JP2012025596A - Method for producing agglomerated silica microparticle - Google Patents

Method for producing agglomerated silica microparticle Download PDF

Info

Publication number
JP2012025596A
JP2012025596A JP2010163309A JP2010163309A JP2012025596A JP 2012025596 A JP2012025596 A JP 2012025596A JP 2010163309 A JP2010163309 A JP 2010163309A JP 2010163309 A JP2010163309 A JP 2010163309A JP 2012025596 A JP2012025596 A JP 2012025596A
Authority
JP
Japan
Prior art keywords
silica fine
fine particles
associative
producing
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010163309A
Other languages
Japanese (ja)
Other versions
JP5439308B2 (en
Inventor
Kazuyuki Matsumura
和之 松村
Muneo Kudo
宗夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010163309A priority Critical patent/JP5439308B2/en
Publication of JP2012025596A publication Critical patent/JP2012025596A/en
Application granted granted Critical
Publication of JP5439308B2 publication Critical patent/JP5439308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing agglomerated silica microparticles which have general characteristics as an external additive such as the ability to enhance the fluidity, caking resistance, fixability, and cleanability of a toner, further have, especially high dispersibility, low aggregation tendency, and exhibit good adsorption on a toner surface.SOLUTION: There is provided a method for producing agglomerated silica microparticles each composed of at least two agglomerated primary particles, which method for producing agglomerated silica microparticles comprises (A) a step of forming core particles of hydrophilic silica microparticles by subjecting a compound represented by general formula (1): Si(OR)to hydrolysis and condensation, (B) a step of forming core particle agglomerates by adding an agglomeration promoting additive thereto, and (C) a step of forming agglomerated silica microparticles by further adding the compound represented by general formula (1) to the system and subjecting it to hydrolysis and condensation to grow and agglomerate the core particle agglomerates.

Description

本発明は会合シリカ微粒子、特には高分散性、低凝集性を有し、トナー表面への吸着が良好な疎水性の会合シリカ微粒子に関し、より詳細には、静電荷像現像用トナー用の外添剤に好適に用いることのできる会合シリカ微粒子に関する。   The present invention relates to associative silica fine particles, particularly hydrophobic associative silica fine particles having high dispersibility and low agglomeration properties, and good adsorption to the toner surface, and more specifically, an external toner for electrostatic image development. The present invention relates to an associated silica fine particle that can be suitably used as an additive.

電子写真法等で使用する乾式現像剤は、結着樹脂中に着色剤を分散したトナーそのものを用いる一成分現像剤と、そのトナーにキャリアを混合した二成分現像剤とに大別できる。これらの現像剤を用いてコピー操作を行う場合、プロセス適合性を有するためには、現像剤が流動性、耐ケーキング性、定着性、帯電性、クリーニング性等に優れていることが必要である。その為、現像剤の流動性、耐ケーキング性、定着性、クリーニング性を高めるために、無機微粒子をトナーに添加することがしばしば行われている。   Dry developers used in electrophotography and the like can be roughly classified into a one-component developer using a toner itself in which a colorant is dispersed in a binder resin and a two-component developer in which a carrier is mixed with the toner. When performing a copying operation using these developers, in order to have process compatibility, the developer needs to be excellent in fluidity, caking resistance, fixing properties, charging properties, cleaning properties, and the like. . For this reason, inorganic fine particles are often added to the toner in order to improve the fluidity, caking resistance, fixability, and cleaning properties of the developer.

このような目的で無機微粒子をトナーに添加する場合、混合機を用いて外添剤とトナーを混合させ、外添剤の凝集体を解きほぐしながらトナー表面に付着させることが必要である。しかしながら、混合機を用いて外添剤をトナー表面に付着させても、依然としてトナー表面に付着せず遊離した状態の外添剤が存在したり、あるいはトナー表面に付着した外添剤でも現像器内の力学的・機械的ストレス、摺擦等によりトナー表面から脱離し遊離したりする場合がある。このようにして遊離した遊離外添剤は、感光体表面にトナーが現像される際にトナーと共に感光体表面に移行し、転写後も感光体表面にとどまり、クリーニングされずに感光体表面に付着し蓄積していることがしばしば認められる。   When inorganic fine particles are added to the toner for such a purpose, it is necessary to mix the external additive and the toner using a mixer, and to adhere to the toner surface while unpacking the aggregates of the external additive. However, even if the external additive is adhered to the toner surface using a mixer, there is still an external additive that does not adhere to the toner surface but is free, or the external additive adhered to the toner surface The toner may be detached from the toner surface due to mechanical / mechanical stress, rubbing, or the like. The free external additive thus released moves to the surface of the photoconductor together with the toner when the toner is developed on the surface of the photoconductor, and remains on the surface of the photoconductor after transfer, and adheres to the surface of the photoconductor without being cleaned. Often accumulating.

このように、これら遊離外添剤が感光体表面に蓄積されると、コピー上の画質欠陥の原因(フィルミング等)となったり、感光体表面にキズをつけ感光体の寿命を短くする原因となるため問題となっている。また、遊離外添剤が感光体表面に蓄積されることで、現像時に現像器の感光体表面からこれら遊離外添剤がこぼれ落ちて複写機内を汚染するという問題もある。さらに、これら遊離外添剤が現像剤中のキャリア表面に付着した場合には、キャリアとトナー間での電荷授受を阻害し、結果としてトナーの帯電性を低下させる一要因となることも問題である。従って、トナーの流動性、耐ケーキング性、定着性、クリーニング性を高めながらも、高分散性、低凝集性を有し、トナー表面への吸着が良好で遊離外添剤を生じにくい外添剤の開発が望まれていた。   Thus, if these free external additives accumulate on the surface of the photoreceptor, they can cause image quality defects on the copy (filming, etc.) or cause damage to the photoreceptor surface and shorten the life of the photoreceptor. This is a problem. Further, since the free external additives are accumulated on the surface of the photoreceptor, there is a problem that these free external additives spill out from the surface of the photoreceptor of the developing device during development and contaminate the inside of the copying machine. Furthermore, if these free external additives adhere to the carrier surface in the developer, the charge transfer between the carrier and the toner is hindered, and as a result, the chargeability of the toner may be reduced. is there. Therefore, while improving the fluidity, caking resistance, fixing property, and cleaning property of the toner, the external additive has high dispersibility and low cohesion, good adsorption to the toner surface, and hardly generates free external additives. Development of was desired.

上記のような問題を解決するために、無機系外添剤としてヒュームドシリカの使用が報告されている(例えば、特許文献1参照)。しかしながら、ヒュームドシリカの複雑な粒子構造では、外添剤に期待されるトナーへの流動性付与効果が不十分であるという問題があった。また、球状溶融シリカをトナー用外添剤として使用することも報告されている(例えば、特許文献2参照)。しかしながら、球状溶融シリカが球状であるがためにトナー表面への付着力が乏しい。従って、前記問題の解決には至っていない。   In order to solve the above problems, use of fumed silica as an inorganic external additive has been reported (see, for example, Patent Document 1). However, the complex particle structure of fumed silica has a problem that the fluidity-imparting effect expected for the external additive is insufficient. It has also been reported that spherical fused silica is used as an external additive for toner (for example, see Patent Document 2). However, since spherical fused silica is spherical, adhesion to the toner surface is poor. Therefore, the problem has not been solved.

特開2002−116575号公報JP 2002-116575 A 特開2002−154820号公報JP 2002-154820 A

本発明は、上記問題を解決するためになされたものであり、トナーの流動性、耐ケーキング性、定着性、クリーニング性を高めるという外添剤の一般特性を有する上、特に高分散性、低凝集性を有し、トナー表面への吸着が良好な会合シリカ微粒子の製造方法を提供することを目的とする。   The present invention has been made to solve the above problems, and has the general characteristics of an external additive that enhances the fluidity, anti-caking property, fixing property, and cleaning property of the toner, and is particularly high in dispersibility and low It is an object of the present invention to provide a method for producing associated silica fine particles having a cohesive property and good adsorption to the toner surface.

上記課題を解決するため、本発明では、
平均粒子径が5〜500nmの範囲にある1次粒子が、2個以上会合した会合シリカ微粒子の製造方法であって、
(A)一般式(1):Si(OR (1)
(式中、Rは同一又は異種の、炭素原子数1〜6の1価炭化水素基である)
で示される四官能性シラン化合物及び該四官能性シラン化合物の部分加水分解縮合生成物のうち少なくとも1種の化合物を、塩基性物質の存在下で親水性有機溶媒と水との混合媒体中で加水分解、縮合反応させ、親水性シリカ微粒子の核粒子を生成させる工程と、
(B)会合促進添加剤を系内に添加することで前記核粒子を会合させ、核粒子会合体を生成させる工程と、
(C)上記一般式(1)で示される四官能性シラン化合物及び該四官能性シラン化合物の部分加水分解縮合生成物のうち少なくとも1種の化合物を更に系内に添加し、加水分解、縮合反応させ、前記核粒子会合体を成長、会合させることで会合シリカ微粒子を生成させる工程を有することを特徴とする会合シリカ微粒子の製造方法を提供する。
In order to solve the above problems, in the present invention,
A method for producing associated silica fine particles in which two or more primary particles having an average particle diameter in the range of 5 to 500 nm are associated,
(A) General formula (1): Si (OR 1 ) 4 (1)
(Wherein, R 1 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms)
At least one compound selected from the group consisting of a tetrafunctional silane compound and a partial hydrolysis-condensation product of the tetrafunctional silane compound in a mixed medium of a hydrophilic organic solvent and water in the presence of a basic substance. A step of hydrolyzing and condensing to produce core particles of hydrophilic silica fine particles;
(B) adding an association promoting additive into the system to associate the core particles to form a core particle aggregate;
(C) At least one compound among the tetrafunctional silane compound represented by the general formula (1) and a partial hydrolysis condensation product of the tetrafunctional silane compound is further added to the system, followed by hydrolysis and condensation. There is provided a method for producing associated silica fine particles, characterized by comprising a step of reacting, and growing and associating the core particle aggregates to form associated silica fine particles.

このように、(A)SiO単位からなる親水性シリカ微粒子の核粒子を生成させる工程、(B)核粒子会合体を生成させる工程及び(C)会合シリカ微粒子を生成させる工程により会合シリカ微粒子を製造することができる。このようにして得られた会合シリカ微粒子は、トナーの流動性、耐ケーキング性、定着性、クリーニング性を高めるという外添剤の一般特性を有する上、高分散性、低凝集性を有し、トナー表面への吸着が良好な会合シリカ微粒子となる。 Thus, (A) a step of generating a core particle of hydrophilic silica fine particles composed of SiO 2 units, (B) a step of generating a core particle aggregate, and (C) a step of generating an associated silica fine particle, the associated silica fine particle is formed. Can be manufactured. The associated silica fine particles obtained in this way have the general properties of external additives that enhance the fluidity, caking resistance, fixability, and cleaning properties of the toner, as well as high dispersibility and low aggregation. The associated silica fine particles are excellently adsorbed on the toner surface.

また、前記会合促進添加剤は塩類、多官能性化合物、縮合触媒のいずれかとすることができる。さらに、塩類であれば水酸化テトラアルキルアンモニウム化合物が好ましく、多官能性化合物であればアミノアルコール類、ジアミン類、グリコール類が好ましく、縮合触媒であればTi、Zr、Zn、Al系の有機金属化合物錯体が好ましい。   The association promoting additive may be any of salts, polyfunctional compounds, and condensation catalysts. Further, tetraalkylammonium hydroxide compounds are preferable for salts, aminoalcohols, diamines, and glycols are preferable for polyfunctional compounds, and Ti, Zr, Zn, and Al based organometallics are used for condensation catalysts. Compound complexes are preferred.

このように、会合促進添加剤を塩類、多官能性化合物、縮合触媒のいずれかとすることで、単に1次粒子が集合して球状となったり、または凝集して塊状となった通常の形態の粒子ではなく、2個以上の1次粒子が会合して鎖状、繊維状、その他、異形の形態をとる会合シリカ微粒子を製造することができる。さらに、適宜会合促進添加剤を選択することで、この会合シリカ微粒子における1次粒子の会合態様として、1次粒子が2個会合したもの、3個以上鎖状に会合したもの、3個が3点で会合したもの、4個が平面的にあるいはテトラポット型に会合したもの、同様に5個以上の粒子が会合したもの、などの他、更にこれら会合シリカ微粒子群同士が結合した種々の会合シリカ微粒子を製造することができる。   Thus, by using any one of salts, polyfunctional compounds, and condensation catalysts as the association promoting additive, the primary particles are simply aggregated into a spherical shape or aggregated into a lump shape in a normal form. Instead of particles, two or more primary particles can associate to produce associated silica fine particles having a chain, fiber, or other irregular shape. Further, by appropriately selecting an association promoting additive, the primary particles in the associated silica fine particles are associated with each other by two primary particles, three or more chains, and three In addition to those that are associated at a point, those that are associated with four in a planar or tetrapot form, those that are associated with five or more particles, and various associations in which these associated silica fine particle groups are bonded together Silica fine particles can be produced.

さらに、前記親水性有機溶媒は、
一般式(2):ROH (2)
(式中、Rは炭素原子数1〜6の1価炭化水素基である)
で示されるアルコール溶媒とすることが好ましい。
Furthermore, the hydrophilic organic solvent is
Formula (2): R 2 OH (2)
(Wherein R 2 is a monovalent hydrocarbon group having 1 to 6 carbon atoms)
It is preferable to use an alcohol solvent represented by

このように、前記親水性有機溶媒を一般式(2)で示されるアルコール溶媒とすることで、(A)親水性シリカ微粒子の核粒子を生成させる工程において一般式(1)で示される四官能性シラン化合物及び該四官能性シラン化合物の部分加水分解縮合生成物とこれらの加水分解生成物を良好に溶解することができ、加水分解、縮合反応を良好に進行させることができる。また、アルコールの炭素原子数1〜6を適宜選択することで生成する会合シリカ微粒子の粒子径を制御することができ、高分散性、低凝集性を有し、トナー表面への吸着が良好な会合シリカ微粒子を得ることができる。   Thus, by using the hydrophilic organic solvent as the alcohol solvent represented by the general formula (2), the tetrafunctional compound represented by the general formula (1) in the step of generating the core particles of the hydrophilic silica fine particles (A). The hydrolytic silane compound and the partial hydrolysis-condensation product of the tetrafunctional silane compound and these hydrolysis products can be dissolved well, and the hydrolysis and condensation reaction can proceed well. Further, the particle diameter of the associated silica fine particles produced can be controlled by appropriately selecting the number of carbon atoms of 1 to 6 in the alcohol, has high dispersibility and low cohesion, and good adsorption on the toner surface. Associative silica fine particles can be obtained.

また、前記塩基性物質がアンモニアであることが好ましい。   The basic substance is preferably ammonia.

このように、塩基性物質としてアンモニアを用いることで、加水分解、縮合反応に適した反応条件を満たすことができ、加水分解、縮合反応を良好に進行させることができる。   Thus, by using ammonia as a basic substance, the reaction conditions suitable for the hydrolysis and condensation reaction can be satisfied, and the hydrolysis and condensation reaction can proceed favorably.

さらに、前記(C)会合シリカ微粒子を生成させる工程の後、
(D)前記混合媒体から親水性有機溶媒を除去して水を添加し、前記親水性会合シリカ微粒子の水分散液を得る工程と、
(E)該水分散液中の前記親水性会合シリカ微粒子の表面にRSiO3/2単位(式中、Rは置換又は非置換の、炭素原子数1〜20の1価炭化水素基である)を導入し、第一次疎水性会合シリカ微粒子を生成させる工程と、
(F)更に、該第一次疎水性会合シリカ微粒子の表面にR SiO1/2単位(式中、Rは同一又は異種の、置換又は非置換の、炭素原子数1〜6の1価炭化水素基である)を導入し、第二次疎水性会合シリカ微粒子を生成させる工程より会合シリカ微粒子を製造することが好ましい。
Further, after the step (C) of producing the associated silica fine particles,
(D) removing the hydrophilic organic solvent from the mixed medium and adding water to obtain an aqueous dispersion of the hydrophilic associated silica fine particles;
(E) R 3 SiO 3/2 units on the surface of the hydrophilic associative silica fine particles in the aqueous dispersion (wherein R 3 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms) And the step of generating primary hydrophobic associative silica fine particles,
(F) Furthermore, R 4 3 SiO 1/2 units (wherein R 4 is the same or different, substituted or unsubstituted, 1 to 6 carbon atoms) on the surface of the primary hydrophobic associative silica fine particles. It is preferable that the associated silica fine particles are produced from the step of introducing a secondary hydrophobic associative silica fine particle by introducing a monovalent hydrocarbon group).

このように、(C)会合シリカ微粒子を生成させる工程の後、(D)前記親水性会合シリカ微粒子の水分散液を得る工程、(E)第一次疎水性会合シリカ微粒子を生成させる工程及び、(F)第二次疎水性会合シリカ微粒子を生成させる工程を行うことにより疎水性の会合シリカ微粒子を製造することができる。このようにして得られた疎水性の会合シリカ微粒子は、トナーの流動性、耐ケーキング性、定着性、クリーニング性を高めるという外添剤の一般特性を有する上、より良好な高分散性、低凝集性を有し、トナー表面への吸着が良好な会合シリカ微粒子となる。   Thus, (C) after the step of producing the associated silica fine particles, (D) a step of obtaining an aqueous dispersion of the hydrophilic associative silica fine particles, (E) a step of producing the primary hydrophobic associated silica fine particles, and (F) Hydrophobic associative silica fine particles can be produced by performing a step of generating secondary hydrophobic associative silica fine particles. The hydrophobic associative silica fine particles thus obtained have the general properties of external additives that improve the fluidity, caking resistance, fixability, and cleaning properties of the toner, as well as better high dispersibility, lower Aggregated silica particles having aggregating property and good adsorption to the toner surface are obtained.

また、前記(E)工程において、前記会合シリカ微粒子に対し、
一般式(3):RSi(OR (3)
(式中、Rは、置換又は非置換の、炭素原子数1〜20の1価炭化水素基であり、Rは同一又は異種の、炭素原子数1〜6の1価炭化水素基である)
で示される三官能性シラン化合物もしくは該三官能性シラン化合物の部分加水分解縮合生成物又はこれらの混合物を添加することで、前記親水性会合シリカ微粒子の表面にRSiO3/2単位(式中、Rは上記と同じである)を導入し、前記第一次疎水性会合シリカ微粒子の水分散液を得ることが好ましい。
Further, in the step (E), for the associated silica fine particles,
General formula (3): R 3 Si (OR 5 ) 3 (3)
(Wherein R 3 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 5 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms. is there)
R 3 SiO 3/2 unit (formula) is added to the surface of the hydrophilic associative silica fine particles by adding a trifunctional silane compound represented by the formula, a partial hydrolysis condensation product of the trifunctional silane compound, or a mixture thereof. R 3 is the same as described above) is preferably introduced to obtain an aqueous dispersion of the first hydrophobic associative silica fine particles.

このように、前記(E)工程において、前記会合シリカ微粒子に対し、一般式(3)で示される三官能性シラン化合物もしくは該三官能性シラン化合物の部分加水分解縮合生成物又はこれらの混合物を添加することで、簡便に親水性会合シリカ微粒子の表面にRSiO3/2単位(式中、Rは上記と同じである)を導入することができる。これにより、会合シリカ微粒子表面を疎水性にしながら、加水分解性基を導入するので、続く(F)第二次疎水性会合シリカ微粒子を生成させる工程における加水分解縮合反応を良好に進行させることができる。 Thus, in the step (E), the trifunctional silane compound represented by the general formula (3), the partial hydrolysis condensation product of the trifunctional silane compound or a mixture thereof is added to the associated silica fine particles. By adding, R 3 SiO 3/2 units (wherein R 3 is the same as above) can be easily introduced onto the surface of the hydrophilic associative silica fine particles. Thereby, since the hydrolyzable group is introduced while making the surface of the associated silica fine particles hydrophobic, the hydrolysis condensation reaction in the subsequent step (F) of generating the secondary hydrophobic associative silica fine particles can be favorably progressed. it can.

さらに、前記(C)会合シリカ微粒子を生成させる工程の後、
(D)前記混合媒体から親水性有機溶媒を除去して水を添加し、前記親水性会合シリカ微粒子の水分散液を得る工程と、
(E)該水分散液中の前記親水性会合シリカ微粒子の表面にRSiO3/2単位(式中、Rは上記と同じであり、置換又は非置換の、炭素原子数1〜20の1価炭化水素基である)を導入し、第一次疎水性会合シリカ微粒子を生成させる工程と、
(F’)更に、該第一次疎水性会合シリカ微粒子の水分散液の分散媒をケトン系溶媒に置換し、第一次疎水性会合シリカ微粒子のケトン系溶媒分散液を得、該第一次疎水性会合シリカ微粒子のケトン系溶媒分散液に対し、
一般式(4):R SiNHSiR (4)
(式中、Rは、同一又は異種の、置換又は非置換の、炭素原子数1〜6の1価炭化水素基である)
で示されるシラザン化合物、もしくは、
一般式(5):R SiX (5)
(式中、XはOH基又は加水分解性基である)
で示される一官能性シラン化合物又は前記シラザン化合物及び前記一官能性シラン化合物の混合物を添加し、前記第一次疎水性会合シリカ微粒子の表面に残存する反応性基をトリオルガノシリル化し、第一次疎水性会合シリカ微粒子の表面にR SiO1/2単位(式中、Rは上記と同じである)を導入することで、前記第二次疎水性会合シリカ微粒子を生成させることが好ましい。
Further, after the step (C) of producing the associated silica fine particles,
(D) removing the hydrophilic organic solvent from the mixed medium and adding water to obtain an aqueous dispersion of the hydrophilic associated silica fine particles;
(E) R 3 SiO 3/2 units on the surface of the hydrophilic associative silica fine particles in the aqueous dispersion (wherein R 3 is the same as above and is substituted or unsubstituted and has 1 to 20 carbon atoms) A monovalent hydrocarbon group) to produce primary hydrophobic associated silica fine particles,
(F ′) Further, the dispersion medium of the aqueous dispersion of the primary hydrophobic association silica fine particles is replaced with a ketone solvent to obtain a ketone solvent dispersion of the primary hydrophobic association silica fine particles. For the ketone-based solvent dispersion of the next hydrophobically associated silica fine particles,
General formula (4): R 4 3 SiNHSiR 4 3 (4)
(Wherein R 4 is the same or different, substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms)
Or a silazane compound represented by
General formula (5): R 4 3 SiX (5)
(Wherein X is an OH group or a hydrolyzable group)
Or a mixture of the silazane compound and the monofunctional silane compound is added to triorganosilylate the reactive groups remaining on the surface of the first hydrophobic associative silica fine particles, By introducing R 4 3 SiO 1/2 unit (wherein R 4 is the same as above) to the surface of the secondary hydrophobic associating silica fine particles, the secondary hydrophobic associating silica fine particles can be generated. preferable.

このように、(C)会合シリカ微粒子を生成させる工程の後、(D)前記親水性会合シリカ微粒子の水分散液を得る工程、(E)第一次疎水性会合シリカ微粒子を生成させる工程及び、(F’)第一次疎水性会合シリカ微粒子の水分散液の分散媒をケトン系溶媒に置換し、第一次疎水性会合シリカ微粒子のケトン系溶媒分散液を得、該第一次疎水性会合シリカ微粒子のケトン系溶媒分散液に対し、一般式(4)で示されるシラザン化合物、若しくは、一般式(5)で示される一官能性シラン化合物又は該シラザン化合物及び該一官能性シラン化合物の混合物を添加し、第一次疎水性会合シリカ微粒子の表面にR SiO1/2単位(式中、Rは上記と同じである)を導入し、第二次疎水性会合シリカ微粒子を生成させる工程を行うことで、会合シリカ微粒子を製造することができる。このようにして得られた疎水性の会合シリカ微粒子は、トナーの流動性、耐ケーキング性、定着性、クリーニング性を高めるという外添剤の一般特性を有する上、より良好な高分散性、低凝集性を有し、トナー表面への吸着が良好な会合シリカ微粒子となる。 Thus, (C) after the step of producing the associated silica fine particles, (D) a step of obtaining an aqueous dispersion of the hydrophilic associative silica fine particles, (E) a step of producing the primary hydrophobic associated silica fine particles, and (F ′) Dispersing the dispersion medium of the aqueous dispersion of primary hydrophobic associative silica fine particles with a ketone solvent to obtain a ketone solvent dispersion of primary hydrophobic associative silica fine particles, Silazane compound represented by general formula (4), monofunctional silane compound represented by general formula (5), or silazane compound and monofunctional silane compound with respect to a ketone-based solvent dispersion of fine associative silica fine particles And a mixture of R 4 3 SiO 1/2 units (wherein R 4 is the same as above) is introduced to the surface of the primary hydrophobic associating silica fine particles, and the secondary hydrophobic associating silica fine particles are introduced. The process of generating , It can be produced meeting silica fine particles. The hydrophobic associative silica fine particles thus obtained have the general properties of external additives that improve the fluidity, caking resistance, fixability, and cleaning properties of the toner, as well as better high dispersibility, lower Aggregated silica particles having aggregating property and good adsorption to the toner surface are obtained.

また、前記(E)工程において、前記会合シリカ微粒子に対し、
一般式(3):RSi(OR (3)
(式中、Rは、置換又は非置換の、炭素原子数1〜20の1価炭化水素基であり、Rは同一又は異種の、炭素原子数1〜6の1価炭化水素基である)
で示される三官能性シラン化合物もしくは該三官能性シラン化合物の部分加水分解縮合生成物又はこれらの混合物を添加することで、前記親水性会合シリカ微粒子の表面にRSiO3/2単位(式中、Rは上記と同じである)を導入し、該第一次疎水性会合シリカ微粒子の水分散液を得ることが好ましい。
Further, in the step (E), for the associated silica fine particles,
General formula (3): R 3 Si (OR 5 ) 3 (3)
(Wherein R 3 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 5 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms. is there)
R 3 SiO 3/2 unit (formula) is added to the surface of the hydrophilic associative silica fine particles by adding a trifunctional silane compound represented by the formula, a partial hydrolysis condensation product of the trifunctional silane compound, or a mixture thereof. R 3 is the same as described above) is preferably introduced to obtain an aqueous dispersion of the first hydrophobic associated silica fine particles.

このように、前記(E)工程において、前記会合シリカ微粒子に対し、一般式(3)で示される三官能性シラン化合物もしくは該三官能性シラン化合物の部分加水分解縮合生成物又はこれらの混合物を添加することで、簡便に親水性会合シリカ微粒子の表面にRSiO3/2単位(式中、Rは上記と同じである)を導入することができる。これにより、会合シリカ微粒子表面を疎水性にしながら、加水分解性基を導入するので、続く(F’)第二次疎水性会合シリカ微粒子を生成させる工程における加水分解縮合反応を良好に進行させることができる。 Thus, in the step (E), the trifunctional silane compound represented by the general formula (3), the partial hydrolysis condensation product of the trifunctional silane compound or a mixture thereof is added to the associated silica fine particles. By adding, R 3 SiO 3/2 units (wherein R 3 is the same as above) can be easily introduced onto the surface of the hydrophilic associative silica fine particles. As a result, the hydrolyzable group is introduced while making the surface of the associated silica fine particles hydrophobic, so that the hydrolytic condensation reaction in the subsequent step (F ′) of generating the secondary hydrophobic associated silica fine particles can proceed well. Can do.

さらに、前記ケトン系溶媒を、メチルイソブチルケトンとすることが好ましい。   Furthermore, the ketone solvent is preferably methyl isobutyl ketone.

このように、ケトン系溶媒を、メチルイソブチルケトンとすることにより、第一次疎水性会合シリカ微粒子、一般式(4)で示されるシラザン化合物、一般式(5)で示される一官能性シラン化合物、前記シラザン化合物及び前記一官能性シラン化合物の混合物及び生成する第二次疎水性会合シリカ微粒子を良好に溶解することができ、加水分解、縮合反応を良好に進行させることができる。   Thus, by using methyl isobutyl ketone as the ketone solvent, primary hydrophobic associative silica fine particles, silazane compound represented by general formula (4), monofunctional silane compound represented by general formula (5) The mixture of the silazane compound and the monofunctional silane compound and the resulting secondary hydrophobic associative silica fine particles can be dissolved well, and the hydrolysis and condensation reaction can proceed well.

また、前記会合シリカ微粒子の製造方法により製造された疎水性会合シリカ微粒子からなる静電荷像現像用トナー外添剤を提供することができる。   Further, it is possible to provide a toner external additive for developing an electrostatic charge image comprising hydrophobic associated silica fine particles produced by the method for producing the associated silica fine particles.

このように、上述した会合シリカ微粒子の製造方法により製造された疎水性会合シリカ微粒子は、トナーの流動性、耐ケーキング性、定着性、クリーニング性を高めるという外添剤の一般特性を有する上、特に高分散性、低凝集性を有し、トナー表面への吸着が良好な会合シリカ微粒子であるため、静電荷像現像用トナー外添剤として好適に用いることができる。   Thus, the hydrophobic associative silica fine particles produced by the above-described method for producing associative silica fine particles have the general characteristics of external additives that improve the fluidity, caking resistance, fixability, and cleaning properties of the toner. In particular, it is an associated silica fine particle having high dispersibility and low agglomeration properties and good adsorption to the toner surface, and therefore can be suitably used as an external toner additive for developing electrostatic images.

以上説明したように、本発明によれば、トナーの流動性、耐ケーキング性、定着性、クリーニング性を高めるという外添剤の一般特性を有する上、特に高分散性、低凝集性を有し、トナー表面への吸着が良好な会合シリカ微粒子を製造することができる。特に、本発明の製造方法により作製された疎水性会合シリカ微粒子を用いた静電荷像現像用トナー外添剤は、トナーの流動性、耐ケーキング性、定着性、クリーニング性を高めるという外添剤の一般的特性を有する上、高分散性、低凝集性を有し、シリカ粒子が会合した形の異形粒子であるため、トナー表面より脱離し遊離して遊離外添剤となりにくく、コピー上の画質欠陥(フィルミング等)を起こしにくい外添剤となる。このトナー外添剤を用いることで、電子写真法、静電記録法等における静電荷像の現像に応用することにより、高画質化が期待できる。   As described above, according to the present invention, the toner has the general properties of an external additive that enhances the fluidity, caking resistance, fixability, and cleaning properties of the toner, and has particularly high dispersibility and low cohesion. In addition, associated silica fine particles having good adsorption to the toner surface can be produced. In particular, the toner external additive for developing an electrostatic charge image using the hydrophobic associative silica fine particles produced by the production method of the present invention is an external additive that improves the fluidity, caking resistance, fixing property and cleaning property of the toner. In addition to the general characteristics of the above, it has high dispersibility and low cohesion, and is an irregularly shaped particle in which silica particles are associated. It is an external additive that hardly causes image quality defects (filming, etc.). By using this toner external additive, high image quality can be expected by applying it to the development of electrostatic images in electrophotography, electrostatic recording, and the like.

1次粒子が会合して鎖状、繊維状その他、異形の形態となることを示す模式図である。It is a schematic diagram which shows that a primary particle | grain associates and it becomes a chain | strand shape, a fiber form, and other forms.

以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
前述のように、トナーの流動性、耐ケーキング性、定着性、クリーニング性を高めるという外添剤の一般的特性を持ちながらも、高分散性、低凝集性を有し、トナー表面への吸着が良好で遊離外添剤を生じにくい外添剤の開発が望まれていた。
Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
As described above, while having the general properties of external additives that improve the fluidity, caking resistance, fixing properties, and cleaning properties of the toner, it has high dispersibility and low cohesion, and is adsorbed on the toner surface. Therefore, it has been desired to develop an external additive that is excellent in resistance and hardly generates a free external additive.

本発明者は、上記目的を達成するため鋭意検討を行った結果、トナーへの吸着を向上させ、かつトナーの流動性、耐ケーキング性、定着性、クリーニング性を高めるという外添剤の一般的特性を有する外添剤を作製するためにはシリカ微粒子の大きさ及び形状が重要であることを見出し、会合促進添加剤を用いて作製した会合シリカ微粒子製造方法であれば種々の形状及び大きさの異形粒子を作製できることを見出し、該製造方法により作製された会合シリカ微粒子は、高分散性、低凝集性を有し、トナー表面によく吸着することを見出し、また、該会合シリカ微粒子はコピー上の画質欠陥(フィルミング等)を起こしにくいことを見出し、さらにトナー表面から脱離し遊離して遊離外添剤となりにくい該会合シリカ微粒子を電子写真法、静電記録法等における静電荷像の現像に応用することにより、高画質化が期待できることを見出して本発明を完成した。以下、詳細に説明していく。   As a result of diligent studies to achieve the above object, the present inventor is a general external additive that improves adsorption to toner and improves toner fluidity, caking resistance, fixability, and cleaning properties. It was found that the size and shape of the silica fine particles are important for producing an external additive having characteristics, and various shapes and sizes can be used as long as the associated silica fine particle production method is prepared using an association promoting additive. The associated silica fine particles produced by the production method are found to have high dispersibility and low agglomeration and are well adsorbed to the toner surface, and the associated silica fine particles are copied. It was found that the above image quality defects (filming, etc.) are less likely to occur, and further, the associated silica fine particles which are released from the toner surface and are not easily released to become free external additives are obtained by electrophotography, static By applying the development of the electrostatic image on the recording method or the like, image quality has completed the present invention found that can be expected. This will be described in detail below.

本発明は、
平均粒子径が5〜500nmの範囲にある1次粒子が、2個以上会合した会合シリカ微粒子の製造方法であって、
(A)一般式(1):Si(OR (1)
(式中、Rは同一又は異種の、炭素原子数1〜6の1価炭化水素基である)
で示される四官能性シラン化合物及び該四官能性シラン化合物の部分加水分解縮合生成物のうち少なくとも1種の化合物を、塩基性物質の存在下で親水性有機溶媒と水との混合媒体中で加水分解、縮合反応させ、親水性シリカ微粒子の核粒子を生成させる工程と、
(B)会合促進添加剤を系内に添加することで前記核粒子を会合させ、核粒子会合体を生成させる工程と、
(C)上記一般式(1)で示される四官能性シラン化合物及び該四官能性シラン化合物の部分加水分解縮合生成物のうち少なくとも1種の化合物を更に系内に添加し、加水分解、縮合反応させ、前記核粒子会合体を成長、会合させることで会合シリカ微粒子を生成させる工程を有することを特徴とする会合シリカ微粒子の製造方法を提供する。
The present invention
A method for producing associated silica fine particles in which two or more primary particles having an average particle diameter in the range of 5 to 500 nm are associated,
(A) General formula (1): Si (OR 1 ) 4 (1)
(Wherein, R 1 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms)
At least one compound selected from the group consisting of a tetrafunctional silane compound and a partial hydrolysis-condensation product of the tetrafunctional silane compound in a mixed medium of a hydrophilic organic solvent and water in the presence of a basic substance. A step of hydrolyzing and condensing to produce core particles of hydrophilic silica fine particles;
(B) adding an association promoting additive into the system to associate the core particles to form a core particle aggregate;
(C) At least one compound among the tetrafunctional silane compound represented by the general formula (1) and a partial hydrolysis condensation product of the tetrafunctional silane compound is further added to the system, followed by hydrolysis and condensation. There is provided a method for producing associated silica fine particles, characterized by comprising a step of reacting, and growing and associating the core particle aggregates to form associated silica fine particles.

<一般的な合成シリカ微粒子の製法>
合成シリカ微粒子は、その製法によって、シラン化合物を燃焼させて得られる燃焼法シリカ(即ち、ヒュームドシリカ)、金属珪素粉を爆発的に燃焼させて得られる爆燃法シリカ、珪酸ナトリウムと鉱酸との中和反応によって得られる湿式シリカ(このうちアルカリ条件で合成したものを沈降法シリカ、酸性条件で合成したものをゲル法シリカという)、ヒドロカルビルオキシシランの加水分解によって得られるゾルゲル法シリカ(いわゆるStoeber法)に大別される。本発明は、このうち、ゾルゲル法シリカに関するものであり、ゾルゲル法を改良した会合シリカ微粒子の製造方法である。
<Method for producing general synthetic silica fine particles>
Synthetic silica fine particles are produced by combustion method silica obtained by burning a silane compound (that is, fumed silica), deflagration silica obtained by explosively burning metal silicon powder, sodium silicate and mineral acid. Wet silica obtained by the neutralization reaction of the above (the one synthesized under alkaline conditions is precipitated silica, the one synthesized under acidic conditions is gel silica), the sol-gel silica obtained by hydrolysis of hydrocarbyloxysilane (so-called (Stober method). Among these, the present invention relates to sol-gel silica, and is a method for producing associated silica fine particles by improving the sol-gel method.

<本発明の製造方法により作製された会合シリカ微粒子の特徴>
まず、本発明の会合シリカ微粒子の特徴について、詳細に説明する。本発明における会合シリカ微粒子とは、1次粒子が集合して球状となったり、または凝集して塊状となった通常の形態の粒子ではなく、2個以上の1次粒子が会合して鎖状、繊維状、その他、異形の形態にある粒子のことをいう。この会合シリカ微粒子における1次粒子の会合態様として、1次粒子が2個会合したもの、3個以上鎖状に会合したもの、3個が3点で会合したもの、4個が平面的にあるいはテトラポット型に会合したもの、同様に5個以上の粒子が会合したもの、などの他、更にこれら会合シリカ微粒子群同士が結合した会合シリカ微粒子も挙げることができる(図1参照)。このように2個以上の1次粒子が会合して鎖状、繊維状、その他、異形の形態にある粒子は、1次粒子が集合して球状となったり、または凝集して塊状となった通常の形態の粒子よりトナー表面等への接着面形状や接着面積の点で有利である。なお、ここでいう1次粒子とは粉体を形成している粒子で最小単位にあたる粒子を指す。
<Characteristics of associated silica fine particles produced by the production method of the present invention>
First, the characteristics of the associated silica fine particles of the present invention will be described in detail. The associated silica fine particles in the present invention are not particles in a normal form in which primary particles are aggregated into a spherical shape or agglomerated into a lump, but two or more primary particles are associated to form a chain. , Refers to particles in the form of fibers and other irregular shapes. As an association mode of the primary particles in the associated silica fine particles, two primary particles are associated, three or more are associated in a chain, three are associated at three points, four are planar or In addition to those associated in a tetrapot type, those in which five or more particles are associated in the same manner, associated silica fine particles in which these associated silica fine particle groups are bonded to each other can also be exemplified (see FIG. 1). In this way, two or more primary particles are aggregated to form a chain, a fiber, or other irregularly shaped particles, and the primary particles are aggregated into a spherical shape or aggregated into a lump. It is advantageous in terms of the shape of the adhesion surface and the adhesion area from the normal form particles to the toner surface. In addition, the primary particle here refers to the particle | grains which are the minimum unit in the particle | grains which form powder.

本発明の製造方法により製造することができる会合シリカ微粒子は2個以上の1次粒子、好ましくは2〜20個の1次粒子、特に好ましくは3〜10個の1次粒子が、互いに会合して構成されているものである。会合シリカ微粒子を構成する1次粒子は必ずしも球状である必要はなく、卵状、サイコロ状、棒状であってもよいが、外添剤用途を考えると1次粒子は球状であることが好ましい。また、1次粒子の粒子径は互いに異なっていても良く、さらに会合部分の径は1次粒子の粒子径と同程度、即ち、括れが無くても良い。   The associated silica fine particles that can be produced by the production method of the present invention include two or more primary particles, preferably 2 to 20 primary particles, particularly preferably 3 to 10 primary particles, which are associated with each other. It is configured. The primary particles constituting the associated silica fine particles do not necessarily have to be spherical, and may be oval, dice, or rod-shaped, but the primary particles are preferably spherical in consideration of the use of external additives. Moreover, the particle diameters of the primary particles may be different from each other, and the diameter of the associated portion may be approximately the same as the particle diameter of the primary particles, that is, there may be no constriction.

上記1次粒子の平均粒子径は5〜500nm、好ましくは20〜100nmの範囲にある。平均粒子径が5nm未満の場合は、1次粒子が凝集して得られる粒子群が塊状になる傾向があり、現像剤の流動性、耐ケーキング性、定着性等が不十分なものとなり、また平均粒子径が500nmを越えると、粒子が大きすぎて、感光体の変質や削れ、上記微粒子のトナーへの付着性の低下等の不都合を生じる。   The average particle diameter of the primary particles is in the range of 5 to 500 nm, preferably 20 to 100 nm. When the average particle size is less than 5 nm, the particle group obtained by agglomeration of primary particles tends to be agglomerated, resulting in insufficient developer fluidity, caking resistance, fixability, etc. When the average particle diameter exceeds 500 nm, the particles are too large, causing problems such as deterioration or abrasion of the photoreceptor and a decrease in adhesion of the fine particles to the toner.

本発明の製造方法により作製された会合シリカ微粒子の粉体中には会合シリカ微粒子及び1次粒子のみからなる微粒子が含まれている。前記会合シリカ微粒子を構成する1次粒子の粒子数は、本発明の製造方法により作製された会合シリカ微粒子の粉体中の全ての1次粒子の粒子数に対して、5〜100%、特に10〜80%の範囲にあることが好ましい。   The powder of the associated silica fine particles produced by the production method of the present invention contains fine particles composed only of the associated silica fine particles and the primary particles. The number of primary particles constituting the associated silica fine particles is 5 to 100% with respect to the number of all primary particles in the powder of the associated silica fine particles produced by the production method of the present invention. It is preferable to be in the range of 10 to 80%.

会合シリカ微粒子を構成する1次粒子の割合は、会合シリカ微粒子の透過型電子顕微鏡写真を撮影し、任意エリア中の全粒子について、1次粒子の総数と1次粒子のみからなる粒子の数をそれぞれカウントし、1次粒子の総数から1次粒子のみからなる粒子の数を減じた値を算出し、該値を1次粒子の総数で割ることによって求めることができる。粒子数の計測は、1次粒子の総数が約300個となるようなエリアについて測定するのがよい。なお、ここで「粒子径」とは体積基準メジアン径を意味する。   The ratio of the primary particles constituting the associated silica fine particles is determined by taking a transmission electron micrograph of the associated silica fine particles, and for all particles in an arbitrary area, the total number of primary particles and the number of particles consisting of only primary particles It can be obtained by counting each value, calculating a value obtained by subtracting the number of primary particles from the total number of primary particles, and dividing the value by the total number of primary particles. The number of particles is preferably measured in an area where the total number of primary particles is about 300. Here, “particle diameter” means a volume-based median diameter.

<本発明に係る会合シリカ微粒子の製造方法>
次に、本発明の会合シリカ微粒子の製造方法について詳細に説明する。
本発明に係る会合シリカ微粒子の製造方法は、平均粒子径が5〜500nmの範囲にある1次粒子が、2個以上会合した会合シリカ微粒子の製造方法であって、
(A)一般式(1):Si(OR (1)
(式中、Rは同一又は異種の、炭素原子数1〜6の1価炭化水素基である)
で示される四官能性シラン化合物及び該四官能性シラン化合物の部分加水分解縮合生成物のうち少なくとも1種の化合物を、塩基性物質の存在下で親水性有機溶媒と水との混合媒体中で加水分解、縮合反応させ、親水性シリカ微粒子の核粒子を生成させる工程と、
(B)会合促進添加剤を系内に添加することで前記核粒子を会合させ、核粒子会合体を生成させる工程と、
(C)上記一般式(1)で示される四官能性シラン化合物及び該四官能性シラン化合物の部分加水分解縮合生成物のうち少なくとも1種の化合物を更に系内に添加し、加水分解、縮合反応させ、前記核粒子会合体を成長、会合させることで会合シリカ微粒子を生成させる工程とを有する製造方法である。以下、各工程を説明する。
<Method for Producing Associated Silica Fine Particles According to the Present Invention>
Next, the method for producing associated silica fine particles of the present invention will be described in detail.
The method for producing associated silica fine particles according to the present invention is a method for producing associated silica fine particles in which two or more primary particles having an average particle diameter in the range of 5 to 500 nm are associated with each other,
(A) General formula (1): Si (OR 1 ) 4 (1)
(Wherein, R 1 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms)
At least one compound selected from the group consisting of a tetrafunctional silane compound and a partial hydrolysis-condensation product of the tetrafunctional silane compound in a mixed medium of a hydrophilic organic solvent and water in the presence of a basic substance. A step of hydrolyzing and condensing to produce core particles of hydrophilic silica fine particles;
(B) adding an association promoting additive into the system to associate the core particles to form a core particle aggregate;
(C) At least one compound among the tetrafunctional silane compound represented by the general formula (1) and a partial hydrolysis condensation product of the tetrafunctional silane compound is further added to the system, followed by hydrolysis and condensation. And producing the associated silica fine particles by reacting them to grow and associate the core particle aggregates. Hereinafter, each process will be described.

(A)親水性会合シリカ微粒子の核粒子生成工程
一般式(1):Si(OR (1)
(式中、Rは同一又は異種の、炭素原子数1〜6の1価炭化水素基である)
で示される四官能性シラン化合物及び該四官能性シラン化合物の部分加水分解縮合生成物のうち少なくとも1種の化合物を、塩基性物質の存在下で親水性有機溶媒と水との混合媒体中で加水分解、縮合反応させ親水性球状シリカ微粒子の核粒子を生成させる工程である。
(A) Nuclear particle generation step of hydrophilic associative silica fine particles General formula (1): Si (OR 1 ) 4 (1)
(Wherein, R 1 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms)
At least one compound selected from the group consisting of a tetrafunctional silane compound and a partial hydrolysis-condensation product of the tetrafunctional silane compound in a mixed medium of a hydrophilic organic solvent and water in the presence of a basic substance. This is a step of generating core particles of hydrophilic spherical silica fine particles by hydrolysis and condensation reaction.

は、炭素原子数1〜6の1価炭化水素基であり、より好ましくは炭素原子数1〜4、さらに好ましくは炭素原子数1〜2の1価炭化水素基である。Rで示される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、フェニル基等、好ましくは、メチル基、エチル基、プロピル基、ブチル基、特に好ましくは、メチル基、エチル基が挙げられる。 R 1 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and still more preferably a monovalent hydrocarbon group having 1 to 2 carbon atoms. Examples of the monovalent hydrocarbon group represented by R 1 include a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group, preferably a methyl group, an ethyl group, a propyl group, and a butyl group, and particularly preferably Examples thereof include a methyl group and an ethyl group.

上記一般式(1)で示される四官能性シラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン、テトラフェノキシシラン等、好ましくは、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、特に好ましくは、テトラメトキシシラン、テトラエトキシシランが挙げられる。また、一般式(1)で示される四官能性シラン化合物の部分加水分解縮合生成物としては、例えば、メチルシリケート、エチルシリケート等が挙げられる。   Examples of the tetrafunctional silane compound represented by the general formula (1) include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, tetraphenoxysilane, and the like. Silane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, particularly preferably tetramethoxysilane and tetraethoxysilane. Examples of the partial hydrolysis-condensation product of the tetrafunctional silane compound represented by the general formula (1) include methyl silicate and ethyl silicate.

前記親水性有機溶媒としては、一般式(1)で示される四官能性シラン化合物、該四官能性シラン化合物の部分加水分解縮合生成物、水及び核微粒子を溶解するものであれば特に制限されず、例えば、アルコール類、メチルセロソルブ、エチルセロソルブ、ブチセロソルブ、酢酸セロソルブ等のセロソルブ類、アセトン、メチルエチルケトン等のケトン類、ジオキサン、テトラヒドロフラン等のエーテル類等、好ましくは、アルコール類、セロソルブ類、特に好ましくはアルコール類が挙げられる。アルコール類としては、
一般式(2):ROH (2)
(式中、Rは炭素原子数1〜6の1価炭化水素基である)
で示されるアルコールが挙げられる。
The hydrophilic organic solvent is not particularly limited as long as it dissolves the tetrafunctional silane compound represented by the general formula (1), a partial hydrolysis-condensation product of the tetrafunctional silane compound, water, and nuclear fine particles. E.g., alcohols, methyl cellosolve, ethyl cellosolve, buticellosolve, cellosolves such as cellosolve acetate, acetone, ketones such as methyl ethyl ketone, ethers such as dioxane, tetrahydrofuran, etc., preferably alcohols, cellosolves, especially Preferably, alcohols are used. As alcohols,
Formula (2): R 2 OH (2)
(Wherein R 2 is a monovalent hydrocarbon group having 1 to 6 carbon atoms)
The alcohol shown by is mentioned.

上記一般式(2)中、Rは、炭素原子数1〜6の1価炭化水素基であり、好ましくは炭素原子数1〜4、特に好ましくは炭素原子数1〜2の1価炭化水素基である。Rで示される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、より好ましくはメチル基、エチル基が挙げられる。 In the general formula (2), R 2 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, particularly preferably a monovalent hydrocarbon having 1 to 2 carbon atoms. It is a group. Examples of the monovalent hydrocarbon group represented by R 2 include an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group, preferably a methyl group, an ethyl group, a propyl group, and an isopropyl group. Preferably a methyl group and an ethyl group are mentioned.

一般式(2)で示されるアルコールとしては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等、好ましくは、メタノール、エタノールが挙げられる。アルコールの炭素原子数が増えると、(A)工程から(C)工程全体を通して生成する会合シリカ微粒子の粒子径が大きくなる。従って、目的とする会合シリカ微粒子の粒子径によりアルコールの種類を選択することができる。   Examples of the alcohol represented by the general formula (2) include methanol, ethanol, propanol, isopropanol, butanol and the like, preferably methanol and ethanol. When the number of carbon atoms in the alcohol increases, the particle diameter of the associated silica fine particles generated from the (A) process to the entire (C) process increases. Therefore, the type of alcohol can be selected according to the particle size of the target associated silica fine particles.

また、上記塩基性物質としては例えば、アンモニア、及びジメチルアミン、ジエチルアミン等のジ低級アルキルアミンが挙げられ、好ましくは、アンモニア及びジエチルアミン、特に好ましくはアンモニアが挙げられる。これらの塩基性物質は、所要量を水に溶解した後、得られた水溶液(塩基性)を前記親水性有機溶媒と混合することで媒体中に混合することができる。   Examples of the basic substance include ammonia and di-lower alkylamines such as dimethylamine and diethylamine, preferably ammonia and diethylamine, particularly preferably ammonia. These basic substances can be mixed in a medium by dissolving a required amount in water and then mixing the obtained aqueous solution (basic) with the hydrophilic organic solvent.

(A)工程の核粒子形成時の加水分解反応において使用される水の量は、(A)工程において用いられる一般式(1)の四官能性シラン化合物、該四官能性シラン化合物の部分加水分解縮合生成物又はこれらの混合物中の官能基Rのモル数に対して0.5〜5当量であることが好ましく、水と親水性有機溶媒の比率は親水性有機溶媒を1当量とした場合に重量比で0.1〜10当量であることが好ましく、塩基性物質の量は(A)工程において用いられる一般式(1)の官能性シラン化合物、該四官能性シラン化合物の部分加水分解縮合生成物又はこれらの混合物中の官能基Rのモル数に対して0.01〜1当量であることが好ましい。このように水の量、水と親水性有機溶媒の比率及び塩基性物質の量を適宜選択することで目的に応じて核粒子の大きさ形状を制御することができる。 The amount of water used in the hydrolysis reaction during the formation of the core particles in the step (A) is the amount of the tetrafunctional silane compound of the general formula (1) used in the step (A) and the partial hydrolysis of the tetrafunctional silane compound. It is preferably 0.5 to 5 equivalents relative to the number of moles of the functional group R 1 in the decomposition condensation product or a mixture thereof, and the ratio of water to the hydrophilic organic solvent is 1 equivalent of the hydrophilic organic solvent. In some cases, the weight ratio is preferably 0.1 to 10 equivalents, and the amount of the basic substance is the functional silane compound of the general formula (1) used in the step (A) and the partial hydrolysis of the tetrafunctional silane compound. The amount is preferably 0.01 to 1 equivalent relative to the number of moles of the functional group R 1 in the decomposition condensation product or a mixture thereof. Thus, by appropriately selecting the amount of water, the ratio of water to the hydrophilic organic solvent, and the amount of basic substance, the size and shape of the core particles can be controlled according to the purpose.

(B)会合促進添加剤を系内に添加する工程
(A)工程により系内に作成された親水性球状シリカ核粒子が存在している混合媒体に、会合を促すような添加剤を添加することで核粒子会合体を生成させる工程である。
(B) A step of adding an association promoting additive into the system (A) An additive that promotes association is added to the mixed medium containing the hydrophilic spherical silica core particles prepared in the system by the step (A). This is a step of generating a nuclear particle aggregate.

シリカ粒子を会合させるための会合促進添加剤として有効なものとして、多官能性化合物、縮合触媒、塩類などが挙げられる。   Examples of effective additives for associating silica particles include polyfunctional compounds, condensation catalysts, and salts.

多官能性化合物としては、アミノアルコール類、ジアミン類、グリコール類などが挙げられる。具体的にアミノアルコール類としては、モノエタノールアミン、イソプロパノールアミン、ジエタノールアミン、N−メチルジエタノールアミン、2−ジメチルアミノエタノール、2−ジエチルアミノエタノール等が例示され、ジアミン類としては、エチレンジアミン、テトラメチルエチレンジアミン等が例示され、グリコール類としては、ジエチレングリコール、トリメチレングリコール、テトラメチレングリコール、1,6−ヘキサンジオール、ジエチレングリコール等が例示される。これらは一種でも二種以上の混合物であってもよい。   Examples of the polyfunctional compound include amino alcohols, diamines, glycols and the like. Specific examples of amino alcohols include monoethanolamine, isopropanolamine, diethanolamine, N-methyldiethanolamine, 2-dimethylaminoethanol, and 2-diethylaminoethanol. Examples of diamines include ethylenediamine and tetramethylethylenediamine. Illustrative examples of glycols include diethylene glycol, trimethylene glycol, tetramethylene glycol, 1,6-hexanediol, and diethylene glycol. These may be one kind or a mixture of two or more kinds.

縮合触媒としては、Ti,Zr、Zn、Al系の有機金属化合物錯体が挙げられる。具体的には、チタンジ−n−ブトキサイド(ビス2,4−ペンタジオネート)、ジルコニウム2,4−ペンタジオネート、亜鉛2,4−ペンタジオネート、アルミニウム(III)2,4−ペンタジオネート等が例示され、一種でも二種以上の混合物であってもよい。また、これらを加水分解したものを使用してもよい。   Examples of the condensation catalyst include Ti, Zr, Zn, and Al-based organometallic compound complexes. Specifically, titanium di-n-butoxide (bis 2,4-pentadionate), zirconium 2,4-pentadionate, zinc 2,4-pentadionate, aluminum (III) 2,4-pentadionate Etc., and one kind or a mixture of two or more kinds may be used. Moreover, you may use what hydrolyzed these.

塩類としては、水酸化テトラアルキルアンモニウムが挙げられる。水酸化テトラアルキルアンモニウムのアルキル基は炭素数1〜6であることが好ましく、特に1〜4であることが好ましい。具体的には水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、あるいはそれらの混合物のなかから選択されることが好ましい。   Examples of the salts include tetraalkylammonium hydroxide. The alkyl group of the tetraalkylammonium hydroxide preferably has 1 to 6 carbon atoms, and particularly preferably 1 to 4 carbon atoms. Specifically, it is preferably selected from tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, or a mixture thereof.

これら会合促進添加剤を介在させることにより、核粒子の会合が促進され、核粒子会合体が効率よく生成しやすくなり、会合形状も目的に応じて調整することができる。   By interposing these association promoting additives, the association of the core particles is promoted, the core particle aggregate is easily generated efficiently, and the form of the association can be adjusted according to the purpose.

会合促進添加剤の添加量はシリカ核粒子のSiO 100質量部に対し3〜150質量部添加するのが望ましい。より好ましくは5〜100質量部である。この量が3質量部以上であれば、会合率が良く好ましい。また、この量が150質量部以下であれば、粒子の凝集を抑制でき、外添剤に使用した場合の帯電特性に悪影響を与えることも抑制でき好ましい。 The addition amount of the association promoting additive is preferably 3 to 150 parts by mass with respect to 100 parts by mass of SiO 2 of the silica core particles. More preferably, it is 5-100 mass parts. If the amount is 3 parts by mass or more, the association rate is good and preferable. Moreover, if this amount is 150 parts by mass or less, it is preferable because aggregation of particles can be suppressed and adverse effects on charging characteristics when used as an external additive can be suppressed.

(C)核粒子会合体を成長、会合させる工程
(B)工程において会合促進添加剤を添加した後、引き続き上記一般式(1)で示される四官能性シラン化合物及び該四官能性シラン化合物の部分加水分解縮合生成物のうち少なくとも1種の化合物を更に添加していき、加水分解、縮合反応をさせることで、核粒子会合体をより大きく成長させ、また会合させる工程である。
(C) Step of growing and associating core particle aggregates (B) After adding an association promoting additive in step (B), the tetrafunctional silane compound represented by the general formula (1) and the tetrafunctional silane compound In this process, at least one compound of the partial hydrolysis-condensation product is further added to cause hydrolysis and condensation reaction to grow and associate the core particle aggregate larger.

会合シリカ微粒子成長時の加水分解反応において、一般式(1)で示される四官能性シラン化合物もしくは該四官能性シラン化合物の部分加水分解縮合生成物またはこれらの混合物の使用量は、(A)工程の核粒子作成に用いた一般式(1)で示される四官能性シラン化合物もしくは該四官能性シラン化合物の部分加水分解縮合生成物またはこれらの混合物の使用量に対して、99.5〜70.0mol%が好ましく、より好ましくは95.0〜85.0mol%である。この量が99.5mol%以下であれば、核粒子会合体に対してシリカが多く堆積しすぎることを抑制でき、会合した形で成長させることができるため好ましい。また、この量が70.0mol%以上であれば、会合シリカ微粒子が成長しやすくなるため好ましい。   In the hydrolysis reaction during the growth of the associated silica fine particles, the amount of the tetrafunctional silane compound represented by the general formula (1), the partial hydrolysis-condensation product of the tetrafunctional silane compound, or a mixture thereof is (A) 99.5 to the amount of the tetrafunctional silane compound represented by the general formula (1), the partial hydrolysis-condensation product of the tetrafunctional silane compound, or a mixture thereof used for preparing the core particles in the process. 70.0 mol% is preferable, More preferably, it is 95.0-85.0 mol%. If this amount is 99.5 mol% or less, it is preferable because too much silica is deposited on the core particle aggregate, and it can be grown in an associated form. Moreover, if this amount is 70.0 mol% or more, the associated silica fine particles are easily grown, which is preferable.

このとき使用される水の量は一般式(1)の四官能性シラン化合物もしくは該四官能性シラン化合物の部分加水分解縮合生成物又はこれらの混合物中のRのモル数に対して0.5〜5当量であることが好ましく、水と親水性有機溶媒の比率は親水性有機溶媒を1当量としたときに重量比で0.5〜10当量であることが好ましく、塩基性物質の量は一般式(1)の官能性シラン化合物もしくは該四官能性シラン化合物の部分加水分解縮合生成物又はこれらの混合物中のRのモル数に対して0.01〜1当量であることが好ましい。このように水の量、水と親水性有機溶媒の比率及び塩基性物質の量を最適化することで目的に応じて会合シリカ微粒子の大きさ形状を制御することができる。 The amount of water used at this time is about 0.1 with respect to the number of moles of R 1 in the tetrafunctional silane compound of the general formula (1), the partial hydrolysis condensation product of the tetrafunctional silane compound, or a mixture thereof. The ratio of water to the hydrophilic organic solvent is preferably 5 to 5 equivalents, and preferably 0.5 to 10 equivalents by weight when the hydrophilic organic solvent is 1 equivalent. Is preferably 0.01 to 1 equivalent with respect to the number of moles of R 1 in the functional silane compound of the general formula (1), the partial hydrolysis condensation product of the tetrafunctional silane compound, or a mixture thereof. . Thus, by optimizing the amount of water, the ratio of water to the hydrophilic organic solvent, and the amount of the basic substance, the size and shape of the associated silica fine particles can be controlled according to the purpose.

以上、(A)工程から(C)工程により、核粒子の形成、核粒子会合体の形成、核粒子会合体の成長と会合を効率よく行うことができるだけでなく、制御された粒径と形状からなる1次粒子が会合した会合シリカ微粒子を得ることができ、さらに、目的に応じて会合シリカ微粒子の大きさや形状も制御することができる会合シリカ微粒子の製造方法を提供することができる。   As described above, the steps (A) to (C) enable not only the formation of the core particles, the formation of the core particle aggregates, the growth and the association of the core particle aggregates, but also the controlled particle size and shape. In addition, it is possible to provide a method for producing associated silica fine particles, in which the associated silica fine particles in which the primary particles are associated can be obtained, and the size and shape of the associated silica fine particles can be controlled according to the purpose.

さらに、前記(C)会合シリカ微粒子を生成させる工程の後、
(D)前記混合媒体から親水性有機溶媒を除去して水を添加し、前記親水性会合シリカ微粒子の水分散液を得る工程と、
(E)該水分散液中の前記親水性会合シリカ微粒子の表面にRSiO3/2単位(式中、Rは置換又は非置換の、炭素原子数1〜20の1価炭化水素基である)を導入し、第一次疎水性会合シリカ微粒子を生成させる工程と、
(F)更に、該第一次疎水性会合シリカ微粒子の表面にR SiO1/2単位(式中、Rは同一又は異種の、置換又は非置換の、炭素原子数1〜6の1価炭化水素基である)を導入し、第二次疎水性会合シリカ微粒子を生成させる工程より会合シリカ微粒子を製造することで、トナーの流動性、耐ケーキング性、定着性、クリーニング性を高めるという外添剤の一般特性を有する上、より良好な高分散性、低凝集性を有し、トナー表面への吸着が良好な疎水性の会合シリカ微粒子を得ることができる。以下、疎水化の各工程について詳しく説明する。
Further, after the step (C) of producing the associated silica fine particles,
(D) removing the hydrophilic organic solvent from the mixed medium and adding water to obtain an aqueous dispersion of the hydrophilic associated silica fine particles;
(E) R 3 SiO 3/2 units on the surface of the hydrophilic associative silica fine particles in the aqueous dispersion (wherein R 3 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms) And the step of generating primary hydrophobic associative silica fine particles,
(F) Furthermore, R 4 3 SiO 1/2 units (wherein R 4 is the same or different, substituted or unsubstituted, 1 to 6 carbon atoms) on the surface of the primary hydrophobic associative silica fine particles. A monovalent hydrocarbon group) to produce secondary silica-associated silica fine particles, thereby producing associated silica fine particles, thereby improving toner fluidity, caking resistance, fixing properties, and cleaning properties. In addition to the general characteristics of the external additive, hydrophobic associated silica fine particles having better high dispersibility and low agglomeration and good adsorption to the toner surface can be obtained. Hereinafter, each process of hydrophobization will be described in detail.

(D)親水性会合シリカ微粒子の水分散液を得る工程
(C)工程の親水性会合シリカ微粒子分散液の混合媒体から親水性有機溶媒を除去して水を添加する工程である。(C)工程の混合媒体から親水性有機溶媒を除去して水を添加する操作は、例えば、該親水性会合シリカ微粒子分散液に水を添加し親水性有機溶媒を留去する操作(必要に応じてこの操作を繰り返す)により行うことができる。
(D) Step of obtaining an aqueous dispersion of hydrophilic associative silica fine particles (C) This is a step of adding water after removing the hydrophilic organic solvent from the mixed medium of the hydrophilic associative silica fine particle dispersion in the step (C). The operation of removing the hydrophilic organic solvent from the mixed medium in step (C) and adding water is, for example, an operation of adding water to the hydrophilic associative silica fine particle dispersion and distilling off the hydrophilic organic solvent (necessary This operation can be repeated accordingly.

このときに添加される水の合計量は、使用した親水性有機溶媒の量及び(A)工程から(C)工程全体の加水分解及び縮合反応により生成したアルコールの量の合計量に対して、質量基準で、好ましくは2倍量を超える量、より好ましくは2.5〜3.5倍量、特に好ましくは3倍量である。   The total amount of water added at this time is based on the amount of the hydrophilic organic solvent used and the total amount of alcohol generated by hydrolysis and condensation reaction from step (A) to step (C). On a mass basis, the amount is preferably more than twice, more preferably 2.5 to 3.5 times, particularly preferably 3 times.

このようにして得られる水分散液中の親水性会合シリカ微粒子は、続く(E)工程で第1段階の疎水化処理に供される。   The hydrophilic associative silica fine particles in the aqueous dispersion thus obtained are subjected to a first-stage hydrophobization treatment in the subsequent step (E).

なお、混合媒体から親水性有機溶媒を除去して水を添加する操作によって得られる水分散液は、水の含有量が90質量%以上であってもよい。すなわち、混合媒体から親水性有機溶媒を除去して水を添加する操作によって得られる水分散液は親水性有機溶媒を含んでもよい。上記の工程において、水分散液中の水の含有量が90質量%以上であれば、分散液中の水の量が多いためヒドロカルビルオキシ基の加水分解が十分進行し、シリカ微粒子中の残存ヒドロカルビルオキシ基含量が少なくなり好ましい。   The water dispersion obtained by removing the hydrophilic organic solvent from the mixed medium and adding water may have a water content of 90% by mass or more. That is, the aqueous dispersion obtained by removing the hydrophilic organic solvent from the mixed medium and adding water may contain the hydrophilic organic solvent. In the above process, if the water content in the aqueous dispersion is 90% by mass or more, the hydrocarbyloxy group is sufficiently hydrolyzed because the amount of water in the dispersion is large, and the remaining hydrocarbyl in the silica fine particles. The oxy group content is preferably reduced.

(E)第一次疎水性会合シリカ微粒子を生成させる工程(親水性会合シリカ微粒子の表面疎水化処理工程)
(D)工程の水分散液中の親水性会合シリカ微粒子の表面にRSiO3/2単位(式中、Rは置換又は非置換の、炭素原子数1〜20の1価炭化水素基である)を導入して第一次疎水性会合シリカ微粒子を生成させる工程である。即ち、第1段階の疎水化処理を行う工程である。
(E) Step of generating primary hydrophobic associative silica fine particles (surface hydrophobization treatment step of hydrophilic associative silica fine particles)
(D) R 3 SiO 3/2 units on the surface of the hydrophilic associative silica fine particles in the aqueous dispersion in the step (wherein R 3 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms) In order to produce primary hydrophobic association silica fine particles. That is, it is a step of performing a first-stage hydrophobization treatment.

該親水性会合シリカ微粒子から第一次疎水性会合シリカ微粒子を生成させる表面疎水化処理工程においては、例えば、水含有量が90質量%以上である前記水分散液中の親水性会合シリカ微粒子に対して、
一般式(3):RSi(OR (3)
(式中、Rは、置換又は非置換の、炭素原子数1〜20の1価炭化水素基であり、Rは同一又は異種の、炭素原子数1〜6の1価炭化水素基である)
で示される三官能性シラン化合物もしくは該三官能性シラン化合物の部分加水分解縮合生成物又はこれらの混合物を添加することで、親水性会合シリカ微粒子の表面にRSiO3/2単位(式中、Rは上記と同じである)を導入し、第一次疎水性会合シリカ微粒子の水分散液を得ることが好ましい。このように、一般式(3)で示される三官能性シラン化合物もしくは該三官能性シラン化合物の部分加水分解縮合生成物又はこれらの混合物を用いて、親水性会合シリカ微粒子表面を加水分解縮合反応により修飾することで効率的に第1段階の疎水化処理を行うことができる。
In the surface hydrophobization treatment step of generating primary hydrophobic associative silica fine particles from the hydrophilic associative silica fine particles, for example, the hydrophilic associative silica fine particles in the aqueous dispersion having a water content of 90% by mass or more are used. for,
General formula (3): R 3 Si (OR 5 ) 3 (3)
(Wherein R 3 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 5 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms. is there)
In trifunctional silane compound represented or by adding the three partial hydrolysis-condensation product of silane compounds or mixtures thereof, hydrophilic associations silica surface R 3 SiO 3/2 units of microparticles (in the formula , R 3 is the same as described above) to obtain an aqueous dispersion of primary hydrophobic associative silica fine particles. Thus, the surface of the hydrophilic associative silica fine particles is subjected to a hydrolytic condensation reaction using the trifunctional silane compound represented by the general formula (3), the partial hydrolytic condensation product of the trifunctional silane compound, or a mixture thereof. Thus, the first-stage hydrophobization treatment can be efficiently performed.

上記一般式(3)中、Rは、炭素原子数1〜20の1価炭化水素基であり、好ましくは炭素原子数1〜8、より好ましくは炭素原子数1〜4の1価炭化水素基である。Rで示される1価炭化水素基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、ヘキシル基等のアルキル基、フェニル基等が例示され、特に好ましくは、メチル基である。また、これらの1価炭化水素基の水素原子の一部又は全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくはフッ素原子で置換されていてもよい。 In the general formula (3), R 3 is a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 8 carbon atoms, more preferably a monovalent hydrocarbon having 1 to 4 carbon atoms. It is a group. Examples of the monovalent hydrocarbon group represented by R 3 include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, and a hexyl group, a phenyl group, and the like. It is a methyl group. Further, some or all of the hydrogen atoms of these monovalent hydrocarbon groups may be substituted with halogen atoms such as fluorine atom, chlorine atom, bromine atom, preferably fluorine atom.

上記一般式(3)中、Rは、炭素原子数1〜6の1価炭化水素基であり、好ましくは炭素原子数1〜3、特に好ましくは1〜2の1価炭化水素基である。Rで示される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等のアルキル基等、好ましくは、メチル基、エチル基、プロピル基、特に好ましくは、メチル基、エチル基が挙げられる。 In the general formula (3), R 5 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably a monovalent hydrocarbon group having 1 to 3 carbon atoms, particularly preferably 1 to 2 carbon atoms. . Examples of the monovalent hydrocarbon group represented by R 5 include an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group, preferably a methyl group, an ethyl group, and a propyl group, and particularly preferably a methyl group. And ethyl group.

一般式(3)で示される三官能性シラン化合物もしくはその部分加水分解縮合生成物又はこれらの混合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ヘキシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン等のトリアルコキシシラン等が例示され、特に好ましくはメチルトリメトキシシラン、メチルトリエトキシシランである。   Examples of the trifunctional silane compound represented by the general formula (3) or a partial hydrolysis-condensation product thereof or a mixture thereof include, for example, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, hexyltrimethoxysilane, trifluoropropyltrimethoxysilane, heptadecafluorodecyl Examples include trialkoxysilane such as trimethoxysilane, and methyltrimethoxysilane and methyltriethoxysilane are particularly preferable.

一般式(3)で示される三官能性シラン化合物もしくは該三官能性シラン化合物の部分加水分解縮合生成物又はこれらの混合物の添加量は、前記水分散液中の親水性会合シリカ微粒子のSiO単位1モル当り0.001〜1モルであることが好ましく、より好ましくは0.01〜0.1モル、特に好ましくは0.01〜0.05モルである。 The addition amount of the trifunctional silane compound represented by the general formula (3), the partial hydrolysis-condensation product of the trifunctional silane compound or a mixture thereof is determined by the SiO 2 of the hydrophilic associating silica fine particles in the aqueous dispersion. The amount is preferably 0.001 to 1 mol, more preferably 0.01 to 0.1 mol, and particularly preferably 0.01 to 0.05 mol per 1 mol of the unit.

(F)第二次疎水性会合シリカ微粒子を生成させる工程(疎水性会合シリカ微粒子の表面トリオルガノシリル化処理工程)
(E)工程で得られた第一次疎水性会合シリカ微粒子の表面にR SiO1/2単位(式中、Rは同一又は異なる、置換又は非置換の、炭素原子数1〜6の1価炭化水素基である)を導入し、第二次疎水性会合シリカ微粒子を生成させる工程である。即ち、第2段階の疎水化処理を行う工程である。
(F) Step of generating secondary hydrophobic associative silica fine particles (surface triorganosilylation treatment step of hydrophobic associative silica fine particles)
(E) R 4 3 SiO 1/2 units (wherein R 4 is the same or different, substituted or unsubstituted, 1 to 6 carbon atoms) on the surface of the primary hydrophobic associative silica fine particles obtained in the step (E) Is a monovalent hydrocarbon group) to produce secondary hydrophobic associative silica fine particles. That is, it is a step of performing the second stage hydrophobization treatment.

該疎水性会合シリカ微粒子の表面トリオルガノシリル化処理においては、例えば、
(F’)前記第一次疎水性会合シリカ微粒子の水分散液の分散媒をケトン系溶媒に置換し、第一次疎水性会合シリカ微粒子のケトン系溶媒分散液を得、該第一次疎水性会合シリカ微粒子ケトン系溶媒分散液に、
一般式(4):R SiNHSiR (4)
(式中、Rは同一又は異種の、置換又は非置換の、炭素原子数1〜6の1価炭化水素基である)
で示されるシラザン化合物、もしくは、
一般式(5):R SiX (5)
(式中、XはOH基又は加水分解性基である)
で示される一官能性シラン化合物又は該シラザン化合物及び該一官能性シラン化合物の混合物を添加し、前記第一次疎水性会合シリカ微粒子表面に残存する反応性基をトリオルガノシリル化し第一次疎水性会合シリカ微粒子の表面にR SiO1/2単位(式中、Rは上記と同じである)を導入することで、前記第二次疎水性会合シリカ微粒子を生成させることが好ましい。このように、一般式(4)シラザン化合物、一般式(5)で示される一官能性シラン化合物又は該シラザン化合物及び該一官能性シラン化合物の混合物を用いて、第一次疎水性会合シリカ微粒子表面を加水分解縮合反応により修飾することで効率的に第2段階の疎水化処理を行うことができる。
In the surface triorganosilylation treatment of the hydrophobic associated silica fine particles, for example,
(F ′) The dispersion medium of the aqueous dispersion of the primary hydrophobic associative silica fine particles is replaced with a ketone solvent to obtain a ketone solvent dispersion of the primary hydrophobic associative silica fine particles. In the associative silica fine particle ketone solvent dispersion,
General formula (4): R 4 3 SiNHSiR 4 3 (4)
(Wherein R 4 is the same or different, substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms)
Or a silazane compound represented by
General formula (5): R 4 3 SiX (5)
(Wherein X is an OH group or a hydrolyzable group)
Or a mixture of the silazane compound and the monofunctional silane compound is added to triorganosilylate the reactive groups remaining on the surface of the primary hydrophobic associating silica fine particles to form a primary hydrophobic group. The secondary hydrophobic associative silica fine particles are preferably produced by introducing R 4 3 SiO 1/2 units (wherein R 4 is the same as above) into the surface of the associative silica fine particles. Thus, the primary hydrophobic associative silica fine particles using the silazane compound represented by the general formula (4), the monofunctional silane compound represented by the general formula (5) or a mixture of the silazane compound and the monofunctional silane compound. By modifying the surface by hydrolysis condensation reaction, the second-stage hydrophobic treatment can be efficiently performed.

上記一般式(4)及び(5)中、Rは、炭素原子数1〜6の1価炭化水素基であり、好ましくは炭素原子数1〜4、特に好ましくは炭素原子数1〜2の1価炭化水素基である。Rで示される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等のアルキル基等、好ましくは、メチル基、エチル基、プロピル基、特に好ましくは、メチル基、エチル基が挙げられる。また、これらの1価炭化水素基の水素原子の一部又は全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくは、フッ素原子で置換されていてもよい。 In the general formulas (4) and (5), R 4 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms. It is a monovalent hydrocarbon group. The monovalent hydrocarbon group represented by R 4 is, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group, preferably a methyl group, an ethyl group, or a propyl group, particularly preferably , Methyl group, and ethyl group. Further, some or all of the hydrogen atoms of these monovalent hydrocarbon groups may be substituted with halogen atoms such as fluorine atom, chlorine atom, bromine atom, preferably fluorine atom.

XはOH基又は加水分解性基であり、Xで示される加水分解性基としては、例えば、塩素原子等のハロゲン原子、メトキシ基、エトキシ基等のアルコキシ基、アミノ基、アセトキシ基、プロピオニルオキシ基等のアシルオキシ基等、好ましくは、アルコキシ基、アミノ基、特に好ましくは、アルコキシ基が挙げられる。   X is an OH group or a hydrolyzable group. Examples of the hydrolyzable group represented by X include a halogen atom such as a chlorine atom, an alkoxy group such as a methoxy group and an ethoxy group, an amino group, an acetoxy group, and propionyloxy. An acyloxy group such as a group, preferably an alkoxy group and an amino group, particularly preferably an alkoxy group.

会合シリカ微粒子水分散液又は混合溶媒分散液の分散媒を、水分散液からケトン系溶媒に置換するには、該分散液にケトン系溶媒を添加し、該分散液から水又は親水性有機溶媒を留去する操作(必要に応じてこの操作を繰り返す)により行うことができる。   In order to replace the dispersion medium of the associative silica fine particle aqueous dispersion or the mixed solvent dispersion with the ketone solvent from the aqueous dispersion, the ketone solvent is added to the dispersion, and water or a hydrophilic organic solvent is added from the dispersion. Can be carried out by distilling off (repeating this operation as necessary).

このとき添加されるケトン系溶媒の量は、(D)工程において用いた親水性会合シリカ微粒子に対して質量比で0.5〜5倍量、好ましくは2〜5倍量、特に好ましくは3〜4倍量である。このケトン系溶媒としては、例えば、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン等、好ましくはメチルイソブチルケトンが挙げられる。   The amount of the ketone solvent added at this time is 0.5 to 5 times, preferably 2 to 5 times, particularly preferably 3 by mass ratio with respect to the hydrophilic associative silica fine particles used in the step (D). ~ 4 times the amount. Examples of the ketone solvent include methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone, and preferably methyl isobutyl ketone.

一般式(4)で示されるシラザン化合物としては、例えば、ヘキサメチルジシラザン、ヘキサエチルジシラザン等、好ましくはヘキサメチルジシラザンが挙げられる。一般式(5)で示される一官能性シラン化合物としては、例えば、トリメチルシラノール、トリエチルシラノール等のモノシラノール化合物、トリメチルクロロシラン、トリエチルクロロシラン等のモノクロロシラン、トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン、トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミン等のモノアミノシラン、トリメチルアセトキシシラン等のモノアシルオキシシラン、好ましくは、トリメチルシラノール、トリメチルメトキシシラン、トリメチルシリルジエチルアミン、特に好ましくは、トリメチルシラノール、トリメチルメトキシシランが挙げられる。   Examples of the silazane compound represented by the general formula (4) include hexamethyldisilazane and hexaethyldisilazane, preferably hexamethyldisilazane. Examples of the monofunctional silane compound represented by the general formula (5) include monosilanol compounds such as trimethylsilanol and triethylsilanol, monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane, and monoalkoxy such as trimethylmethoxysilane and trimethylethoxysilane. Examples thereof include monoaminosilanes such as silane, trimethylsilyldimethylamine and trimethylsilyldiethylamine, and monoacyloxysilanes such as trimethylacetoxysilane, preferably trimethylsilanol, trimethylmethoxysilane and trimethylsilyldiethylamine, particularly preferably trimethylsilanol and trimethylmethoxysilane.

一般式(4)シラザン化合物、(5)で示される一官能性シラン化合物又は該シラザン化合物及び該一官能性シラン化合物の混合物の使用量は、(D)工程において用いた親水性会合シリカ微粒子のSiO単位1モルに対して0.05〜0.5モルとすることができ、好ましくは0.1〜0.3モル、特に好ましくは0.15〜0.25モルである。 The amount of the silazane compound represented by the general formula (4), the monofunctional silane compound represented by (5) or the mixture of the silazane compound and the monofunctional silane compound is the amount of the hydrophilic associative silica fine particles used in the step (D). It can be 0.05-0.5 mol with respect to SiO 2 units to 1 mol, preferably 0.1 to 0.3 mol, particularly preferably 0.15 to 0.25 mol.

上述した(A)工程から(F)工程又は(F’)工程により、疎水性会合シリカ微粒子を効率よく得ることができる。このようにして得られた疎水性会合シリカ微粒子は乾燥などの常法によって粉体として得てもよいし、(F)工程又は(F’)工程の加水分解縮合反応後に有機化合物を添加して分散体として得てもよい。このようにして得られた、疎水性会合シリカ微粒子の粉体又は分散体は、例えば、トナー外添剤等として好適に用いることができる。   From the steps (A) to (F) or (F ′), hydrophobic associated silica fine particles can be efficiently obtained. The thus obtained hydrophobic associative silica fine particles may be obtained as a powder by a conventional method such as drying, or an organic compound is added after the hydrolysis condensation reaction in the step (F) or (F ′). It may be obtained as a dispersion. The thus obtained powder or dispersion of hydrophobic associated silica fine particles can be suitably used as, for example, a toner external additive.

また、例えば上記で示したような(D)工程から(F)工程または(F’)工程による高度な疎水化処理を必要としない用途用として会合シリカ微粒子を取り出す場合は、(C)工程に引き続き、シリル化剤などを添加して親水性会合シリカ微粒子表面の疎水化処理を行ってもよい。   For example, in the case where the associated silica fine particles are taken out for use that does not require a high degree of hydrophobizing treatment by the step (F) or the step (F ′) from the step (D) as described above, the step (C) Subsequently, the surface of the hydrophilic associative silica fine particles may be hydrophobized by adding a silylating agent or the like.

<疎水性会合シリカ微粒子からなるトナー外添剤>
上述した(A)工程から(F)工程又は(F’)工程により生成された疎水性会合シリカ微粒子からなる静電荷像現像用トナー外添剤を提供する。該会合シリカ微粒子からなるトナー外添剤のトナーに対する配合量は、トナー100質量部に対して、通常0.01〜20質量部であり、好ましくは0.1〜5質量部、特に好ましくは1〜2質量部である。この配合量が0.01質量部より多ければ、トナーへの付着量を確保でき十分な流動性付与効果が得られ、20質量部より少なければトナーの帯電性に悪影響を及ぼすこともない。
<Toner external additive comprising hydrophobic associative silica fine particles>
Provided is a toner external additive for developing an electrostatic charge image, which is composed of hydrophobic associated silica fine particles produced by the steps (A) to (F) or (F ′). The blending amount of the toner external additive composed of the associated silica fine particles with respect to the toner is usually 0.01 to 20 parts by weight, preferably 0.1 to 5 parts by weight, particularly preferably 1 to 100 parts by weight of the toner. ˜2 parts by mass. If the blending amount is more than 0.01 parts by mass, the adhesion amount to the toner can be ensured and a sufficient fluidity imparting effect can be obtained. If the blending amount is less than 20 parts by mass, the chargeability of the toner is not adversely affected.

該会合シリカ微粒子のトナー粒子表面への付着状態は、単に混合機を用いて機械的に付着していても、ゆるく固着されていてもよい。また、この付着した会合シリカ微粒子は、トナー粒子の表面全体を覆っていても、一部だけを覆っていてもよい。さらに、該会合シリカ微粒子は、その一部が凝集体を形成してトナー粒子の表面を覆っていてもよいが、単層粒子の状態で覆っていることが好ましい。   The associating state of the associated silica fine particles on the surface of the toner particles may be merely mechanically adhered using a mixer or may be loosely fixed. Further, the attached associated silica fine particles may cover the entire surface of the toner particles or only a part thereof. Further, the associated silica fine particles may partially form aggregates and cover the surface of the toner particles, but are preferably covered in a state of single layer particles.

本発明の会合シリカ微粒子を適用可能なトナー粒子としては、結着樹脂と着色剤とを主成分として含有する公知のトナー粒子等が挙げられ、必要に応じて、さらに帯電制御剤等が添加されていてもよい。   Examples of the toner particles to which the associated silica fine particles of the present invention can be applied include known toner particles containing a binder resin and a colorant as main components, and a charge control agent or the like is further added as necessary. It may be.

本発明の会合シリカ微粒子からなるトナー外添剤を添加されたトナーは、例えば、電子写真法、静電記録法等により、静電荷像を現像するために使用される静電荷像現像用等に使用される。前記トナーは、一成分現像剤として使用することができるが、それをキャリアと混合し、二成分現像剤として使用することもできる。二成分現像剤として使用する場合には、上記トナー外添剤を予めトナー粒子に添加せず、トナーとキャリアとの混合時に添加してトナーの表面被覆を行ってもよい。該キャリアとしては、公知のもの、例えば、フェライト、鉄粉等、又は、それらの表面に樹脂コーティングされたもの等が使用できる。   The toner to which the toner external additive composed of the associated silica fine particles of the present invention is added is used for developing an electrostatic image used for developing an electrostatic image by, for example, electrophotography or electrostatic recording. used. The toner can be used as a one-component developer, but it can also be used as a two-component developer by mixing it with a carrier. When used as a two-component developer, the toner external coating may not be added to the toner particles in advance, but may be added when the toner and the carrier are mixed to cover the surface of the toner. As the carrier, known ones, for example, ferrite, iron powder, etc., or those coated on the surface with resin can be used.

本発明に係る疎水性会合シリカ微粒子からなるトナー外添剤は、トナーの流動性、耐ケーキング性、定着性、クリーニング性を高めるという外添剤の一般特性を有する上、特に高分散性、低凝集性を有し、粒子が会合した形の異形粒子であるためトナー表面への吸着が良好であり、トナー表面より脱離し遊離することが少なくなり、コピー上の画質欠陥の原因(フィルミング、その他)となることがなく、高画質化を可能とするトナー外添剤となる。   The toner external additive comprising hydrophobic associative silica fine particles according to the present invention has the general characteristics of an external additive that enhances the fluidity, caking resistance, fixing property, and cleaning property of the toner, and also has a particularly high dispersibility, low Adhesive to the toner surface is good because it is an irregularly shaped particle that has aggregating properties, and is less likely to be detached and released from the toner surface, causing image quality defects on the copy (filming, Other than the above, the toner external additive enables high image quality.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

<実施例1>
攪拌機と、滴下ロートと、温度計とを備えた1リットルのガラス製反応器にメタノール208gと、水13.8gと、28質量%アンモニア水16.6gとを入れて混合した。この溶液を35℃となるように調整し、攪拌しながらテトラメトキシシラン20g(0.13mol)及び5.4質量%アンモニア水15gを同時に添加し始め、両方を20分で滴下した。その後35℃を保ちながら、30分間攪拌し、核粒子を生成した。そこに会合促進添加剤として、エチレンジアミン3.9g(0.065mol)を添加した。その後、テトラメトキシシラン367.9g(2.4mol)、5.4質量%アンモニア水124.4gを同時に滴下し始め、テトラメトキシシランは4時間かけて、アンモニア水は3時間かけて、それぞれを滴下した。それらの滴下が終了した後も、さらに0.5時間攪拌を継続して加水分解を行うことにより、親水性会合シリカ微粒子の懸濁液を得た。次いで、ガラス製反応器にエステルアダプターと冷却管とを取り付け、前記懸濁液を60〜70℃に加熱してメタノール400gを留去し、その後、水400gを添加した。次いで、懸濁液を100℃にしてメタノール水100g留去、水100g添加を3回繰り返し、さらにメタノール水100gを留去し、親水性会合シリカ微粒子の水懸濁液を得た。得られた水懸濁液に室温でメチルトリメトキシシラン3.9g(0.029mol)を0.5時間かけて滴下し、滴下後も12時間攪拌を継続した。こうして、会合シリカ微粒子表面を第1段階の疎水化処理することにより、第1次疎水性会合シリカ微粒子水分散液を得た。得られた分散液にメチルイソブチルケトン480gを添加した後、この分散液を80〜110℃に加熱することにより、水598gを5時間かけて留去した。得られた分散液に、室温において、ヘキサメチルジシラザン50g(0.31mol)を添加した後、この分散液を110℃に加熱し、3時間反応させることにより、分散液中のシリカ微粒子をトリメチルシリル化した。こうして、会合シリカ微粒子表面を第2段階の疎水化処理することにより、第2次疎水性会合シリカ微粒子水分散液を得た。次いで、この分散液中の溶媒を80℃、減圧下(6650Pa)で留去することにより、疎水性会合シリカ微粒子158gを粉体として得た。
<Example 1>
In a 1 liter glass reactor equipped with a stirrer, a dropping funnel, and a thermometer, 208 g of methanol, 13.8 g of water, and 16.6 g of 28 mass% aqueous ammonia were mixed. This solution was adjusted to 35 ° C., and 20 g (0.13 mol) of tetramethoxysilane and 15 g of 5.4 mass% aqueous ammonia were simultaneously added while stirring, and both were added dropwise over 20 minutes. Thereafter, the mixture was stirred for 30 minutes while maintaining 35 ° C. to produce core particles. Thereto was added 3.9 g (0.065 mol) of ethylenediamine as an association promoting additive. Thereafter, 367.9 g (2.4 mol) of tetramethoxysilane and 124.4 g of 5.4 mass% ammonia water started to be dripped simultaneously, tetramethoxysilane was dripped over 4 hours, and ammonia water was dripped over 3 hours. did. Even after the completion of the dropwise addition, the suspension was further stirred for 0.5 hours to carry out hydrolysis to obtain a suspension of hydrophilic associative silica fine particles. Next, an ester adapter and a condenser tube were attached to the glass reactor, the suspension was heated to 60 to 70 ° C. to distill off 400 g of methanol, and then 400 g of water was added. Next, the suspension was set to 100 ° C., 100 g of methanol water was distilled off and 100 g of water was added three times, and 100 g of methanol water was further distilled off to obtain an aqueous suspension of hydrophilic associated silica fine particles. To the obtained aqueous suspension, 3.9 g (0.029 mol) of methyltrimethoxysilane was added dropwise at room temperature over 0.5 hours, and stirring was continued for 12 hours after the addition. Thus, the surface of the associated silica fine particles was subjected to a first-stage hydrophobization treatment to obtain a first hydrophobic associative silica fine particle aqueous dispersion. After adding 480 g of methyl isobutyl ketone to the obtained dispersion, 598 g of water was distilled off over 5 hours by heating the dispersion to 80 to 110 ° C. After adding 50 g (0.31 mol) of hexamethyldisilazane to the obtained dispersion at room temperature, this dispersion is heated to 110 ° C. and reacted for 3 hours, whereby the silica fine particles in the dispersion are trimethylsilylated. Turned into. In this way, a secondary hydrophobic associative silica fine particle aqueous dispersion was obtained by subjecting the associated silica fine particle surface to a second-stage hydrophobization treatment. Next, the solvent in the dispersion was distilled off at 80 ° C. under reduced pressure (6650 Pa) to obtain 158 g of hydrophobic associated silica fine particles as powder.

得られた最終的な疎水性会合シリカ微粒子について、下記の測定方法に従って、それぞれの測定を行った。なお、得られた結果を表1に示す。   The final hydrophobic associative silica fine particles obtained were measured according to the following measurement methods. The obtained results are shown in Table 1.

・測定方法1:シリカ微粒子の粒子径測定
メタノールにシリカ微粒子を、0.5質量%となるように添加し、10分間超音波にかけることにより、該シリカ微粒子を分散させた。このように処理したシリカ微粒子の粒度分布を、レーザー回折散乱式粒度分布測定装置(堀場製作所製、商品名:LA910)により測定し、その体積基準メジアン径を粒子径とした。なお、メジアン径とは粒径分布を累積分布として表したときの累積50%に相当する粒子径である。
Measurement method 1: Measurement of particle diameter of silica fine particles Silica fine particles were added to methanol so as to be 0.5% by mass and subjected to ultrasonic waves for 10 minutes to disperse the silica fine particles. The particle size distribution of the silica fine particles treated in this way was measured with a laser diffraction / scattering particle size distribution analyzer (trade name: LA910, manufactured by Horiba, Ltd.), and the volume-based median diameter was defined as the particle size. The median diameter is a particle diameter corresponding to 50% cumulative when the particle size distribution is expressed as a cumulative distribution.

・測定方法2:シリカ微粒子の形状測定
走査型電子顕微鏡(日立製作所製、商品名:S−4700型、倍率:10万倍)によって疎水性球状シリカ微粒子の観察を行い、形状を確認した。
Measurement Method 2: Shape Measurement of Silica Fine Particles Hydrophobic spherical silica fine particles were observed with a scanning electron microscope (manufactured by Hitachi, trade name: S-4700, magnification: 100,000 times) to confirm the shape.

・測定方法3:1次粒子の形状、粒径
透過型電子顕微鏡(日立製作所製、商品名:HF−3300)にてシリカ微粒子の写真を撮影した。該写真中、任意エリア中の全粒子について、1次粒子の形状、粒径を観察、測定し、会合シリカ微粒子については1次粒子の結合数を測定した。これら測定は、1次粒子の総数が約300個となるようなエリアについて測定した。
Measurement Method 3: Primary Particle Shape and Particle Size A photograph of silica fine particles was taken with a transmission electron microscope (trade name: HF-3300, manufactured by Hitachi, Ltd.). In the photograph, the shape and particle size of primary particles were observed and measured for all particles in an arbitrary area, and the number of bonded primary particles was measured for associated silica fine particles. These measurements were made on an area where the total number of primary particles was about 300.

・測定方法4:会合シリカ微粒子中の1次粒子の結合数の測定及び会合シリカ微粒子の形状の測定
透過型電子顕微鏡(日立製作所製、商品名:HF−3300)にて会合シリカ微粒子の写真を撮影した。該写真中、任意エリア中の全粒子について、1次粒子の結合数及び会合シリカ微粒子の形状を測定した。これら測定は、1次粒子の総数が約300個となるようなエリアについて測定した。
Measurement method 4: Measurement of the number of bonds of primary particles in the associated silica fine particles and measurement of the shape of the associated silica fine particles A photograph of the associated silica fine particles was taken with a transmission electron microscope (trade name: HF-3300, manufactured by Hitachi, Ltd.). I took a picture. In the photograph, the number of primary particle bonds and the shape of the associated silica fine particles were measured for all particles in an arbitrary area. These measurements were made on an area where the total number of primary particles was about 300.

・測定方法5:会合シリカ微粒子を構成する1次粒子の会合割合の測定
透過型電子顕微鏡(日立製作所製、商品名:HF−3300)にてシリカ微粒子の写真を撮影した。該写真中、任意エリア中の全粒子について、1次粒子の総数と1次粒子のみからなる粒子の数をそれぞれカウントし、1次粒子の総数から1次粒子のみからなる粒子の数を減じた値を算出し、該値を1次粒子の総数で割ることによって会合シリカ微粒子を構成する1次粒子の割合を求めた。粒子数の計測は、1次粒子の総数が約300個となるようなエリアについて測定した。
Measurement method 5: Measurement of the association ratio of primary particles constituting the associated silica fine particles A photograph of the silica fine particles was taken with a transmission electron microscope (trade name: HF-3300, manufactured by Hitachi, Ltd.). In the photograph, for all particles in an arbitrary area, the total number of primary particles and the number of particles consisting only of primary particles were counted, respectively, and the number of particles consisting only of primary particles was subtracted from the total number of primary particles. The value was calculated, and the ratio of the primary particles constituting the associated silica fine particles was determined by dividing the value by the total number of primary particles. The number of particles was measured in an area where the total number of primary particles was about 300.

[外添剤混合トナーの作製]
ガラス転移温度Tg60℃、軟化点110℃であるポリエステル樹脂96質量部と、着色剤(住友カラー(株)製、商品名:カーミン6BC)4質量部とを、溶融混練、粉砕及び分級することにより、平均粒径7μmのトナーを得た。このトナー40gに上記疎水性会合シリカ微粒子1gをサンプルミルにより混合し、外添剤混合トナーとした。これを用いて、下記の測定方法7に従って、トナー流動性を測定した。なお、得られた結果を表2に示す。
[Preparation of external additive mixed toner]
By melt-kneading, pulverizing and classifying 96 parts by mass of a polyester resin having a glass transition temperature Tg of 60 ° C. and a softening point of 110 ° C. and 4 parts by mass of a colorant (manufactured by Sumitomo Color Co., Ltd., trade name: Carmine 6BC) A toner having an average particle diameter of 7 μm was obtained. 40 g of this toner was mixed with 1 g of the hydrophobic associative silica fine particles by a sample mill to obtain an external additive mixed toner. Using this, the toner fluidity was measured according to the following measurement method 7. The results obtained are shown in Table 2.

・測定方法6:トナー流動性の測定
トナーの流動性は、粉体流動性分析装置FT−4(シスメックス(株)製)を用いて測定した。この装置の測定原理を説明する。垂直に置かれた筒状容器に粉体を充填し、該粉体中を垂直な軸棒の先端に設けられた二枚の回転翼(ブレード)を回転させながら一定の距離(高さH1からH2まで)下降させる。このときに粉体から受ける力をトルク成分と荷重成分とに分けてを測定することにより、ブレードがH1からH2まで下降するのに伴うそれぞれの仕事量(エネルギー)を求め、次いで両者のトータルエネルギー量を求める。こうして測定されたトータルエネルギー量が小さいほど粉体の流動性が良好であることを意味するので、粉体流動性の指標として使用することができる。
Measurement method 6: Measurement of toner fluidity The toner fluidity was measured using a powder fluidity analyzer FT-4 (manufactured by Sysmex Corporation). The measurement principle of this apparatus will be described. A cylindrical container placed vertically is filled with powder, and while rotating two rotating blades (blades) provided at the tip of a vertical shaft rod in the powder, a certain distance (from height H1) Down to H2. By measuring the force received from the powder separately for the torque component and the load component, the respective work (energy) associated with the blade descending from H1 to H2 is obtained, and then the total energy of both Find the amount. The smaller the total energy amount measured in this way, the better the fluidity of the powder, so it can be used as an index of powder fluidity.

トナーの流動性は上記の測定原理に従い、以下に詳細に説明する異なる測定条件を有する安定性試験、流速試験、通気試験、及び圧縮試験において粉体流動性を測定することで測定することができる。なお、以下に説明するように、用いる容器とブレードはそれぞれの試験に応じて使い分けるものとする。   The fluidity of the toner can be measured according to the above measurement principle by measuring the powder fluidity in the stability test, flow rate test, aeration test, and compression test having different measurement conditions described in detail below. . As will be described below, the container and blade to be used are properly used according to each test.

容器:
安定性、流速及び通気の試験では、容積120ml、内径80mm、長さ60mmのガラス製円筒型容器を使用した。圧縮試験では容積25ml、内径25mm、長さ52.5mmのガラス製円筒型容器を使用した。容器の下部から空気を導入することができるように構成されている。
container:
In the stability, flow rate and ventilation tests, a glass cylindrical container having a volume of 120 ml, an inner diameter of 80 mm, and a length of 60 mm was used. In the compression test, a glass cylindrical container having a volume of 25 ml, an inner diameter of 25 mm, and a length of 52.5 mm was used. It is comprised so that air can be introduce | transduced from the lower part of a container.

ブレード:
円筒型容器内の中央に鉛直に装入されるステンレス製の軸棒の先端に水平に対向する形で二枚取り付けられている。ブレードは、容積120mlの容器の場合は直径48mmのものを使用し、容積25mlの容器の場合には直径23.5mlのものを使用する。
blade:
Two stainless steel shaft rods are vertically mounted in the center of the cylindrical container so as to be horizontally opposed to each other. A blade with a diameter of 48 mm is used for a container with a volume of 120 ml, and a blade with a diameter of 23.5 ml is used for a container with a volume of 25 ml.

H1からH2までの長さ:容積120mlの容器の場合は50mmであり、容積25mlの容器の場合には47.5mmである。   Length from H1 to H2: 50 mm for a container with a volume of 120 ml and 47.5 mm for a container with a volume of 25 ml.

安定性試験:
上記のようにして、測定容器に充填した粉体を静置した状態から流動させた場合の粉体流動特性をみる。ブレード先端の回転速度を100mm/secの条件とし、トータルエネルギー量を7回連続して測定する。7回目のトータルエネルギー量(最も安定した状態であるので基本流動性エネルギーと称される)を表2に示した。小さいほど安定性が高い。
Stability test:
As described above, the powder flow characteristics when the powder filled in the measurement container is caused to flow from a stationary state are observed. The total energy amount is measured seven times continuously under the condition that the rotational speed of the blade tip is 100 mm / sec. Table 2 shows the total amount of energy for the seventh time (referred to as basic fluidity energy because it is the most stable state). The smaller the value, the higher the stability.

流速試験:
流速の変化に対する粉体流動特性をみる。ブレード先端の回転速度を10mm/secで測定した際のトータルエネルギー量を表2に示した。小さいほど流動性が高い。
Flow rate test:
The powder flow characteristics with respect to the change of flow velocity are observed. Table 2 shows the total energy amount when the rotational speed of the blade tip was measured at 10 mm / sec. The smaller the value, the higher the fluidity.

通気試験:
通気量に応じた粉体流動特性をみる。ブレード先端の回転速度を100mm/secとし、容器下部から導入する空気の通気量を0mm/secから0.1mm/secづつ増加させ0.5mm/secまでの6段階で別々に順序に測定し、最小の通気量(0mm/sec)及び最大の通気量(0.5mm/sec)でのトータルエネルギー量を表2に示した。小さいほど空気が関与する状態での粉体流動性が高い。
Ventilation test:
Check the powder flow characteristics according to the air flow rate. The rotational speed of the blade tip is set to 100 mm / sec, the amount of air introduced from the lower part of the container is increased in steps of 0.1 mm / sec from 0 mm / sec, and measured separately in six steps from 0.5 mm / sec. Table 2 shows the total energy amount at the minimum air flow rate (0 mm / sec) and the maximum air flow rate (0.5 mm / sec). The smaller the value, the higher the powder fluidity when air is involved.

圧縮試験:
圧縮に対する粉体流動特性をみるものである。粉体にピストンを介して加重を加えて10Nにて加圧して圧縮した後、ブレード先端の回転速度を100mm/secとして測定しトータルエネルギー量を求めた。結果を表2に示した。小さいほど粉体が圧縮を受けた場合の粉体流動性が高い。
Compression test:
The powder flow characteristics with respect to compression are observed. After applying a weight to the powder through a piston and compressing it by applying pressure at 10 N, the rotational speed of the blade tip was measured at 100 mm / sec to obtain the total energy amount. The results are shown in Table 2. The smaller the powder, the higher the powder fluidity when the powder is compressed.

[現像剤の調製]
上記で調製した外添剤混合トナー5質量部と、平均粒径85μmのフェライトコアにパーフルオロアルキルアクリレート樹脂及びアクリル樹脂をポリブレンドしたポリマーでコーティングしたキャリア95質量部とを混合して、現像剤を調製した。この現像剤を用いて、下記の測定方法7、8、及び9に従って、トナー帯電量、感光体へのトナー付着、及びクリーニング性について測定し、得られた結果を表2に示した。
[Developer preparation]
5 parts by weight of the external additive mixed toner prepared above and 95 parts by weight of a carrier coated with a polymer obtained by polyblending a perfluoroalkyl acrylate resin and an acrylic resin on a ferrite core having an average particle diameter of 85 μm are mixed. Was prepared. Using this developer, the toner charge amount, toner adhesion to the photoreceptor, and cleaning properties were measured in accordance with the following measurement methods 7, 8, and 9, and the results obtained are shown in Table 2.

・測定方法7:トナー帯電量の測定
上記現像剤を高温高湿(30℃、90%RH(relative humidity))又は低温低湿(10℃、15%RH)の条件下に1日放置した後、振とう機により30秒間混合して、摩擦帯電を行った。それぞれの試料の帯電量を、同一条件下で、ブローオフ粉体帯電量測定装置(東芝ケミカル(株)製、商品名:TB−200型)を用いて測定した。上記2つの条件におけるトナー帯電量の差を求めることにより、該トナーの環境依存性について評価した。
Measurement method 7: Measurement of toner charge amount The developer is left for 1 day under conditions of high temperature and high humidity (30 ° C., 90% RH (relative humidity)) or low temperature and low humidity (10 ° C., 15% RH). The mixture was mixed for 30 seconds with a shaker to perform tribocharging. The charge amount of each sample was measured using a blow-off powder charge amount measuring device (trade name: TB-200, manufactured by Toshiba Chemical Corporation) under the same conditions. By determining the difference in toner charge amount under the above two conditions, the environmental dependency of the toner was evaluated.

・測定方法8:感光体へのトナー付着測定
上記現像剤を有機感光体が備えられた二成分改造現像機に入れ、30000枚のプリントテストを行った。該感光体へのトナーの付着は、全ベタ画像での白抜けとして感知できる。白抜けの程度を次の基準で評価した。
白抜け10個以上/cm2:多い
白抜け1〜9個/cm2:少ない
白抜け0個/cm2:なし
Measurement Method 8: Measurement of Toner Adhesion to Photoreceptor The above developer was placed in a two-component modified developer equipped with an organic photoreceptor, and a print test of 30000 sheets was performed. The adhesion of toner to the photoreceptor can be detected as white spots in all solid images. The degree of white spots was evaluated according to the following criteria.
10 or more white spots / cm2: 1 to 9 white spots / cm2: 0 white spots / cm2: None

・測定方法9:クリーニング性
クリーニング性評価については、実機評価終了後、潜像担持体上表面の傷や残留トナーの固着発生状況と出力画像への影響を目視で確認することで評価した。
◎ : 未発生。
○ : 傷がわずかに認められるが、画像への影響はない。
△ : 残留トナーや傷が認められるが、画像への影響は少ない。
× : 残留トナーがかなり多く、縦スジ状の画像欠陥が発生。
× × : 残留トナーが固着して、画像欠陥も多数発生。
Measurement method 9: Cleaning performance Cleaning performance was evaluated by visually confirming the occurrence of scratches on the surface of the latent image carrier and the sticking of residual toner and the effect on the output image after the actual machine evaluation was completed.
A: Not generated.
○: Slight scratches are observed, but there is no effect on the image.
Δ: Residual toner and scratches are observed, but the influence on the image is small.
×: Residual toner is considerably large, and vertical stripe-like image defects occur.
× ×: Residual toner adheres and many image defects occur.

<実施例2>
実施例1において、会合促進添加剤のエチレンジアミンを2−ジメチルアミノエタノール5.8g(0.065mol)とした以外は同様にして、疎水性会合シリカ微粒子162gを乾燥粉体として得た。この疎水性会合シリカ微粒子を用いて実施例1と同様に測定した。この結果を表1及び表2に示す。
<Example 2>
In Example 1, 162 g of hydrophobic associative silica fine particles were obtained as a dry powder except that the association promoting additive ethylenediamine was changed to 5.8 g (0.065 mol) of 2-dimethylaminoethanol. Measurement was performed in the same manner as in Example 1 using the hydrophobic-associated silica fine particles. The results are shown in Tables 1 and 2.

<実施例3>
実施例1において、会合促進添加剤のエチレンジアミンを水酸化テトラメチルアンモニウムの20%水溶液1.95g(0.0043mol)とした以外は同様にして、疎水性会合シリカ微粒子159gを乾燥粉体として得た。この疎水性会合シリカ微粒子を用いて実施例1と同様に測定した。この結果を表1及び表2に示す。
<Example 3>
In the same manner as in Example 1, except that the association promoting additive ethylenediamine was changed to 1.95 g (0.0043 mol) of a 20% aqueous solution of tetramethylammonium hydroxide, 159 g of hydrophobic associated silica fine particles were obtained as a dry powder. . Measurement was performed in the same manner as in Example 1 using the hydrophobic-associated silica fine particles. The results are shown in Tables 1 and 2.

<実施例4>
実施例1において、会合促進添加剤のエチレンジアミンをチタンジ−n−ブトキサイド(ビス2,4−ペンタジオネート)を過剰のアンモニア水で加水分解させたものの20%メタノール水溶液1.95gとした以外は同様にして、疎水性会合シリカ微粒子163gを乾燥粉体として得た。この疎水性会合シリカ微粒子を用いて実施例1と同様に測定した。この結果を表1及び表2に示す。
<Example 4>
In Example 1, the same as that of Example 1, except that ethylenediamine as an association promoting additive was obtained by hydrolyzing titanium di-n-butoxide (bis-2,4-pentadionate) with an excess of aqueous ammonia to obtain 1.95 g of a 20% aqueous methanol solution. Thus, 163 g of hydrophobic associative silica fine particles were obtained as a dry powder. Measurement was performed in the same manner as in Example 1 using the hydrophobic-associated silica fine particles. The results are shown in Tables 1 and 2.

<実施例5>
攪拌機と、滴下ロートと、温度計とを備えた1リットルのガラス製反応器にメタノール208gと、水13.8gと、28質量%アンモニア水16.6gとを入れて混合した。この溶液を35℃となるように調整し、攪拌しながらテトラメトキシシラン20g(0.13mol)及び5.4質量%アンモニア水15gを同時に添加し始め、両方を20分で滴下した。その後35℃を保ちながら、30分間攪拌し、核粒子を生成した。そこに会合促進添加剤として、水酸化テトラメチルアンモニウムの20%水溶液1.95g(0.0043mol)を添加した。その後、テトラメトキシシラン367.9g(2.4mol)、5.4質量%アンモニア水124.4gを同時に滴下し始め、テトラメトキシシランは4時間かけて、アンモニア水は3時間かけて、それぞれを滴下した。それらの滴下が終了した後も、さらに0.5時間攪拌を継続して加水分解を行うことにより、親水性会合シリカ微粒子の懸濁液を得た。次いで、ガラス製反応器にエステルアダプターと冷却管とを取り付け、前記懸濁液を60〜70℃に加熱してメタノール400gを留去し、その後、水400gを添加した。次いで、懸濁液を100℃になるまでメタノール水100g留去、水100g添加を3回繰り返し、さらにメタノール水100gを留去し、親水性会合シリカ微粒子の水懸濁液を得た。得られた水懸濁液に室温でメチルトリメトキシシラン3.9g(0.029mol)を0.5時間かけて滴下し、滴下後も12時間攪拌を継続した。こうして、シリカ微粒子表面を第1段階の疎水化処理することにより、第1次疎水性会合シリカ微粒子水分散液を得た。得られた分散液に、室温において、ヘキサメチルジシラザン50g(0.31mol)を添加した後、この分散液を98℃に加熱し、3時間反応させることにより、分散液中のシリカ微粒子をトリメチルシリル化した。次いで、この分散液中の溶媒を80℃、減圧下(6650Pa)で留去することにより、疎水性会合シリカ微粒子160gを粉体として得た。得られた最終的な疎水性会合シリカ微粒子を用いて実施例1と同様に測定した。尚得られた結果を表1及び表2に示す。
<Example 5>
In a 1 liter glass reactor equipped with a stirrer, a dropping funnel, and a thermometer, 208 g of methanol, 13.8 g of water, and 16.6 g of 28 mass% aqueous ammonia were mixed. This solution was adjusted to 35 ° C., and 20 g (0.13 mol) of tetramethoxysilane and 15 g of 5.4 mass% aqueous ammonia were simultaneously added while stirring, and both were added dropwise over 20 minutes. Thereafter, the mixture was stirred for 30 minutes while maintaining 35 ° C. to produce core particles. Thereto, 1.95 g (0.0043 mol) of a 20% aqueous solution of tetramethylammonium hydroxide was added as an association promoting additive. Thereafter, 367.9 g (2.4 mol) of tetramethoxysilane and 124.4 g of 5.4 mass% ammonia water started to be dripped simultaneously, tetramethoxysilane was dripped over 4 hours, and ammonia water was dripped over 3 hours. did. Even after the completion of the dropwise addition, the suspension was further stirred for 0.5 hours to carry out hydrolysis to obtain a suspension of hydrophilic associative silica fine particles. Next, an ester adapter and a condenser tube were attached to the glass reactor, the suspension was heated to 60 to 70 ° C. to distill off 400 g of methanol, and then 400 g of water was added. Next, 100 g of methanol water was distilled off until the suspension reached 100 ° C., and 100 g of water was added three times. Further, 100 g of methanol water was distilled off to obtain an aqueous suspension of hydrophilic associated silica fine particles. To the obtained aqueous suspension, 3.9 g (0.029 mol) of methyltrimethoxysilane was added dropwise at room temperature over 0.5 hours, and stirring was continued for 12 hours after the addition. Thus, the surface of the silica fine particles was subjected to a first-stage hydrophobization treatment to obtain a first hydrophobic associative silica fine particle aqueous dispersion. After adding 50 g (0.31 mol) of hexamethyldisilazane to the obtained dispersion at room temperature, this dispersion is heated to 98 ° C. and reacted for 3 hours, whereby the silica fine particles in the dispersion are trimethylsilylated. Turned into. Next, the solvent in the dispersion was distilled off at 80 ° C. under reduced pressure (6650 Pa) to obtain 160 g of hydrophobic associated silica fine particles as powder. Measurement was carried out in the same manner as in Example 1 using the final hydrophobic associative silica fine particles obtained. The obtained results are shown in Tables 1 and 2.

<実施例6>
[疎水性会合シリカ微粒子の合成]
攪拌機と、滴下ロートと、温度計とを備えた1リットルのガラス製反応器にメタノール208gと、水13.8gと、28質量%アンモニア水16.6gとを入れて混合した。この溶液を35℃となるように調整し、攪拌しながらテトラメトキシシラン20g(0.13mol)及び5.4質量%アンモニア水15gを同時に添加し始め、両方を20分で滴下した。その後35℃を保ちながら、30分間攪拌し、核粒子を生成した。そこに会合促進添加剤として、水酸化テトラメチルアンモニウムの20%水溶液1.95g(0.0043mol)を添加した。その後、テトラメトキシシラン367.9g(2.4mol)、5.4質量%アンモニア水124.4gを同時に滴下し始め、テトラメトキシシランは4時間かけて、アンモニア水は3時間かけて、それぞれを滴下した。それらの滴下が終了した後も、さらに0.5時間攪拌を継続して加水分解を行うことにより、親水性会合シリカ微粒子の懸濁液を得た。次いで、得られた分散液に、室温において、ヘキサメチルジシラザン50g(0.31mol)を添加した後、この分散液を110℃に加熱し、3時間反応させることにより、分散液中のシリカ微粒子をトリメチルシリル化した。次いで、この分散液中の溶媒を61℃、減圧下(6650Pa)で留去することにより、疎水性会合シリカ微粒子159gを粉体として得た。得られた最終的な疎水性会合シリカ微粒子を用いて実施例1と同様に測定した。尚得られた結果を表1及び表2に示す。
<Example 6>
[Synthesis of hydrophobic-associated silica fine particles]
In a 1 liter glass reactor equipped with a stirrer, a dropping funnel, and a thermometer, 208 g of methanol, 13.8 g of water, and 16.6 g of 28 mass% aqueous ammonia were mixed. This solution was adjusted to 35 ° C., and 20 g (0.13 mol) of tetramethoxysilane and 15 g of 5.4 mass% aqueous ammonia were simultaneously added while stirring, and both were added dropwise over 20 minutes. Thereafter, the mixture was stirred for 30 minutes while maintaining 35 ° C. to produce core particles. Thereto, 1.95 g (0.0043 mol) of a 20% aqueous solution of tetramethylammonium hydroxide was added as an association promoting additive. Thereafter, 367.9 g (2.4 mol) of tetramethoxysilane and 124.4 g of 5.4 mass% ammonia water started to be dripped simultaneously, tetramethoxysilane was dripped over 4 hours, and ammonia water was dripped over 3 hours. did. Even after the completion of the dropwise addition, the suspension was further stirred for 0.5 hours to carry out hydrolysis to obtain a suspension of hydrophilic associative silica fine particles. Next, after adding 50 g (0.31 mol) of hexamethyldisilazane to the obtained dispersion at room temperature, this dispersion is heated to 110 ° C. and reacted for 3 hours, whereby silica fine particles in the dispersion are obtained. Was trimethylsilylated. Subsequently, the solvent in this dispersion was distilled off at 61 ° C. under reduced pressure (6650 Pa) to obtain 159 g of hydrophobic associated silica fine particles as powder. Measurement was carried out in the same manner as in Example 1 using the final hydrophobic associative silica fine particles obtained. The obtained results are shown in Tables 1 and 2.

<比較例1>
実施例1において、会合促進添加剤をなしとした以外は同様にして、疎水性会合シリカ微粒子159gを乾燥粉体として得た。この疎水性会合シリカ微粒子を用いて実施例1と同様に測定した。この結果を表1及び表2に示す。
<Comparative Example 1>
In the same manner as in Example 1, except that the association promoting additive was not used, 159 g of hydrophobic associative silica fine particles were obtained as a dry powder. Measurement was performed in the same manner as in Example 1 using the hydrophobic-associated silica fine particles. The results are shown in Tables 1 and 2.

<比較例2>
実施例1において、会合促進添加剤のエチレンジアミンを核形成後に添加するのでなく、核形成前あらかじめ仕込んでおいて、核形成し、成長させるとした以外は同様にして、疎水性会合シリカ微粒子160gを乾燥粉体として得た。この疎水性会合シリカ微粒子を用いて実施例1と同様に測定した。この結果を表1及び表2に示す。
<Comparative example 2>
In Example 1, 160 g of hydrophobic associative silica fine particles were added in the same manner except that ethylenediamine as an association promoting additive was not added after nucleation, but was charged in advance before nucleation, nucleated and grown. Obtained as a dry powder. Measurement was performed in the same manner as in Example 1 using the hydrophobic-associated silica fine particles. The results are shown in Tables 1 and 2.

<比較例3>
攪拌機と、滴下ロートと、温度計とを備えた1リットルのガラス製反応器にメタノール208gと、水13.8gと、28質量%アンモニア水16.6gとを入れて混合した。この溶液を35℃となるように調整し、攪拌しながらテトラメトキシシラン387.9g(2.55モル)及び5.4質量%アンモニア水139.4gを同時に添加し始め、テトラメトキシシラン5時間かけて、アンモニア水は4時間かけて、それぞれを滴下した。それらの滴下が終了した後も、さらに0.5時間攪拌を継続して加水分解を行うことにより、親水性会合シリカ微粒子の懸濁液を得た。次いで、ガラス製反応器にエステルアダプターと冷却管とを取り付け、前記懸濁液を60〜70℃に加熱してメタノール400gを留去し、その後、水400gを添加した。次いで、懸濁液が100℃になるまでメタノール水100g留去、水100g添加を3回繰り返し、さらにメタノール水100gを留去し、親水性会合シリカ微粒子の水懸濁液を得た。得られた水懸濁液に室温でメチルトリメトキシシラン3.9g(0.029モル)を0.5時間かけて滴下し、滴下後も12時間攪拌を継続した。こうして、シリカ微粒子表面を第1段階の疎水化処理することにより、第1次疎水性会合シリカ微粒子水分散液を得た。得られた分散液にメチルイソブチルケトン480gを添加した後、この分散液を80〜110℃に加熱することにより、水598gを5時間かけて留去した。得られた分散液に、室温において、ヘキサメチルジシラザン50g(0.31モル)を添加した後、この分散液を110℃に加熱し、3時間反応させることにより、分散液中のシリカ微粒子をトリメチルシリル化した。次いで、この分散液中の溶媒を80℃、減圧下(6650Pa)で留去することにより、疎水性シリカ微粒子163gを粉体として得た。この疎水性シリカ微粒子を用いて、実施例1と同様に評価した。この結果を表1及び表2に示す。
<Comparative Example 3>
In a 1 liter glass reactor equipped with a stirrer, a dropping funnel, and a thermometer, 208 g of methanol, 13.8 g of water, and 16.6 g of 28 mass% aqueous ammonia were mixed. The solution was adjusted to 35 ° C., and while stirring, 387.9 g (2.55 mol) of tetramethoxysilane and 139.4 g of 5.4% by mass ammonia water were begun simultaneously. Ammonia water was added dropwise over 4 hours. Even after the completion of the dropwise addition, the suspension was further stirred for 0.5 hours to carry out hydrolysis to obtain a suspension of hydrophilic associative silica fine particles. Next, an ester adapter and a condenser tube were attached to the glass reactor, the suspension was heated to 60 to 70 ° C. to distill off 400 g of methanol, and then 400 g of water was added. Next, 100 g of methanol water was distilled off and the addition of 100 g of water was repeated three times until the suspension reached 100 ° C., and then 100 g of methanol water was distilled off to obtain an aqueous suspension of hydrophilic associated silica fine particles. To the resulting aqueous suspension, 3.9 g (0.029 mol) of methyltrimethoxysilane was added dropwise at room temperature over 0.5 hours, and stirring was continued for 12 hours after the addition. Thus, the surface of the silica fine particles was subjected to a first-stage hydrophobization treatment to obtain a first hydrophobic associative silica fine particle aqueous dispersion. After adding 480 g of methyl isobutyl ketone to the obtained dispersion, 598 g of water was distilled off over 5 hours by heating the dispersion to 80 to 110 ° C. After adding 50 g (0.31 mol) of hexamethyldisilazane to the obtained dispersion at room temperature, this dispersion is heated to 110 ° C. and reacted for 3 hours, whereby silica fine particles in the dispersion are obtained. Trimethylsilylated. Next, the solvent in this dispersion was distilled off at 80 ° C. under reduced pressure (6650 Pa) to obtain 163 g of hydrophobic silica fine particles as a powder. Evaluation was performed in the same manner as in Example 1 using the hydrophobic silica fine particles. The results are shown in Tables 1 and 2.

Figure 2012025596
Figure 2012025596

Figure 2012025596
1)7回目
2)ブレードスピード 10mm/s
3)通気量 0mm/s
4)通気量 0.5mm/s
5)加圧 10N
Figure 2012025596
1) 7th time 2) Blade speed 10mm / s
3) Aeration rate 0mm / s
4) Aeration rate 0.5mm / s
5) Pressurization 10N

比較例1、2及び3において示されるように、本発明の(B)工程を行わない、又は(B)及び(C)工程を行わないで生成されたシリカ微粒子は会合シリカ微粒子とはならず(表1)、(B)工程を行わない比較例1では安定性試験、流速試験、通気試験において粉体流動性に劣り、トナー付着、クリーニング性が悪く、会合促進添加剤を早期に加えた比較例2では安定性試験、流速試験、通気試験、圧縮試験において粉体流動性に劣り、トナー付着、クリーニング性が悪く、さらに、(B)及び(C)工程を行わない比較例3では安定性試験において粉体流動性に劣り、トナー付着、クリーニング性が悪いことが明らかとなった。一方で、実施例において示されるように、本発明の(A)から(F)工程ないし(F’)工程により生成された会合シリカ微粒子は安定性試験、流速試験、通気試験、圧縮試験において粉体流動性に優れ、トナー付着、クリーニング性に優れていることが明らかとなった。   As shown in Comparative Examples 1, 2, and 3, the silica fine particles produced without performing the step (B) of the present invention or without performing the steps (B) and (C) do not become associated silica fine particles. In Table 1 and Comparative Example 1 where the steps (B) were not performed, the powder flowability was inferior in the stability test, flow rate test, and aeration test, the toner adhesion and cleaning properties were poor, and the association promoting additive was added early. In Comparative Example 2, the powder flowability is inferior in the stability test, flow rate test, aeration test, and compression test, and the toner adhesion and cleaning properties are poor. Further, in Comparative Example 3 in which the steps (B) and (C) are not performed, the stability is stable. In the property test, it was revealed that the powder fluidity was inferior and the toner adhesion and cleaning properties were poor. On the other hand, as shown in the Examples, the associated silica fine particles produced by the steps (A) to (F) to (F ′) of the present invention are used in the stability test, flow rate test, aeration test, and compression test. It was revealed that the body fluidity was excellent and the toner adhesion and cleaning properties were excellent.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (13)

平均粒子径が5〜500nmの範囲にある1次粒子が、2個以上会合した会合シリカ微粒子の製造方法であって、
(A)一般式(1):Si(OR (1)
(式中、Rは同一又は異種の、炭素原子数1〜6の1価炭化水素基である)
で示される四官能性シラン化合物及び該四官能性シラン化合物の部分加水分解縮合生成物のうち少なくとも1種の化合物を、塩基性物質の存在下で親水性有機溶媒と水との混合媒体中で加水分解、縮合反応させ、親水性シリカ微粒子の核粒子を生成させる工程と、
(B)会合促進添加剤を系内に添加することで前記核粒子を会合させ、核粒子会合体を生成させる工程と、
(C)上記一般式(1)で示される四官能性シラン化合物及び該四官能性シラン化合物の部分加水分解縮合生成物のうち少なくとも1種の化合物を更に系内に添加し、加水分解、縮合反応させ、前記核粒子会合体を成長、会合させることで会合シリカ微粒子を生成させる工程を有すことを特徴とする会合シリカ微粒子の製造方法。
A method for producing associated silica fine particles in which two or more primary particles having an average particle diameter in the range of 5 to 500 nm are associated,
(A) General formula (1): Si (OR 1 ) 4 (1)
(Wherein, R 1 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms)
At least one compound selected from the group consisting of a tetrafunctional silane compound and a partial hydrolysis-condensation product of the tetrafunctional silane compound in a mixed medium of a hydrophilic organic solvent and water in the presence of a basic substance. A step of hydrolyzing and condensing to produce core particles of hydrophilic silica fine particles;
(B) adding an association promoting additive into the system to associate the core particles to form a core particle aggregate;
(C) At least one compound among the tetrafunctional silane compound represented by the general formula (1) and a partial hydrolysis condensation product of the tetrafunctional silane compound is further added to the system, followed by hydrolysis and condensation. A method for producing an associated silica fine particle, comprising a step of reacting to produce an associated silica fine particle by growing and associating the core particle aggregate.
前記会合促進添加剤が塩類、多官能性化合物、縮合触媒のいずれかであることを特徴とする請求項1に記載の会合シリカ微粒子の製造方法。   The method for producing associating silica fine particles according to claim 1, wherein the association promoting additive is any one of salts, a polyfunctional compound, and a condensation catalyst. 前記会合促進添加剤が水酸化テトラアルキルアンモニウム化合物からなる塩類であることを特徴とする請求項1及び請求項2に記載の会合シリカ微粒子の製造方法。   3. The method for producing associated silica fine particles according to claim 1, wherein the association promoting additive is a salt composed of a tetraalkylammonium hydroxide compound. 前記会合促進添加剤がアミノアルコール類、ジアミン類、グリコール類から選ばれる多官能性化合物であることを特徴とする請求項1及び請求項2に記載の会合シリカ微粒子の製造方法。   The method for producing associated silica fine particles according to claim 1 or 2, wherein the association promoting additive is a polyfunctional compound selected from amino alcohols, diamines, and glycols. 前記会合促進添加剤がTi、Zr、Zn、Al系の有機金属化合物錯体から選ばれる縮合触媒であることを特徴とする請求項1及び請求項2に記載の会合シリカ微粒子の製造方法。   The method for producing associated silica fine particles according to claim 1 or 2, wherein the association promoting additive is a condensation catalyst selected from Ti, Zr, Zn, and Al-based organometallic compound complexes. 前記親水性有機溶媒が、
一般式(2):ROH (2)
(式中、Rは炭素原子数1〜6の1価炭化水素基である)
で示されるアルコール溶媒であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の会合シリカ微粒子の製造方法。
The hydrophilic organic solvent is
Formula (2): R 2 OH (2)
(Wherein R 2 is a monovalent hydrocarbon group having 1 to 6 carbon atoms)
The method for producing associated silica fine particles according to any one of claims 1 to 5, wherein the alcohol solvent is represented by the formula:
前記塩基性物質がアンモニアであることを特徴とする請求項1乃至請求項6のいずれか1項に記載の会合シリカ微粒子の製造方法。   The method for producing associated silica fine particles according to any one of claims 1 to 6, wherein the basic substance is ammonia. 請求項1乃至請求項7のいずれか1項に記載の(C)会合シリカ微粒子を生成させる工程の後、
(D)前記混合媒体から親水性有機溶媒を除去して水を添加し、前記親水性会合シリカ微粒子の水分散液を得る工程と、
(E)該水分散液中の前記親水性会合シリカ微粒子の表面にRSiO3/2単位(式中、Rは置換又は非置換の、炭素原子数1〜20の1価炭化水素基である)を導入し、第一次疎水性会合シリカ微粒子を生成させる工程と、
(F)更に、該第一次疎水性会合シリカ微粒子の表面にR SiO1/2単位(式中、Rは同一又は異種の、置換又は非置換の、炭素原子数1〜6の1価炭化水素基である)を導入し、第二次疎水性会合シリカ微粒子を生成させる工程を有することを特徴とする会合シリカ微粒子の製造方法。
After the step of producing (C) the associated silica fine particles according to any one of claims 1 to 7,
(D) removing the hydrophilic organic solvent from the mixed medium and adding water to obtain an aqueous dispersion of the hydrophilic associated silica fine particles;
(E) R 3 SiO 3/2 units on the surface of the hydrophilic associative silica fine particles in the aqueous dispersion (wherein R 3 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms) And the step of generating primary hydrophobic associative silica fine particles,
(F) Furthermore, R 4 3 SiO 1/2 units (wherein R 4 is the same or different, substituted or unsubstituted, 1 to 6 carbon atoms) on the surface of the primary hydrophobic associative silica fine particles. A process for producing secondary hydrophobic associative silica fine particles, which is a monovalent hydrocarbon group).
前記(E)工程において、前記会合シリカ微粒子に対し、
一般式(3):RSi(OR (3)
(式中、Rは、置換又は非置換の、炭素原子数1〜20の1価炭化水素基であり、Rは同一又は異種の、炭素原子数1〜6の1価炭化水素基である)
で示される三官能性シラン化合物もしくは該三官能性シラン化合物の部分加水分解縮合生成物又はこれらの混合物を添加することで、前記親水性会合シリカ微粒子の表面にRSiO3/2単位(式中、Rは上記と同じである)を導入し、前記第一次疎水性会合シリカ微粒子の水分散液を得ることを特徴とする請求項8に記載の会合シリカ微粒子の製造方法。
In the step (E), for the associated silica fine particles,
General formula (3): R 3 Si (OR 5 ) 3 (3)
(Wherein R 3 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 5 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms. is there)
R 3 SiO 3/2 unit (formula) is added to the surface of the hydrophilic associative silica fine particles by adding a trifunctional silane compound represented by the formula, a partial hydrolysis condensation product of the trifunctional silane compound, or a mixture thereof. 9. The method for producing associated silica fine particles according to claim 8, wherein R 3 is the same as above, and an aqueous dispersion of the first hydrophobic associative silica fine particles is obtained.
請求項1乃至請求項7のいずれか1項に記載の(C)会合シリカ微粒子を生成させる工程の後、
(D)前記混合媒体から親水性有機溶媒を除去して水を添加し、前記親水性会合シリカ微粒子の水分散液を得る工程と、
(E)該水分散液中の前記親水性会合シリカ微粒子の表面にRSiO3/2単位(式中、R置換又は非置換の、炭素原子数1〜20の1価炭化水素基である)を導入し、第一次疎水性会合シリカ微粒子を生成させる工程と、
(F’)更に、該第一次疎水性会合シリカ微粒子の水分散液の分散媒をケトン系溶媒に置換し、第一次疎水性会合シリカ微粒子のケトン系溶媒分散液を得、該第一次疎水性会合シリカ微粒子のケトン系溶媒分散液に対し、
一般式(4):R SiNHSiR (4)
(式中、Rは、同一又は異種の、置換又は非置換の、炭素原子数1〜6の1価炭化水素基である)
で示されるシラザン化合物、もしくは、
一般式(5):R SiX (5)
(式中、XはOH基又は加水分解性基である)
で示される一官能性シラン化合物又は前記シラザン化合物及び前記一官能性シラン化合物の混合物を添加し、前記第一次疎水性会合シリカ微粒子の表面に残存する反応性基をトリオルガノシリル化し、第一次疎水性会合シリカ微粒子の表面にR SiO1/2単位(式中、Rは上記と同じである)を導入することで、前記第二次疎水性会合シリカ微粒子を生成させることを特徴とする会合シリカ微粒子の製造方法。
After the step of producing (C) the associated silica fine particles according to any one of claims 1 to 7,
(D) removing the hydrophilic organic solvent from the mixed medium and adding water to obtain an aqueous dispersion of the hydrophilic associated silica fine particles;
(E) R 3 SiO 3/2 units (wherein R 3 substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms is bonded to the surface of the hydrophilic associative silica fine particles in the aqueous dispersion. A) to produce primary hydrophobic association silica fine particles,
(F ′) Further, the dispersion medium of the aqueous dispersion of the primary hydrophobic association silica fine particles is replaced with a ketone solvent to obtain a ketone solvent dispersion of the primary hydrophobic association silica fine particles. For the ketone-based solvent dispersion of the next hydrophobically associated silica fine particles,
General formula (4): R 4 3 SiNHSiR 4 3 (4)
(Wherein R 4 is the same or different, substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms)
Or a silazane compound represented by
General formula (5): R 4 3 SiX (5)
(Wherein X is an OH group or a hydrolyzable group)
Or a mixture of the silazane compound and the monofunctional silane compound is added to triorganosilylate the reactive groups remaining on the surface of the first hydrophobic associative silica fine particles, Introducing the R 4 3 SiO 1/2 unit (wherein R 4 is the same as above) to the surface of the secondary hydrophobic associative silica fine particles to form the secondary hydrophobic associative silica fine particles. A method for producing associated silica fine particles.
前記(E)工程において、前記会合シリカ微粒子に対し、
一般式(3):RSi(OR (3)
(式中、Rは、置換又は非置換の、炭素原子数1〜20の1価炭化水素基であり、Rは同一又は異種の、炭素原子数1〜6の1価炭化水素基である)
で示される三官能性シラン化合物もしくは該三官能性シラン化合物の部分加水分解縮合生成物又はこれらの混合物を添加することで、前記親水性会合シリカ微粒子の表面にRSiO3/2単位(式中、Rは上記と同じである)を導入し、該第一次疎水性会合シリカ微粒子の水分散液を得ることを特徴とする請求項10に記載の会合シリカ微粒子の製造方法。
In the step (E), for the associated silica fine particles,
General formula (3): R 3 Si (OR 5 ) 3 (3)
(Wherein R 3 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 5 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms. is there)
R 3 SiO 3/2 unit (formula) is added to the surface of the hydrophilic associative silica fine particles by adding a trifunctional silane compound represented by the formula, a partial hydrolysis condensation product of the trifunctional silane compound, or a mixture thereof. 11. The method for producing associated silica fine particles according to claim 10, wherein R 3 is the same as above, to obtain an aqueous dispersion of the first hydrophobic associative silica fine particles.
前記ケトン系溶媒が、メチルイソブチルケトンであることを特徴とする請求項10又は請求項11に記載の会合シリカ微粒子の製造方法。   The method for producing associated silica fine particles according to claim 10 or 11, wherein the ketone solvent is methyl isobutyl ketone. 請求項8乃至請求項12のいずれか1項に記載の会合シリカ微粒子の製造方法により製造された疎水性会合シリカ微粒子からなる静電荷像現像用トナー外添剤。   An external toner additive for developing an electrostatic charge image, comprising hydrophobic associated silica fine particles produced by the method for producing associated silica fine particles according to any one of claims 8 to 12.
JP2010163309A 2010-07-20 2010-07-20 Method for producing associated silica fine particles Active JP5439308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010163309A JP5439308B2 (en) 2010-07-20 2010-07-20 Method for producing associated silica fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010163309A JP5439308B2 (en) 2010-07-20 2010-07-20 Method for producing associated silica fine particles

Publications (2)

Publication Number Publication Date
JP2012025596A true JP2012025596A (en) 2012-02-09
JP5439308B2 JP5439308B2 (en) 2014-03-12

Family

ID=45778995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010163309A Active JP5439308B2 (en) 2010-07-20 2010-07-20 Method for producing associated silica fine particles

Country Status (1)

Country Link
JP (1) JP5439308B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040081A (en) * 2011-08-18 2013-02-28 Fuji Xerox Co Ltd Silica particle and method of producing the same
JP2013163622A (en) * 2012-02-13 2013-08-22 Shin-Etsu Chemical Co Ltd Method for producing associated silica
JP2014163949A (en) * 2013-02-21 2014-09-08 Ricoh Co Ltd Toner for electrostatic charge image development
JP2014174341A (en) * 2013-03-08 2014-09-22 Ricoh Co Ltd Toner, developer, and image forming device
JP2015041047A (en) * 2013-08-23 2015-03-02 キヤノン株式会社 Image forming method
CN104950608A (en) * 2014-03-25 2015-09-30 富士施乐株式会社 Inorganic particle, electrostatic charge image developing toner, electrostatic charge image developer, developer cartridge, process cartridge, and image forming apparatus
US10261431B2 (en) 2016-02-09 2019-04-16 Samsung Electronics Co., Ltd. External additive for toner, process for producing the same, and toner comprising the same
CN115521502A (en) * 2021-06-25 2022-12-27 济南优纳泰克新材料科技有限公司 Modified white carbon black micron aggregate and preparation method and application thereof
WO2023166857A1 (en) * 2022-03-02 2023-09-07 キヤノン株式会社 Toner storage container and toner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000330328A (en) * 1999-03-12 2000-11-30 Shin Etsu Chem Co Ltd Toner exterior additive for electrostatic charge image development
JP2008273757A (en) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same
JP2009263484A (en) * 2008-04-24 2009-11-12 Nippon Chem Ind Co Ltd Colloidal silica for polishing semiconductor wafer, and method for manufacturing the same
WO2010035613A1 (en) * 2008-09-26 2010-04-01 扶桑化学工業株式会社 Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000330328A (en) * 1999-03-12 2000-11-30 Shin Etsu Chem Co Ltd Toner exterior additive for electrostatic charge image development
JP2008273757A (en) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd Hydrophobic spherical silica fine particles having high flowability, its method for producing the same, toner external additive for electrostatic charge image development using the same and organic resin composition containing the same
JP2009263484A (en) * 2008-04-24 2009-11-12 Nippon Chem Ind Co Ltd Colloidal silica for polishing semiconductor wafer, and method for manufacturing the same
WO2010035613A1 (en) * 2008-09-26 2010-04-01 扶桑化学工業株式会社 Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040081A (en) * 2011-08-18 2013-02-28 Fuji Xerox Co Ltd Silica particle and method of producing the same
JP2013163622A (en) * 2012-02-13 2013-08-22 Shin-Etsu Chemical Co Ltd Method for producing associated silica
JP2014163949A (en) * 2013-02-21 2014-09-08 Ricoh Co Ltd Toner for electrostatic charge image development
JP2014174341A (en) * 2013-03-08 2014-09-22 Ricoh Co Ltd Toner, developer, and image forming device
JP2015041047A (en) * 2013-08-23 2015-03-02 キヤノン株式会社 Image forming method
CN104950608A (en) * 2014-03-25 2015-09-30 富士施乐株式会社 Inorganic particle, electrostatic charge image developing toner, electrostatic charge image developer, developer cartridge, process cartridge, and image forming apparatus
JP2015184569A (en) * 2014-03-25 2015-10-22 富士ゼロックス株式会社 Indeterminate form inorganic particle, toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
CN104950608B (en) * 2014-03-25 2019-12-13 富士施乐株式会社 Inorganic particles, toner for developing electrostatic image, electrostatic image developer, developer cartridge, process cartridge, and image forming apparatus
US10261431B2 (en) 2016-02-09 2019-04-16 Samsung Electronics Co., Ltd. External additive for toner, process for producing the same, and toner comprising the same
CN115521502A (en) * 2021-06-25 2022-12-27 济南优纳泰克新材料科技有限公司 Modified white carbon black micron aggregate and preparation method and application thereof
CN115521502B (en) * 2021-06-25 2024-01-26 济南优纳泰克新材料科技有限公司 Modified white carbon black micron aggregate and preparation method and application thereof
WO2023166857A1 (en) * 2022-03-02 2023-09-07 キヤノン株式会社 Toner storage container and toner

Also Published As

Publication number Publication date
JP5439308B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5631699B2 (en) Method for producing irregular shaped silica fine particles and toner external additive for developing electrostatic image
JP5439308B2 (en) Method for producing associated silica fine particles
JP3988936B2 (en) Silane surface-treated spherical silica titania fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP4579265B2 (en) Hydrophobic spherical silica fine particles having high fluidity, method for producing the same, toner external additive for developing electrostatic image using the same, and organic resin composition containing the same
JP2008174430A (en) Hydrophobic spherical silica fine particle, its manufacturing method and toner external additive for electrostatic charge image development
JP3927741B2 (en) Toner external additive for electrostatic image development
JP2011032114A (en) Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
JP2011185998A (en) Electrostatic image-developing toner and electric charge-controlling particle for external addition
JP2014114175A (en) Surface-hydrophobized spherical silica fine particle, method for producing the same, and toner external additive, obtained by using the particle, for developing electrostatic charge image
JP5655800B2 (en) Method for producing associated silica
JP4060241B2 (en) Hydrophobic spherical silica-based fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
TWI804672B (en) Positively charged hydrophobic spherical silica particles, method for producing same, and positively charged toner composition using the positively charged hydrophobic spherical silica particles
JP4347201B2 (en) Toner external additive and toner for developing electrostatic image
JP6008137B2 (en) Surface organic resin-coated hydrophobic spherical silica fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP3767788B2 (en) Toner external additive for electrostatic image development
JP2014136670A (en) Strongly negative charge granted, hydrophobic, and spherical silica fine particle, method for producing the particle, and charge control agent obtained by using the particle for developing electrostatic charge image
WO2022181018A1 (en) Surface-treated sol-gel silica particle manufacturing method, surface-treated sol-gel silica particles, and toner external additive for electrostatic charge image development
JP4628760B2 (en) Spherical hydrophobic polydiorganosiloxane-containing silica fine particles, toner additive for developing electrostatic image and toner
JP3856744B2 (en) Toner external additive for electrostatic image development
JP4611006B2 (en) Spherical silica fine particles, toner external additive for developing electrostatic image and toner
JP3930236B2 (en) Toner external additive for electrostatic image development
JP3612259B2 (en) Toner and method for producing toner externally added with fluidity-imparting agent
JP5915550B2 (en) Method for producing silica-based fine particle electrostatic charge developing toner external additive having high dispersibility and low cohesiveness
JP4198108B2 (en) Toner external additive and toner for developing electrostatic image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5439308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150