、微細な溶融シリカよりなるシリカ微粒子を提供するものである。   The present invention relates to a novel silica fine particle. Specifically, the present invention provides a silica fine particle comprising fine fused silica having an average particle size in the range of 0.05 μm or more and less than 0.1 μm, a sharp particle size distribution, and substantially free of coarse fused particles. Is.

複写機やレーザプリンター等の電子写真技術において現像剤に使用されるトナーには、流動性の付与や帯電量の制御等を目的に、平均粒子径が0.006〜0.04μmのシリカ、アルミナ、チタニアなどの粉末および上記の無機粉末を表面処理した外添剤が用いられている。   For toners used as developers in electrophotographic technology such as copying machines and laser printers, silica and alumina having an average particle size of 0.006 to 0.04 μm for the purpose of imparting fluidity and controlling the amount of charge In addition, a powder such as titania and an external additive obtained by surface-treating the above inorganic powder are used.

近年、電子写真の高画像・高画質化に伴い、トナー粒子の小径化、トナー粒子の低融点化が進み、トナー粒子同士の付着力が増大し流動性が悪くなる傾向にあるため、かかるトナー粒子の表面を被覆する外添剤においては、アンチブロッキング効果や流動性付与効果がこれまで以上に求められるようになった。   In recent years, with the increase in electrophotographic image quality and image quality, toner particles have become smaller in diameter and toner particles have a lower melting point, and the adhesion between the toner particles tends to increase and fluidity tends to deteriorate. In external additives that coat the surface of particles, an anti-blocking effect and a fluidity-imparting effect have been required more than ever.

しかし、上記外添剤では粒子径が小さいため、撹拌等のストレスが連続的にかかることでトナー樹脂に埋没してアンチブロッキングの役目を果たさず流動性が低下すると共に、クリーニングブレードによる残留トナーのかきとりが困難になり、フィルミング現象による画質低下が問題となる。   However, since the particle size of the external additive is small, stress such as stirring is continuously applied, so that the toner is buried in the toner resin and does not serve as an anti-blocking, and the fluidity is lowered. Scraping becomes difficult and image quality degradation due to filming phenomenon becomes a problem.

そのため、粒子径の大きい外添剤が求められてはいるものの、該粒子径が大きすぎると、流動性付与効果が得られなくなる。特に、一次粒子径が1μmを超えるような粗大な粒子を多く含む場合、感光体ドラムに変性や削れを生じてしまう。   Therefore, although an external additive having a large particle size is desired, if the particle size is too large, the fluidity imparting effect cannot be obtained. In particular, when a large amount of coarse particles having a primary particle diameter exceeding 1 μm is contained, the photoreceptor drum is denatured or scraped.

また、外添剤にはトナー粒子の帯電制御も求められているが、使用する粒子の粒度分布がブロードの場合、トナーへの分散性や付着性が不均一となるため帯電制御において問題が発生しやすく画質の低下が問題となりやすい。   The external additive is also required to control the charge of the toner particles. However, if the particle size distribution of the particles used is broad, there will be a problem in charge control because the dispersibility and adhesion to the toner will be uneven. It is easy to do, and the fall of image quality tends to be a problem.

従来、溶融粒子径1μm以上の粒子を含まずかつ粒度分布がシャープなシリカ微粒子として、ゾル・ゲル法によるものが挙げられる(特許文献1参照)が、一般にゾル・ゲル法に代表される湿式法プロセスは、ゲル化したシリカから水分を除去する焼成段階で粒子同士の成長や焼結により粗大粒子ができるため、分級や篩別により粗大粒子を除去しなければならない(特許文献2参照)。ところが、現在の技術では1μm程度の粒子を分離することが可能な精密分級技術は存在せず、かかる1μm以上の粒子を含むトナー外添剤を使用した場合、感光体ドラムに傷をつけるといった問題がある。   Conventionally, silica fine particles that do not contain particles having a melt particle diameter of 1 μm or more and have a sharp particle size distribution include those by the sol-gel method (see Patent Document 1), but generally a wet method represented by the sol-gel method. In the process, coarse particles are formed by the growth and sintering of particles at the firing stage in which moisture is removed from the gelled silica. Therefore, the coarse particles must be removed by classification or sieving (see Patent Document 2). However, with the current technology, there is no precision classification technology capable of separating particles of about 1 μm, and when an external toner additive containing such particles of 1 μm or more is used, the photosensitive drum is damaged. There is.

また、火炎燃焼法に代表される乾式法では、アルコキシシランの燃焼により、一次粒子径が1μm以上を含まないものが製造される(特許文献3、4参照)ものの、粒度分布がシャープなものは得られず、そのためかかる粒子をトナー外添剤に使用するとトナー帯電量にばらつきが見られ画質の低下といった問題がある。   Further, in the dry method represented by the flame combustion method, those having a primary particle size not including 1 μm or more are produced by combustion of alkoxysilane (see Patent Documents 3 and 4), but those having a sharp particle size distribution are produced. Therefore, when such particles are used as an external toner additive, there is a problem in that the toner charge amount varies and the image quality deteriorates.

特開平3−267945号公報JP-A-3-267945 特開2002−3213号公報Japanese Patent Laid-Open No. 2002-3213 特開2000−258947号公報JP 2000-258947 A 特開2001−194819号公報JP 2001-194819 A

したがって、本発明の目的は電子写真用トナー外添剤として使用した場合、トナー粒子への埋没を抑えることで良好な流動性を維持することができ、また、クリーニングブレードのかきとり不良によるフィルミング現象を防止するのに適した粒子径を有し、更に、感光体ドラムの変性や削れを起こす1μm以上の溶融粒子を実質的に含まず、更にまた、粒度分布がシャープでトナー帯電量のバラツキが抑制されたシリカ微粒子を提供することである。   Therefore, the object of the present invention is to maintain good fluidity by suppressing the embedding in the toner particles when used as an external toner additive for electrophotography, and the filming phenomenon due to the scraping defect of the cleaning blade. In addition, it has a particle size suitable for preventing toner particles, and does not substantially contain molten particles of 1 μm or more that cause modification or scraping of the photosensitive drum. Furthermore, the particle size distribution is sharp and the toner charge amount varies. It is to provide suppressed silica fine particles.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、珪素化合物の燃焼において、火炎中のシリカ濃度を従来の製造技術に対して、著しく低く設定する条件などを採用することによって前記目的を達成したシリカ微粒子を得ることに成功し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have adopted a condition in which the silica concentration in the flame is set to be significantly lower than that in the conventional manufacturing technique in the combustion of the silicon compound. The present inventors have succeeded in obtaining silica fine particles that have achieved the above object, and have completed the present invention.

即ち、本発明は、平均粒子径が0.05μm以上0.1μm未満の範囲であり、ロジン−ラムラー線図で示した粒度分布の勾配nが2以上であり、且つ、レーザ回折・散乱法による粒度分布測定で1μm以上の溶融粒子を含まないシリカ微粒子である。   That is, according to the present invention, the average particle diameter is in the range of 0.05 μm or more and less than 0.1 μm, the gradient n of the particle size distribution shown in the rosin-Rammler diagram is 2 or more, and the laser diffraction / scattering method is used. Silica fine particles that do not contain molten particles of 1 μm or more as measured by particle size distribution.

尚、本発明において平均粒子径は、画像解析法によって測定された粒子径の個数平均径を表す。また、本発明において画像解析法とは、走査型電子顕微鏡や透過型電子顕微鏡を用いて拡大撮影することで粒子径を測定する方法であり、公知の技術を用いることができる。   In addition, in this invention, an average particle diameter represents the number average diameter of the particle diameter measured by the image analysis method. Further, in the present invention, the image analysis method is a method of measuring the particle diameter by enlarging an image using a scanning electron microscope or a transmission electron microscope, and a known technique can be used.

また、本発明においてロジン−ラムラー線図とは、下記のロジン−ラムラーの式(1)に従う粒度分布を表す粒度線図のことで、前記画像解析法で測定した粒子径から求められる。   In the present invention, the rosin-ramler diagram is a particle size diagram representing a particle size distribution according to the following rosin-ramler equation (1), and is obtained from the particle diameter measured by the image analysis method.

R(Dp)=100exp(−b・Dp) (1)
(ただし、式中R(Dp)は最大粒子径から粒子径Dpまでの累積体積%、Dpは粒子径、b及びnは定数である。)
ここで、ロジン−ラムラー線図で表示した粒度分布の勾配nは、ロジン−ラムラー線図の最大粒子径から粒子径Dpまでの累積体積%が少なくとも15体積%と85体積%の範囲にある2点を結んだ直線で代表される勾配のことを言い、nの値が大きいと粒度分布がシャープであることを表している。
R (Dp) = 100exp (-b · Dp n) (1)
(Where R (Dp) is the cumulative volume% from the maximum particle size to the particle size Dp, Dp is the particle size, and b and n are constants.)
Here, the gradient n of the particle size distribution displayed in the rosin-ramler diagram is such that the cumulative volume% from the maximum particle diameter to the particle diameter Dp in the rosin-ramler diagram is in the range of at least 15% by volume and 85% by volume. This means a gradient represented by a straight line connecting points, and a large value of n indicates that the particle size distribution is sharp.

また、本発明においてレーザ回折・散乱法による粒度分布測定には、堀場製作所製レーザ回折・散乱式粒度分布測定装置を用いた。   In the present invention, a laser diffraction / scattering particle size distribution measuring apparatus manufactured by HORIBA, Ltd. was used for the particle size distribution measurement by the laser diffraction / scattering method.

上記測定に際し、シリカ微粒子を分散させるため、水分散媒とした湿式法を用い、かつ測定前に超音波を用いてシリカ微粒子の分散を行なう。   In the measurement, in order to disperse the silica fine particles, the wet method using an aqueous dispersion medium is used, and the silica fine particles are dispersed using ultrasonic waves before the measurement.

また、本発明において溶融粒子とは、燃焼法で得られた一次粒子および、複数の一次粒子が互いに焼結(固結)して種々の形状となった粒子のことである。   Further, in the present invention, the molten particles are particles obtained by burning (consolidating) primary particles obtained by a combustion method and particles having various shapes.

更に、本発明において1μm以上の溶融粒子を含まないことの確認は、生成したシリカ微粒子に対して任意の20点をサンプリングし、前記レーザ回折・散乱法により測定した結果、すべて1μm以上に粒度分布ピークを示さないことをいう。   Furthermore, in the present invention, it is confirmed that the molten particles of 1 μm or more are not included. As a result of sampling 20 arbitrary points with respect to the generated silica fine particles and measuring by the laser diffraction / scattering method, the particle size distribution is 1 μm or more in all cases. It means not showing a peak.

本発明によれば、平均粒子径が0.05μm以上0.1μm未満の範囲であり、且つ、ロジン−ラムラー線図で示した粒度分布の勾配nが2以上であり、また、レーザ回折・散乱法による粒度分布測定で1μm以上の溶融粒子を含まない新規なシリカ微粒子が提供される。   According to the present invention, the average particle diameter is in the range of 0.05 μm or more and less than 0.1 μm, the gradient n of the particle size distribution shown in the rosin-Rammler diagram is 2 or more, and laser diffraction / scattering A novel silica fine particle free from molten particles of 1 μm or more is provided by particle size distribution measurement by the method.

また、このシリカ微粒子をトナー外添剤として使用した場合、トナー粒子への埋没を抑えることで良好な流動性を維持し、しかも、クリーニングブレードのかきとり不良によるフィルミング現象を防止し、かつ感光体ドラムの変性や削れが生じず、更に、トナー帯電量のバラツキが抑制されるという、実用上、従来のシリカ微粒子では見られない極めて良好な効果を発揮する。   In addition, when this silica fine particle is used as an external toner additive, good fluidity is maintained by suppressing the embedding in the toner particles, and the filming phenomenon due to the scraping defect of the cleaning blade is prevented, and the photoconductor The drum is not denatured or scraped, and the variation in the toner charge amount is suppressed. In practice, a very good effect not seen with conventional silica fine particles is exhibited.

本発明のシリカ微粒子は平均粒子径が0.05μm以上0.1μm未満の範囲である。即ち、平均粒子径が0.05μmより小さい場合、トナー外添剤として用いた場合、連続使用によりシリカ微粒子がトナー樹脂に埋没してしまい外添剤の機能を発揮できず、トナーの流動性や転写性が悪くなる。また、一方、平均粒子径が0.1μmを超える場合、トナーの流動性低下を引起す。   The silica fine particles of the present invention have an average particle size in the range of 0.05 μm or more and less than 0.1 μm. That is, when the average particle diameter is smaller than 0.05 μm, when used as a toner external additive, the silica fine particles are buried in the toner resin by continuous use, and the function of the external additive cannot be exhibited. Transferability deteriorates. On the other hand, when the average particle diameter exceeds 0.1 μm, the fluidity of the toner is lowered.

また、本発明のシリカ微粒子は、ロジン−ラムラー線図で表示した粒度分布の勾配nが2以上である。勾配nの値が2より低い場合、粒度分布の幅が広くなりトナーへの分散や付着性が不均一となり、連続使用によりスジ、カブリ、にじみなどの画像劣化が生じ易くなる。   The silica fine particles of the present invention have a particle size distribution gradient n represented by a rosin-Rammler diagram of 2 or more. When the value of the gradient n is lower than 2, the width of the particle size distribution becomes wide and the dispersion and adhesion to the toner becomes non-uniform, and image deterioration such as streaks, fogging and blurring is likely to occur due to continuous use.

更に、本発明のシリカ微粒子はレーザ回折・散乱法による粒度分布測定において1μm以上の溶融粒子を含まない。レーザ回折・散乱法による測定で1μm以上に粒度分布ピークが見られる場合、1μm以上の溶融粒子が含まれているため、感光体ドラムの変性や削れが生じることで画質が低下する。   Further, the silica fine particles of the present invention do not contain molten particles of 1 μm or more in the particle size distribution measurement by the laser diffraction / scattering method. When a particle size distribution peak is observed at 1 μm or more as measured by the laser diffraction / scattering method, since the molten particles of 1 μm or more are contained, the image quality deteriorates due to the modification or shaving of the photosensitive drum.

本発明のシリカ微粒子において、上記特徴以外の構成は、特に制限されないが、好ましい構成として、鉄が20ppm未満、アルミニウムが5ppm未満、ニッケルが5ppm未満、クロムが5ppm未満、ナトリウムが3ppm未満、及び塩素が3ppm未満であることが好ましい。上記金属が不純物として含まれた場合、帯電制御が困難となるため、トナー外添剤用途には不向きとなる傾向がある。   In the silica fine particles of the present invention, the configuration other than the above features is not particularly limited, but preferred configurations include iron less than 20 ppm, aluminum less than 5 ppm, nickel less than 5 ppm, chromium less than 5 ppm, sodium less than 3 ppm, and chlorine. Is preferably less than 3 ppm. When the metal is contained as an impurity, charging control becomes difficult, and therefore, it tends to be unsuitable for use as an external toner additive.

上述した本発明のシリカ微粒子の製造方法は、珪素化合物の燃焼によるものであれば特に制限されない。即ち、かかる乾式プロセスを用いることで、水分を除去する焼成段階での粒子同士の固着や焼結による粗大粒子の成長を防止することができる。   The method for producing silica fine particles of the present invention described above is not particularly limited as long as it is based on combustion of a silicon compound. That is, by using such a dry process, it is possible to prevent coarse particles from growing due to adhesion between particles and sintering in a firing stage in which moisture is removed.

本発明に用いられる珪素化合物として、無機珪素化合物、有機珪素化合物が特に制限なく使える。例えば、四塩化珪素、三塩化珪素、二塩化珪素などの無機珪素化合物、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ヘキサメチルジシロキサン、オクタメチルトリシロキサン、などのシロキサン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシランなどのアルコキシシラン、テトラメチルシラン、ジエチルシラン、ヘキサメチルジシラザンなどの有機珪素化合物が挙げられる。   As the silicon compound used in the present invention, an inorganic silicon compound or an organic silicon compound can be used without any particular limitation. For example, inorganic silicon compounds such as silicon tetrachloride, silicon trichloride, silicon dichloride, siloxanes such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, hexamethyldisiloxane, octamethyltrisiloxane, etc. And alkoxysilicon such as tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, and methyltriethoxysilane, and organosilicon compounds such as tetramethylsilane, diethylsilane, and hexamethyldisilazane.

特に上記珪素化合物として、ハロゲンを含まない有機珪素化合物、好ましくはシロキサンを選択することにより、塩素等の不純物が著しく低減された、より高純度の微小溶融シリカ粒子を得ることが可能であり、また取り扱い性も向上し好ましい。   In particular, by selecting an organosilicon compound containing no halogen, preferably siloxane, as the silicon compound, it is possible to obtain finer fused silica particles with higher purity in which impurities such as chlorine are significantly reduced, and Handling is also improved, which is preferable.

本発明において、上記珪素化合物は酸素、不活性ガス、および可燃性ガスにより形成された外周炎中に供給される。可燃性ガスとしては、水素、及び炭化水素が使用される。上記炭化水素は、従来から燃料として使用されているものが工業的に有利に使用できる。例えば、アセチレン、メタン、エチレン、プロパン、ブタン等を単独で或いは混合して使用することが可能である。   In the present invention, the silicon compound is supplied into a peripheral flame formed by oxygen, an inert gas, and a combustible gas. Hydrogen and hydrocarbons are used as the combustible gas. As the hydrocarbon, those conventionally used as fuels can be advantageously used industrially. For example, acetylene, methane, ethylene, propane, butane and the like can be used alone or in combination.

珪素化合物の供給方法は、霧化または気化によりガス化して供給する方法が好ましい。その際、珪素化合物はキャリアガスと共に供給しても良く、かかるキャリアガスとしては、窒素、ヘリウム、アルゴン等が好適である。また、珪素化合物が前記シロキサンの如き有機珪素化合物である場合、キャリアガスの一部または、全部に酸素を使用することも可能であり、得られるシリカ微粒子の着色を防止する上で好ましい態様である。かかる酸素の量は、有機珪素化合物に含有される炭素量によって適宜決定すればよい。   The method of supplying the silicon compound is preferably a method of supplying it by gasification by atomization or vaporization. At that time, the silicon compound may be supplied together with the carrier gas, and as the carrier gas, nitrogen, helium, argon or the like is suitable. Further, when the silicon compound is an organosilicon compound such as siloxane, oxygen can be used for a part or all of the carrier gas, which is a preferred embodiment for preventing coloring of the resulting silica fine particles. . The amount of oxygen may be appropriately determined depending on the amount of carbon contained in the organosilicon compound.

また、本発明において、火炎中のシリカ濃度を0.2kg/Nm未満に調節することが好ましい。即ち、火炎中のシリカ濃度を0.2kg/Nm以上にすると、シリカ微粒子の成長が不均一となり、生成したシリカ微粒子の粒度分布がブロードになりやすい。また、火炎中のシリカ濃度が低すぎると生産性が悪くなるため、0.05kg/Nm以上0.2kg/Nm未満にシリカ濃度を調整するのが好ましい。 In the present invention, it is preferable to adjust the silica concentration in the flame to less than 0.2 kg / Nm 3 . That is, when the silica concentration in the flame is 0.2 kg / Nm 3 or more, the growth of the silica fine particles becomes non-uniform, and the particle size distribution of the generated silica fine particles tends to be broad. Further, since the silica concentration in the flame is too and productivity becomes poor low, it is preferable to adjust the silica concentration to less than 0.05 kg / Nm 3 or more 0.2 kg / Nm 3.

また、本発明のシリカ微粒子は、その用途に応じて、ハロゲンを実質的に含有しないシリル化剤、シリコーンオイル、シロキサン類、金属アルコキシド、脂肪酸及びその金属塩からなる群から少なくとも1種選ばれる処理剤によってシリカ微粒子の表面を処理してもよい。なお、具体的なシリル化剤として、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、o−メチルフェニルトリメトキシシラン、p−メチルフェニルトリメトキシシラン、n−ブチルトリメトキシシラン、i−ブチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、i−ブチルトリエトキシシラン、デシルトリエトキシシラン、ビニルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン等のアルコキシシラン類、ヘキサメチルジシラザン、ヘキサエチルジシラザン、ヘキサプロピルジシラザン、ヘキサブチルジシラザン、ヘキサペンチルジシラザン、ヘキサヘキシルジシラザン、ヘキサフェニルジシラザン、ジビニルテトラメチルジシラザン、ジメチルテトラビニルジシラザン等のシラザン類等が挙げられる。   Further, the silica fine particles of the present invention are at least one treatment selected from the group consisting of a silylating agent substantially free of halogen, silicone oil, siloxanes, metal alkoxides, fatty acids and metal salts, depending on the application. The surface of the silica fine particles may be treated with an agent. Specific silylating agents include tetramethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, o-methylphenyltrimethoxysilane, p-methylphenyltrimethoxysilane, n- Butyltrimethoxysilane, i-butyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, dodecyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane , Diphenyldiethoxysilane, i-butyltriethoxysilane, decyltriethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ -Glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane , Γ- (2-aminoethyl) aminopropyltrimethoxysilane, alkoxysilanes such as γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, hexamethyldisilazane, hexaethyldisilazane, hexapropyldisilazane, hexa Examples thereof include silazanes such as butyldisilazane, hexapentyldisilazane, hexahexyldisilazane, hexaphenyldisilazane, divinyltetramethyldisilazane, and dimethyltetravinyldisilazane.

また、シリコーンオイルとしては、ジメチルシリコーンオイル、メチルハイドロジェンシリコーンオイル、メチルフェニルシリコーンオイル、アルキル変性シリコーンオイル、カルボン酸変性シリコーンオイル、脂肪酸変性シリコーンオイル、ポリエーテル変性シリコーンオイル、アルコキシ変性シリコーンオイル、カルビノール変性シリコーンオイル、アミノ変性シリコーンオイル、末端反応性シリコーンオイル等が挙げられる。   Silicone oils include dimethyl silicone oil, methyl hydrogen silicone oil, methylphenyl silicone oil, alkyl modified silicone oil, carboxylic acid modified silicone oil, fatty acid modified silicone oil, polyether modified silicone oil, alkoxy modified silicone oil, Examples include diol-modified silicone oil, amino-modified silicone oil, and terminal-reactive silicone oil.

更に、シロキサン類としては、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ヘキサメチルジシロキサン、オクタメチルトリシロキサン等が挙げられる。   Furthermore, examples of siloxanes include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, hexamethyldisiloxane, octamethyltrisiloxane and the like.

更にまた、金属アルコキシドとしては、トリメトキシアルミニウム、トリエトキシアルミニウム、トリ−i−プロポキシアルミニウム、トリ−n−ブトキシアルミニウム、トリ−s−ブトキシアルミニウム、トリ−t−ブトキシアルミニウム、モノ−s−ブトキシジ−i−プロピルアルミニウム、テトラメトキシチタン、テトラエトキシチタン、テトラ−i−プロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−s−ブトキシチタン、テトラ−t−ブトキシチタン、テトラエトキシジルコニウム、テトラ−i−プロポキシジルコニウム、テトラ−n−ブトキシジルコニウム、ジメトキシ錫、ジエトキシ錫、ジ−n−ブトキシ錫、テトラエトキシ錫、テトラ−i−プロポキシ錫、テトラ−n−ブトキシ錫、ジエトキシ亜鉛、マグネシウムメトキシド、マグネシウムエトキシド、マグネシウムイソプロポキシド等が挙げられる。   Furthermore, as the metal alkoxide, trimethoxy aluminum, triethoxy aluminum, tri-i-propoxy aluminum, tri-n-butoxy aluminum, tri-s-butoxy aluminum, tri-t-butoxy aluminum, mono-s-butoxy di- i-propylaluminum, tetramethoxytitanium, tetraethoxytitanium, tetra-i-propoxytitanium, tetra-n-propoxytitanium, tetra-n-butoxytitanium, tetra-s-butoxytitanium, tetra-t-butoxytitanium, tetraethoxy Zirconium, tetra-i-propoxyzirconium, tetra-n-butoxyzirconium, dimethoxytin, diethoxytin, di-n-butoxytin, tetraethoxytin, tetra-i-propoxytin, tetra-n-butoxytin Diethoxy zinc, magnesium methoxide, magnesium ethoxide, magnesium isopropoxide, and the like.

また、更に脂肪酸及びその金属塩を具体的に例示すれば、ウンデシル酸、ラウリン酸、トリデシル酸、ドデシル酸、ミリスチン酸、バルミチン酸、ペンタデシル酸、ステアリン酸、ヘプタデシル酸、アラキン酸、モンタン酸、オレイン酸、リノール酸、アラキドン酸などの長鎖脂肪酸が挙げられ、その金属塩としては亜鉛、鉄、マグネシウム、アルミニウム、カルシウム、ナトリウム、リチウム等の金属との塩が挙げられる。   Further specific examples of fatty acids and their metal salts include undecyl acid, lauric acid, tridecyl acid, dodecyl acid, myristic acid, valmitic acid, pentadecylic acid, stearic acid, heptadecylic acid, arachidic acid, montanic acid, olein. Examples include long-chain fatty acids such as acid, linoleic acid, and arachidonic acid, and metal salts thereof include salts with metals such as zinc, iron, magnesium, aluminum, calcium, sodium, and lithium.

上記表面処理剤を使用した表面処理の方法は公知の方法が何ら制限無く使用できる。例えば、シリカ微粒子を攪拌下に表面処理剤を噴霧するか、蒸気で接触させる方法が一般的である。   As the surface treatment method using the surface treatment agent, a known method can be used without any limitation. For example, a method in which silica fine particles are sprayed with a surface treatment agent with stirring or contacted with steam is common.

また、言うまでもないが、本発明のシリカ微粒子は電子写真用トナー外添材用途に限定されるものでなく、単独で或いは他の粒子と組み合わせて、種々の用途に使用することも可能である。   Needless to say, the silica fine particles of the present invention are not limited to the use as an electrophotographic toner external additive, and can be used in various applications alone or in combination with other particles.

例えば、石英るつぼ、光ファイバー等の石英ガラス部材、研磨材、精密樹脂成形品充填材、歯科材用充填材、電子回路用積層基板、液晶用シール剤、LED用シール剤、ICのテープオートメイティッドボンディング用キャリアテープフィルム、ICのリードフレーム固定用テープ、インクジェット紙コート層、半導体封止材等の用途に好適に使用することができる。   For example, quartz glass members such as quartz crucibles, optical fibers, abrasives, precision resin molding fillers, dental fillers, electronic circuit laminates, liquid crystal sealing agents, LED sealing agents, IC tape automated It can be suitably used for applications such as a bonding carrier tape film, an IC lead frame fixing tape, an inkjet paper coating layer, and a semiconductor sealing material.

本発明を具体的に説明するために実施例および比較例を示すが、本発明はこれらの実施例に限定されるものではない。   Examples and comparative examples are shown to specifically describe the present invention, but the present invention is not limited to these examples.

尚、以下の実施例および比較例における各種の物性測定等は以下の方法による。   In addition, various physical property measurements in the following examples and comparative examples are based on the following methods.

(1)平均粒子径
日本電子製、走査電子顕微鏡装置(JSM−840F)により任意の粒子10000個(倍率100000倍)の粒子径を測定し、個数平均により求めた。
(1) Average particle diameter The particle diameter of 10000 arbitrary particles (magnification 100000 times) was measured with a scanning electron microscope apparatus (JSM-840F) manufactured by JEOL, and the average particle diameter was determined by number average.

(2)ロジン−ラムラー線図による勾配n
上記(1)によって得られた粒度分布を元に、ロジン−ラムラー線図上に横軸に粒子径、縦軸に累積体積分布をとりプロットした。累積体積分布が15体積%から85体積%の範囲で最小二乗法により直線を求め、その直線の勾配からn値を求めた。
(2) Gradient n according to Rosin-Rammler diagram
Based on the particle size distribution obtained by (1) above, the particle size is plotted on the horizontal axis and the cumulative volume distribution is plotted on the vertical axis on the Rosin-Rammler diagram. A straight line was determined by the method of least squares when the cumulative volume distribution was in the range of 15 volume% to 85 volume%, and the n value was determined from the slope of the straight line.

(3)レーザ回折・散乱法による溶融粒子径1μm以上粒子の確認
実施例及び比較例によって得られたシリカ微粒子を水の入った容器に入れ、超音波分散させた。その後堀場製作所製レーザ回折散乱式粒度分布測定装置(LA−920)を用いて水分散媒による測定を任意の場所から20点行なった。
(3) Confirmation of particles having a melt particle diameter of 1 μm or more by laser diffraction / scattering method Silica fine particles obtained by Examples and Comparative Examples were placed in a container containing water and ultrasonically dispersed. Thereafter, measurement with an aqueous dispersion medium was performed at 20 points from an arbitrary place using a laser diffraction scattering type particle size distribution measuring apparatus (LA-920) manufactured by Horiba.

4.電子写真用トナー外添剤としての特性評価
電子写真用トナー外添剤としての特性評価(流動性、画像特性、クリーニング性)には、ヘキサメチルジシラザンによりシリカ微粒子表面を疎水化処理したシリカ微粒子を用いた。ヘキサメチルジシラザンによる疎水化処理の方法は次の通りである。まず、シリカ微粒子をミキサーに入れて撹拌し、窒素雰囲気に置換すると同時に250℃に加熱した。その後、ミキサーを密閉してヘキサメチルジシラザン60重量部を噴霧し、そのまま30分間撹拌して疎水化処理を実施した。
4). Characteristic evaluation as external toner additive for electrophotography For evaluation of characteristics as external toner additive for electrophotography (fluidity, image characteristics, cleaning properties), silica fine particles whose surface is hydrophobized with hexamethyldisilazane Was used. The method of hydrophobizing with hexamethyldisilazane is as follows. First, silica fine particles were put into a mixer and stirred, and the mixture was replaced with a nitrogen atmosphere, and simultaneously heated to 250 ° C. Thereafter, the mixer was sealed, 60 parts by weight of hexamethyldisilazane was sprayed, and the mixture was stirred as it was for 30 minutes to carry out a hydrophobic treatment.

(トナー用外添剤としての評価)
1.流動性
球状ポリスチレン樹脂(綜研化学(株)社製SX−500H、平均粒子径5μm)に対して、シリカ試料を2重量%となるように添加し、ミキサーで5分間混合した。これを35℃、85%相対湿度で調湿した。この混合粉試料の流動性を、パウダテスタ(ホソカワミクロン社製、PT−R型)にて圧縮度を測定することにより評価した。圧縮度は次式(3)で示される。
圧縮度=(固め見掛け比重−ゆるみ見掛け比重)/固め見掛け比重×100
・・・ (3)
ここで、式中のゆるみ見掛け比重、固め見掛け比重は、以下の通りである。
(Evaluation as an external additive for toner)
1. A silica sample was added to a flowable spherical polystyrene resin (SX-500H manufactured by Soken Chemical Co., Ltd., average particle size 5 μm) so as to be 2% by weight, and mixed for 5 minutes with a mixer. This was conditioned at 35 ° C. and 85% relative humidity. The fluidity of the mixed powder sample was evaluated by measuring the degree of compression with a powder tester (manufactured by Hosokawa Micron Corporation, PT-R type). The degree of compression is expressed by the following equation (3).
Compressibility = (solid apparent specific gravity-slack apparent specific gravity) / hard apparent specific gravity × 100
(3)
Here, the loose apparent specific gravity and the hard apparent specific gravity in the formula are as follows.

ゆるみ見掛け比重:100mlのカップに試料粉を入れ、タッピングをしない状態で測定した見掛け比重
固め見掛け比重 :100mlのカップに試料粉を入れ、180回タッピングした後の見掛け比重。
Loose Apparent Specific Gravity: Apparent specific gravity measured in a state where the sample powder was put into a 100 ml cup without tapping. Apparent specific gravity: Apparent specific gravity after the sample powder was put into a 100 ml cup and tapped 180 times.

上記圧縮度の値が小さいほど、流動性が良好と判定した。また、ミキサーでの混合時間を5分間から60分間に変えた時の圧縮度も測定し、実使用下で現像枚数が増加した場合の流動性低下に対する耐久性を評価した。   The smaller the value of the compression degree, the better the fluidity. Further, the degree of compression when the mixing time in the mixer was changed from 5 minutes to 60 minutes was also measured, and the durability against the decrease in fluidity when the number of developed images was increased under actual use was evaluated.

2.画像特性
平均粒子径7μmのトナーに上記のシリカ試料を1%添加して攪拌混合し、トナー組成物を調製した。このトナー組成物を用い市販の複写機によって3万枚複写し、画像濃度、カブリの有無等を目視で観察して評価した。
2. Image characteristics 1% of the above silica sample was added to a toner having an average particle diameter of 7 μm and mixed by stirring to prepare a toner composition. Using this toner composition, 30,000 copies were made with a commercially available copying machine, and the image density, the presence or absence of fogging, and the like were visually observed and evaluated.

○:安定した良好な画像
△:画像濃度がやや低い、またはカブリの発生が少し見られる
×:画像濃度が低い、カブリが発生、画像にムラが発生する
3.クリーニング性
クリーニング性評価については、実機評価終了後、潜像担持体上表面の傷や残留トナーの固着発生状況と出力画像への影響を目視で評価した。
○: Stable and good image Δ: Image density is slightly low, or slight fogging is observed ×: Image density is low, fogging occurs, and unevenness occurs in the image Cleaning performance With regard to the cleaning performance evaluation, after completion of the actual machine evaluation, scratches on the surface of the latent image carrier and occurrence of sticking of residual toner and the influence on the output image were visually evaluated.

◎:未発生。   A: Not generated.

○:傷がわずかに認められるが、画像への影響はない。   ○: Slight scratches are observed, but there is no effect on the image.

△:残留トナー や傷が認められるが、画像への影響は少ない。   Δ: Residual toner and scratches are observed, but the effect on the image is small.

×:残留トナー がかなり多く、縦スジ状の画像欠陥が発生。   ×: Residual toner is considerably large, and vertical stripe-like image defects occur.

××:残留トナー が固着して、画像欠陥も多数発生。   XX: Residual toner adheres and many image defects occur.

実施例1〜3、比較例1
珪素化合物としてオクタメチルシクロテトラシロキサンを用いて、表1記載の製造条件で酸水素火炎中燃焼酸化させることによりシリカ微粒子を製造した。得られたシリカ微粒子の平均粒子径、ロジン−ラムラー線図における勾配n、レーザ回折・散乱法による溶融粒子径1μm以上粒子の有無、及び電子写真用トナー外添剤としての特性評価(流動性、画像特性、クリーニング性、)を表1に併せて記す。また不純物結果を表2に記す。
Examples 1-3, Comparative Example 1
Silica fine particles were produced by burning and oxidizing in an oxyhydrogen flame under the production conditions shown in Table 1 using octamethylcyclotetrasiloxane as the silicon compound. The average particle diameter of the silica fine particles obtained, the gradient n in the rosin-Rammler diagram, the presence or absence of particles having a melt particle diameter of 1 μm or more by laser diffraction / scattering method, and evaluation of characteristics as an external additive for toner for electrophotography Table 1 also shows image characteristics and cleaning properties. The impurity results are shown in Table 2.

比較例2〜3
市販品のヒュームドシリカ、溶融シリカ粒子について、平均粒子径、ロジン−ラムラー線図における勾配n、レーザ回折・散乱法による溶融粒子径1μm以上粒子の有無、及び電子写真用トナー外添剤としての特性評価(流動性、画像特性、クリーニング性、)を表1に併せて記す。また不純物結果を表2に記す。
Comparative Examples 2-3
Regarding commercially available fumed silica and fused silica particles, the average particle size, the gradient n in the Rosin-Rammler diagram, the presence or absence of particles with a melt particle size of 1 μm or more by laser diffraction / scattering method, and as an external additive for toner for electrophotography The characteristic evaluation (fluidity, image characteristics, cleaning properties) is also shown in Table 1. The impurity results are shown in Table 2.

比較例4
実施例1のシリカ微粒子に比較例3に使用した市販品の溶融シリカ粒子を1重量%混ぜた混合シリカ微粒子について、平均粒子径、ロジン−ラムラー線図における勾配n、レーザ回折・散乱法による溶融粒子径1μm以上粒子の有無、及び電子写真用トナー外添剤としての特性評価(流動性、画像特性、クリーニング性、)を表1に併せて記す。また不純物結果を表2に記す。
Comparative Example 4
About the mixed silica fine particles obtained by mixing 1% by weight of the commercially available fused silica particles used in Comparative Example 3 with the silica fine particles of Example 1, the average particle diameter, the gradient n in the Rosin-Rammler diagram, and the melting by the laser diffraction / scattering method The presence / absence of particles having a particle diameter of 1 μm or more and the characteristics evaluation (fluidity, image characteristics, cleaning properties) as an electrophotographic toner external additive are also shown in Table 1. The impurity results are shown in Table 2.

Figure 2006206414
Figure 2006206414

Figure 2006206414
Figure 2006206414

Claims (6)

珪素化合物の燃焼によって得られるシリカ微粒子であって、平均粒子径が0.05μm以上0.1μm未満の範囲であり、且つ、ロジン−ラムラー線図で表示した粒度分布の勾配nが2以上であり、また、レーザ回折・散乱法による測定で1μm以上の溶融粒子を含まないことを特徴とするシリカ微粒子。   Silica fine particles obtained by combustion of a silicon compound, having an average particle size in the range of 0.05 μm or more and less than 0.1 μm, and a gradient n of the particle size distribution displayed in the rosin-Rammler diagram is 2 or more Also, silica fine particles characterized by not containing molten particles of 1 μm or more as measured by a laser diffraction / scattering method. 鉄が20ppm未満、アルミニウムが5ppm未満、ニッケルが5ppm未満、クロムが5ppm未満、ナトリウムが3ppm未満、及び塩素が3ppm未満である請求項1記載のシリカ微粒子。   2. The silica fine particles of claim 1, wherein iron is less than 20 ppm, aluminum is less than 5 ppm, nickel is less than 5 ppm, chromium is less than 5 ppm, sodium is less than 3 ppm, and chlorine is less than 3 ppm. 珪素化合物がハロゲンを含まない珪素化合物である請求項1乃至2何れかに記載のシリカ微粒子。   3. The silica fine particles according to claim 1, wherein the silicon compound is a silicon compound containing no halogen. 珪素化合物が、沸点100〜250℃のシロキサンである請求項1乃至3何れかに記載のシリカ微粒子。   The silica fine particles according to any one of claims 1 to 3, wherein the silicon compound is siloxane having a boiling point of 100 to 250 ° C. ハロゲンを実質的に含有しないシリル化剤、シリコーンオイル、シロキサン類、金属アルコキシド、脂肪酸及びその金属塩からなる群から少なくとも1種選ばれる処理剤によって表面処理されてなる請求項1乃至4記載のシリカ微粒子。   The silica according to any one of claims 1 to 4, which is surface-treated with a treatment agent selected from the group consisting of a silylating agent substantially free of halogen, silicone oil, siloxanes, metal alkoxides, fatty acids and metal salts thereof. Fine particles. 請求項1〜5の何れか一項に記載のシリカ微粒子を用いたトナー用外添剤。

An external toner additive using the silica fine particles according to any one of claims 1 to 5.

JP2005023946A 2005-01-31 2005-01-31 Silica fine particles Active JP4758656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023946A JP4758656B2 (en) 2005-01-31 2005-01-31 Silica fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023946A JP4758656B2 (en) 2005-01-31 2005-01-31 Silica fine particles

Publications (2)

Publication Number Publication Date
JP2006206414A true JP2006206414A (en) 2006-08-10
JP4758656B2 JP4758656B2 (en) 2011-08-31

Family

ID=36963659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023946A Active JP4758656B2 (en) 2005-01-31 2005-01-31 Silica fine particles

Country Status (1)

Country Link
JP (1) JP4758656B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038538A1 (en) 2008-10-01 2010-04-08 日本アエロジル株式会社 Hydrophobic silica fine particles and electrophotographic toner composition
JP2010085837A (en) * 2008-10-01 2010-04-15 Nippon Aerosil Co Ltd Hydrophobic silica fine particle and electrophotographic toner composition
JP2010522357A (en) * 2007-03-27 2010-07-01 エボニック デグサ ゲーエムベーハー Toner for electrostatic image development
JP2010173925A (en) * 2009-02-02 2010-08-12 Nippon Aerosil Co Ltd Hydrophobic silica fine particle and toner composition for electrophotography
WO2013018704A1 (en) * 2011-07-29 2013-02-07 電気化学工業株式会社 Fine spherical silica powder and external toner additive for developing electrostatic images using fine spherical silica powder
JP2015000830A (en) * 2013-06-14 2015-01-05 電気化学工業株式会社 Spherical silica composition and use of the same
US10295919B2 (en) 2016-12-22 2019-05-21 Ricoh Company, Ltd. Toner, developer, toner storage unit, and image forming apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217515A (en) * 2002-12-27 2004-08-05 Tokuyama Corp Silica fine particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217515A (en) * 2002-12-27 2004-08-05 Tokuyama Corp Silica fine particle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522357A (en) * 2007-03-27 2010-07-01 エボニック デグサ ゲーエムベーハー Toner for electrostatic image development
WO2010038538A1 (en) 2008-10-01 2010-04-08 日本アエロジル株式会社 Hydrophobic silica fine particles and electrophotographic toner composition
JP2010085837A (en) * 2008-10-01 2010-04-15 Nippon Aerosil Co Ltd Hydrophobic silica fine particle and electrophotographic toner composition
JP2010173925A (en) * 2009-02-02 2010-08-12 Nippon Aerosil Co Ltd Hydrophobic silica fine particle and toner composition for electrophotography
WO2013018704A1 (en) * 2011-07-29 2013-02-07 電気化学工業株式会社 Fine spherical silica powder and external toner additive for developing electrostatic images using fine spherical silica powder
KR20140044869A (en) * 2011-07-29 2014-04-15 덴키 가가쿠 고교 가부시기가이샤 Fine spherical silica powder and external toner additive for developing electrostatic images using fine spherical silica powder
JP2015000830A (en) * 2013-06-14 2015-01-05 電気化学工業株式会社 Spherical silica composition and use of the same
US10295919B2 (en) 2016-12-22 2019-05-21 Ricoh Company, Ltd. Toner, developer, toner storage unit, and image forming apparatus

Also Published As

Publication number Publication date
JP4758656B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5008460B2 (en) Dry silica fine particles
KR101206685B1 (en) Dry-process fine silica particle
JP4758656B2 (en) Silica fine particles
JP4758655B2 (en) Surface-treated silica fine particles
KR100714942B1 (en) Silica fine particles
JP5743578B2 (en) toner
JP4904567B2 (en) Amorphous fine silica particles and their applications
WO2010038538A1 (en) Hydrophobic silica fine particles and electrophotographic toner composition
JP5989201B2 (en) Silicone oil-treated silica particles and electrophotographic toner
JP2012027142A (en) External additive for electrophotographic toner and electrophotographic toner
JP4377215B2 (en) Silica fine particles
JP4346403B2 (en) Surface-treated silica particles and uses thereof
JP2010085837A (en) Hydrophobic silica fine particle and electrophotographic toner composition
JP2004359476A (en) Hydrophobized silica composition
JP2014136670A (en) Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP5483994B2 (en) Image forming method
JP2020147467A (en) Method for producing silicone oil-treated silica particles
TWI626216B (en) Hydrophobized spherical vermiculite fine powder and use thereof
JP2004143028A (en) Alumina doped hydrophobic-treated silica particulate
JP7456957B2 (en) Method for producing surface-treated vapor-phase silica particles, surface-treated vapor-phase silica particles, and toner external additive for electrostatic image development
WO2016117344A1 (en) Silicone oil-treated silica particles and toner for electrophotography
JP2022136773A (en) Surface modified inorganic oxide powder and method for producing the same
JP2010173925A (en) Hydrophobic silica fine particle and toner composition for electrophotography
JP2010001194A (en) Surface-treated silica fine particle
JPH04107478A (en) Color toner and image formation using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110603

R150 Certificate of patent or registration of utility model

Ref document number: 4758656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250