JP4377215B2 - Silica fine particles - Google Patents

Silica fine particles Download PDF

Info

Publication number
JP4377215B2
JP4377215B2 JP2003428824A JP2003428824A JP4377215B2 JP 4377215 B2 JP4377215 B2 JP 4377215B2 JP 2003428824 A JP2003428824 A JP 2003428824A JP 2003428824 A JP2003428824 A JP 2003428824A JP 4377215 B2 JP4377215 B2 JP 4377215B2
Authority
JP
Japan
Prior art keywords
fine particles
silica fine
silica
resin
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003428824A
Other languages
Japanese (ja)
Other versions
JP2004217515A (en
Inventor
雅和 大原
稔 木村
博男 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2003428824A priority Critical patent/JP4377215B2/en
Publication of JP2004217515A publication Critical patent/JP2004217515A/en
Application granted granted Critical
Publication of JP4377215B2 publication Critical patent/JP4377215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、新規なシリカ微粒子に関する。詳しくは、ヒュームドシリカより単純であり、球状溶融シリカより複雑であるという特殊な粒子形状を有し、特に、半導体封止樹脂用充填材、電子写真用トナー外添剤等の各種用途において優れた特性を発揮することができるシリカ微粒子に関する。   The present invention relates to a novel silica fine particle. Specifically, it has a special particle shape that is simpler than fumed silica and more complicated than spherical fused silica, and is particularly excellent in various applications such as fillers for semiconductor sealing resins and toner external additives for electrophotography. The present invention relates to a silica fine particle capable of exhibiting excellent characteristics.

半導体封止樹脂用充填材、電子写真用トナー外添剤等の用途においては、平均粒子径が1μm以下のシリカ微粒子が広く使用されている。その理由は、半導体封止樹脂用充填材においては、このような粒径のシリカ微粒子は成形前の溶融状態または溶液状態を成す液体状態の樹脂(以下、液状樹脂ともいう)中での沈降性が低いため、均一な組成を維持する上で有利であり、また、電子写真用トナー外添剤の用途においては、このような粒径のシリカ微粒子は、トナー樹脂の表面への付着性が高く、トナー樹脂の流動性を付与する上で有利となるからである。   Silica fine particles having an average particle size of 1 μm or less are widely used in applications such as a semiconductor sealing resin filler and an electrophotographic toner external additive. The reason for this is that, in the filler for semiconductor encapsulating resin, the silica fine particles having such a particle size are settled in a liquid state resin (hereinafter also referred to as a liquid resin) in a molten state or a solution state before molding. Therefore, it is advantageous in maintaining a uniform composition, and in the application of an external toner additive for electrophotography, the silica fine particles having such a particle size have high adhesion to the surface of the toner resin. This is because it is advantageous in imparting the fluidity of the toner resin.

従来、半導体封止用樹脂の充填材として、クロロシランの火炎加水分解法によって製造されるヒュームドシリカ(所謂、乾式シリカ)を使用することは、数多く報告されている(例えば、特許文献1参照)。   Conventionally, there have been many reports on the use of fumed silica (so-called dry silica) produced by flame hydrolysis of chlorosilane as a filler for semiconductor sealing resin (see, for example, Patent Document 1). .

ところで、近年、環境問題への意識の高まりから、半導体パッケージなどに用いられる各種配線基板での実装に際しては、鉛を使用しない半田が使われ始め、それに伴い、実装のための半田付けの温度が上昇する傾向にある。そのため、半導体パッケージの半導体封止用樹脂には、耐熱性を向上させるため、充填材の添加量を増大することが必要となってきた。   By the way, due to increasing awareness of environmental issues in recent years, solder that does not use lead has begun to be used for mounting on various wiring boards used in semiconductor packages and the like. It tends to rise. Therefore, it has become necessary to increase the amount of filler added to the semiconductor sealing resin of the semiconductor package in order to improve heat resistance.

ところが、上記ヒュームドシリカは、液状樹脂に少量添加するだけで高い粘性を付与する性質があり、その添加量を増大させた場合、半導体封止用樹脂の成形が困難となるという問題が生じる。   However, the fumed silica has a property of imparting high viscosity only by adding a small amount to the liquid resin, and when the addition amount is increased, there is a problem that it becomes difficult to mold the resin for semiconductor encapsulation.

上記問題に対して、上記ヒュームドシリカの高い粘性付与特性を抑制し、高充填を可能とするため、平均粒径が1μm以下に制御された球状溶融シリカを使用することも提案され(例えば、特許文献2参照)、実施されるようになってきた。   In order to suppress the high viscosity-imparting property of the fumed silica and enable high filling, the use of spherical fused silica having an average particle size controlled to 1 μm or less has been proposed (for example, (See Patent Document 2).

上記球状溶融シリカの使用により、確かに、充填する樹脂の粘度上昇が抑えられ、充填材の充填率を上昇することができる。しかしながら、球状溶融シリカよりなる充填材の場合、これが高充填された樹脂の強度においては不十分であり、改良の余地があった。   By using the spherical fused silica, the increase in the viscosity of the resin to be filled is surely suppressed, and the filling rate of the filler can be increased. However, in the case of a filler made of spherical fused silica, the strength of the resin in which this is highly filled is insufficient and there is room for improvement.

一方、電子写真用トナー外添剤の用途において、前記ヒュームドシリカの使用も報告されている(例えば、特許文献3参照)。しかし、ヒュームドシリカは、その複雑な粒子構造からトナーの流動性の付与効果において不十分である。また、球状溶融シリカをトナー用外添剤として使用することも報告されている(例えば、特許文献4参照)。しかし、この場合も、球状であるがためにトナー樹脂粒子の表面への付着力が乏しく、シリカ微粒子が脱落したトナー粒子表面がコピー機の感光体表面と接触し、トナーが所定の用紙に転写されず、感光体表面に残存し易い等の問題を有している。   On the other hand, use of the fumed silica has also been reported for use as an electrophotographic toner external additive (see, for example, Patent Document 3). However, fumed silica is insufficient in the effect of imparting toner fluidity due to its complicated particle structure. It has also been reported that spherical fused silica is used as an external additive for toner (for example, see Patent Document 4). However, in this case as well, the adhesion to the surface of the toner resin particles is poor due to the spherical shape, and the surface of the toner particles from which the silica fine particles have dropped contacts the photoconductor surface of the copying machine, so that the toner is transferred to a predetermined paper. However, there is a problem that it tends to remain on the surface of the photoreceptor.

特開平1−161065号公報Japanese Patent Laid-Open No. 1-161065 特開平8−245214号公報JP-A-8-245214 特開2002−116575号公報JP 2002-116575 A 特開2002−154820号公報JP 2002-154820 A

従って、本発明の目的は、半導体封止樹脂用充填材、電子写真用トナー外添剤等の各種用途において、1μm以下のシリカ微粒子として、ヒュームドシリカ及び球状溶融シリカを使用することによる問題を解決することにある。   Accordingly, the object of the present invention is to solve the problems caused by the use of fumed silica and spherical fused silica as silica fine particles of 1 μm or less in various uses such as fillers for semiconductor encapsulating resins and toner external additives for electrophotography. There is to solve.

本発明者等は、上記技術課題を解決すべく、シリカ微粒子についてその製造条件と得られるシリカ微粒子の増粘作用、樹脂強度補強性、流動性付与効果およびトナー樹脂粒子表面からの脱落防止効果との関係について鋭意検討を行った。その結果、火炎加水分解法や火炎熱分解法のような火炎中における反応(以下、火炎反応法とも言う)によってシリカ微粒子を製造する際の条件を特定の範囲に調整することにより、ヒュームドシリカより単純であり、しかも、球状溶融シリカより複雑である、特殊な粒子形状を有するシリカ微粒子の開発に成功した。   In order to solve the above technical problems, the present inventors have prepared the production conditions of silica fine particles, the thickening action of the silica fine particles obtained, the resin strength reinforcing property, the fluidity imparting effect, and the anti-dropping effect from the toner resin particle surface. The relationship between the two has been studied earnestly. As a result, fumed silica is prepared by adjusting the conditions for producing silica fine particles to a specific range by a reaction in a flame such as a flame hydrolysis method or a flame pyrolysis method (hereinafter also referred to as a flame reaction method). We have succeeded in developing silica particles with special particle shapes that are simpler and more complicated than spherical fused silica.

即ち、本発明によれば、珪素化合物の火炎反応法おいて、火炎中のシリカ粒子同士の凝集を調整しながら部分溶着せしめることにより得られ、比表面積が35m /g以上であり、平均粒子径が0.05〜1μmであり、小角X線散乱測定において、解析対象範囲50nm〜150nmのフラクタル形状パラメータα及び解析対象範囲150nm〜353nmのフラクタル形状パラメータαが下記式(1)及び(2):
−0.0068S+2.548≦α≦−0.0068S+3.748 (1)
−0.0011S+1.158≦α≦−0.0011S+2.058 (2)
(上記式中、Sはシリカ微粒子のBET比表面積(m/g)を示す。)
で示される条件を満足していることを特徴とするシリカ微粒子が提供される。
That is, according to the present invention, in the flame reaction method of a silicon compound, it is obtained by partial welding while adjusting the aggregation of silica particles in the flame, the specific surface area is 35 m 2 / g or more, and the average particle In the small angle X-ray scattering measurement, the fractal shape parameter α 1 in the analysis target range 50 nm to 150 nm and the fractal shape parameter α 2 in the analysis target range 150 nm to 353 nm are expressed by the following formulas (1) and ( 2):
−0.0068S + 2.548 ≦ α 1 ≦ −0.0068S + 3.748 (1)
−0.0011S + 1.158 ≦ α 2 ≦ −0.0011S + 2.058 (2)
(In the above formula, S represents the BET specific surface area (m 2 / g) of the silica fine particles.)
A silica fine particle characterized by satisfying the conditions indicated by is provided.

また、本発明によれば、上記のシリカ微粒子よりなる半導体封止樹脂用充填材、及び、電子写真用トナー外添剤が提供される。   In addition, according to the present invention, there are provided a filler for semiconductor encapsulating resin, and an electrophotographic toner external additive comprising the above-mentioned silica fine particles.

一般に、粉末を小角X線散乱測定したときに得られる散乱パターンから決定されるフラクタル形状パラメータ(α値)は、独立粒子の形状の複雑さの程度を表す指標となることが一般に知られている。すなわちα値が4に近いほど粒子形状が真球状粒子に近い(真球状粒子のα値は4)ことを示し、その値が小さくなるほど粒子形状がより複雑であることを示している。   Generally, it is generally known that a fractal shape parameter (α value) determined from a scattering pattern obtained when small-angle X-ray scattering measurement is performed on a powder serves as an index representing the degree of complexity of the shape of independent particles. . That is, the closer the α value is to 4, the closer the particle shape is to a true spherical particle (the α value of the true spherical particle is 4), and the smaller the value, the more complicated the particle shape.

本発明者等は前記特定の粒子構造を有する本発明のシリカ微粒子と既存のシリカ微粒子についてα値を比較したところ、本発明のシリカ微粒子は、既存のシリカ微粒子に対して、解析対象範囲50nm〜150nmの散乱パターンから求めたα値(α)、および解析対象範囲150nm〜353nmの散乱パターンから求めたα値(α)がそれぞれ特異な値を示すことを確認した。 The present inventors compared the α value of the silica fine particles of the present invention having the specific particle structure and the existing silica fine particles. As a result, the silica fine particles of the present invention have an analysis target range of 50 nm to 50 nm to the existing silica fine particles. It was confirmed that the α value (α 1 ) obtained from the scattering pattern of 150 nm and the α value (α 2 ) obtained from the scattering pattern in the analysis target range of 150 nm to 353 nm each showed a unique value.

尚、小角X線散乱測定によれば、通常のX線回折では得ることのできないナノメーター以上の周期構造に関する情報(構造の周期および頻度に関する情報)を得ることができるので、この情報に基づきα値を決定することができる。例えば、ヒュームドシリカを小角X線散乱測定した場合には、ヒュームドシリカはその製造方法に由来して複数の一次粒子が互いに固結して種々の形状および粒径を有する極めて強固な凝集粒子(または融着粒子)の集合体となっているために得られる小角X線散乱曲線は、種々の大きさの周期による散乱曲線の重ね合わせとなる。   In addition, according to the small-angle X-ray scattering measurement, it is possible to obtain information on a periodic structure of nanometers or more that cannot be obtained by ordinary X-ray diffraction (information on the period and frequency of the structure). The value can be determined. For example, when fumed silica is measured by small-angle X-ray scattering, fumed silica is derived from its production method, and a plurality of primary particles are consolidated together to form extremely strong aggregated particles having various shapes and particle sizes. The small-angle X-ray scattering curve obtained because it is an aggregate of (or fused particles) is a superposition of scattering curves with periods of various sizes.

従って、得られた小角X線散乱曲線を解析することにより、種々の大きさの周期構造の頻度に対応する“凝集(融着)粒子の形状の指標となるフラクタル形状パラメータ(α値)”を決定することができる。すなわち、小角X線散乱における散乱強度(I)、散乱ベクトル(k)およびフラクタル形状パラメータ(α)との間には下記式の関係があるので、横軸をk、縦軸をIとしてプロットした小角X線散乱曲線からα値を決定することができる。   Therefore, by analyzing the obtained small-angle X-ray scattering curve, the “fractal shape parameter (α value) serving as an index of the shape of agglomerated (fused) particles” corresponding to the frequency of periodic structures of various sizes can be obtained. Can be determined. That is, since there is a relationship of the following formula among the scattering intensity (I), the scattering vector (k), and the fractal shape parameter (α) in small-angle X-ray scattering, the horizontal axis is plotted as k and the vertical axis is plotted as I. The α value can be determined from the small angle X-ray scattering curve.

I∝k−α
(但し、k=4πλ−1sinθ)
尚、kの単位はnm−1であり、πは円周率、λは入射X線の波長(単位はnm)、θはX線散乱角度(該θは検出器の走査角度を0.5倍した値である)を意味する。
I∝k
(However, k = 4πλ −1 sin θ)
The unit of k is nm −1 , π is the pi, λ is the wavelength of incident X-rays (unit is nm), θ is the X-ray scattering angle (θ is the detector scanning angle of 0.5). It is a doubled value).

小角X線散乱曲線を得るためには、まず単色化されたX線をスリットおよびブロックを用いて細く絞り、試料に照射し、検出器の走査角度を変化させながら、試料によって散乱されたX線を検出し、横軸をk、縦軸をIとしてプロットすればよい。   In order to obtain a small-angle X-ray scattering curve, first, monochromatic X-rays are narrowed down using slits and blocks, irradiated onto the sample, and the X-rays scattered by the sample are changed while changing the scanning angle of the detector. And the horizontal axis is k and the vertical axis is I.

このとき両対数目盛りでプロットすれば、散乱曲線のkにおける接線の傾きが−αに等しくなるのでα値を求めることができる。また、解析対象範囲をDとすると、DとX線散乱角度θと入射X線波長λとの間には、ブラッグの式:
2Dsinθ=λ
の関係があるので、kとDの間には下記式の関係が成立する。
If the logarithmic scale is plotted at this time, the slope of the tangent at k of the scattering curve becomes equal to -α, so that the α value can be obtained. Further, when the analysis target range is D, the Bragg equation between D, the X-ray scattering angle θ, and the incident X-ray wavelength λ:
2Dsin θ = λ
Therefore, the relationship of the following equation is established between k and D.

D=2πk−1
従って、図1に示すように、kとIの両対数プロットの横軸を、
Logk=−1.377〜−0.902(D=50〜150nm)
および、
Logk=−1.750〜−1.377(D=150〜353nm)
で区切り、区切られた各々の範囲の曲線を直線で近似し、その近似直線の傾きを求めることによって、各解析対象範囲毎のフラクタル形状パラメータであるαおよびαを決定することができる。
D = 2πk −1
Therefore, as shown in FIG. 1, the horizontal axis of the logarithmic plot of k and I is
Logk = −1.377 to −0.902 (D = 50 to 150 nm)
and,
Logk = −1.750 to −1.377 (D = 150 to 353 nm)
And by approximating the curve of each divided range with a straight line and obtaining the slope of the approximate straight line, the fractal shape parameters α 1 and α 2 for each analysis target range can be determined.

本発明のシリカ微粒子は、球状粒子と形状的に複雑な構造の粒子との特徴を兼ね備えており、例えば、硬化前或いは溶融時の液状樹脂に大量に添加しても粘度が増大し難いという特徴を有する。また、研磨剤やインクジェット紙コート液としてのシリカ分散液の調製においても、液の粘度を増大させずに充填材の添加量を増やすことができ、その添加量を増やすことができる。   The silica fine particles of the present invention have the characteristics of spherical particles and particles having a complicated structure. For example, the viscosity is difficult to increase even when added in a large amount to a liquid resin before curing or at the time of melting. Have In addition, in the preparation of a silica dispersion as an abrasive or an inkjet paper coating liquid, the amount of filler added can be increased without increasing the viscosity of the liquid, and the amount added can be increased.

また、本発明のシリカ微粒子は、電子写真用トナー外添剤として使用すれば、その特殊な粒子構造によってトナーに良好な流動性を付与することができると共に、トナー樹脂粒子に対して良好な脱落防止性を発揮する。   The silica fine particles of the present invention, when used as an external toner additive for electrophotography, can impart good fluidity to the toner due to its special particle structure, and also can be easily removed from the toner resin particles. Demonstrate the prevention.

本発明のシリカ微粒子は、0.05〜1μm、好ましくは、0.1〜1μmの平均粒子径を有する。即ち、平均粒子径が0.05μmより小さい場合は、後記のフラクタル形状パラメータαおよびαが、式(1)及び(2)で示される範囲よりも小さい値となってしまい、平均粒子径が1μmを越える場合は、αおよびαが、式(1)及び(2)で示される範囲よりも大きくなってしまう。 The silica fine particles of the present invention have an average particle diameter of 0.05 to 1 μm, preferably 0.1 to 1 μm. That is, when the average particle diameter is smaller than 0.05 μm, the fractal shape parameters α 1 and α 2 described later are smaller than the ranges represented by the expressions (1) and (2), and the average particle diameter When 1 exceeds 1 μm, α 1 and α 2 are larger than the ranges shown by the equations (1) and (2).

尚、上記平均粒子径は、レーザー回折散乱法により測定した体積基準での平均値(D50)を意味する。 Incidentally, the average particle diameter means the average value based on volume measured by a laser diffraction scattering method (D 50).

本発明のシリカ微粒子における最大の特徴は、解析対象範囲50nm〜150nmのフラクタル形状パラメータαが下記(1)式を満足し、且つ解析対象範囲150nm〜353nmのフラクタル形状パラメータαが下記(2)式をそれぞれ満足していることである。 The greatest feature of the silica fine particles of the present invention is that the fractal shape parameter α 1 in the analysis target range 50 nm to 150 nm satisfies the following expression (1), and the fractal shape parameter α 2 in the analysis target range 150 nm to 353 nm is the following (2 ) Is satisfied.

−0.0068S+2.548≦α≦−0.0068S+3.748 (1)
−0.0011S+1.158≦α≦−0.0011S+2.058 (2)
(式中、Sは、シリカ微粒子のBET比表面積を示す。)
上記シリカ微粒子のフラクタル形状パラメータのうち、解析対象範囲50nm〜150nmのフラクタル形状パラメータαは、複数の一次粒子が互いに融着した種々の形状および粒径を有する凝集粒子のうち、比較的小さな凝集粒子径範囲での形状の複雑さを示すものであり、また、解析対象範囲が150nm〜353nmのフラクタル形状パラメータαは、比較的大きな凝集粒子径範囲での形状の複雑さを示すものである。一般に、上記αとαとは、α>αの関係にある。
−0.0068S + 2.548 ≦ α 1 ≦ −0.0068S + 3.748 (1)
−0.0011S + 1.158 ≦ α 2 ≦ −0.0011S + 2.058 (2)
(In the formula, S represents the BET specific surface area of the silica fine particles.)
Of fractal shape parameter of the silica fine particles, fractal shape parameter alpha 1 of the analysis target range 50nm~150nm, among the aggregated particles having a variety of shapes and particle sizes in which a plurality of primary particles are mutually fused, relatively small aggregates It indicates the complexity of the shape in the particle size range, and the fractal shape parameter α 2 in the analysis target range of 150 nm to 353 nm indicates the complexity of the shape in the relatively large aggregate particle size range. . In general, α 1 and α 2 have a relationship of α 1 > α 2 .

上記粒子形状の複雑さを有するシリカ微粒子は、本発明によって初めて提案されたものである。即ち、前述した公知のヒュームドシリカは、後述の比較例でも示すが、α及び/又はαの値が、上記範囲の下限未満であり、球形から大きく離れた複雑な形状を有しており、球状溶融シリカは、α及び/又はαの値が、上記範囲の上限を超えるものであり、球形に近い形状を有している。これに対して、α及びαの値が上記式(1)及び(2)の範囲内にある本発明のシリカ微粒子は、その粒子形状の複雑さが上記のヒュームドシリカと球状溶融シリカとの中間にある。 The silica fine particles having the complexity of the particle shape are proposed for the first time by the present invention. That is, the known fumed silica described above has a complicated shape greatly separated from a sphere, and the value of α 1 and / or α 2 is less than the lower limit of the above range, as shown in a comparative example described later. In addition, the spherical fused silica has a value of α 1 and / or α 2 exceeding the upper limit of the above range, and has a shape close to a spherical shape. On the other hand, the silica fine particles of the present invention in which the values of α 1 and α 2 are in the range of the above formulas (1) and (2), the complexity of the particle shape is the above fumed silica and spherical fused silica. It is in the middle.

また、前記平均粒子径及びフラクタル形状パラメータを示す本発明のシリカ微粒子のBET比表面積は、一般に、平均粒子径0.05〜1μmにおいて5〜
300m/g、0.1〜1μmにおいて5〜150m/gの範囲を採り得る。
Further, the BET specific surface area of the silica fine particles of the present invention showing the average particle diameter and the fractal shape parameter is generally 5 to 5 at an average particle diameter of 0.05 to 1 μm.
May range from 5~150m 2 / g in 300m 2 /g,0.1~1μm.

尚、上記BET比表面積は、窒素吸着法によって測定した値である。   The BET specific surface area is a value measured by a nitrogen adsorption method.

本発明のシリカ微粒子は、前記特殊な粒子構造を有することによって、その用途において、ヒュームドシリカ及び溶融球状シリカの優位的特性を享受しながら、前記問題となる特性を低減することが可能となる。   Since the silica fine particles of the present invention have the special particle structure, it is possible to reduce the above-mentioned problematic properties while enjoying the superior properties of fumed silica and fused spherical silica in its use. .

例えば、半導体封止樹脂用充填材の用途においては、樹脂に対して均一且つ高充填を可能とし、また、電子写真用トナー外添剤の用途においては、トナー樹脂粒子に対して高い流動性の付与と高い脱落防止性を発揮することができる。   For example, in the application of a filler for semiconductor encapsulating resin, the resin can be uniformly and highly filled, and in the application of an external toner additive for electrophotography, it has high fluidity with respect to toner resin particles. Application and high anti-drop-off property can be exhibited.

本発明のシリカ微粒子は、上述した条件を満足するものであれば、その他の性状等は特に制限されないが、含有されるハロゲン元素及びナトリウム等のアルカリ元素の濃度が50ppm以下、好ましくは30ppm以下であることが、樹脂等に充填した場合、シリカ微粒子に起因する金属配線等の腐食を低減でき、また、電子写真用トナー外添剤としての用途においては、帯電量の大きさや帯電量の立ち上がり速度のバラツキを抑える上で好適である。   As long as the silica fine particles of the present invention satisfy the above-mentioned conditions, other properties are not particularly limited, but the concentration of alkali elements such as halogen elements and sodium contained is 50 ppm or less, preferably 30 ppm or less. For example, when filled in a resin, etc., corrosion of metal wiring caused by silica fine particles can be reduced, and in applications as an external toner for electrophotography, the magnitude of the charge amount and the rising speed of the charge amount It is suitable for suppressing the variation of.

(シリカ微粒子の製造方法)
本発明のシリカ微粒子の製造方法は、特に火炎加水分解法や火炎熱分解法のような火炎中における反応によって得ることができ、特に火炎中の粒子同士の凝集を調整しながら部分溶着せしめことにより得られる。
(Method for producing silica fine particles)
The method for producing silica fine particles of the present invention can be obtained by a reaction in a flame such as a flame hydrolysis method or a flame pyrolysis method, particularly by partially welding while adjusting the aggregation of particles in the flame. can get.

具体的には、原料珪素化合物をガス状で供給する供給口の外周に水素および/または炭化水素(以下、これらのガスを可燃性ガスと総称する)並びに酸素をそれぞれ供給して外周炎を形成することにより、該珪素化合物をシリカ微粒子に変換し、且つ、火炎中で適度に融着せしめ、次いで、融着したシリカ微粒子を分散した状態で冷却して捕集する(例えば、配管内を通過せしめた後、バグフィルターによって捕集する)ことにより、本発明のシリカ微粒子を製造することができる。   Specifically, hydrogen and / or hydrocarbons (hereinafter these gases are collectively referred to as flammable gases) and oxygen are respectively supplied to the outer periphery of the supply port for supplying the raw material silicon compound in the form of gas to form an outer flame. By converting the silicon compound into silica fine particles and fusing appropriately in a flame, the fused silica fine particles are then cooled and collected in a dispersed state (for example, passing through a pipe). After being caulked, the silica fine particles of the present invention can be produced by collecting with a bag filter.

上記製造方法において、フラクタル形状パラメータの値に特に影響を及ぼす条件の一つはバーナー出口の流速であり、かかる流速は、0.5〜10m/秒の間で調整することが好ましい。   In the above production method, one of the conditions that particularly affects the value of the fractal shape parameter is the flow velocity at the outlet of the burner, and the flow velocity is preferably adjusted between 0.5 and 10 m / second.

また、フラクタル形状パラメータの値に特に影響を及ぼす条件の他の一つは、原料珪素化合物の濃度、即ち、火炎中におけるシリカ濃度であり、かかる濃度は、SiO換算で0.05〜5モル/m、特に、0.1〜3モル/mが好ましい。 Another condition that particularly affects the value of the fractal shape parameter is the concentration of the raw silicon compound, that is, the silica concentration in the flame, and this concentration is 0.05 to 5 mol in terms of SiO 2. / M 3 , particularly 0.1 to 3 mol / m 3 is preferred.

さらに、前記製造方法において、平均粒子径や比表面積の調整は、原料珪素化合物の濃度およびバーナー出口流速、外周炎の長さ等を、また、フラクタル形状パラメータの値は、上記条件と共に、外周炎の温度を調節することによって行うことができる。   Further, in the above production method, the adjustment of the average particle size and specific surface area is performed by adjusting the concentration of the raw material silicon compound, the burner outlet flow velocity, the length of the peripheral flame, and the like, and the value of the fractal shape parameter together with the above conditions. This can be done by adjusting the temperature.

一般に、原料珪素化合物の濃度を上げると、平均粒子径は大きくなり、比表面積は小さくなり、また、フラクタル形状パラメータの値は大きくなる。また、バーナー出口流速を上げると、平均粒子径は小さくなり、比表面積は大きくなり、また、フラクタル形状パラメータの値は小さくなる。更に、外周炎の長さを長くすると、平均粒子径は大きくなり、比表面積は小さくなり、また、フラクタル形状パラメータの値は大きくなる。更にまた、外周炎の温度を上げると、平均粒子径は大きくなり、比表面積は小さくなり、また、フラクタル形状パラメータの値は大きくなる。   Generally, when the concentration of the raw material silicon compound is increased, the average particle size is increased, the specific surface area is decreased, and the value of the fractal shape parameter is increased. Further, when the burner outlet flow velocity is increased, the average particle size is decreased, the specific surface area is increased, and the value of the fractal shape parameter is decreased. Further, when the length of the peripheral flame is increased, the average particle diameter is increased, the specific surface area is decreased, and the value of the fractal shape parameter is increased. Furthermore, when the temperature of the peripheral flame is increased, the average particle diameter increases, the specific surface area decreases, and the value of the fractal shape parameter increases.

前記製造方法において、珪素化合物は、常温でガス状または液状であるものが特に制限なく使用される。例えば、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ヘキサメチルジシロキサン、オクタメチルトリシロキサンなどのシロキサン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシランなどのアルコキシシラン、テトラメチルシラン、ジエチルシラン、ヘキサメチルジシラザンなどの有機シラン化合物、モノクロロシラン、ジクロロシラン、トリクロロシラン、テトラクロロシラン等のハロゲン化珪素、モノシラン、ジシランなどの無機シラン化合物を原料珪素化合物として使用することができる。   In the production method, the silicon compound is in a gaseous or liquid state at normal temperature without particular limitation. For example, siloxanes such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, hexamethyldisiloxane, octamethyltrisiloxane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, Alkoxysilanes such as methyltriethoxysilane, organic silane compounds such as tetramethylsilane, diethylsilane and hexamethyldisilazane, silicon halides such as monochlorosilane, dichlorosilane, trichlorosilane and tetrachlorosilane, inorganic silanes such as monosilane and disilane A compound can be used as a raw material silicon compound.

特に、上記珪素化合物としてシロキサン類および/またはシラザン類またはアルコキシシランを使用することにより、塩素等の不純物が著しく低減されたより高純度の珪素酸化物(シリカ微粒子)を得ることが可能であり、また、取扱い性も向上する。   In particular, by using siloxanes and / or silazanes or alkoxysilanes as the silicon compound, it is possible to obtain a higher purity silicon oxide (silica fine particles) in which impurities such as chlorine are significantly reduced. , Handling is also improved.

本発明のシリカ微粒子は、その用途に応じて、シリル化剤、シリコーンオイル、シロキサン類、金属アルコキシド、脂肪酸及びその金属塩からなる群から選ばれる少なくとも1種の処理剤によって表面処理されていてもよい。   The silica fine particles of the present invention may be surface-treated with at least one treatment agent selected from the group consisting of silylating agents, silicone oils, siloxanes, metal alkoxides, fatty acids, and metal salts thereof, depending on the application. Good.

具体的なシリル化剤として、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、o−メチルフェニルトリメトキシシラン、p−メチルフェニルトリメトキシシラン、n−ブチルトリメトキシシラン、i−ブチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、i−ブチルトリエトキシシラン、デシルトリエトキシシラン、ビニルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン等のアルコキシシラン類、ヘキサメチルジシラザン、ヘキサエチルジシラザン、へキサプロピルジシラザン、ヘキサブチルジシラザン、ヘキサペンチルジシラザン、ヘキサヘキシルジシラザン、ヘキサシクロヘキシルジシラザン、ヘキサフェニルジシラザン、ジビニルテトラメチルジシラザン、ジメチルテトラビニルジシラザン等のシラザン類等が挙げられる。   Specific silylating agents include tetramethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, o-methylphenyltrimethoxysilane, p-methylphenyltrimethoxysilane, n-butyltri Methoxysilane, i-butyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, dodecyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyl Diethoxysilane, i-butyltriethoxysilane, decyltriethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-glycine Sidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ Alkoxysilanes such as-(2-aminoethyl) aminopropyltrimethoxysilane and γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, hexamethyldisilazane, hexaethyldisilazane, hexapropyldisilazane, hexabutyl Silazanes such as disilazane, hexapentyldisilazane, hexahexyldisilazane, hexacyclohexyldisilazane, hexaphenyldisilazane, divinyltetramethyldisilazane, dimethyltetravinyldisilazane, etc. It is below.

また、シリコーンオイルとしては、ジメチルシリコーンオイル、メチルハイドロジェンシリコーンオイル、メチルフェニルシリコーンオイル、アルキル変性シリコーンオイル、脂肪酸変性シリコーンオイル、ポリエーテル変性シリコーンオイル、アルコキシ変性シリコーンオイル、カルビノール変性シリコーンオイル、アミノ変性シリコーンオイル、末端反応性シリコーンオイル等が挙げられる。   Silicone oils include dimethyl silicone oil, methyl hydrogen silicone oil, methylphenyl silicone oil, alkyl modified silicone oil, fatty acid modified silicone oil, polyether modified silicone oil, alkoxy modified silicone oil, carbinol modified silicone oil, amino Modified silicone oil, terminal reactive silicone oil, etc. are mentioned.

また、シロキサン類としては、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ヘキサメチルジシロキサン、オクタメチルトリシロキサン等が挙げられる。   Examples of siloxanes include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, hexamethyldisiloxane, and octamethyltrisiloxane.

また、金属アルコキシドとしては、トリメトキシアルミニウム、トリエトキシアルミニウム、トリ−i−プロポキシアルミニウム、トリ−n−ブトキシアルミニウム、トリ−s−ブトキシアルミニウム、トリ−t−ブトキシアルミニウム、モノ−s−ブトキシジ−i−プロピルアルミニウム、テトラメトキシチタン、テトラエトキシチタン、テトラ−i−プロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−s−ブトキシチタン、テトラ−t−ブトキシチタン、テトラエトキシジルコニウム、テトラ−i−プロポキシジルコニウム、テトラ−n−ブトキシジルコニウム、ジメトキシ錫、ジエトキシ錫、ジ−n−ブトキシ錫、テトラエトキシ錫、テトラ−i−プロポキシ錫、テトラ−n−ブトキシ錫、ジエトキシ亜鉛、マグネシウムメトキシド、マグネシウムエトキシド、マグネシウムイソプロポキシド等が挙げられる。   Examples of the metal alkoxide include trimethoxyaluminum, triethoxyaluminum, tri-i-propoxyaluminum, tri-n-butoxyaluminum, tri-s-butoxyaluminum, tri-t-butoxyaluminum, mono-s-butoxydi-i. -Propyl aluminum, tetramethoxy titanium, tetraethoxy titanium, tetra-i-propoxy titanium, tetra-n-propoxy titanium, tetra-n-butoxy titanium, tetra-s-butoxy titanium, tetra-t-butoxy titanium, tetraethoxy zirconium , Tetra-i-propoxyzirconium, tetra-n-butoxyzirconium, dimethoxytin, diethoxytin, di-n-butoxytin, tetraethoxytin, tetra-i-propoxytin, tetra-n-butoxytin, di Butoxy zinc, magnesium methoxide, magnesium ethoxide, magnesium isopropoxide, and the like.

また、更に脂肪酸及びその金属塩を具体的に例示すれば、ウンデシル酸、ラウリン酸、トリデシル酸、ドデシル酸、ミリスチン酸、パルミチン酸、ペンタデシル酸、ステアリン酸、ヘプタデシル酸、アラキン酸、モンタン酸、オレイン酸、リノール酸、アラキドン酸などの長鎖脂肪酸が挙げられ、その金属塩としては亜鉛、鉄、マグネシウム、アルミニウム、カルシウム、ナトリウム、リチウム等の金属との塩が挙げられる。   Further specific examples of fatty acids and metal salts thereof include undecyl acid, lauric acid, tridecyl acid, dodecyl acid, myristic acid, palmitic acid, pentadecylic acid, stearic acid, heptadecylic acid, arachidic acid, montanic acid, olein Examples include long-chain fatty acids such as acid, linoleic acid, and arachidonic acid, and metal salts thereof include salts with metals such as zinc, iron, magnesium, aluminum, calcium, sodium, and lithium.

上記表面処理剤のうち、電子写真用トナー外添剤の用途に供するシリカ微粒子に対しては、ヘキサメチルジシラザン、ジメチルシリコーンオイル、γ−アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシランからなる群から選ばれた少なくとも1種の処理剤によって表面処理するのがより好適である。   Among the above surface treatment agents, hexamethyldisilazane, dimethylsilicone oil, γ-aminopropyltriethoxysilane, γ- (2-aminoethyl) are used for the fine silica particles used for the electrophotographic toner external additive. More preferably, the surface treatment is performed with at least one treatment agent selected from the group consisting of aminopropylmethyldimethoxysilane.

上記表面処理剤を使用した表面処理の方法は公知の方法が何ら制限無く使用できる。例えば、シリカ微粒子を攪拌下に表面処理剤を噴霧するか、蒸気で接触させる方法が一般的である。   As the surface treatment method using the surface treatment agent, a known method can be used without any limitation. For example, a method in which silica fine particles are sprayed with a surface treatment agent with stirring or contacted with steam is common.

また、上記表面処理されたシリカ微粒子のハロゲン元素及び/又はアルカリ元素濃度も50ppm以下、好ましくは、30ppm以下とすることにより、充填したシリカ微粒子に起因する金属等の腐食低減や電子写真用トナー外添剤としての用途において、帯電量の大きさや帯電量の立ち上がり速度のバラツキを抑える上で好適であり、そのためには、使用する処理剤は、上記純度を達成する程度に精製したものを使用することが好ましい。   The surface-treated silica fine particles have a halogen element and / or alkali element concentration of 50 ppm or less, and preferably 30 ppm or less, thereby reducing the corrosion of metals and the like caused by the filled silica fine particles and the electrophotographic toner. In the use as an additive, it is suitable for suppressing variation in the charge amount and the rising speed of the charge amount. For that purpose, the treating agent used is one purified to the above degree. It is preferable.

本発明のシリカ微粒子を半導体封止樹脂用充填材として使用する場合、その配合量は、液状樹脂100重量部に対して5〜300重量部の割合で使用することが出来る。尚、液状樹脂としては、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、マレイミド樹脂などの半導体封止に使用される熱硬化性樹脂の未硬化物が使用され、この液状樹脂には、一般に、上記の充填材とともに、硬化剤、硬化促進剤、着色剤、離型剤などが配合される。例えば、上述した平均粒径の小さい本発明のシリカ微粒子は、平均粒径の大きな他の充填材の粒子(例えば溶融球状シリカ粒子)などと混合し、粒径の大きな充填材の粒子の隙間を埋めるような形で使用に供されるのがよい。   When the silica fine particles of the present invention are used as a filler for a semiconductor encapsulating resin, the compounding amount can be 5 to 300 parts by weight with respect to 100 parts by weight of the liquid resin. As the liquid resin, an uncured thermosetting resin used for semiconductor encapsulation such as epoxy resin, phenol resin, polyimide resin, maleimide resin, etc. is used. A hardening agent, hardening accelerator, a coloring agent, a mold release agent, etc. are mix | blended with a material. For example, the above-mentioned silica fine particles of the present invention having a small average particle diameter are mixed with other filler particles having a large average particle diameter (for example, fused spherical silica particles), etc. It should be used for filling.

また、電子写真用トナー外添剤として本発明のシリカ微粒子を使用する場合、その外添量は、トナー樹脂粒子100重量部に対して0.2〜3重量部とするのが一般的である。   In addition, when the silica fine particles of the present invention are used as an electrophotographic toner external additive, the external addition amount is generally 0.2 to 3 parts by weight with respect to 100 parts by weight of the toner resin particles. .

本発明をさらに具体的に説明するため以下実施例および比較例をあげて説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例および比較例における各種の物性測定等は以下の方法による。   In order to describe the present invention more specifically, examples and comparative examples will be described below, but the present invention is not limited to these examples. In addition, various physical property measurements in the following examples and comparative examples are based on the following methods.

1.小角X線散乱測定
試料のシリカ微粒子を、基板に設けられた貫通孔(縦40mm、横5mm、高さ1mm)に充填し、充填した試料の両側を厚さ6μmのポリプロピレンフィルムで鋏み込むことで保持したものを測定に供した。Kratzky−U−slitを装備したマックサイエンス社製二軸小角X線散乱装置(M18XHF22)を用いて、下記の条件で測定を行った。
1. Small-angle X-ray scattering measurement Silica fine particles of a sample are filled into through-holes (length 40 mm, width 5 mm, height 1 mm) provided in a substrate, and both sides of the filled sample are swollen with a polypropylene film having a thickness of 6 μm. The held one was used for measurement. Measurement was performed under the following conditions using a biaxial small-angle X-ray scattering device (M18XHF 22 ) manufactured by MacScience equipped with Kratzky-U-slit.

入射X線:Cu−Kα線
管電圧:40kV
管電流:300mA
スリット幅:10μm
検出器走査角度:0.025度〜0.900度
2.平均粒子径測定
堀場製作所製レーザー回折散乱式粒度分布測定装置(LA−920)を用いて、体積基準での50%積算平均粒径(D50)を測定した。尚、測定には純水150mlにシリカ微粒子0.5gを加えた後に、出力200Wの超音波ホモジナイザーで1分間分散させたシリカスラリーを測定試料として用いた。
Incident X-ray: Cu-Kα ray Tube voltage: 40 kV
Tube current: 300mA
Slit width: 10 μm
Detector scanning angle: 0.025 ° to 0.900 ° Average Particle Diameter Measurement A 50% cumulative average particle diameter (D 50 ) on a volume basis was measured using a laser diffraction / scattering particle size distribution analyzer (LA-920) manufactured by Horiba. For measurement, 0.5 g of silica fine particles was added to 150 ml of pure water, and then a silica slurry dispersed with an ultrasonic homogenizer with an output of 200 W for 1 minute was used as a measurement sample.

3.比表面積測定
柴田理化学社製比表面積測定装置(SA−1000)を用いて、窒素吸着BET1点法により測定した。
3. Specific surface area measurement It measured by the nitrogen adsorption BET 1-point method using the specific surface area measuring apparatus (SA-1000) made by Shibata Rika.

4.粘度測定
ジャパンエポキシレジン社製、エポキシ樹脂(エピコート815)にシリカ微粒子を4重量部添加し、常温において特殊機化工業社製ホモミキサーを用い、常温において3000rpmで2分間分散させた後、摂氏25度の恒温槽に2時間静置し、BL型回転粘度計を用い60rpmでの粘度を測定した。
4). Viscosity measurement 4 parts by weight of silica fine particles were added to an epoxy resin (Epicoat 815) manufactured by Japan Epoxy Resin Co., Ltd. and dispersed at 3000 rpm for 2 minutes at room temperature using a homomixer manufactured by Tokushu Kika Kogyo Co., Ltd. For 2 hours, and the viscosity at 60 rpm was measured using a BL type rotational viscometer.

5.高充填時の樹脂硬化物の強度
下記に示す割合で種々の成分と配合し、加熱ロールで混練し、冷却した後粉砕しエポキシ樹脂組成物を得た。このエポキシ樹脂組成物を175℃に加熱した金型中で熱硬化させ、10mm×20mm×5mmのエポキシ樹脂硬化物を得た。このエポキシ樹脂硬化物10個を温度25℃、相対湿度80%に設定した恒温恒湿器に24時間静置後、250℃のオイルバスに10秒間浸し、クラックが発生した個数でエポキシ樹脂硬化物の強度を評価した。
5. Strength of cured resin at high filling The various components were blended in the proportions shown below, kneaded with a heating roll, cooled, and pulverized to obtain an epoxy resin composition. This epoxy resin composition was thermally cured in a mold heated to 175 ° C. to obtain a cured epoxy resin of 10 mm × 20 mm × 5 mm. Ten cured epoxy resins were allowed to stand in a thermo-hygrostat set at 25 ° C and 80% relative humidity for 24 hours, then immersed in an oil bath at 250 ° C for 10 seconds. The strength of was evaluated.

〔エポキシ樹脂組成物配合〕
エポキシ樹脂(ビフェニル型エポキシ樹脂) :100重量部
硬化剤(フェノールノボラック樹脂) :52.3重量部
硬化促進剤(トリフェニルホスフィン) :3.0重量部
離型剤(エステルワックス) :14.9重量部
着色剤(カーボンブラック) :3.0重量部
シランカップリング剤(エポキシシラン) :6.0重量部
溶融球状シリカ(平均粒子径17μm) :1238.8重量部
試料シリカ微粒子 :74.6重量部
6.電子写真用トナー外添剤としての特性評価
電子写真用トナー外添剤としての特性評価(流動性、画像特性、クリーニング性)には、ヘキサメチルジシラザンによりシリカ微粒子表面を疎水化処理したシリカ微粒子を用いた。ヘキサメチルジシラザンによる疎水化処理の方法は次の通りである。まず、シリカ微粒子をミキサーに入れて撹拌し、窒素雰囲気に置換すると同時に250℃に加熱した。その後、ミキサーを密閉してヘキサメチルジシラザン60重量部を噴霧し、そのまま30分間撹拌して疎水化処理を実施した。
[Epoxy resin composition]
Epoxy resin (biphenyl type epoxy resin): 100 parts by weight curing agent (phenol novolac resin): 52.3 parts by weight Curing accelerator (triphenylphosphine): 3.0 parts by weight Release agent (ester wax): 14.9 Part by weight Colorant (carbon black): 3.0 parts by weight Silane coupling agent (epoxysilane): 6.0 parts by weight Fused spherical silica (average particle size: 17 μm): 1238.8 parts by weight Sample silica fine particles: 74.6 Weight part 6. Characteristic evaluation as an external additive for electrophotographic toner For the characteristic evaluation (fluidity, image characteristic, cleaning property) as an external toner for electrophotography, silica fine particles whose surface is hydrophobized with hexamethyldisilazane Was used. The method of hydrophobizing with hexamethyldisilazane is as follows. First, silica fine particles were put in a mixer and stirred, and the mixture was replaced with a nitrogen atmosphere, and simultaneously heated to 250 ° C. Thereafter, the mixer was sealed, 60 parts by weight of hexamethyldisilazane was sprayed, and the mixture was stirred as it was for 30 minutes to carry out a hydrophobic treatment.

6−1.流動性
球状ポリスチレン樹脂(綜研化学(株)社製SX−500H、平均粒子径5μm)に対して、シリカ試料を2重量%となるように添加し、ミキサーで5分間混合した。これを35℃、85%相対湿度で調湿した。この混合粉試料の流動性を、パウダテスタ(ホソカワミクロン社製、PT−R型)にて圧縮度を測定することにより評価した。圧縮度とは次式(3)で示される。
圧縮度=(固め見掛け比重−ゆるみ見掛け比重)/固め見掛け比重×100
…(3)
尚、上記式(3)において、式中のゆるみ見掛け比重、固め見掛け比重とは、それぞれ、以下の通りである。
6-1. Fluidity To a spherical polystyrene resin (SX-500H manufactured by Soken Chemical Co., Ltd., average particle size 5 μm), a silica sample was added so as to be 2% by weight and mixed for 5 minutes with a mixer. This was conditioned at 35 ° C. and 85% relative humidity. The fluidity of the mixed powder sample was evaluated by measuring the degree of compression with a powder tester (manufactured by Hosokawa Micron Corporation, PT-R type). The degree of compression is expressed by the following equation (3).
Compressibility = (solid apparent specific gravity-slack apparent specific gravity) / hard apparent specific gravity × 100
... (3)
In the above formula (3), the loose apparent specific gravity and the hard apparent specific gravity are as follows.

1)ゆるみ見掛け比重:100mlのカップに試料粉を入れ、タッピングをしない状態で測定した比重
2)固め見掛け比重 :100mlのカップに試料粉を入れ、180回タッピングした後の見掛け比重
圧縮度の値が小さいほど、流動性が良好と判定した。
1) Loose apparent specific gravity: specific gravity measured in a 100 ml cup without sample tapping 2) Solid apparent specific gravity: apparent specific gravity after placing sample powder in a 100 ml cup and tapping 180 times The smaller the value, the better the fluidity.

また、ミキサーでの混合時間を5分間から60分間に変えた時の圧縮度も測定し、実使用下で現像枚数が増加した場合の流動性低下に対する耐久性を評価した。   Further, the degree of compression when the mixing time in the mixer was changed from 5 minutes to 60 minutes was also measured, and the durability against the decrease in fluidity when the number of developed images was increased under actual use was evaluated.

6−2.画像特性
平均粒子径7μmのトナーに上記のシリカ試料を1%添加して攪拌混合し、トナー組成物を調製した。このトナー組成物を用い、市販の複写機によって3万枚複写した後に、B4サイズで全面ベタ画像を10枚出力した。画像中の白抜け発生が少ない方ほど、画像特性が良好と判定した。
6-2. Image properties 1% of the above silica sample was added to a toner having an average particle diameter of 7 μm and mixed by stirring to prepare a toner composition. Using this toner composition, 30,000 copies were made using a commercially available copying machine, and then 10 full-color images were output in B4 size. It was determined that the image characteristic was better as the whiteout occurrence in the image was smaller.

○:ほとんど白抜けは見られない。   ○: Almost no white spots are seen.

△:若干の白抜けが見られる。   Δ: Some white spots are observed.

×:白抜けが多く見られる。   X: Many white spots are seen.

6−3.クリーニング性
クリーニング性評価については、実機評価終了後、潜像担持体上表面の傷や残留トナー の固着発生状況と出力画像への影響を目視で評価した。
6-3. Regarding the cleaning performance evaluation, after the evaluation of the actual machine, the scratches on the surface of the latent image carrier and the occurrence of sticking of residual toner and the influence on the output image were visually evaluated.

◎:未発生。   A: Not generated.

○:傷がわずかに認められるが、画像への影響はない。   ○: Slight scratches are observed, but there is no effect on the image.

△:残留トナー や傷が認められるが、画像への影響は少ない。   Δ: Residual toner and scratches are observed, but the effect on the image is small.

×:残留トナー がかなり多く、縦スジ状の画像欠陥が発生。   ×: Residual toner is considerably large, and vertical stripe-like image defects occur.

××:残留トナー が固着して、画像欠陥も多数発生。   XX: Residual toner adheres and many image defects occur.

7.不純物分析
ICP発光分光光度法、原子吸光光度法およびイオンクロマト法により、鉄、アルミニウム、クロム、ニッケル、ナトリウムおよび塩素の元素について定量した。
7). Impurity analysis The elements of iron, aluminum, chromium, nickel, sodium and chlorine were quantified by ICP emission spectrophotometry, atomic absorption spectrophotometry and ion chromatography.

実施例1〜4
酸素−水素炎で形成された外炎中において、表1に記載した各燃焼条件で、オクタメチルシクロテトラシロキサンを酸水素火炎中にて燃焼酸化させることによって、表2に示すシリカ微粒子を製造した。
Examples 1-4
Silica fine particles shown in Table 2 were produced by burning and oxidizing octamethylcyclotetrasiloxane in an oxyhydrogen flame under the combustion conditions described in Table 1 in an outer flame formed by an oxygen-hydrogen flame. .

得られたシリカ微粒子の平均粒子径、BET比表面積、小角X線散乱測定により算出したフラクタル形状パラメータα値、α値、粘度および樹脂硬化物強度を表1に併せて示す。何れの場合も、比較例に比べ、大きな粘度の増大は見られない。また、不純物測定結果を表3に示す。 Table 1 shows the average particle diameter, BET specific surface area, fractal shape parameter α 1 value, α 2 value, viscosity, and resin cured product strength calculated by small-angle X-ray scattering measurement of the obtained silica fine particles. In any case, no significant increase in viscosity is observed compared to the comparative example. Table 3 shows the impurity measurement results.

比較例1〜5
市販品のヒュームドシリカ粒子および溶融シリカ粒子について、平均粒子径、BET比表面積、フラクタル形状パラメータα値、α値、粘度および樹脂硬化物強度を表2に示す。
Comparative Examples 1-5
Table 2 shows the average particle diameter, BET specific surface area, fractal shape parameter α 1 value, α 2 value, viscosity, and resin cured product strength of commercially available fumed silica particles and fused silica particles.

但し、比較例1〜3ではエポキシ樹脂組成物作成時に粘度が高くなり過ぎたため、加熱ロールでの混練が不可能となり、樹脂硬化物強度を測定できなかった。不純物測定結果を表3に示す。   However, in Comparative Examples 1 to 3, since the viscosity was too high when the epoxy resin composition was prepared, kneading with a heating roll became impossible, and the strength of the cured resin product could not be measured. Table 3 shows the impurity measurement results.

Figure 0004377215
Figure 0004377215

Figure 0004377215
Figure 0004377215

Figure 0004377215
実施例5〜8
オクタメチルシクロテトラシロキサンを酸水素火炎中で燃焼酸化させることによって、表4に記載した各燃焼条件でシリカ微粒子を製造した。得られたシリカ微粒子の平均粒子径、BET比表面積、フラクタル形状パラメータα値、α値、および電子写真用トナー外添剤としての特性評価(流動性、画像特性、クリーニング性)を表5に示す。また、不純物測定結果を表6に示す。
Figure 0004377215
Examples 5-8
Silica fine particles were produced under the respective combustion conditions listed in Table 4 by burning and oxidizing octamethylcyclotetrasiloxane in an oxyhydrogen flame. Table 5 shows the average particle diameter, BET specific surface area, fractal shape parameter α 1 value, α 2 value, and characteristics evaluation (fluidity, image characteristics, cleaning properties) as an electrophotographic toner external additive of the obtained silica fine particles. Shown in In addition, Table 6 shows the impurity measurement results.

比較例6〜10
市販品のヒュームドシリカ粒子および溶融シリカ粒子について、平均粒子径、BET比表面積、フラクタル形状パラメータα値、α値、および電子写真用トナー外添剤としての特性評価(流動性、画像特性、クリーニング性)を表5に示す。また、不純物測定結果を表6に示す。
Comparative Examples 6-10
About commercially available fumed silica particles and fused silica particles, average particle diameter, BET specific surface area, fractal shape parameter α 1 value, α 2 value, and characteristics evaluation as an external additive for toner for electrophotography (fluidity, image characteristics) Table 5 shows the cleaning properties. In addition, Table 6 shows the impurity measurement results.

Figure 0004377215
Figure 0004377215

Figure 0004377215
Figure 0004377215

Figure 0004377215
Figure 0004377215

無機粉体を小角X線散乱測定したときの散乱強度(I)の対数を散乱ベクトル(k)の対数に対してプロットしたグラフから、αおよびαを求める方法を説明するための図The figure for demonstrating the method of calculating | requiring (alpha) 1 and (alpha) 2 from the graph which plotted the logarithm of the scattering intensity (I) when small-angle X-ray scattering measurement was carried out with respect to the logarithm of the scattering vector (k).

Claims (7)

珪素化合物の火炎反応法おいて、火炎中のシリカ粒子同士の凝集を調整しながら部分溶着せしめることにより得られ、比表面積が35m /g以上であり、平均粒子径が0.05〜1μmであり、小角X線散乱測定において、解析対象範囲50nm〜150nmのフラクタル形状パラメータα及び解析対象範囲150nm〜353nmのフラクタル形状パラメータαが下記式(1)及び(2):
−0.0068S+2.548≦α≦−0.0068S+3.748 (1)
−0.0011S+1.158≦α≦−0.0011S+2.058 (2)
(上記式中、Sはシリカ微粒子のBET比表面積(m/g)を示す。)
で示される条件を満足していることを特徴とするシリカ微粒子。
In a flame reaction method of a silicon compound, the specific surface area is 35 m 2 / g or more, and the average particle diameter is 0.05 to 1 μm , obtained by partial welding while adjusting the aggregation of silica particles in the flame. Yes, in the small-angle X-ray scattering measurement, the fractal shape parameter α 1 in the analysis target range 50 nm to 150 nm and the fractal shape parameter α 2 in the analysis target range 150 nm to 353 nm are expressed by the following formulas (1) and (2):
−0.0068S + 2.548 ≦ α 1 ≦ −0.0068S + 3.748 (1)
−0.0011S + 1.158 ≦ α 2 ≦ −0.0011S + 2.058 (2)
(In the above formula, S represents the BET specific surface area (m 2 / g) of the silica fine particles.)
Silica fine particles characterized by satisfying the conditions shown in FIG.
ハロゲン元素濃度が50ppm以下である請求項1に記載のシリカ微粒子。 2. The silica fine particles according to claim 1, wherein the halogen element concentration is 50 ppm or less. ナトリウム元素濃度が50ppm以下である請求項1に記載のシリカ微粒子。 The silica fine particles according to claim 1, wherein the concentration of sodium element is 50 ppm or less. シリル化剤、シリコーンオイル、シロキサン類、金属アルコキシド、脂肪酸及びその金属塩からなる群から選ばれる少なくとも1種の処理剤によって表面処理されてなる請求項1に記載のシリカ微粒子。 2. The silica fine particles according to claim 1, which are surface-treated with at least one treatment agent selected from the group consisting of silylating agents, silicone oils, siloxanes, metal alkoxides, fatty acids and metal salts thereof. 請求項1に記載のシリカ微粒子よりなる半導体封止樹脂用充填材。 The filler for semiconductor sealing resin which consists of a silica particle of Claim 1. 請求項1に記載のシリカ微粒子よりなる電子写真用トナー外添剤。 An electrophotographic toner external additive comprising the silica fine particles according to claim 1. シリカ微粒子が、ヘキサメチルジシラザン、ジメチルシリコーンオイル、γ−アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシランからなる群から選ばれる少なくとも一種の処理剤によって表面処理されてなる請求項6に記載の電子写真用トナー外添剤。 The silica fine particles are surface-treated with at least one treatment agent selected from the group consisting of hexamethyldisilazane, dimethyl silicone oil, γ-aminopropyltriethoxysilane, and γ- (2-aminoethyl) aminopropylmethyldimethoxysilane. The toner external additive for electrophotography according to claim 6.
JP2003428824A 2002-12-27 2003-12-25 Silica fine particles Expired - Lifetime JP4377215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428824A JP4377215B2 (en) 2002-12-27 2003-12-25 Silica fine particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002380774 2002-12-27
JP2003428824A JP4377215B2 (en) 2002-12-27 2003-12-25 Silica fine particles

Publications (2)

Publication Number Publication Date
JP2004217515A JP2004217515A (en) 2004-08-05
JP4377215B2 true JP4377215B2 (en) 2009-12-02

Family

ID=32911290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428824A Expired - Lifetime JP4377215B2 (en) 2002-12-27 2003-12-25 Silica fine particles

Country Status (1)

Country Link
JP (1) JP4377215B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758656B2 (en) * 2005-01-31 2011-08-31 株式会社トクヤマ Silica fine particles
JP5008460B2 (en) * 2006-06-09 2012-08-22 株式会社トクヤマ Dry silica fine particles
EP2130096A1 (en) * 2007-03-27 2009-12-09 Evonik Degussa GmbH Electrostatic charge image developing toner
DE102007033448A1 (en) * 2007-07-18 2009-01-22 Wacker Chemie Ag Highly dispersed metal oxides with a high positive surface charge
KR101921364B1 (en) * 2011-07-29 2018-11-22 덴카 주식회사 Fine spherical silica powder and external toner additive for developing electrostatic images using fine spherical silica powder
CN112689612B (en) * 2018-08-27 2024-04-19 株式会社大阪钛技术 Method for producing SiO powder and spherical granular SiO powder
WO2020130098A1 (en) * 2018-12-21 2020-06-25 日立化成株式会社 Sealing composition and semiconductor device
WO2022124350A1 (en) * 2020-12-10 2022-06-16 株式会社アドマテックス Filler for semiconductor mounting materials, method for producing same and semiconductor mounting material
KR102452291B1 (en) * 2020-12-10 2022-10-06 가부시키가이샤 아도마텍쿠스 Filler for semiconductor mounting material, manufacturing method thereof, and semiconductor mounting material

Also Published As

Publication number Publication date
JP2004217515A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
KR100714942B1 (en) Silica fine particles
JP5008460B2 (en) Dry silica fine particles
JP4579265B2 (en) Hydrophobic spherical silica fine particles having high fluidity, method for producing the same, toner external additive for developing electrostatic image using the same, and organic resin composition containing the same
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP4758655B2 (en) Surface-treated silica fine particles
KR101206685B1 (en) Dry-process fine silica particle
JP3988936B2 (en) Silane surface-treated spherical silica titania fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP4756040B2 (en) Particulate silica
JP2011032114A (en) Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
JP2008174430A (en) Hydrophobic spherical silica fine particle, its manufacturing method and toner external additive for electrostatic charge image development
JP2011185998A (en) Electrostatic image-developing toner and electric charge-controlling particle for external addition
JP4904567B2 (en) Amorphous fine silica particles and their applications
JP4377215B2 (en) Silica fine particles
JP2014114175A (en) Surface-hydrophobized spherical silica fine particle, method for producing the same, and toner external additive, obtained by using the particle, for developing electrostatic charge image
JP4758656B2 (en) Silica fine particles
WO2001098211A1 (en) Amorphous, fine silica particles, and method for their production and their use
JP5020224B2 (en) Method for producing surface-treated silica
TWI804672B (en) Positively charged hydrophobic spherical silica particles, method for producing same, and positively charged toner composition using the positively charged hydrophobic spherical silica particles
JP4346403B2 (en) Surface-treated silica particles and uses thereof
JP2004359476A (en) Hydrophobized silica composition
JP6091301B2 (en) Dry silica fine particles
JP2014136670A (en) Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
JP2020147467A (en) Method for producing silicone oil-treated silica particles
TWI626216B (en) Hydrophobized spherical vermiculite fine powder and use thereof
JP2012088462A (en) Electrostatic latent image development toner external additive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090910

R150 Certificate of patent or registration of utility model

Ref document number: 4377215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

EXPY Cancellation because of completion of term