JP2007099582A - Highly hydrophobic spherical sol-gel silica fine particle, method for producing the same, toner external additive for electrostatic charge image development composed of the fine particle, and developer using the toner external additive - Google Patents

Highly hydrophobic spherical sol-gel silica fine particle, method for producing the same, toner external additive for electrostatic charge image development composed of the fine particle, and developer using the toner external additive Download PDF

Info

Publication number
JP2007099582A
JP2007099582A JP2005294280A JP2005294280A JP2007099582A JP 2007099582 A JP2007099582 A JP 2007099582A JP 2005294280 A JP2005294280 A JP 2005294280A JP 2005294280 A JP2005294280 A JP 2005294280A JP 2007099582 A JP2007099582 A JP 2007099582A
Authority
JP
Japan
Prior art keywords
silica fine
fine particles
gel silica
spherical sol
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005294280A
Other languages
Japanese (ja)
Other versions
JP4781769B2 (en
Inventor
Muneo Kudo
宗夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005294280A priority Critical patent/JP4781769B2/en
Publication of JP2007099582A publication Critical patent/JP2007099582A/en
Application granted granted Critical
Publication of JP4781769B2 publication Critical patent/JP4781769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide highly hydrophobic spherical sol-gel silica fine particles; a method for producing the same; a toner external additive for electrostatic charge image development, which is excellent in flowability of a toner, caking resistance, fixability, cleaning property, environmental stability of the electrified charge amount, or the like and useful for an electrophotographic method, and to provide a developer containing the toner additive. <P>SOLUTION: The method for producing the highly hydrophobic spherical sol-gel silica fine particles having a hydrophobicity of ≥50 and comprising primary particles having an average particle diameter of 0.01-5 μm includes: a process for obtaining heat treated spherical sol-gel silica fine particles having a hydrophobicity of <50 by heat treating hydrophobic spherical sol-gel silica fine particles having a hydrophobicity of ≥50 and comprising primary particles having an average particle diameter of 0.01-5 μm, which are obtained by making hydrophilic spherical sol-gel silica fine particles, obtained by the hydrolysis condensation of hydrocarbyloxysilane, hydrophobic; and a process for making the heat treated spherical sol-gel silica fine particles hydrophobic. The silica fine particles obtained by the method is also provided. The toner external additive comprises the silica fine particles, and the developer contains the toner external additive. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高疎水性球状ゾルゲルシリカ微粒子およびその製造方法に関する。また、本発明はこの高疎水性球状ゾルゲルシリカ微粒子からなり、電子写真法、静電記録法等における静電荷像を現像するために使用する静電荷像現像用トナー外添剤であって、例えば、高画質化のために用いる小粒径トナー用の外添剤、およびこれを用いた現像剤に関する。   The present invention relates to a highly hydrophobic spherical sol-gel silica fine particle and a method for producing the same. Further, the present invention is a toner external additive for developing an electrostatic charge image, which is composed of the highly hydrophobic spherical sol-gel silica fine particles and used for developing an electrostatic charge image in electrophotography, electrostatic recording method, etc. The present invention relates to an external additive for a small particle diameter toner used for improving image quality, and a developer using the same.

電子写真法等で使用する乾式現像剤は、結着樹脂中に着色剤を分散させたトナーそのものを用いる一成分現像剤と、そのトナーにキャリアを混合した二成分現像剤とに大別できる。これらの現像剤を用いてコピー操作を行う場合、プロセス適合性を有するためには、現像剤が流動性、耐ケーキング性、定着性、帯電性、クリーニング性等に優れていることが必要である。そして、流動性、耐ケーキング性、定着性、クリーニング性等を高めるために、無機微粒子をトナーに添加することがしばしば行われている。しかしながら、無機微粒子は、帯電性に大きな影響を与えてしまう。例えば、一般に使用されているシリカ系微粉末の場合には、負極性が強く、特に低温低湿下においては負帯電性トナーの帯電性を過度に増大させ、一方、高温高湿下においては水分を取り込んで帯電性を減少させるため、両者の帯電性に大きな差を生ぜしめてしまうという問題があった。その結果、濃度再現不良、背景カブリの原因となることがあった。また、無機微粒子の分散性がトナー特性に大きな影響を与え、分散性が不均一な場合には、流動性、耐ケーキング性、定着性に所望の特性が得られなかったり、クリーニング性が不十分になって感光体上にトナー固着等が発生し、黒点状の画像欠陥が生じる原因となったりすることがあった。これらの点を改善する目的で、無機微粒子の表面を疎水化処理したものが種々提案されている(特許文献1〜3)。また、シリカ等の粉体をシリコーンオイルで処理することが提案されている(特許文献4〜5)。しかしながら、これらの無機微粒子を用いるだけでは必ずしも十分な効果が得られないことがある。   Dry developers used in electrophotography and the like can be roughly classified into a one-component developer using a toner itself in which a colorant is dispersed in a binder resin and a two-component developer in which a carrier is mixed with the toner. When performing a copying operation using these developers, in order to have process compatibility, the developer needs to be excellent in fluidity, caking resistance, fixing properties, charging properties, cleaning properties, and the like. . In order to improve fluidity, caking resistance, fixing properties, cleaning properties, etc., inorganic fine particles are often added to the toner. However, the inorganic fine particles have a great influence on the chargeability. For example, in the case of generally used silica-based fine powder, the negative polarity is strong, and particularly the chargeability of the negatively chargeable toner is excessively increased under low temperature and low humidity, while moisture is increased under high temperature and high humidity. Since the chargeability is reduced by taking in, there is a problem that a large difference is caused in the chargeability between the two. As a result, density reproduction failure and background fogging may occur. In addition, the dispersibility of the inorganic fine particles has a great influence on the toner characteristics. If the dispersibility is not uniform, the desired characteristics cannot be obtained in the fluidity, caking resistance, and fixability, or the cleaning properties are insufficient. As a result, toner sticking or the like may occur on the photoreceptor, which may cause black spot image defects. In order to improve these points, various types in which the surface of inorganic fine particles has been subjected to a hydrophobic treatment have been proposed (Patent Documents 1 to 3). Further, it has been proposed to treat a powder such as silica with silicone oil (Patent Documents 4 to 5). However, sufficient effects may not always be obtained simply by using these inorganic fine particles.

さらに、より高画質化を図るために有機感光体を使用したり、より小粒径のトナーを使用したりする場合には、上記の無機微粒子を使用したのでは十分な性能が得られないことがある。有機感光体は無機感光体に比べてその表面が柔らかくかつ反応性が高いので寿命が短くなりやすい。したがって、このような有機感光体を用いた場合には、トナーに添加された無機微粒子によって感光体の変質や削れが生じ易い。また、トナーを小粒径にした場合には、通常用いられる粒子径のトナーと比較して粉体流動性が悪いので無機微粒子をより多量に添加使用しなければならなくなるが、その結果、無機微粒子が感光体へのトナー付着の原因となることがあった。   In addition, when using an organophotoreceptor for higher image quality or using a toner with a smaller particle size, sufficient performance cannot be obtained by using the above-mentioned inorganic fine particles. There is. Organic photoreceptors tend to have a shorter life because their surfaces are softer and more reactive than inorganic photoreceptors. Therefore, when such an organic photoreceptor is used, the photoreceptor is easily altered or scraped by the inorganic fine particles added to the toner. Further, when the toner has a small particle size, the powder fluidity is poor as compared with a toner having a particle size that is usually used, so that a larger amount of inorganic fine particles must be added and used. The fine particles sometimes cause toner adhesion to the photoreceptor.

これらの点を改善する目的で、テトラアルコキシシランを加水分解することによって得られた球状ゾルゲルシリカ微粒子を疎水化処理した疎水性球状ゾルゲルシリカ微粒子が提案されている(特許文献6〜7)。これらの疎水性球状ゾルゲルシリカ微粒子は、トナーの流動性、耐ケーキング性、定着性、クリーニング性等に優れているばかりでなく、トナーに添加したとき、他の製法のシリカに比較してトナーの帯電量が高くならず、その結果、低温低湿下と高温高湿下の帯電量差が少なくなり、環境安定性に優れるものである。   In order to improve these points, hydrophobic spherical sol-gel silica particles obtained by hydrophobizing spherical sol-gel silica particles obtained by hydrolyzing tetraalkoxysilane have been proposed (Patent Documents 6 to 7). These hydrophobic spherical sol-gel silica fine particles are not only excellent in toner fluidity, caking resistance, fixing property, cleaning property, etc., but also when added to the toner, compared to silica of other production methods. The charge amount does not increase, and as a result, the difference in charge amount between low temperature and low humidity and high temperature and high humidity is reduced, and the environmental stability is excellent.

しかしながら、トナーの帯電量が高くないため、電子写真法の種々のプロセスを制御することが煩雑で困難である。   However, since the charge amount of the toner is not high, it is complicated and difficult to control various processes of electrophotography.

特開昭46−5782号公報JP-A-46-5782 特開昭48−47345号公報JP-A-48-47345 特開昭48−47346号公報JP-A-48-47346 特開昭49−42354号公報JP-A-49-42354 特開昭55−26518号公報JP 55-26518 A 特開2000−330328号公報JP 2000-330328 A 特開2001−194824号公報JP 2001-194824 A

本発明は、高疎水性球状ゾルゲルシリカ微粒子およびその製造方法、ならびにトナーに添加したとき、トナーの流動性、耐ケーキング性、定着性、クリーニング性等に優れているばかりでなく、帯電量が十分に高いため、電子写真法の各プロセスにおいてその条件に制限が少なく、帯電量の環境安定性に優れる静電荷像現像用トナー外添剤、およびこのトナー外添剤を含む現像剤を提供することを目的とする。   The present invention is not only excellent in the fluidity, caking resistance, fixing property, and cleaning property of the toner when added to the toner, but also has a sufficient charge amount when added to the toner. Therefore, it is possible to provide a toner external additive for developing an electrostatic charge image, which has less restrictions on the conditions in each process of electrophotography, and is excellent in environmental stability of charge amount, and a developer containing the toner external additive. With the goal.

本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、下記の高疎水性球状ゾルゲルシリカ微粒子、その製造方法、静電荷像現像用トナー外添剤および現像剤がこの目的を達成することを見出すに至った。その作用は、以下のように考えられる。   As a result of intensive investigations to achieve the above object, the present inventors have achieved this object by the following highly hydrophobic spherical sol-gel silica fine particles, a production method thereof, a toner external additive for developing electrostatic images and a developer. I came to find out what to do. The action is considered as follows.

即ち、従来の疎水性球状ゾルゲルシリカ微粒子は、その製法が原因となり、粒子表面近傍および粒子内部のシラノール基量が他の製法のシリカに比べて非常に多く、このためトナー帯電量が低くなっている。この疎水性球状ゾルゲルシリカ微粒子を熱処理することによって粒子表面近傍および粒子内部のシラノール基量を熱縮合させることにより低減することができる。この際、同時に粒子表面の疎水化基が熱分解して表面シラノール基が生成してしまうが、熱処理球状ゾルゲルシリカ微粒子を疎水化処理することで、表面シラノール基量を低減することができる。こうして高度に疎水化された高疎水性球状ゾルゲルシリカ微粒子は、粒子表面、粒子表面近傍および粒子内部のシラノール基量が少ない上、表面疎水化がなされているので、トナー帯電量が高く、かつ帯電量の環境安定性に優れるものとなったと考えられる。   That is, the conventional hydrophobic spherical sol-gel silica fine particles are caused by the production method thereof, and the amount of silanol groups in the vicinity of the particle surface and inside the particles is much larger than that of silica of other production methods, so that the toner charge amount is lowered. Yes. By heat-treating the hydrophobic spherical sol-gel silica fine particles, the amount of silanol groups near and inside the particles can be reduced by heat condensation. At this time, the hydrophobic group on the particle surface is thermally decomposed to produce a surface silanol group. However, the amount of the surface silanol group can be reduced by hydrophobizing the heat-treated spherical sol-gel silica fine particles. The highly hydrophobic spherical sol-gel silica particles thus highly hydrophobicized have a low amount of silanol groups on the particle surface, in the vicinity of the particle surface and inside the particle, and since the surface has been hydrophobized, the toner charge amount is high and the charge is charged. The amount of environmental stability is considered to be excellent.

本発明は第一に、ヒドロカルビルオキシシランもしくはその部分加水分解縮合生成物またはそれらの組み合わせを加水分解および縮合することによって得られた親水性球状ゾルゲルシリカ微粒子を疎水化処理して得られた、疎水化度が50以上であり、1次粒子の平均粒子径が0.01〜5μmである疎水性球状ゾルゲルシリカ微粒子を、加熱処理し、疎水化度が50未満の熱処理球状ゾルゲルシリカ微粒子を得る工程と、該熱処理球状ゾルゲルシリカ微粒子を疎水化処理する工程とを含む、疎水化度が50以上であり、1次粒子の平均粒子径が0.01〜5μmである高疎水性球状ゾルゲルシリカ微粒子の製造方法を提供する。   In the present invention, firstly, a hydrophilic spherical sol-gel silica fine particle obtained by hydrolyzing and condensing hydrocarbyloxysilane or a partial hydrolysis-condensation product thereof or a combination thereof is subjected to a hydrophobic treatment. A step of heat-treating hydrophobic spherical sol-gel silica fine particles having a degree of conversion of 50 or more and an average primary particle diameter of 0.01 to 5 μm to obtain heat-treated spherical sol-gel silica fine particles having a degree of hydrophobicity of less than 50; Including a step of hydrophobizing the heat-treated spherical sol-gel silica fine particles, and a method for producing highly hydrophobic spherical sol-gel silica fine particles having a hydrophobicity of 50 or more and an average primary particle size of 0.01 to 5 μm To do.

本発明は第二に、上記製造方法により得られた高疎水性球状ゾルゲルシリカ微粒子を提供する。   Secondly, the present invention provides highly hydrophobic spherical sol-gel silica fine particles obtained by the above production method.

本発明は第三に、上記高疎水性球状ゾルゲルシリカ微粒子から得られた静電荷像現像用トナー外添剤を提供する。   Thirdly, the present invention provides a toner external additive for developing an electrostatic charge image obtained from the above highly hydrophobic spherical sol-gel silica fine particles.

本発明は第四に、上記トナー外添剤とトナー粒子とを含む現像剤を提供する。   Fourthly, the present invention provides a developer containing the toner external additive and toner particles.

本発明の製造方法を適用することにより、高度に疎水化された高疎水性球状ゾルゲルシリカ微粒子を容易に製造することができる。このシリカ微粒子からなる静電荷像現像用トナー外添剤は、トナーに添加したとき、トナーの流動性、耐ケーキング性、定着性、クリーニング性(この性質により、感光体摩耗が著しく抑制される)等に優れているばかりでなく、帯電量が十分に高いため電子写真法の各プロセスにおいてその条件に制限が少なく、かつ帯電量の環境安定性に優れるものである。したがって、このトナー外添剤を含む現像剤もこれらの特性を有するので有用である。   By applying the production method of the present invention, highly hydrophobic spherical sol-gel silica fine particles that are highly hydrophobized can be easily produced. The toner external additive for electrostatic image development composed of silica fine particles, when added to the toner, fluidity, caking resistance, fixing property, and cleaning property of the toner (this property remarkably suppresses photoreceptor wear). In addition, the charge amount is sufficiently high, so that there are few restrictions on the conditions in each process of electrophotography, and the environmental stability of the charge amount is excellent. Therefore, a developer containing this toner external additive is also useful because it has these characteristics.

以下、本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本明細書において、「疎水化度」はメタノール滴定試験により求められる。水に添加されたシリカ微粒子が湿潤されたときの、メタノールと水との混合物中におけるメタノールの百分率により表わされる値で、この数値が大きいほど疎水性が高く、数値が小さいほど親水性が高いことを示す。   In the present specification, the “hydrophobicity” is determined by a methanol titration test. The value expressed by the percentage of methanol in the mixture of methanol and water when the silica fine particles added to the water are wet. The higher this value, the higher the hydrophobicity, and the lower the value, the higher the hydrophilicity. Indicates.

「平均粒子径」とは、体積平均粒子径を意味する。この体積平均粒子径は、例えば、粒度分布をレーザー回折散乱式粒度分布測定装置(堀場製作所製、商品名:LA910)で測定することにより求めることができる。   “Average particle diameter” means volume average particle diameter. The volume average particle diameter can be determined, for example, by measuring the particle size distribution with a laser diffraction / scattering particle size distribution measuring apparatus (trade name: LA910, manufactured by Horiba, Ltd.).

「球状」とは、真球だけでなく、通常、球形度が0.6〜1、好ましくは0.8〜1の範囲にある若干歪んだ球も含む。なお、ここで球形度とは、(実際の粒子と同じ体積を有する球の表面積)/(実際の粒子の表面積)を意味する。   The term “spherical” includes not only a true sphere but also a slightly distorted sphere having a sphericity in the range of 0.6 to 1, preferably 0.8 to 1. Here, the sphericity means (surface area of a sphere having the same volume as an actual particle) / (surface area of an actual particle).

合成シリカ微粒子は、その製法によって、シラン化合物を燃焼させて得られる燃焼法シリカ(即ち、ヒュームドシリカ)、金属珪素粉を爆発的に燃焼させて得られる爆燃法シリカ、珪酸ナトリウムと鉱酸との中和反応によって得られる湿式シリカ(このうちアルカリ条件で合成したものを沈降法シリカ、酸性条件で合成したものをゲル法シリカという)、ヒドロカルビルオキシシランの加水分解によって得られるゾルゲル法シリカ(いわゆるStoeber法)に大別される。本発明は、このうち、ゾルゲル法シリカに関するものである。   Synthetic silica fine particles are produced by combustion method silica obtained by burning a silane compound (that is, fumed silica), deflagration silica obtained by explosively burning metal silicon powder, sodium silicate and mineral acid. Wet silica obtained by the neutralization reaction of the above (the one synthesized under alkaline conditions is precipitated silica, the one synthesized under acidic conditions is gel silica), the sol-gel silica obtained by hydrolysis of hydrocarbyloxysilane (so-called Stoeber method). Of these, the present invention relates to sol-gel silica.

<疎水性球状ゾルゲルシリカ微粒子>
本発明で加熱処理に付される疎水性球状ゾルゲルシリカ微粒子は、ヒドロカルビルオキシシランもしくはその部分加水分解縮合生成物またはそれらの組み合わせを加水分解および縮合することによって得られた親水性球状ゾルゲルシリカ微粒子を疎水化処理して得られた、疎水化度が50以上であり、1次粒子の平均粒子径が0.01〜5μmである疎水性球状ゾルゲルシリカ微粒子である。
<Hydrophobic spherical sol-gel silica fine particles>
Hydrophobic spherical sol-gel silica fine particles subjected to heat treatment in the present invention are hydrophilic spherical sol-gel silica fine particles obtained by hydrolyzing and condensing hydrocarbyloxysilane or a partial hydrolysis-condensation product thereof or a combination thereof. Hydrophobic spherical sol-gel silica particles having a degree of hydrophobicity of 50 or more and an average primary particle diameter of 0.01 to 5 μm, obtained by hydrophobization treatment.

疎水性球状ゾルゲルシリカ微粒子の疎水化度は、後述の加熱処理の際に凝集体が生じないためには50以上であることが必要である。50未満の場合には、粒子表面に存在するシラノール基が多く、後述の加熱処理の際に粒子間でシラノールの縮合反応が生じ、1次粒子同士の融着が起こるため凝集体が生じることがある。トナー外添剤は、1次粒子の形態でトナー表面に付着することにより種々の優れた機能を発現するので、凝集体が生じることは大きな不利である。   The degree of hydrophobicity of the hydrophobic spherical sol-gel silica fine particles needs to be 50 or more so that no aggregates are formed during the heat treatment described later. If it is less than 50, there are many silanol groups present on the surface of the particles, and a condensation reaction of silanol occurs between the particles during the heat treatment described later, and agglomeration occurs due to fusion between the primary particles. is there. Since the toner external additive exhibits various excellent functions by adhering to the toner surface in the form of primary particles, it is a great disadvantage that an aggregate is formed.

疎水性球状ゾルゲルシリカ微粒子の1次粒子の平均粒子径は、現像剤の流動性、耐ケーキング性及び定着性を良好にし、感光体への悪影響を低減する観点から、0.01〜5μmであることが必要であり、好ましくは0.05〜0.5μmである。この1次粒子径が0.01μmより小さい場合には、凝集により現像剤の流動性、耐ケーキング性、定着性が得られないことがあり、5μmを超える場合には、感光体の変性、削れ、トナーへの付着性の低下が生じることがある。   The average particle size of the primary particles of the hydrophobic spherical sol-gel silica fine particles is 0.01 to 5 μm from the viewpoint of improving the flowability, caking resistance and fixability of the developer and reducing adverse effects on the photoreceptor. Necessary, preferably 0.05 to 0.5 μm. When the primary particle size is smaller than 0.01 μm, the developer fluidity, caking resistance, and fixability may not be obtained due to aggregation. When the primary particle diameter exceeds 5 μm, the photoconductor may be modified or scraped. The adhesion to the toner may be reduced.

−疎水性球状ゾルゲルシリカ微粒子の製造方法−
加熱処理に付される疎水性球状ゾルゲルシリカ微粒子は、上述のとおりであるが、ヒドロカルビルオキシシラン、好ましくはテトラヒドロカルビルオキシシラン、もしくはその部分加水分解縮合生成物またはそれらの組み合わせを加水分解および縮合すること(以下、「ステップA」という)によって得られた本質的にSiO2単位からなる親水性球状ゾルゲルシリカ微粒子の表面に、R3 3SiO1/2単位[式中、R3は同一または異なり、置換または非置換の炭素原子数1〜20の1価炭化水素基であり、具体的には後述の一般式(3)で説明するとおりである。]を導入する工程を含む疎水化処理(以下、「ステップB」という)によって調製することが好ましい。
-Method for producing hydrophobic spherical sol-gel silica fine particles-
Hydrophobic spherical sol-gel silica fine particles subjected to heat treatment are as described above, but hydrolyze and condense hydrocarbyloxysilane, preferably tetrahydrocarbyloxysilane, or a partial hydrolysis-condensation product thereof, or a combination thereof. (Hereinafter referred to as “Step A”), the surface of the hydrophilic spherical sol-gel silica fine particles consisting essentially of SiO 2 units, R 3 3 SiO 1/2 units [wherein R 3 is the same or different. And a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and specifically, as described in the general formula (3) described later. ] Is preferably prepared by a hydrophobizing treatment (hereinafter referred to as “step B”) including a step of introducing a thiol.

なお、親水性シリカ微粒子が「本質的にSiO単位からなる」とは、該シリカ微粒子の90質量%以上、好ましくは99質量%以上がSiO単位からなることを意味する。 Incidentally, the hydrophilic silica particles "consisting essentially of SiO 2 units" refers to more than 90% by weight of the silica fine particles, preferably means that at least 99 wt% of SiO 2 units.

−ステップA(親水性球状ゾルゲルシリカ微粒子の調製)−
ステップAは、例えば、下記一般式(1):
Si(OR14 (1)
[式中、R1は同一または異なり、炭素原子数1〜6の1価炭化水素基である]
で表される4官能性シラン化合物もしくはその部分加水分解縮合生成物またはそれらの組み合わせを、塩基性物質を含む親水性有機溶媒と水との混合液中で加水分解および縮合して、親水性球状ゾルゲルシリカ微粒子を生成させる工程であることが好ましい。
-Step A (Preparation of hydrophilic spherical sol-gel silica fine particles)-
Step A is, for example, the following general formula (1):
Si (OR 1 ) 4 (1)
[Wherein R 1 is the same or different and is a monovalent hydrocarbon group having 1 to 6 carbon atoms]
Hydrophilic spheres obtained by hydrolyzing and condensing a tetrafunctional silane compound represented by the formula (1) or a partial hydrolysis-condensation product thereof or a combination thereof in a mixture of a hydrophilic organic solvent containing a basic substance and water. A step of generating sol-gel silica fine particles is preferable.

親水性球状ゾルゲルシリカ微粒子は、通常、水−親水性有機溶媒の混合溶媒分散液として得られる。なお、後述するように、必要に応じて、親水性球状ゾルゲルシリカ微粒子混合溶媒分散液の分散媒を水に変換することによって、親水性球状ゾルゲルシリカ微粒子水性分散液を調製することができる。   The hydrophilic spherical sol-gel silica fine particles are usually obtained as a mixed solvent dispersion of a water-hydrophilic organic solvent. As will be described later, if necessary, a hydrophilic spherical sol-gel silica fine particle aqueous dispersion can be prepared by converting the dispersion medium of the hydrophilic spherical sol-gel silica fine particle mixed solvent dispersion into water.

上記一般式(1)中、R1は、好ましくは炭素原子数1〜4、特に好ましくは1〜2の1価炭化水素基である。R1で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、フェニル基等、好ましくは、メチル基、エチル基、プロピル基、ブチル基、特に好ましくは、メチル基、エチル基が挙げられる。 In the general formula (1), R 1 is preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms. Examples of the monovalent hydrocarbon group represented by R 1 include a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group, preferably a methyl group, an ethyl group, a propyl group, and a butyl group, and particularly preferably , Methyl group, and ethyl group.

上記一般式(1)で表される4官能性シラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン、テトラフェノキシシラン等、好ましくは、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、特に好ましくは、テトラメトキシシラン、テトラエトキシシランが挙げられる。また、上記一般式(1)で表される4官能性シラン化合物の部分加水分解縮合生成物としては、例えば、メチルシリケート、エチルシリケート等が挙げられる。   Examples of the tetrafunctional silane compound represented by the general formula (1) include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, tetraphenoxysilane, and the like. Methoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, particularly preferably tetramethoxysilane and tetraethoxysilane. Examples of the partial hydrolysis-condensation product of the tetrafunctional silane compound represented by the general formula (1) include methyl silicate and ethyl silicate.

上記親水性有機溶媒としては、上記一般式(1)で表される4官能性シラン化合物と、それらの部分加水分解縮合生成物と、水とを溶解するものであれば特に制限されず、例えば、アルコール類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、酢酸セロソルブ等のセロソルブ類、アセトン、メチルエチルケトン等のケトン類、ジオキサン、テトラヒドロフラン等のエーテル類等、好ましくはアルコール類、セロソルブ類、特に好ましくはアルコール類が挙げられる。アルコール類としては、下記一般式(2):
2OH (2)
[式中、R2は炭素原子数1〜6の1価炭化水素基である]
で表されるアルコールが挙げられる。
The hydrophilic organic solvent is not particularly limited as long as it dissolves the tetrafunctional silane compound represented by the general formula (1), a partial hydrolysis-condensation product thereof, and water. , Alcohols, methyl cellosolve, ethyl cellosolve, butyl cellosolve, cellosolves such as acetic acid cellosolve, ketones such as acetone and methyl ethyl ketone, ethers such as dioxane and tetrahydrofuran, preferably alcohols, cellosolves, particularly preferably alcohols Can be mentioned. As alcohols, the following general formula (2):
R 2 OH (2)
[Wherein R 2 is a monovalent hydrocarbon group having 1 to 6 carbon atoms]
The alcohol represented by these is mentioned.

上記一般式(2)中、R2は、好ましくは炭素原子数1〜4、特に好ましくは1〜2の1価炭化水素基である。R2で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、より好ましくはメチル基、エチル基が挙げられる。上記一般式(2)で表されるアルコールとしては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等、好ましくは、メタノール、エタノールが挙げられる。アルコールの炭素原子数が増えると、生成する親水性球状ゾルゲルシリカ微粒子の粒子径が大きくなる。従って、目的とする親水性球状ゾルゲルシリカ微粒子の粒子径によりアルコールの種類を選択することが望ましい。 In the general formula (2), R 2 is preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms. Examples of the monovalent hydrocarbon group represented by R 2 include an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group, preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, More preferably, a methyl group and an ethyl group are mentioned. Examples of the alcohol represented by the general formula (2) include methanol, ethanol, propanol, isopropanol, butanol and the like, preferably methanol and ethanol. As the number of carbon atoms in the alcohol increases, the particle size of the generated hydrophilic spherical sol-gel silica particles increases. Therefore, it is desirable to select the type of alcohol according to the particle size of the desired hydrophilic spherical sol-gel silica fine particles.

上記塩基性物質としては、例えば、アンモニア、ジメチルアミン、ジエチルアミン等、好ましくは、アンモニア、ジエチルアミン、特に好ましくはアンモニアが挙げられる。これらの塩基性物質は、所要量を水に溶解した後、得られた水溶液(塩基性)を上記親水性有機溶媒と混合すればよい。   Examples of the basic substance include ammonia, dimethylamine, diethylamine and the like, preferably ammonia, diethylamine, and particularly preferably ammonia. These basic substances may be dissolved in water in a required amount, and the obtained aqueous solution (basic) may be mixed with the hydrophilic organic solvent.

このとき使用される水の量は、上記一般式(1)で表される4官能性シラン化合物および/またはその部分加水分解縮合生成物のヒドロカルビルオキシ基の合計1モルに対して0.5〜5モルであることが好ましく、0.6〜2モルであることがより好ましく、0.7〜1モルであることが特に好ましい。水に対する親水性有機溶媒の比率は、質量比で0.5〜10であることが好ましく、1〜5であることがより好ましく、1.5〜2であることが特に好ましい。塩基性物質の量は、上記一般式(1)で表される4官能性シラン化合物および/またはその部分加水分解縮合生成物のヒドロカルビルオキシ基の合計1モルに対して0.01〜2モルであることが好ましく、0.5〜1.5モルであることがより好ましく、1.0〜1.2モルであることが特に好ましい。   The amount of water used at this time is 0.5-5 mol with respect to a total of 1 mol of the hydrocarbyloxy group of the tetrafunctional silane compound represented by the above general formula (1) and / or its partial hydrolysis-condensation product. It is preferable that it is 0.6-2 mol, and it is especially preferable that it is 0.7-1 mol. The ratio of the hydrophilic organic solvent to water is preferably 0.5 to 10 in terms of mass ratio, more preferably 1 to 5, and particularly preferably 1.5 to 2. The amount of the basic substance is 0.01 to 2 mol with respect to a total of 1 mol of the hydrocarbyloxy group of the tetrafunctional silane compound represented by the general formula (1) and / or the partial hydrolysis-condensation product thereof. Is more preferable, 0.5 to 1.5 mol is more preferable, and 1.0 to 1.2 mol is particularly preferable.

上記一般式(1)で表される4官能性シラン化合物および/またはその部分加水分解縮合生成物の加水分解および縮合は、周知の方法、即ち、塩基性物質を含む親水性有機溶媒と水との混合物中に、上記一般式(1)で表される4官能性シラン化合物および/またはその部分加水分解縮合生成物を添加することにより行われる。   Hydrolysis and condensation of the tetrafunctional silane compound represented by the general formula (1) and / or a partial hydrolysis-condensation product thereof are carried out by a well-known method, that is, a hydrophilic organic solvent containing a basic substance, water and Is added by adding the tetrafunctional silane compound represented by the above general formula (1) and / or a partial hydrolysis-condensation product thereof.

親水性球状ゾルゲルシリカ微粒子は、上記で得られた該微粒子を含む混合溶媒分散液の状態でもよいが、この親水性球状ゾルゲルシリカ微粒子混合溶媒分散液に水を添加し、親水性有機溶媒を留去し、水性分散液に変換した状態でもよい。こうして水性分散液に変換すると、残存しているヒドロカルビルオキシ基が加水分解され、その量が減少する。従って、親水性球状ゾルゲルシリカ微粒子を含む水性分散液であることが好ましい。   The hydrophilic spherical sol-gel silica fine particles may be in the state of a mixed solvent dispersion containing the fine particles obtained above. However, water is added to the hydrophilic spherical sol-gel silica fine particle mixed solvent dispersion to retain the hydrophilic organic solvent. It may be left and converted into an aqueous dispersion. When converted to an aqueous dispersion in this manner, the remaining hydrocarbyloxy groups are hydrolyzed and the amount thereof is reduced. Accordingly, an aqueous dispersion containing hydrophilic spherical sol-gel silica fine particles is preferable.

必要に応じて行われる親水性球状ゾルゲルシリカ微粒子混合溶液分散液の分散媒を水に変換する工程は、例えば、該分散液に水を添加し親水性有機溶媒を留去する操作(必要に応じてこの操作を繰り返す)により行うことができる。このときに添加される水の量は、使用した親水性有機溶媒および生成したアルコールの量の合計に対して、質量基準で、好ましくは0.5〜2倍量、より好ましくは0.7〜1.2倍量、特に好ましくはほぼ1倍量である。   The step of converting the dispersion medium of the hydrophilic spherical sol-gel silica fine particle mixed solution dispersion into water, which is performed as necessary, is, for example, an operation of adding water to the dispersion and distilling off the hydrophilic organic solvent (if necessary) Repeat this operation). The amount of water added at this time is preferably 0.5 to 2 times, more preferably 0.7 to 1.2 times, on a mass basis with respect to the total amount of the hydrophilic organic solvent used and the amount of alcohol produced. The amount is particularly preferably about 1 time.

・ステップB(親水性球状ゾルゲルシリカ微粒子の疎水化処理)
ステップBは、上記親水性球状ゾルゲルシリカ微粒子の表面に疎水化処理を行う工程である。
Step B (hydrophobization treatment of hydrophilic spherical sol-gel silica fine particles)
Step B is a step of subjecting the surface of the hydrophilic spherical sol-gel silica fine particles to a hydrophobic treatment.

疎水性球状ゾルゲルシリカ微粒子の製造は、上記の本質的にSiO単位からなる親水性球状ゾルゲルシリカ微粒子の表面にR3 SiO1/2単位を導入する工程を含む疎水化処理によって疎水性球状シリカ微粒子を得る工程である。ここでは、上記方法により調製された親水性球状ゾルゲルシリカ微粒子を用いた方法を一例として説明するが、別の親水性球状ゾルゲルシリカ微粒子を用いる場合には、まず、アルコール混合溶媒等の水−親水性有機溶媒の混合溶媒分散液とするか、炭化水素系溶媒、芳香族系溶媒、ケトン系溶媒等の分散液とした後に、以下の工程を行うことが好ましい。また、後述のT単位処理工程を事前に行う場合には、処理後の球状ゾルゲルシリカ微粒子分散液の分散媒をケトン系溶媒に変換した後に、以下の工程を行うことが好ましい。 The production of the hydrophobic spherical sol-gel silica fine particles is performed by a hydrophobic treatment including a step of introducing R 3 3 SiO 1/2 units on the surface of the hydrophilic spherical sol-gel silica fine particles consisting essentially of the SiO 2 units. This is a step of obtaining silica fine particles. Here, a method using the hydrophilic spherical sol-gel silica fine particles prepared by the above method will be described as an example. However, when another hydrophilic spherical sol-gel silica fine particle is used, first, water-hydrophilicity such as an alcohol mixed solvent is used. It is preferable to carry out the following steps after preparing a mixed solvent dispersion of a basic organic solvent or a dispersion of a hydrocarbon solvent, an aromatic solvent, a ketone solvent or the like. Moreover, when performing the below-mentioned T unit process process in advance, it is preferable to perform the following processes after converting the dispersion medium of the spherical sol-gel silica fine particle dispersion after the process into a ketone solvent.

この必要に応じて行われるケトン系溶媒への変換は、該処理後の分散液にケトン系溶媒を添加し、該分散液中の水および/または親水性有機溶媒を留去する操作(必要に応じてこの操作を繰り返す)により行うことができる。   The conversion to a ketone solvent performed as necessary is performed by adding a ketone solvent to the dispersion after the treatment and distilling off water and / or the hydrophilic organic solvent in the dispersion (necessary). This operation can be repeated accordingly.

このとき添加されるケトン系溶媒の量は、親水性球状ゾルゲルシリカ微粒子に対して質量比で0.5〜5倍量、好ましくは2〜5倍量、特に好ましくは3〜4倍量である。このケトン系溶媒としては、例えば、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン等、好ましくはメチルイソブチルケトンが挙げられる。   The amount of the ketone solvent added at this time is 0.5 to 5 times, preferably 2 to 5 times, particularly preferably 3 to 4 times the mass ratio of the hydrophilic spherical sol-gel silica fine particles. Examples of the ketone solvent include methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone, and preferably methyl isobutyl ketone.

ステップBは、例えば、上記親水性球状ゾルゲルシリカ微粒子(または後述のT単位処理工程を行った表面処理球状ゾルゲルシリカ微粒子であり、この項において、以下、単に「親水性球状ゾルゲルシリカ微粒子」という)を含む水性分散液、炭化水素系溶媒、芳香族系溶媒、ケトン系溶媒分散液等の有機溶媒分散液、または水−親水性有機溶媒の混合溶媒分散液に、下記一般式(3):
3 3SiNHSiR3 3 (3)
[式中、R3は同一または異なり、置換または非置換の炭素原子数1〜20の1価炭化水素基である]
で表されるシラザン化合物、または下記一般式(4):
3 3SiX (4)
[式中、R3は上記と同じであり、XはOH基または加水分解性基である]
で表される1官能性シラン化合物、あるいはこれらの組み合わせを添加し、上記親水性球状ゾルゲルシリカ微粒子表面に残存する反応性基をトリオルガノシリル化する工程が好ましい。
Step B is, for example, the above-mentioned hydrophilic spherical sol-gel silica fine particles (or surface-treated spherical sol-gel silica fine particles subjected to the T unit treatment step described later, and hereinafter, simply referred to as “hydrophilic spherical sol-gel silica fine particles” in this section) In an organic dispersion such as an aqueous dispersion, a hydrocarbon solvent, an aromatic solvent, a ketone solvent dispersion, or a mixed solvent dispersion of a water-hydrophilic organic solvent, the following general formula (3):
R 3 3 SiNHSiR 3 3 (3)
[Wherein R 3 is the same or different and is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms]
Or a silazane compound represented by the following general formula (4):
R 3 3 SiX (4)
[Wherein R 3 is the same as above, and X is an OH group or a hydrolyzable group]
A step of adding a monofunctional silane compound represented by the above or a combination thereof and triorganosilylating the reactive group remaining on the surface of the hydrophilic spherical sol-gel silica fine particles is preferable.

上記一般式(3)および(4)中、R3は、好ましくは炭素原子数1〜4、特に好ましくは1〜2の1価炭化水素基である。R3で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等、好ましくは、メチル基、エチル基、プロピル基、特に好ましくは、メチル基、エチル基が挙げられる。また、これらの1価炭化水素基の水素原子の一部または全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくは、フッ素原子で置換されていてもよい。 In the above general formulas (3) and (4), R 3 is preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms. The monovalent hydrocarbon group represented by R 3 is, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group, preferably a methyl group, an ethyl group, or a propyl group. Includes a methyl group and an ethyl group. Further, some or all of the hydrogen atoms of these monovalent hydrocarbon groups may be substituted with halogen atoms such as fluorine atom, chlorine atom, bromine atom, preferably fluorine atom.

Xで表される加水分解性基としては、例えば、塩素原子、アルコキシ基、アミノ基、アシルオキシ基等、好ましくは、アルコキシ基、アミノ基、特に好ましくは、アルコキシ基が挙げられる。   Examples of the hydrolyzable group represented by X include a chlorine atom, an alkoxy group, an amino group, and an acyloxy group, preferably an alkoxy group and an amino group, and particularly preferably an alkoxy group.

上記一般式(3)で表されるシラザン化合物としては、例えば、ヘキサメチルジシラザン、ヘキサエチルジシラザン等、好ましくはヘキサメチルジシラザンが挙げられる。上記一般式(4)で表される1官能性シラン化合物としては、例えば、トリメチルシラノール、トリエチルシラノール等のモノシラノール化合物、トリメチルクロロシラン、トリエチルクロロシラン等のモノクロロシラン、トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン、トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミン等のモノアミノシラン、トリメチルアセトキシシラン等のモノアシルオキシシラン、好ましくは、トリメチルシラノール、トリメチルメトキシシラン、トリメチルシリルジエチルアミン、特に好ましくは、トリメチルシラノール、トリメチルメトキシシランが挙げられる。   Examples of the silazane compound represented by the general formula (3) include hexamethyldisilazane and hexaethyldisilazane, preferably hexamethyldisilazane. Examples of the monofunctional silane compound represented by the general formula (4) include monosilanol compounds such as trimethylsilanol and triethylsilanol, monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane, trimethylmethoxysilane, and trimethylethoxysilane. Monoalkoxysilane, trimethylsilyldimethylamine, monoaminosilane such as trimethylsilyldiethylamine, monoacyloxysilane such as trimethylacetoxysilane, preferably trimethylsilanol, trimethylmethoxysilane, trimethylsilyldiethylamine, particularly preferably trimethylsilanol, trimethylmethoxysilane .

これらの使用量は、使用した親水性球状ゾルゲルシリカ微粒子のSiO2単位1モルに対して0.05〜0.5モルである。 The amount of these used is 0.05-0.5 mol with respect to 1 mol of SiO 2 units of the hydrophilic spherical sol-gel silica fine particles used.

こうして得られる疎水性球状ゾルゲルシリカ微粒子は、常法によって粉体として得てもよいし、シラザン化合物もしくはシラン化合物またはそれらの組み合わせとの反応後に有機化合物を添加して分散体として得てもよい。   The hydrophobic spherical sol-gel silica fine particles thus obtained may be obtained as a powder by a conventional method, or may be obtained as a dispersion by adding an organic compound after reaction with a silazane compound, a silane compound or a combination thereof.

−別の実施形態−
本発明の別の実施形態では、親水性球状ゾルゲルシリカ微粒子の表面にR3 SiO1/2単位を導入する前に、該表面にRSiO3/2単位(式中、Rは置換または非置換の炭素原子数1〜20の1価炭化水素基を表し、具体的には後述の一般式(5)で説明するとおりである。)を導入して表面処理球状ゾルゲルシリカ微粒子を得た後、該表面処理ゾルゲルシリカ微粒子の表面にR3 SiO1/2単位を導入することによって、疎水性球状ゾルゲルシリカ微粒子を得ることもできる。ここでは、上記方法により調製された親水性球状ゾルゲルシリカ微粒子を用いた方法を一例として説明するが、別の親水性球状ゾルゲルシリカ微粒子を用いる場合には、まず、前述のアルコール混合溶媒等の親水性有機溶媒−水の混合溶媒分散液とするか、親水性シリカ微粒子水性分散液とするか、または炭化水素系溶媒、芳香族系溶媒、ケトン系溶媒等の分散液とした後に、以下の工程を行うことが好ましい。
-Another embodiment-
In another embodiment of the present invention, before introducing R 3 3 SiO 1/2 units into the surface of hydrophilic spherical sol-gel silica fine particles, R 4 SiO 3/2 units (wherein R 4 is substituted) Or an unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, specifically as described in the general formula (5) described later) to obtain surface-treated spherical sol-gel silica fine particles. Then, hydrophobic spherical sol-gel silica fine particles can be obtained by introducing R 3 3 SiO 1/2 units into the surface of the surface-treated sol-gel silica fine particles. Here, the method using the hydrophilic spherical sol-gel silica fine particles prepared by the above method will be described as an example. However, when another hydrophilic spherical sol-gel silica fine particle is used, first, the hydrophilic mixture such as the alcohol mixed solvent described above is used. The following steps after preparing a mixed organic solvent-water solvent dispersion, a hydrophilic silica fine particle aqueous dispersion, or a dispersion of a hydrocarbon solvent, an aromatic solvent, a ketone solvent, etc. It is preferable to carry out.

具体的には、例えば、上記親水性球状ゾルゲルシリカ微粒子を含む混合溶媒分散液または水性分散液に、下記一般式(5):
4Si(OR53 (5)
[式中、Rは置換または非置換の炭素原子数1〜20の1価炭化水素基であり、R5は同一または異なり、炭素原子数1〜6の1価炭化水素基である]
で表される3官能性シラン化合物もしくはその部分加水分解縮合生成物またはそれらの組み合わせを添加し、親水性球状ゾルゲルシリカ微粒子の表面を処理して、表面処理球状ゾルゲルシリカ微粒子水性分散液を得ることを有する工程が好ましい。この3官能性シラン化合物、その部分加水分解縮合生成物は、各々、一種単独で用いても二種以上を併用してもよい。
Specifically, for example, in the mixed solvent dispersion or the aqueous dispersion containing the hydrophilic spherical sol-gel silica fine particles, the following general formula (5):
R 4 Si (OR 5 ) 3 (5)
[Wherein, R 4 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 5 is the same or different and is a monovalent hydrocarbon group having 1 to 6 carbon atoms]
A surface-treated spherical sol-gel silica fine particle aqueous dispersion is obtained by adding a trifunctional silane compound represented by the above or a partial hydrolysis-condensation product thereof or a combination thereof and treating the surface of the hydrophilic spherical sol-gel silica fine particles. A process having These trifunctional silane compounds and their partial hydrolysis-condensation products may be used alone or in combination of two or more.

上記一般式(5)中、R4は、好ましくは炭素原子数1〜3、特に好ましくは1〜2の1価炭化水素基である。R4で表される1価炭化水素基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ヘキシル基等のアルキル基等、好ましくは、メチル基、エチル基、n−プロピル基、イソプロピル基、特に好ましくは、メチル基、エチル基が挙げられる。また、これらの1価炭化水素基の水素原子の一部または全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくはフッ素原子で置換されていてもよい。 In the general formula (5), R 4 is preferably a monovalent hydrocarbon group having 1 to 3 carbon atoms, particularly preferably 1 to 2 carbon atoms. Examples of the monovalent hydrocarbon group represented by R 4 include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, and a hexyl group, preferably a methyl group, an ethyl group, An n-propyl group and an isopropyl group, particularly preferably a methyl group and an ethyl group are exemplified. Further, some or all of the hydrogen atoms of these monovalent hydrocarbon groups may be substituted with halogen atoms such as fluorine atom, chlorine atom, bromine atom, preferably fluorine atom.

上記一般式(5)中、R5は、好ましくは炭素原子数1〜3、特に好ましくは1〜2の1価炭化水素基である。R5で表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等のアルキル基等、好ましくは、メチル基、エチル基、プロピル基、特に好ましくは、メチル基、エチル基が挙げられる。 In the general formula (5), R 5 is preferably a monovalent hydrocarbon group having 1 to 3 carbon atoms, particularly preferably 1 to 2 carbon atoms. Examples of the monovalent hydrocarbon group represented by R 5 include an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group, preferably a methyl group, an ethyl group, and a propyl group, and particularly preferably a methyl group. Group and ethyl group.

上記一般式(5)で表される3官能性シラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ヘキシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン等のトリアルコキシシラン等、好ましくは、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、より好ましくは、メチルトリメトキシシラン、メチルトリエトキシシラン、またはこれらの部分加水分解縮合生成物が挙げられる。   Examples of the trifunctional silane compound represented by the general formula (5) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, and n-propyl. Trialkoxysilanes such as triethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, hexyltrimethoxysilane, trifluoropropyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, etc. Preferably, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, more preferably methyltrimethoxysilane, methyltriethoxysilane. , Or their partial hydrolysis condensation product thereof.

上記一般式(5)で表される3官能性シラン化合物の添加量は、使用された親水性球状ゾルゲルシリカ微粒子のSiO2単位1モル当り0.001〜1モル、好ましくは0.01〜0.1モル、特に好ましくは0.01〜0.05モルである。 The addition amount of the trifunctional silane compound represented by the general formula (5) is 0.001 to 1 mol, preferably 0.01 to 0.1 mol, particularly preferably, per 1 mol of SiO 2 unit of the hydrophilic spherical sol-gel silica fine particles used. Is 0.01-0.05 mol.

こうして、上記表面処理球状ゾルゲルシリカ微粒子は、アルコール混合溶媒等の親水性有機溶媒−水の混合溶媒分散液または水性分散液として得られる。   Thus, the surface-treated spherical sol-gel silica fine particles are obtained as a mixed solvent dispersion or aqueous dispersion of a hydrophilic organic solvent-water such as an alcohol mixed solvent.

<高度に疎水化された高疎水性球状ゾルゲルシリカ微粒子>
本発明の静電荷像現像用トナー外添剤は、1次粒子の平均粒子径が0.01〜5μmであり、疎水化度が50以上である高疎水性球状ゾルゲルシリカ微粒子からなるものである。この高疎水性球状ゾルゲルシリカ微粒子は、前述の疎水性球状ゾルゲルシリカ微粒子を、加熱処理し、疎水化度が50未満の熱処理球状ゾルゲルシリカ微粒子を得る工程(以下、「ステップC」という)と、該熱処理球状ゾルゲルシリカ微粒子を疎水化処理する工程(以下、「ステップD」という)とを含む方法によって得られる。
<Highly hydrophobic, highly hydrophobic spherical sol-gel silica particles>
The toner external additive for developing an electrostatic image of the present invention is composed of highly hydrophobic spherical sol-gel silica fine particles having an average primary particle diameter of 0.01 to 5 μm and a hydrophobicity of 50 or more. . The highly hydrophobic spherical sol-gel silica fine particles are obtained by heat-treating the above-mentioned hydrophobic spherical sol-gel silica fine particles to obtain heat-treated spherical sol-gel silica fine particles having a hydrophobization degree of less than 50 (hereinafter referred to as “Step C”), And a step of hydrophobizing the heat-treated spherical sol-gel silica fine particles (hereinafter referred to as “step D”).

高疎水性球状ゾルゲルシリカ微粒子の1次粒子の平均粒子径は、トナーの流動性、耐ケーキング性および定着性を良好にし、感光体への悪影響を低減する観点から、0.01〜5μmであることが必要であり、好ましくは0.05〜0.5μmである。この1次粒子径が0.01μmより小さい場合には、凝集によりトナーの流動性、耐ケーキング性、定着性が得られないことがあり、5μmを超える場合には、感光体の変性、削れ、トナーへの付着性の低下が生じることがある。   The average particle diameter of the primary particles of the highly hydrophobic spherical sol-gel silica fine particles is 0.01 to 5 μm from the viewpoint of improving the flowability, caking resistance and fixing property of the toner and reducing the adverse effect on the photoreceptor. Necessary, preferably 0.05 to 0.5 μm. If the primary particle size is smaller than 0.01 μm, the fluidity, caking resistance and fixing property of the toner may not be obtained due to agglomeration. Decrease in adhesion to the surface may occur.

高疎水性球状ゾルゲルシリカ微粒子の疎水化度は、シラノール量を少なくしてトナー帯電量を高くすると共に、トナー凝集を防ぎ流動性を高くするために、50以上である必要がある。疎水化度が50未満の場合には、トナー帯電量を高くすることができないばかりでなく、トナー凝集を引き起こすことがある。   The degree of hydrophobicity of the highly hydrophobic spherical sol-gel silica fine particles needs to be 50 or more in order to reduce the amount of silanol and increase the charge amount of the toner, and prevent toner aggregation and increase the fluidity. When the degree of hydrophobicity is less than 50, not only the toner charge amount cannot be increased but also toner aggregation may occur.

・ステップC(疎水性球状ゾルゲルシリカ微粒子の加熱処理)
出発原料である疎水性球状ゾルゲルシリカ微粒子を加熱処理する工程は、処理後に得られる熱処理球状ゾルゲルシリカ微粒子の疎水化度が50未満となるような条件で行えばよい。具体的には、粒子表面の疎水化基が熱分解して表面シラノール基を生成する加熱条件であれば、目的とする粒子表面近傍および粒子内部のシラノール基を熱縮合させてシラノール基を低減させることができると考えられる。この観点から、熱処理球状ゾルゲルシリカ微粒子の疎水化度が50未満である必要がある。この疎水化度が50以上である場合には、粒子表面近傍および粒子内部のシラノール基の熱縮合が不十分となることがある。
Step C (heat treatment of hydrophobic spherical sol-gel silica fine particles)
The step of heat-treating the hydrophobic spherical sol-gel silica fine particles as a starting material may be performed under conditions such that the degree of hydrophobicity of the heat-treated spherical sol-gel silica fine particles obtained after the treatment is less than 50. Specifically, if the heating conditions are such that the hydrophobized groups on the particle surface are thermally decomposed to generate surface silanol groups, the silanol groups are reduced by thermally condensing the silanol groups near and within the target particle surface. It is considered possible. From this viewpoint, the degree of hydrophobicity of the heat-treated spherical sol-gel silica fine particles needs to be less than 50. When the degree of hydrophobicity is 50 or more, thermal condensation of silanol groups in the vicinity of the particle surface and inside the particle may be insufficient.

加熱処理は疎水化度を50未満とするのに十分な時間行えばよく、通常、320〜600℃の温度に上記疎水性球状ゾルゲルシリカ微粒子を曝せばよい。   The heat treatment may be performed for a time sufficient to make the degree of hydrophobicity less than 50, and the hydrophobic spherical sol-gel silica fine particles are usually exposed to a temperature of 320 to 600 ° C.

−ステップD(疎水性球状ゾルゲルシリカ微粒子の加熱処理後の疎水化処理)−
上記熱処理球状ゾルゲルシリカ微粒子を疎水化処理する工程は、処理後に得られる高疎水性球状ゾルゲルシリカ微粒子の疎水化度が50以上であり、1次粒子の平均粒子径が0.01〜5μmとなるような条件で行えばよい。具体的には、熱処理球状ゾルゲルシリカ微粒子を、シリコーンオイル、シラザン化合物もしくはシラン化合物またはこれらの組み合わせからなる疎水化剤によって疎水化処理することが好ましい。
-Step D (hydrophobization treatment after heat treatment of hydrophobic spherical sol-gel silica fine particles)-
The step of hydrophobizing the heat-treated spherical sol-gel silica fine particles is such that the degree of hydrophobicity of the highly hydrophobic spherical sol-gel silica fine particles obtained after the treatment is 50 or more and the average particle diameter of the primary particles is 0.01 to 5 μm. It can be done under conditions. Specifically, the heat-treated spherical sol-gel silica fine particles are preferably subjected to a hydrophobizing treatment with a hydrophobizing agent composed of silicone oil, silazane compound, silane compound, or a combination thereof.

上記シリコーンオイルとしては、例えば、下記一般式(6):   Examples of the silicone oil include the following general formula (6):

Figure 2007099582
(式中、Rは同一または異なり、炭素原子数1〜3のアルキル基であり、R'は同一または異なり、非置換または置換のアルキル基またはフェニル基を表し、R''は炭素原子数1〜3のアルキル基またはアルコキシ基を表し、nおよびmは独立に0〜10000の整数であり、但し、同時に0ではない。)
で表わされるシリコーンオイル等が挙げられる。
Figure 2007099582
Wherein R is the same or different and is an alkyl group having 1 to 3 carbon atoms, R ′ is the same or different and represents an unsubstituted or substituted alkyl group or phenyl group, and R ″ is 1 carbon atom. Represents an alkyl group or an alkoxy group of -3, and n and m are each independently an integer of 0-10000, provided that they are not 0 at the same time.
The silicone oil etc. which are represented by these are mentioned.

上記一般式(6)中、Rで表されるアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基等が挙げられる。   In the general formula (6), examples of the alkyl group represented by R include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.

上記一般式(6)中、R'で表されるアルキル基は、Rで表されるアルキル基として説明したものと同種のものである。置換されたアルキル基としては、例えば、ハロゲン原子で置換された3,3,3−トリフロロプロピル基等のハロゲン化アルキル基等が挙げられる。また、置換されたフェニル基としては、例えば、ハロゲン原子で置換されたクロロフェニル基等が挙げられる。   In the general formula (6), the alkyl group represented by R ′ is the same type as that described as the alkyl group represented by R. Examples of the substituted alkyl group include halogenated alkyl groups such as 3,3,3-trifluoropropyl group substituted with a halogen atom. Examples of the substituted phenyl group include a chlorophenyl group substituted with a halogen atom.

上記一般式(6)中、R''で表されるアルキル基は、Rで表されるアルキル基として説明したものと同種のものである。アルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基等が挙げられる。   In the general formula (6), the alkyl group represented by R ″ is the same type as that described as the alkyl group represented by R. Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group.

nは0〜5000の整数であることが好ましく、mは0〜5000の整数であることが好ましく、nおよびmがこれらの好ましい範囲を同時に満たすことが特に好ましい。   n is preferably an integer of 0 to 5000, m is preferably an integer of 0 to 5000, and it is particularly preferable that n and m satisfy these preferred ranges simultaneously.

上記一般式(6)で表されるシリコーンオイルの具体例としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、これらのメチル基、フェニル基の一部が、エチル基、プロピル基等で置換されたアルキル変性シリコーンオイル等が挙げられ、中でもジメチルシリコーンオイルが好ましい。   Specific examples of the silicone oil represented by the general formula (6) include dimethyl silicone oil, methylphenyl silicone oil, alkyls in which part of these methyl groups and phenyl groups are substituted with ethyl groups, propyl groups, and the like. Examples thereof include modified silicone oil, and among them, dimethyl silicone oil is preferable.

上記シラザン化合物としては、例えば、上記一般式(3)で表されるものが挙げられる。また、上記シラン化合物としては、例えば、上記一般式(4)で表されるものが挙げられる。これらのシラザン化合物およびシラン化合物は、上述の親水性球状ゾルゲルシリカ微粒子の疎水化処理において説明したものと同種のものである。   As said silazane compound, what is represented by the said General formula (3) is mentioned, for example. Moreover, as said silane compound, what is represented by the said General formula (4) is mentioned, for example. These silazane compounds and silane compounds are the same as those described in the hydrophobization treatment of the hydrophilic spherical sol-gel silica fine particles described above.

上記疎水化剤により熱処理球状ゾルゲルシリカ微粒子を表面処理するには、公知の方法を適用すればよく、例えば、該シリカ微粒子と疎水化剤とをヘンシェルミキサー等の混合機を用いて直接混合してもよいし、該シリカ微粒子へ疎水化剤を噴霧してもよいし、あるいは適切な溶剤に疎水化剤を溶解または分散させ、該シリカ微粒子と混合した後、溶剤を除去して作製してもよい。   In order to surface-treat the heat-treated spherical sol-gel silica fine particles with the hydrophobizing agent, a known method may be applied. For example, the silica fine particles and the hydrophobizing agent may be directly mixed using a mixer such as a Henschel mixer. Alternatively, the hydrophobizing agent may be sprayed onto the silica fine particles, or the hydrophobizing agent may be dissolved or dispersed in an appropriate solvent, mixed with the silica fine particles, and then the solvent removed. Good.

上記表面処理に用いられる疎水化剤の使用量は、その種類によって異なる。疎水化剤がシリコーンオイルの場合には、その使用量は、熱処理球状ゾルゲルシリカ微粒子100質量部に対して好ましくは0.1〜20質量部であり、より好ましくは1〜10質量部である。疎水化剤の使用量が多すぎると、トナーの流動性、クリーニング性が低下することがある。疎水化剤がシラザン化合物またはシラン化合物の場合には、その使用量は、熱処理球状ゾルゲルシリカ微粒子のSiO2単位1モルに対して、好ましくは0.001〜0.5モルであり、より好ましくは0.005〜0.1モルである。疎水化剤の使用量がかかる好ましい範囲を満たすと、疎水化剤の無駄がない上、所望の疎水化度50以上の高疎水性球状ゾルゲルシリカ微粒子が得られる。
これらの疎水化剤は、一種単独で用いても二種以上を併用してもよい。
The amount of the hydrophobizing agent used for the surface treatment varies depending on the type. When the hydrophobizing agent is silicone oil, the amount used is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the heat-treated spherical sol-gel silica fine particles. If the amount of the hydrophobizing agent used is too large, the fluidity and cleaning properties of the toner may deteriorate. When the hydrophobizing agent is a silazane compound or a silane compound, the amount used is preferably 0.001 to 0.5 mol, more preferably 0.005 to 0.1 mol, per 1 mol of SiO 2 units in the heat-treated spherical sol-gel silica fine particles. It is. When the amount of the hydrophobizing agent used satisfies such a preferable range, the hydrophobizing agent is not wasted and highly hydrophobic spherical sol-gel silica fine particles having a desired degree of hydrophobization of 50 or more can be obtained.
These hydrophobizing agents may be used alone or in combination of two or more.

<トナー外添剤、現像剤>
こうして製造された高疎水性球状ゾルゲルシリカ微粒子は、トナー外添剤、特には静電荷像現像用トナー外添剤として使用される。このトナー外添剤は、一種単独で用いても二種以上を併用してもよい。
<Toner external additive, developer>
The thus produced highly hydrophobic spherical sol-gel silica fine particles are used as a toner external additive, particularly as a toner external additive for developing an electrostatic image. These toner external additives may be used alone or in combination of two or more.

トナー外添剤の配合量は、トナー粒子100質量部に対して、好ましくは0.01〜20質量部であり、より好ましくは0.1〜5質量部である。この配合量がかかる範囲を満たすと、トナー粒子への付着が十分に起こり、良好な流動性が得られるだけでなく、トナー粒子の帯電性にも優れたものとなる。   The blending amount of the toner external additive is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the toner particles. When this blending amount satisfies this range, adhesion to the toner particles occurs sufficiently, and not only good fluidity can be obtained, but also the chargeability of the toner particles is excellent.

高疎水性球状ゾルゲルシリカ微粒子のトナー粒子表面への付着(状態)は、単に機械的な付着であってもよいし、表面にゆるく固着されていてもよい。トナー粒子の全表面を被覆していても、一部を被覆していてもよい。疎水性球状ゾルゲルシリカ微粒子は、一部凝集した状態でトナー粒子を被覆していてもよいが、単層粒子状態で被覆しているのが好ましい。   The adhesion (state) of the highly hydrophobic spherical sol-gel silica fine particles to the toner particle surface may be merely mechanical adhesion or may be loosely fixed to the surface. The entire surface of the toner particles may be coated or a part thereof may be coated. The hydrophobic spherical sol-gel silica fine particles may be coated with toner particles in a partially agglomerated state, but is preferably coated in a single-layer particle state.

上記トナー外添剤が添加されるトナー粒子としては、結着樹脂と着色剤を含有する公知のものが使用できる。このトナー粒子には、必要に応じて、帯電制御剤が添加されていてもよい。   As the toner particles to which the toner external additive is added, known particles containing a binder resin and a colorant can be used. A charge control agent may be added to the toner particles as necessary.

本発明のトナー外添剤が添加された静電荷像現像用トナーは、一成分現像剤として使用することができるが、それをキャリアと混合して二成分現像剤として使用することもできる。二成分現像剤として使用する場合においては、トナー外添剤は予めトナー粒子に添加せず、トナー粒子とキャリアの混合時に添加してトナー粒子の表面被覆を行ってもよい。キャリアとしては、鉄粉等、あるいはそれらの表面に樹脂コーティングが施された公知のものが使用できる。   The electrostatic image developing toner to which the toner external additive of the present invention is added can be used as a one-component developer, but it can also be mixed with a carrier and used as a two-component developer. When used as a two-component developer, the toner external additive may not be added to the toner particles in advance, but may be added when the toner particles and the carrier are mixed to coat the surface of the toner particles. As the carrier, iron powder or the like, or a known carrier whose surface is resin-coated can be used.

以下、実施例および比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、実施例において、ヘキサメチルジシラザンを「HMDS」、1,3-ジオクチル-1,1,3,3-テトラメチルジシラザンを「OctDS」と略す。また、実施例で得られたシリカ微粒子の平均粒子径および疎水化度は、下記の測定方法に従って測定した。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the Examples, hexamethyldisilazane is abbreviated as “HMDS”, and 1,3-dioctyl-1,1,3,3-tetramethyldisilazane is abbreviated as “OctDS”. Further, the average particle size and the degree of hydrophobicity of the silica fine particles obtained in the examples were measured according to the following measuring methods.

<測定方法>
[シリカ微粒子の1次粒子の平均粒子径測定]
メタノールにシリカ微粒子を質量比で1:0.005となるよう添加した後、超音波照射器により該シリカ微粒子をメタノール中に分散させた。このように処理したシリカ微粒子の粒度分布をレーザー回折散乱式粒度分布測定装置(堀場製作所製、商品名:LA910)で測定し、その平均粒子径を求めた(こうして求められた平均粒子径は、所謂、体積平均粒子径である)。なお、電子顕微鏡を用いて前記シリカ微粒子の平均粒子径を測定し、前記装置による測定結果から求めた平均粒子径と比較して、それらの値が一致していることを確認し、さらに該シリカ微粒子の凝集が生じていないことを確認することにより、該平均粒子径が1次粒子のものであると判断した。
<Measurement method>
[Measurement of average particle size of primary particles of silica fine particles]
After adding silica fine particles to methanol at a mass ratio of 1: 0.005, the silica fine particles were dispersed in methanol with an ultrasonic irradiator. The particle size distribution of the silica fine particles treated in this way was measured with a laser diffraction / scattering particle size distribution analyzer (trade name: LA910, manufactured by Horiba, Ltd.), and the average particle size was determined (the average particle size thus determined is So-called volume average particle diameter). In addition, the average particle diameter of the silica fine particles was measured using an electron microscope, and compared with the average particle diameter obtained from the measurement result by the apparatus, it was confirmed that those values coincided, and further the silica By confirming that the aggregation of fine particles did not occur, it was determined that the average particle size was that of primary particles.

[疎水化度]
疎水化度の測定は、メタノール滴定試験により行った。具体的には、水50ml中に添加されたシリカ微粒子0.2gの全量が湿潤されるまで、シリカ微粒子混合液を攪拌しながらビュレットからメタノールを滴下して滴定し、その終点でのメタノールと水との混合物中におけるメタノールの百分率により表される値を疎水化度とした。
[Hydrophobicity]
The degree of hydrophobicity was measured by a methanol titration test. Specifically, methanol is added dropwise from a burette while titrating the silica fine particle mixture until the total amount of 0.2 g of silica fine particles added in 50 ml of water is wetted, and methanol and water at the end point are The value represented by the percentage of methanol in the mixture was taken as the degree of hydrophobicity.

<合成例1>(疎水性球状ゾルゲルシリカ微粒子(1)の合成)
−親水性球状ゾルゲルシリカ微粒子の合成−
攪拌機と、滴下ロートと、温度計とを備えた3リットルのガラス製反応器にメタノール623.7gと、水41.4gと、28質量%アンモニア水49.8gとを入れて混合した。得られた溶液を35℃となるように調整し、攪拌しながらテトラメトキシシラン1163.7g(7.65モル)および5.4質量%アンモニア水418.1gを同時に添加し始め、テトラメトキシシランは6時間かけて、アンモニア水は5時間かけて、それぞれを滴下した。滴下が終了した後も、さらに0.5時間攪拌を継続して加水分解を行うことにより、親水性球状ゾルゲルシリカ微粒子のメタノール−水分散液を得た。次いで、ガラス製反応器にエステルアダプターと冷却管とを取り付け、前記分散液を60〜70℃に加熱してメタノール1200gを留去し、その後、水1200gを添加した。次いで、得られた分散液を70〜90℃まで加熱してメタノール484gを留去することにより、親水性球状ゾルゲルシリカ微粒子の水性分散液を得た。
<Synthesis Example 1> (Synthesis of hydrophobic spherical sol-gel silica fine particles (1))
-Synthesis of hydrophilic spherical sol-gel silica particles-
In a 3 liter glass reactor equipped with a stirrer, a dropping funnel, and a thermometer, 623.7 g of methanol, 41.4 g of water, and 49.8 g of 28% by mass ammonia water were mixed. The resulting solution was adjusted to 35 ° C., and 1163.7 g (7.65 mol) of tetramethoxysilane and 418.1 g of 5.4 mass% ammonia water were simultaneously added while stirring. Tetramethoxysilane was added to ammonia over 6 hours. Water was added dropwise over 5 hours. Even after the dropping was finished, the mixture was further stirred for 0.5 hours for hydrolysis to obtain a methanol-water dispersion of hydrophilic spherical sol-gel silica fine particles. Next, an ester adapter and a condenser tube were attached to a glass reactor, and the dispersion was heated to 60 to 70 ° C. to distill off 1200 g of methanol, and then 1200 g of water was added. Subsequently, the obtained dispersion was heated to 70 to 90 ° C. to distill off 484 g of methanol, thereby obtaining an aqueous dispersion of hydrophilic spherical sol-gel silica fine particles.

−親水性球状ゾルゲルシリカ微粒子の疎水化処理−
この水性分散液に室温でメチルトリメトキシシラン11.6g(0.085モル)を0.5時間かけて滴下し、滴下後も12時間攪拌を継続し、親水性球状ゾルゲルシリカ微粒子表面を疎水化処理することにより、T単位処理球状ゾルゲルシリカ微粒子の水性分散液を得た。
-Hydrophobic treatment of hydrophilic spherical sol-gel silica particles-
To this aqueous dispersion, 11.6 g (0.085 mol) of methyltrimethoxysilane was added dropwise at room temperature over 0.5 hours, and stirring was continued for 12 hours after the addition, thereby hydrophobizing the surface of the hydrophilic spherical sol-gel silica particles. An aqueous dispersion of T unit-treated spherical sol-gel silica fine particles was obtained.

得られたT単位処理球状ゾルゲルシリカ微粒子の水性分散液にメチルイソブチルケトン1440gを添加した後、80〜110℃に加熱することにより、メタノールと水との混合物1340gを10時間かけて留去した。得られた分散液に、室温において、ヘキサメチルジシラザン150g(0.93モル)を添加した後、110℃に加熱し、3時間反応させることにより、分散液中のシリカ微粒子をトリメチルシリル化した。次いで、この分散液中の溶媒を80℃、減圧下(6650Pa)で留去することにより、1次粒子の平均粒子径が0.11μm、疎水化度が66の疎水性球状ゾルゲルシリカ微粒子(1)463gを得た。   After adding 1440 g of methyl isobutyl ketone to the obtained aqueous dispersion of T unit-treated spherical sol-gel silica fine particles, 1340 g of a mixture of methanol and water was distilled off over 10 hours by heating to 80 to 110 ° C. After adding 150 g (0.93 mol) of hexamethyldisilazane to the obtained dispersion at room temperature, the silica fine particles in the dispersion were trimethylsilylated by heating to 110 ° C. and reacting for 3 hours. Next, the solvent in the dispersion was distilled off at 80 ° C. under reduced pressure (6650 Pa) to thereby form hydrophobic spherical sol-gel silica fine particles (1) having an average primary particle size of 0.11 μm and a hydrophobization degree of 66. 463 g was obtained.

<合成例2>(疎水性球状ゾルゲルシリカ微粒子(2)の合成)
−親水性球状ゾルゲルシリカ微粒子の合成−
攪拌機と、滴下ロートと、温度計とを備えた3リットルのガラス製反応器にメタノール693.0gと、水46.0gと、28質量%アンモニア水55.3gとを添加して混合した。得られた溶液を35℃に調整し、攪拌しながらテトラメトキシシラン1293.0g(8.5モル)および5.4質量%アンモニア水464.5gを同時に添加開始し、前者は6時間、そして後者は4時間かけて滴下した。滴下後も0.5時間攪拌を続け、加水分解を行い、親水性球状ゾルゲルシリカ微粒子のメタノール−水分散液を得た。
<Synthesis Example 2> (Synthesis of hydrophobic spherical sol-gel silica fine particles (2))
-Synthesis of hydrophilic spherical sol-gel silica particles-
In a 3 liter glass reactor equipped with a stirrer, a dropping funnel, and a thermometer, 693.0 g of methanol, 46.0 g of water, and 55.3 g of 28 mass% aqueous ammonia were added and mixed. The resulting solution was adjusted to 35 ° C., and 1293.0 g (8.5 mol) of tetramethoxysilane and 464.5 g of 5.4% by mass ammonia water were simultaneously added while stirring. The former was added dropwise over 6 hours and the latter over 4 hours. did. Stirring was continued for 0.5 hour after the dropping, and hydrolysis was carried out to obtain a methanol-water dispersion of hydrophilic spherical sol-gel silica fine particles.

−親水性球状ゾルゲルシリカ微粒子の疎水化処理−
このメタノール−水分散液に室温でヘキサメチルジシラザン547.4g(3.39モル)を添加し、60℃に加熱し、3時間反応させ、親水性球状ゾルゲルシリカ微粒子をトリメチルシリル化した。その後、分散液中の溶媒を減圧下で留去して1次粒子の平均粒子径が0.12μm、疎水化度が58の疎水性球状ゾルゲルシリカ微粒子(2)553.0gを得た。
-Hydrophobic treatment of hydrophilic spherical sol-gel silica particles-
To this methanol-water dispersion, 547.4 g (3.39 mol) of hexamethyldisilazane was added at room temperature, heated to 60 ° C., and reacted for 3 hours to trimethylsilylate the hydrophilic spherical sol-gel silica fine particles. Thereafter, the solvent in the dispersion was distilled off under reduced pressure to obtain 553.0 g of hydrophobic spherical sol-gel silica fine particles (2) having an average primary particle size of 0.12 μm and a hydrophobization degree of 58.

<実施例1>(高疎水性球状ゾルゲルシリカ微粒子の合成)
−疎水性球状ゾルゲルシリカ微粒子の加熱処理−
疎水性球状ゾルゲルシリカ微粒子(1)100gを350℃の電気炉に入れ、1時間熱処理した。疎水化度が41の熱処理球状ゾルゲルシリカ微粒子99.2gを得た。
<Example 1> (Synthesis of highly hydrophobic spherical sol-gel silica fine particles)
-Heat treatment of hydrophobic spherical sol-gel silica particles-
100 g of hydrophobic spherical sol-gel silica fine particles (1) were placed in an electric furnace at 350 ° C. and heat-treated for 1 hour. 99.2 g of heat-treated spherical sol-gel silica fine particles having a hydrophobization degree of 41 were obtained.

−熱処理球状ゾルゲルシリカ微粒子の疎水化処理−
得られた熱処理球状ゾルゲルシリカ微粒子70gを250mlポリビンに入れ、ここに水0.7gを入れた後、密封し50℃で21時間放置した。次いで、放冷した後、室温で疎水化剤としてヘキサメチルジシラザン3.5g(0.018モル)を添加・混合した後、密封し50℃で3日間放置した。その後、開放下、100℃で16時間乾燥させ、1次粒子の平均粒子径が0.11μm、疎水化度が52の高疎水性球状ゾルゲルシリカ微粒子65.9gを得た。この高疎水性球状ゾルゲルシリカ微粒子を用いて、以下の基準に従って、試験を行った。得られた結果は表1に示す。
-Hydrophobization of heat-treated spherical sol-gel silica particles-
70 g of the obtained heat-treated spherical sol-gel silica fine particles were placed in a 250 ml plastic bottle, 0.7 g of water was added thereto, sealed and left at 50 ° C. for 21 hours. Next, after allowing to cool, 3.5 g (0.018 mol) of hexamethyldisilazane was added and mixed as a hydrophobizing agent at room temperature, then sealed and left at 50 ° C. for 3 days. Thereafter, the film was dried at 100 ° C. for 16 hours under open conditions to obtain 65.9 g of highly hydrophobic spherical sol-gel silica fine particles having an average primary particle diameter of 0.11 μm and a hydrophobicity of 52. Using this highly hydrophobic spherical sol-gel silica fine particle, a test was conducted according to the following criteria. The results obtained are shown in Table 1.

[外添剤混合トナー(一成分現像剤)の作製]
ガラス転移点(Tg)60℃、軟化点110℃のポリエステル樹脂96質量部と、色剤(商品名:カーミン6BC、住化カラー(株)製)4質量部とを溶融しながら混練し、粉砕し、分級した後、平均粒子径7μmのトナーを得た。このトナー10gに、高疎水性球状ゾルゲルシリカ微粒子0.3gをサンプルミルにより混合し、外添剤混合トナーを得た。この外添剤混合トナーの凝集度を以下の方法で算出した。
[Preparation of external additive mixed toner (one-component developer)]
96 parts by mass of a polyester resin having a glass transition point (Tg) of 60 ° C. and a softening point of 110 ° C. and 4 parts by mass of a colorant (trade name: Carmine 6BC, manufactured by Sumika Color Co., Ltd.) are kneaded while melting and pulverized. After classification, a toner having an average particle diameter of 7 μm was obtained. 10 g of this toner was mixed with 0.3 g of highly hydrophobic spherical sol-gel silica fine particles by a sample mill to obtain an external additive mixed toner. The degree of aggregation of the external additive mixed toner was calculated by the following method.

[凝集度]
凝集度とは、粉体の流動性を表す値である。凝集度は、パウダーテスタ(ホソカワミクロン株式会社製)と、200メッシュ(即ち、目開き75μm)、100メッシュ(即ち、目開き150μm)および60メッシュ(即ち、目開き250μm)のふるいをこの順序で下から重ねた三段のふるいを用いて測定した。測定手段は、5gのトナーからなる粉体を三段ふるいの上段の60メッシュのふるいの上にのせ、パウダーテスタに2.5Vの電圧を印加して15秒間三段ふるいを振動させ、その後、60メッシュのふるいに残留した粉体質量a(g)と、100メッシュのふるいに残留した粉体質量b(g)と、200メッシュのふるいに残留した粉体質量c(g)とから、下記式によって凝集度(%)を算出する方法である。
[Cohesion]
The degree of aggregation is a value representing the fluidity of the powder. For the degree of aggregation, powder tester (manufactured by Hosokawa Micron Co., Ltd.) and 200 mesh (ie, 75 μm openings), 100 mesh (ie, 150 μm openings) and 60 mesh (ie, 250 μm openings) are screened in this order. Measured using a three-stage sieve piled up. The measuring means put 5g of toner powder on the upper 60 mesh sieve of the three-stage sieve, applies a voltage of 2.5V to the powder tester and vibrates the three-stage sieve for 15 seconds, then 60 From the powder mass a (g) remaining on the mesh sieve, the powder mass b (g) remaining on the 100 mesh sieve, and the powder mass c (g) remaining on the 200 mesh sieve, the following formula This is a method for calculating the degree of aggregation (%).

凝集度(%)=(a+b×0.6+c×0.2)×100/5
凝集度が小さいほど流動性が良好であり、凝集度が大きいほど流動性が不良であると評価できる。
Aggregation degree (%) = (a + b × 0.6 + c × 0.2) × 100/5
It can be evaluated that the smaller the degree of aggregation, the better the fluidity, and the higher the degree of aggregation, the poorer the fluidity.

[二成分現像剤の調製]
上記外添剤混合トナー3質量部と、キャリアであるフェライト(商品名:FL100、パウダーテック社製)97質量部とを混合して二成分現像剤を調製した。これを用いて、以下の方法で、トナー帯電量を測定し、感光体へのトナー付着を評価した。
[Preparation of two-component developer]
A two-component developer was prepared by mixing 3 parts by mass of the external additive mixed toner and 97 parts by mass of ferrite (trade name: FL100, manufactured by Powdertech) as a carrier. Using this, the toner charge amount was measured by the following method, and the toner adhesion to the photoreceptor was evaluated.

[トナー帯電量]
前記二成分現像剤を高温高湿(30℃、90%RH)と低温低湿(10℃、15%RH)の各条件下に1日放置した後、同一条件下で十分に混合し、摩擦帯電を行った。それぞれの試料の帯電量を同一条件下でブローオフ粉体帯電量測定装置(東芝ケミカル(株)製、TB-200型)を用いて測定した。
[Toner charge amount]
The two-component developer is allowed to stand for 1 day under high temperature and high humidity (30 ° C, 90% RH) and low temperature and low humidity (10 ° C, 15% RH) conditions. Went. The charge amount of each sample was measured under the same conditions using a blow-off powder charge amount measuring device (Toshiba Chemical Co., Ltd., TB-200 type).

[感光体へのトナー付着および感光体摩耗]
前記現像剤を、有機感光体を備えた二成分改造現像機に入れ、30000枚のプリントテストを実施した。このとき、感光体へのトナーの付着は、全ベタ画像での白抜けとして感知できる。ここで、白抜けの程度は、白抜け個所の数が10個以上/cm2を「多い」、1〜9個/cm2を「少ない」、0個/cm2を「なし」と評価した。
[Toner adherence to photoconductor and photoconductor wear]
The developer was put into a two-component modified developing machine equipped with an organic photoconductor, and a print test of 30,000 sheets was performed. At this time, the adhesion of the toner to the photoconductor can be detected as white spots in all solid images. Here, the degree of white spots, the white number of missing points are "many" more than 10 / cm 2, 1-9 / cm 2 or "small", and the 0 / cm 2 was evaluated as "none" .

また、感光体摩耗は、前記プリントテストにおいて、画像の乱れとして検出される。ここで、画像の乱れのないものを良好と評価して「A」と示し、大きな画像の乱れのないもの(実用上問題のないもの)をやや良好であると評価して「B」と示し、画像の乱れがあるものを不良と評価して「C」と示す。   Further, the photoconductor wear is detected as image disturbance in the print test. Here, an image having no image disturbance is evaluated as good and indicated as “A”, and an image having no large image disturbance (no problem in practical use) is evaluated as slightly good and indicated as “B”. An image having a disturbance in the image is evaluated as defective and indicated as “C”.

<実施例2〜5>
実施例1において、疎水性球状ゾルゲルシリカ微粒子、その熱処理条件および疎水化処理に用いる疎水化剤を表1に示すとおりに代えた以外は実施例1と同様にして、高疎水性球状ゾルゲルシリカ微粒子を調製し、その試験を行った。得られた結果は表1に示す。
<Examples 2 to 5>
In the same manner as in Example 1, except that the hydrophobic spherical sol-gel silica fine particles, the heat treatment conditions and the hydrophobizing agent used in the hydrophobizing treatment were changed as shown in Table 1, the highly hydrophobic spherical sol-gel silica fine particles were used. Were prepared and tested. The results obtained are shown in Table 1.

<比較合成例1>(疎水性球状ゾルゲルシリカ微粒子(3)の合成)
−親水性球状ゾルゲルシリカ微粒子の合成−
攪拌機と、滴下ロートと、温度計とを備えた3リットルのガラス製反応器にメタノール693.0g、水46.0g、28質量%アンモニア水55.3gを添加して混合した。得られた溶液を35℃に調整し、攪拌しながらテトラメトキシシラン1293.0g(8.5モル)および5.4質量%アンモニア水464.5gを同時に添加開始し、前者は6時間、そして後者は4時間かけて滴下した。滴下後も0.5時間攪拌を続け、加水分解を行い、親水性球状ゾルゲルシリカ微粒子のメタノール−水分散液を得た。
<Comparative Synthesis Example 1> (Synthesis of hydrophobic spherical sol-gel silica fine particles (3))
-Synthesis of hydrophilic spherical sol-gel silica particles-
In a 3 liter glass reactor equipped with a stirrer, a dropping funnel, and a thermometer, 693.0 g of methanol, 46.0 g of water, and 55.3 g of 28 mass% ammonia water were added and mixed. The obtained solution was adjusted to 35 ° C., and 1293.0 g (8.5 mol) of tetramethoxysilane and 464.5 g of 5.4 mass% ammonia water were simultaneously added while stirring. The former was added dropwise over 6 hours and the latter over 4 hours. did. Stirring was continued for 0.5 hour after the dropping, and hydrolysis was carried out to obtain a methanol-water dispersion of hydrophilic spherical sol-gel silica fine particles.

−親水性球状ゾルゲルシリカ微粒子の疎水化処理−
得られたメタノール−水分散液に室温でヘキサメチルジシラザン48.4g(0.3モル)を添加し、60℃に加熱し、3時間反応させ、親水性球状ゾルゲルシリカ微粒子をトリメチルシリル化した。その後、この分散液中の溶媒を減圧下で留去して、1次粒子の平均粒子径が0.12μm、疎水化度が43の疎水性球状ゾルゲルシリカ微粒子(3)548.3gを得た。
-Hydrophobic treatment of hydrophilic spherical sol-gel silica particles-
To the obtained methanol-water dispersion, 48.4 g (0.3 mol) of hexamethyldisilazane was added at room temperature, heated to 60 ° C., and reacted for 3 hours to trimethylsilylate the hydrophilic spherical sol-gel silica fine particles. Thereafter, the solvent in the dispersion was distilled off under reduced pressure to obtain 548.3 g of hydrophobic spherical sol-gel silica fine particles (3) having an average primary particle size of 0.12 μm and a degree of hydrophobicity of 43.

<比較合成例2>(疎水性球状シリカ微粒子(5)の合成)
攪拌機と温度計とを備えた0.3リットルのガラス製反応器に爆燃法シリカ(商品名:SO-C1、アドマテクス社製)100gを仕込み、純水1gを攪拌下で添加し、密閉後、さらに60℃で10時間攪拌した。次いで、室温まで冷却した後、HMDS2gを攪拌下で添加し、密閉後、さらに24時間攪拌した。120℃に昇温し、窒素ガスを通気しながら残存原料および生成したアンモニアを除去し、疎水化度が58、1次粒子の平均粒子径が0.3μmの疎水性球状シリカ微粒子(5)100gを得た。
<Comparative Synthesis Example 2> (Synthesis of hydrophobic spherical silica fine particles (5))
A 0.3 liter glass reactor equipped with a stirrer and a thermometer was charged with 100 g of deflagration silica (trade name: SO-C1, manufactured by Admatechs), 1 g of pure water was added with stirring, and after sealing, another 60 Stir at 0 ° C. for 10 hours. Subsequently, after cooling to room temperature, 2 g of HMDS was added with stirring, and after sealing, the mixture was further stirred for 24 hours. The temperature was raised to 120 ° C., and the remaining raw material and generated ammonia were removed while ventilating nitrogen gas. Hydrophobic spherical silica fine particles (5) of 100 g having a degree of hydrophobicity of 58 and an average primary particle size of 0.3 μm were added. Obtained.

<比較例1〜11>
実施例1において、シリカ微粒子、その熱処理条件および疎水化処理に用いる疎水化剤を表2または3に示すとおりに代えた以外は実施例1と同様にして、高疎水性シリカ微粒子を調製し、その試験を行った。得られた結果は表1に示す。
<Comparative Examples 1-11>
In Example 1, high-hydrophobic silica fine particles were prepared in the same manner as in Example 1 except that the silica fine particles, the heat treatment conditions thereof, and the hydrophobizing agent used for the hydrophobizing treatment were changed as shown in Table 2 or 3. The test was conducted. The results obtained are shown in Table 1.

Figure 2007099582
Figure 2007099582

Figure 2007099582
Figure 2007099582

Figure 2007099582
Figure 2007099582

*シリカ微粒子(4):ヒュームドシリカを疎水化処理した疎水性シリカ(商品名:アエロジルR972、日本アエロジル(株)製、疎水化度52、1次粒子の凝集体)
*シリカ微粒子(6):沈降法シリカ表面を疎水化処理した疎水性シリカ(商品名:ニプシルSS50F、日本シリカ(株)製、疎水化度64、1次粒子の凝集体)
* Silica fine particles (4): Hydrophobic silica obtained by hydrophobizing fumed silica (trade name: Aerosil R972, manufactured by Nippon Aerosil Co., Ltd., degree of hydrophobicity 52, aggregate of primary particles)
* Silica fine particles (6): Hydrophobic silica with hydrophobized silica surface (trade name: Nipsil SS50F, manufactured by Nippon Silica Co., Ltd., degree of hydrophobicity 64, aggregate of primary particles)

Claims (12)

ヒドロカルビルオキシシランもしくはその部分加水分解縮合生成物またはそれらの組み合わせを加水分解および縮合することによって得られた親水性球状ゾルゲルシリカ微粒子を疎水化処理して得られた、疎水化度が50以上であり、1次粒子の平均粒子径が0.01〜5μmである疎水性球状ゾルゲルシリカ微粒子を、加熱処理し、疎水化度が50未満の熱処理球状ゾルゲルシリカ微粒子を得る工程と、該熱処理球状ゾルゲルシリカ微粒子を疎水化処理する工程とを含む、疎水化度が50以上であり、1次粒子の平均粒子径が0.01〜5μmである高疎水性球状ゾルゲルシリカ微粒子の製造方法。   Hydrophobyl oxysilane or its partially hydrolyzed condensation product or a combination thereof hydrolyzed and condensed hydrophilic spherical sol-gel silica fine particles obtained by hydrolyzing and having a hydrophobization degree of 50 or more A step of heat-treating hydrophobic spherical sol-gel silica fine particles having an average primary particle diameter of 0.01 to 5 μm to obtain heat-treated spherical sol-gel silica fine particles having a degree of hydrophobicity of less than 50; A method for producing highly hydrophobic spherical sol-gel silica fine particles having a hydrophobization degree of 50 or more and an average primary particle diameter of 0.01 to 5 μm. 前記加熱処理に付される疎水性球状ゾルゲルシリカ微粒子が、本質的にSiO2単位からなる親水性球状ゾルゲルシリカ微粒子の表面にR3 3SiO1/2単位(式中、R3は同一または異なり、置換または非置換の炭素原子数1〜20の1価炭化水素基である)を導入する工程を含む疎水化処理によって得られるものである請求項1に係る製造方法。 Hydrophobic spherical sol-gel silica fine particles subjected to the heat treatment have R 3 3 SiO 1/2 units (wherein R 3 is the same or different on the surface of hydrophilic spherical sol-gel silica fine particles consisting essentially of SiO 2 units. , A substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms). 前記親水性球状ゾルゲルシリカ微粒子の疎水化処理が、前記親水性球状ゾルゲルシリカ微粒子の表面にR3 3SiO1/2単位を導入する前に、該表面にR4SiO3/2単位(式中、R4は置換または非置換の炭素原子数1〜20の1価炭化水素基である)を導入する工程を含むものである請求項2に係る製造方法。 Before the hydrophobic treatment of the hydrophilic spherical sol-gel silica fine particles introduces R 3 3 SiO 1/2 units on the surface of the hydrophilic spherical sol-gel silica fine particles, R 4 SiO 3/2 units (in the formula, , R 4 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms). 前記加熱処理が320〜600℃の温度で行われるものである請求項1〜3のいずれか一項に係る製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein the heat treatment is performed at a temperature of 320 to 600 ° C. 前記熱処理球状ゾルゲルシリカ微粒子の疎水化処理が、シリコーンオイル、シラザン化合物もしくはシラン化合物またはそれらの組み合わせからなる疎水化剤によって行われる請求項1〜4のいずれか一項に係る製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein the hydrophobizing treatment of the heat-treated spherical sol-gel silica fine particles is performed by a hydrophobizing agent comprising a silicone oil, a silazane compound, a silane compound, or a combination thereof. 前記シリコーンオイルがジメチルシリコーンオイルである請求項5に係る製造方法。   The manufacturing method according to claim 5, wherein the silicone oil is dimethyl silicone oil. 前記シラザン化合物が下記一般式(3):
3 3SiNHSiR3 3 (3)
(式中、R3は上記と同じである)
で表されるシラザン化合物である請求項5または6に係る製造方法。
The silazane compound is represented by the following general formula (3):
R 3 3 SiNHSiR 3 3 (3)
(Wherein R 3 is the same as above)
The production method according to claim 5 or 6, which is a silazane compound represented by the formula:
前記シラン化合物が下記一般式(4):
3 3SiX (4)
(式中、R3は上記と同じであり、XはOH基または加水分解性基である)
で表される1官能性シラン化合物である請求項5〜7のいずれか一項に係る製造方法。
The silane compound is represented by the following general formula (4):
R 3 3 SiX (4)
(Wherein R 3 is the same as above, and X is an OH group or a hydrolyzable group)
The production method according to claim 5, wherein the monofunctional silane compound is represented by the formula:
請求項1〜8のいずれか一項に係る製造方法により得られた高疎水性球状ゾルゲルシリカ微粒子。   Highly hydrophobic spherical sol-gel silica fine particles obtained by the production method according to any one of claims 1 to 8. 請求項9に係る高疎水性球状ゾルゲルシリカ微粒子から得られた静電荷像現像用トナー外添剤。   A toner external additive for developing electrostatic images obtained from the highly hydrophobic spherical sol-gel silica fine particles according to claim 9. 請求項10に係るトナー外添剤とトナー粒子とを含む現像剤。   A developer comprising the toner external additive according to claim 10 and toner particles. さらにキャリアを含む請求項11に係る現像剤。
The developer according to claim 11, further comprising a carrier.
JP2005294280A 2005-10-07 2005-10-07 Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive Active JP4781769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294280A JP4781769B2 (en) 2005-10-07 2005-10-07 Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005294280A JP4781769B2 (en) 2005-10-07 2005-10-07 Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive

Publications (2)

Publication Number Publication Date
JP2007099582A true JP2007099582A (en) 2007-04-19
JP4781769B2 JP4781769B2 (en) 2011-09-28

Family

ID=38026873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294280A Active JP4781769B2 (en) 2005-10-07 2005-10-07 Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive

Country Status (1)

Country Link
JP (1) JP4781769B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273757A (en) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same
JP2010533237A (en) * 2007-07-13 2010-10-21 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Curable silicone rubber compositions and cured silicone rubber compositions and methods for their preparation using functional silica
JP2012031045A (en) * 2010-06-30 2012-02-16 Tokuyama Corp Method for producing surface-treated inorganic oxide particle
CN102369485A (en) * 2009-04-01 2012-03-07 日本瑞翁株式会社 Toner for electrostatic-image development
US20120115079A1 (en) * 2010-11-10 2012-05-10 Canon Kabushiki Kaisha Toner
JP2012150172A (en) * 2011-01-17 2012-08-09 Canon Inc Toner
JP2012171813A (en) * 2011-02-18 2012-09-10 Tokuyama Corp Method for producing surface-treated inorganic oxide particle
JP2012189620A (en) * 2011-03-08 2012-10-04 Fuji Xerox Co Ltd Toner for electrostatic charge image development, toner cartridge, electrostatic charge image developer, process cartridge, and image forming apparatus
JP2013061485A (en) * 2011-09-13 2013-04-04 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2013097361A (en) * 2011-11-07 2013-05-20 Konica Minolta Business Technologies Inc Toner for electrostatic charge image development
KR20130104069A (en) * 2012-03-12 2013-09-25 삼성전자주식회사 Toner for developing electrostatic latent images
WO2013168884A1 (en) * 2012-05-10 2013-11-14 주식회사 엘지화학 Polymerized toner and method for producing same
WO2017130890A1 (en) 2016-01-28 2017-08-03 富士フイルム株式会社 Composition for acoustic wave probe, silicone resin for acoustic wave probe using same, acoustic wave probe, and ultrasonic probe, and acoustic wave measurement device, ultrasonic diagnostic device, photoacoustic wave measurement device, and ultrasonic endoscope
WO2018061991A1 (en) 2016-09-27 2018-04-05 富士フイルム株式会社 Resin material for acoustic wave probe, acoustic lens, acoustic wave probe, acoustic wave measurement device, ultrasonic diagnostic device, photoacoustic measurement device, and ultrasonic endoscope
WO2019049984A1 (en) 2017-09-11 2019-03-14 富士フイルム株式会社 Acoustic wave probe composition, acoustic wave probe silicone resin, acoustic wave probe, ultrasonic probe, acoustic wave measuring apparatus, ultrasonic diagnostic apparatus, photoacoustic wave measuring apparatus, and ultrasonic endoscope
JP2019172639A (en) * 2018-03-29 2019-10-10 日揮触媒化成株式会社 Pest repellent composition
EP4012501A1 (en) 2020-12-10 2022-06-15 Canon Kabushiki Kaisha External additive for toner, toner and image forming apparatus
EP4036653A2 (en) 2021-01-25 2022-08-03 Canon Kabushiki Kaisha External additive for toner and toner
EP4036652A2 (en) 2021-01-25 2022-08-03 Canon Kabushiki Kaisha External additive for toner and toner
DE102022120286A1 (en) 2021-09-07 2023-03-09 Canon Kabushiki Kaisha FINE PARTICLES, EXTERNAL ADDITIVE FOR TONER AND TONER
DE102023103651A1 (en) 2022-02-16 2023-08-17 Canon Kabushiki Kaisha SILICON CONTAINING FINE PARTICLE AND TONER

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107416849A (en) * 2017-09-06 2017-12-01 青岛科技大学 A kind of method for preparing monodisperse nano silicon dioxide particle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000330328A (en) * 1999-03-12 2000-11-30 Shin Etsu Chem Co Ltd Toner exterior additive for electrostatic charge image development

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000330328A (en) * 1999-03-12 2000-11-30 Shin Etsu Chem Co Ltd Toner exterior additive for electrostatic charge image development

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273757A (en) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same
JP4579265B2 (en) * 2007-04-25 2010-11-10 信越化学工業株式会社 Hydrophobic spherical silica fine particles having high fluidity, method for producing the same, toner external additive for developing electrostatic image using the same, and organic resin composition containing the same
JP2010533237A (en) * 2007-07-13 2010-10-21 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Curable silicone rubber compositions and cured silicone rubber compositions and methods for their preparation using functional silica
CN102369485B (en) * 2009-04-01 2013-09-18 日本瑞翁株式会社 Toner for electrostatic-image development
CN102369485A (en) * 2009-04-01 2012-03-07 日本瑞翁株式会社 Toner for electrostatic-image development
US8592114B2 (en) 2009-04-01 2013-11-26 Zeon Corporation Toner for developing electrostatic images
JP2015051924A (en) * 2010-06-30 2015-03-19 株式会社トクヤマ Surface-treated inorganic oxide particle
JP2012031045A (en) * 2010-06-30 2012-02-16 Tokuyama Corp Method for producing surface-treated inorganic oxide particle
US20120115079A1 (en) * 2010-11-10 2012-05-10 Canon Kabushiki Kaisha Toner
JP2012118511A (en) * 2010-11-10 2012-06-21 Canon Inc Toner
US20140162185A1 (en) * 2010-11-10 2014-06-12 Canon Kabushiki Kaisha Toner
US9005865B2 (en) * 2010-11-10 2015-04-14 Canon Kabushiki Kaisha Toner
JP2012150172A (en) * 2011-01-17 2012-08-09 Canon Inc Toner
JP2012171813A (en) * 2011-02-18 2012-09-10 Tokuyama Corp Method for producing surface-treated inorganic oxide particle
JP2012189620A (en) * 2011-03-08 2012-10-04 Fuji Xerox Co Ltd Toner for electrostatic charge image development, toner cartridge, electrostatic charge image developer, process cartridge, and image forming apparatus
JP2013061485A (en) * 2011-09-13 2013-04-04 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2013097361A (en) * 2011-11-07 2013-05-20 Konica Minolta Business Technologies Inc Toner for electrostatic charge image development
KR101926718B1 (en) * 2012-03-12 2018-12-07 에이치피프린팅코리아 유한회사 Toner for developing electrostatic latent images
KR20130104069A (en) * 2012-03-12 2013-09-25 삼성전자주식회사 Toner for developing electrostatic latent images
WO2013168884A1 (en) * 2012-05-10 2013-11-14 주식회사 엘지화학 Polymerized toner and method for producing same
WO2017130890A1 (en) 2016-01-28 2017-08-03 富士フイルム株式会社 Composition for acoustic wave probe, silicone resin for acoustic wave probe using same, acoustic wave probe, and ultrasonic probe, and acoustic wave measurement device, ultrasonic diagnostic device, photoacoustic wave measurement device, and ultrasonic endoscope
WO2018061991A1 (en) 2016-09-27 2018-04-05 富士フイルム株式会社 Resin material for acoustic wave probe, acoustic lens, acoustic wave probe, acoustic wave measurement device, ultrasonic diagnostic device, photoacoustic measurement device, and ultrasonic endoscope
WO2019049984A1 (en) 2017-09-11 2019-03-14 富士フイルム株式会社 Acoustic wave probe composition, acoustic wave probe silicone resin, acoustic wave probe, ultrasonic probe, acoustic wave measuring apparatus, ultrasonic diagnostic apparatus, photoacoustic wave measuring apparatus, and ultrasonic endoscope
JP2019172639A (en) * 2018-03-29 2019-10-10 日揮触媒化成株式会社 Pest repellent composition
EP4012501A1 (en) 2020-12-10 2022-06-15 Canon Kabushiki Kaisha External additive for toner, toner and image forming apparatus
EP4036653A2 (en) 2021-01-25 2022-08-03 Canon Kabushiki Kaisha External additive for toner and toner
EP4036652A2 (en) 2021-01-25 2022-08-03 Canon Kabushiki Kaisha External additive for toner and toner
DE102022120286A1 (en) 2021-09-07 2023-03-09 Canon Kabushiki Kaisha FINE PARTICLES, EXTERNAL ADDITIVE FOR TONER AND TONER
DE102023103651A1 (en) 2022-02-16 2023-08-17 Canon Kabushiki Kaisha SILICON CONTAINING FINE PARTICLE AND TONER

Also Published As

Publication number Publication date
JP4781769B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP4579265B2 (en) Hydrophobic spherical silica fine particles having high fluidity, method for producing the same, toner external additive for developing electrostatic image using the same, and organic resin composition containing the same
JP3988936B2 (en) Silane surface-treated spherical silica titania fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP3927741B2 (en) Toner external additive for electrostatic image development
JP2008174430A (en) Hydrophobic spherical silica fine particle, its manufacturing method and toner external additive for electrostatic charge image development
JP2011032114A (en) Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
JP2011185998A (en) Electrostatic image-developing toner and electric charge-controlling particle for external addition
JP2014114175A (en) Surface-hydrophobized spherical silica fine particle, method for producing the same, and toner external additive, obtained by using the particle, for developing electrostatic charge image
JP2012025596A (en) Method for producing agglomerated silica microparticle
JP5655800B2 (en) Method for producing associated silica
JP4060241B2 (en) Hydrophobic spherical silica-based fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
TWI804672B (en) Positively charged hydrophobic spherical silica particles, method for producing same, and positively charged toner composition using the positively charged hydrophobic spherical silica particles
JP4347201B2 (en) Toner external additive and toner for developing electrostatic image
JP4346403B2 (en) Surface-treated silica particles and uses thereof
JP3767788B2 (en) Toner external additive for electrostatic image development
JP6008137B2 (en) Surface organic resin-coated hydrophobic spherical silica fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP4628760B2 (en) Spherical hydrophobic polydiorganosiloxane-containing silica fine particles, toner additive for developing electrostatic image and toner
JP2014136670A (en) Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
WO2022181018A1 (en) Surface-treated sol-gel silica particle manufacturing method, surface-treated sol-gel silica particles, and toner external additive for electrostatic charge image development
JP3856744B2 (en) Toner external additive for electrostatic image development
JP3871297B2 (en) Toner external additive for electrostatic image development
JP3930236B2 (en) Toner external additive for electrostatic image development
JP4611006B2 (en) Spherical silica fine particles, toner external additive for developing electrostatic image and toner
JP4198108B2 (en) Toner external additive and toner for developing electrostatic image
JP5915550B2 (en) Method for producing silica-based fine particle electrostatic charge developing toner external additive having high dispersibility and low cohesiveness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4781769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150