JPH07103437B2 - Ni-based alloy with excellent stress corrosion cracking resistance - Google Patents

Ni-based alloy with excellent stress corrosion cracking resistance

Info

Publication number
JPH07103437B2
JPH07103437B2 JP5225054A JP22505493A JPH07103437B2 JP H07103437 B2 JPH07103437 B2 JP H07103437B2 JP 5225054 A JP5225054 A JP 5225054A JP 22505493 A JP22505493 A JP 22505493A JP H07103437 B2 JPH07103437 B2 JP H07103437B2
Authority
JP
Japan
Prior art keywords
less
stress corrosion
corrosion cracking
alloy
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5225054A
Other languages
Japanese (ja)
Other versions
JPH06172901A (en
Inventor
学 田村
透 島田
秀途 木村
明 江畑
雄介 南
利夫 米澤
俊彦 岩村
實 伴
和英 安食
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2325314A external-priority patent/JPH0674475B2/en
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP5225054A priority Critical patent/JPH07103437B2/en
Publication of JPH06172901A publication Critical patent/JPH06172901A/en
Publication of JPH07103437B2 publication Critical patent/JPH07103437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、原子炉内冷却水環境
下で用いる構造物用のNi基合金に関し、特に炉内構造物
締結ボルト用に耐応力腐食割れ性に優れたものを開発し
提供せんとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Ni-base alloy for structures used in a cooling water environment in a nuclear reactor, and in particular, has developed a material excellent in stress corrosion cracking resistance for fastening bolts for internal reactor structures. It is intended to be provided.

【0002】[0002]

【従来の技術】従来、軽水炉等の原子炉内で構造物の締
結ボルト材に用いる合金としては、ステンレス鋼やNi基
超合金が用いられており、特に応力条件の厳しい部位で
はいわゆるインコネルX−750(商品名)(Ni−15.5Cr−
1Nb−0.7Al−2.5Ti−7Fe)等が析出時効処理によって 1
00kgf/mm2レベルの引張強度を付与されて用いられてい
る。
2. Description of the Related Art Conventionally, stainless steel or Ni-base superalloy has been used as an alloy for fastening bolts of structures in nuclear reactors such as light water reactors, and so-called Inconel X- 750 (trade name) (Ni-15.5Cr-
1Nb-0.7Al-2.5Ti-7Fe) etc.
Used with a tensile strength of 00kgf / mm 2 level.

【0003】しかしインコネルX−750は、熱処理条件
によっては高温高圧水環境下で応力腐食割れ感受性が高
くなることがあり、締結部材として使用中に応力腐食割
れを生じることがある。同合金のこうした欠点を改善
し、又、材料の安全性と信頼性を高めることを目的とし
て、いくつかの合金開発がなされており、新合金も提案
されている。
However, depending on the heat treatment conditions, Inconel X-750 may have a high sensitivity to stress corrosion cracking in a high temperature and high pressure water environment, and stress corrosion cracking may occur during use as a fastening member. Several alloys have been developed and new alloys have been proposed for the purpose of improving these defects of the alloy and improving the safety and reliability of the material.

【0004】例えば特開昭62−167836号乃至6
2−167839号に開示されている合金では、耐食性
向上を目的としてCr量を20〜30重量%(重量%を%と省
略する、以下全て同じ)、Mo量を10%以下とし、更に少
量のAl,Tiと7%以下のNb、15%以下のFeの共存によっ
て、Nbを含む金属間化合物を析出させ強化して用いるも
のである。
For example, JP-A-62-167836 to 6
In the alloy disclosed in No. 2-167839, the amount of Cr is 20 to 30% by weight (weight% is abbreviated as%, the same applies hereinafter), the amount of Mo is 10% or less, and the amount of By coexisting Al and Ti with Nb of 7% or less and Fe of 15% or less, an intermetallic compound containing Nb is precipitated and strengthened for use.

【0005】[0005]

【発明が解決しようとする課題】従来提案されてきた合
金は、Niを合金ベースとし耐食性の向上に有用なCr,Mo
を添加することで、前記環境中での耐応力腐食割れ性改
善を試みているが、強度向上のための多量のNbとFeの共
存によって非常に硬くて脆い組織となり易い上、最適時
効条件の範囲が狭く過時効となり易い。わけても水素に
起因する応力腐食割れに対して耐性が不十分であること
は現用インコネルX−750をはじめとする合金で認めら
れる。この傾向は特に、水素の存在下における高温高圧
水中で使用する場合には大きな問題であり、例えば加圧
水型軽水炉1次冷却水環境下では該環境中に水素が少量
混在するのが普通であって、水素に起因する応力腐食割
れを回避する材料設計思想が重要となるにもかかわら
ず、従来の材料では、この観点からの合金設計が行なわ
れてこなかった。
The alloys that have been proposed so far are based on Ni as the alloy base and are useful for improving the corrosion resistance of Cr and Mo.
By adding, it has been attempted to improve the stress corrosion cracking resistance in the environment, but due to the coexistence of a large amount of Nb and Fe for strength improvement, it tends to be a very hard and brittle structure, and the optimum aging conditions The range is narrow and over-aged easily. In particular, the insufficient resistance to stress corrosion cracking caused by hydrogen is found in alloys including Inconel X-750 currently in use. This tendency is a serious problem especially when used in high-temperature high-pressure water in the presence of hydrogen. For example, in a pressurized water type light water reactor primary cooling water environment, a small amount of hydrogen is usually mixed in the environment. Despite the importance of the material design concept for avoiding stress corrosion cracking caused by hydrogen, conventional materials have not been designed for alloys from this viewpoint.

【0006】又、要求される強度特性として、80kgf/mm
2レベルの室温耐力、120kgf/mm2レベルの室温強度を得
るためにγ′−Ni3(Al,Ti)、γ″などの金属間化合物
の析出を利用しているが、これらの母相中に分散析出し
た組織が硬くて延性に乏しく、熱間加工性に劣るため、
良好な熱間鍛造組織を得ようとして真空誘導溶解−真空
アーク再溶解若しくは真空誘導溶解−エレクトロスラグ
再溶解などの二重溶解を施して適宜プロセシングの中で
熱間加工性を改善する必要があった。
The required strength characteristics are 80 kgf / mm.
Precipitation of intermetallic compounds such as γ′-Ni 3 (Al, Ti) and γ ″ is used to obtain room temperature proof stress of 2 levels and room temperature strength of 120 kgf / mm 2 level. The structure that is dispersed and precipitated in is hard and poor in ductility, and inferior in hot workability,
In order to obtain a good hot forged structure, it is necessary to perform double melting such as vacuum induction melting-vacuum arc remelting or vacuum induction melting-electroslag remelting to appropriately improve hot workability during processing. It was

【0007】本発明は従来技術の以上のような問題に鑑
み創案されたもので、原子炉内冷却水環境下で用いる構
造物用のNi基合金の脆性及び水素に起因する応力腐食割
れに対する耐性、並びに熱間加工性の改善を図らんとす
るものである。
The present invention was devised in view of the above problems of the prior art, and has a resistance to stress corrosion cracking due to brittleness and hydrogen of a Ni-based alloy for a structure used in a cooling water environment in a nuclear reactor. In addition, it is intended to improve hot workability.

【0008】[0008]

【課題を解決するための手段】そのため本発明のNi基合
金は、C:0.05%以下、Si:0.5%以下、Mn:0.5%以
下、Fe:5%以下、Cr:18〜30%、Mo:1.5〜7%を含有
すると共に、Ta+Nb:5%以下、Ti:2%以下、Al:2%
以下であって下式数1の条件を満たし、更に希土類元
素:0.1%以下、Ca:0.1%以下、Mg:0.1%以下のうち
1乃至2種以上を含み、残部Ni及び不可避不純物から成
り、且つ熱処理によってオーステナイト基地中に金属間
化合物 Ni3(Al,Ti,Nb,Ta)を析出させて用いること
を基本的特徴としている。
Therefore, the Ni-based alloy of the present invention, C: 0.05% or less, Si: 0.5% or less, Mn: 0.5% or less, Fe: 5% or less, Cr: 18-30%, Mo : 1.5 to 7%, Ta + Nb: 5% or less, Ti: 2% or less, Al: 2%
The following formula 1 is satisfied, and further, one or more kinds of rare earth elements: 0.1% or less, Ca: 0.1% or less, Mg: 0.1% or less, and the balance Ni and unavoidable impurities, In addition, the basic feature is that the intermetallic compound Ni 3 (Al, Ti, Nb, Ta) is deposited and used in the austenite matrix by heat treatment.

【0009】[0009]

【数1】Ta+1.9Nb+3.8Ti+6.7Al≦14[Equation 1] Ta + 1.9Nb + 3.8Ti + 6.7Al ≦ 14

【0010】次に以上の構成から成る本発明の開発経緯
につき説明する。上述のような問題から本発明者等は合
金の脆性及び水素に起因する応力腐食割れに対する耐性
並びに熱間加工性を改善する目的で種々検討を行なっ
た。その結果、Ni基合金中のFe量を減量することで耐水
素脆化が著しく改善され、又、γ′相、γ″相による時
効硬化に関する時効条件感受性も弱くなり、前記環境中
での使用に際し長期に亘って安定した性能を得ることが
できることを見出したものである。即ち、Feは、Ni基オ
ーステナイト中に固溶すると、おそらくは水素のオース
テナイト中での拡散を促進することになり、水素に起因
する応力腐食割れ感受性を高める元素である。又、Fe
は、金属間化合物強化相、特にNi3Ta、Ni3Nbの析出を促
進する元素であり、合金母相がFeを固溶する場合、時効
による硬化と脆化は、より急激に進行するようになる。
従って強化元素であるTa,Nb,Ti,Alの添加量に関して
も種々検討し、要求される強度水準を満足し、且つ高コ
ストを招く二重溶解が不要で1次溶解のみで良好に鍛造
の可能な添加範囲を見出した。
Next, the development process of the present invention having the above configuration will be described. From the above problems, the present inventors have made various studies for the purpose of improving the brittleness of alloys and the resistance to stress corrosion cracking due to hydrogen and the hot workability. As a result, hydrogen embrittlement resistance is remarkably improved by reducing the amount of Fe in the Ni-based alloy, and the aging condition sensitivity for age hardening by the γ ′ phase and γ ″ phase is also weakened. It was discovered that stable performance can be obtained over a long period of time, that is, when Fe is dissolved in Ni-based austenite, it probably promotes diffusion of hydrogen in austenite, Is an element that increases the sensitivity to stress corrosion cracking due to
Is an element that promotes the precipitation of intermetallic compound strengthened phases, especially Ni 3 Ta and Ni 3 Nb.If the alloy matrix phase contains Fe as a solid solution, hardening and embrittlement due to aging seem to progress more rapidly. become.
Therefore, various studies were also conducted on the addition amounts of Ta, Nb, Ti, and Al, which are the strengthening elements, and the required strength level was satisfied, and double melting that caused high cost was unnecessary, and good forging was possible only by primary melting. The possible range of addition was found.

【0011】本発明においては、Feの含有量を制限する
ことにより耐応力腐食割れ特性を向上し、しかもNi3T
a、Ni3Nb、Ni3(Al,Ti)等の金属間化合物の総析出量を
制限して時効条件への感受性を低下させ、材質が容易に
脆化するのを抑止する。結果、全体として環境脆化を生
じ難く、しかも熱間加工性の良好な高強度高耐食性合金
が提供される。
In the present invention, the stress corrosion cracking resistance is improved by limiting the Fe content, and moreover, Ni 3 T
It limits the total precipitation amount of intermetallic compounds such as a, Ni 3 Nb, and Ni 3 (Al, Ti) to reduce the sensitivity to aging conditions and prevent the material from becoming brittle easily. As a result, it is possible to provide a high-strength and high-corrosion-resistant alloy that is less likely to undergo environmental embrittlement as a whole and has good hot workability.

【0012】以下本発明で規定した各成分毎にその限定
理由を述べる。
The reasons for limiting each component specified in the present invention will be described below.

【0013】C :耐SCC性を劣化させる元素であるた
め、0.05%以下に制限する。
C: Since it is an element that deteriorates SCC resistance, it is limited to 0.05% or less.

【0014】Si:脱酸剤として添加してもよいが、含有
量が多いと脆い相の析出を促進するため、0.5%以下と
する。
Si: It may be added as a deoxidizing agent, but if the content is high, the precipitation of brittle phases is promoted, so the content is made 0.5% or less.

【0015】Mn:少量存在することは組織の安定性を高
めるが、添加しすぎると脆い相の析出を促進するため、
0.5%以下とする。
Mn: The presence of a small amount enhances the stability of the structure, but excessive addition promotes precipitation of a brittle phase.
0.5% or less.

【0016】Fe:上述したように、Feを多く含むこと
は、水素に起因する応力腐食割れに対する耐性を損なう
ため、含有量を5%以下に制限する。
Fe: As described above, a large amount of Fe impairs the resistance to stress corrosion cracking caused by hydrogen, so the content is limited to 5% or less.

【0017】Cr:合金に耐食性と耐応力腐食割れ性を与
える元素であるが、18%未満ではその効果が十分でな
く、30%を超えて添加すると、組織中に脆い相を析出し
易いので、添加量を18〜30%の範囲とした。
Cr: An element that imparts corrosion resistance and stress corrosion cracking resistance to the alloy, but if it is less than 18%, its effect is not sufficient, and if it exceeds 30%, a brittle phase tends to precipitate in the structure. , The amount added was in the range of 18 to 30%.

【0018】Mo:合金に耐応力腐食割れ性を与え、且つ
母相を固溶強化する元素であるが、1.5%未満ではその
効果が十分でなく、7%を超えて添加すると、組織中に
脆い相を析出し易いので、添加量を1.5〜7%の範囲とし
た。
Mo: An element that imparts stress corrosion cracking resistance to the alloy and solid-solution strengthens the matrix phase, but if its content is less than 1.5%, its effect is not sufficient. The brittle phase is likely to precipitate, so the addition amount was made 1.5 to 7%.

【0019】Ta,Nb:TaはNbと共に基本成分であるNiと
結合し、Ni3(Nb,Ta)として母相を強化する。但し、こ
れらは合計で 5%を超えて添加すると延性、熱間加工性
が著しく低下するため、添加量をTa+Nb≦5%とした。
Ta, Nb: Ta combines with Nb, which is the basic component, together with Nb, and strengthens the parent phase as Ni 3 (Nb, Ta). However, if these elements are added in excess of 5% in total, ductility and hot workability will be significantly reduced, so the addition amount was made Ta + Nb ≦ 5%.

【0020】Ti:Tiは Niと結合し、Ni3Tiとして母相を
強化する。但し、2%を超えて添加すると延性、熱間加
工性を著しく低下するため、添加量をTi≦2%とした。
Ti: Ti combines with Ni and strengthens the matrix phase as Ni 3 Ti. However, if added in excess of 2%, ductility and hot workability are significantly reduced, so the addition amount was made Ti ≤ 2%.

【0021】Al:AlはNiと結合し、Ni3Alとして母相を
強化する。但し、2%を超えて添加すると延性、熱間加
工性を著しく低下するため、添加量をAl≦2%とした。
Al: Al combines with Ni to strengthen the matrix phase as Ni 3 Al. However, if added in excess of 2%, the ductility and hot workability are significantly reduced, so the addition amount was made Al ≤ 2%.

【0022】また希土類元素:0.1%以下、Ca:0.1%以
下、Mg:0.1%以下のうちいずれか1〜3種を含むの
は、添加によって脱酸・脱硫を行ない熱間加工性改善を
期待するからであるが、添加量が多いと組織中に脆い相
を析出し易いので、各々添加量を 0.1%以下とした。
In addition, the inclusion of 1 to 3 of rare earth elements: 0.1% or less, Ca: 0.1% or less, and Mg: 0.1% or less is expected to improve hot workability by adding deoxidation and desulfurization. However, since the brittle phase is likely to precipitate in the structure if the added amount is large, the added amount is set to 0.1% or less.

【0023】更に上記 Ta,Nb,Ti,Alの添加量を上記
数1で表わされる範囲内としたのは、二重溶解を不要と
し、1次溶解までで良好且つ健全な熱間鍛造組織を得る
ために必要だからである。
Further, the addition amount of Ta, Nb, Ti, and Al is set within the range represented by the above-mentioned mathematical expression 1 because double melting is unnecessary and a good and sound hot forging structure is obtained up to the first melting. Because it is necessary to obtain.

【0024】[0024]

【実施例】以下本発明者等の行なった実験とその結果に
つき詳述する。下記表1に合金組成の示された本発明材
と比較材を50kg又は150kg真空誘導溶解し、金属型に鋳
込み、真空中で鋳造した。鋳造ままのねじり破断特性の
悪い材料については更に鋳塊から電極を削り出し、真空
アーク再溶解を施して、鋳込組織の改善されたφ150mm
×200mmh円柱状鋳塊とした。
EXAMPLES The experiments conducted by the present inventors and the results thereof will be described in detail below. The inventive material and the comparative material whose alloy compositions are shown in the following Table 1 were vacuum induction melted by 50 kg or 150 kg, cast into a metal mold, and cast in vacuum. For materials with inferior torsional rupture characteristics as cast, the electrode was further cut from the ingot and vacuum arc remelting was applied to improve the cast structure φ150 mm
A columnar ingot of × 200 mmh was prepared.

【0025】[0025]

【表1】 [Table 1]

【0026】そして、1150℃に加熱して1パス10%圧下
を超えないよう複数パスで50mm×50mmの角棒状にプレス
鍛造した後、1150℃加熱エアハンマ鍛造によりφ25mm丸
棒形状に鍛伸し、熱処理を施した。この時の熱処理条件
は、最大の引張強度が得られるよう個々の合金について
詳細に検討し、次の表2に掲載する熱処理条件を定め
た。
Then, after heating to 1150 ° C. and press-forging into a 50 mm × 50 mm square rod shape in multiple passes so as not to exceed 10% reduction in one pass, it is forged into a φ25 mm round bar shape by 1150 ° C. heating air hammer forging, Heat treatment was applied. Regarding the heat treatment conditions at this time, each alloy was examined in detail so as to obtain the maximum tensile strength, and the heat treatment conditions shown in the following Table 2 were determined.

【0027】[0027]

【表2】 [Table 2]

【0028】以上にようにして得た供試材を使用して、
これらに対し、下記のような要領による衝撃試験、引張
試験、ねじり試験及び低歪速度引張(SSRT)試験を
行なった。
Using the test materials obtained as described above,
For these, an impact test, a tensile test, a torsion test and a low strain rate tensile (SSRT) test were conducted according to the following procedures.

【0029】[試験方法〕 衝撃試験:シャルピー衝撃試験片JIS4号(Vノッチ
10mm角フルサイズ)を用い0℃で行なった。 引張試験:平行部形状φ6mm×30mmlの試験片を用い、室
温で行なった。引張速度は耐力まで0.1mm/min、のち破
断まで3mm/minとした。 ねじり試験:鋳造ままの合金の熱間加工性を評価した。
平行部φ10mm×30mmlの試験片を用い、1150℃に保持し
て回転数100rpmでねじり試験し、破断までの回転数で評
価した。 低歪速度引張(SSRT)試験:環境中及び大気中で低
歪速度引張試験を行ない、軽水炉環境下での耐環境脆化
特性を評価した。この時の試験条件を次の表3に示す。
環境は加圧水型軽水炉の1次系冷却水を模擬した。大気
中で試験した破断材との破断延性化、及び環境中での破
断材の脆性破面の有無で評価を行なった。
[Test method] Impact test: Charpy impact test piece JIS No. 4 (V notch
It was carried out at 0 ° C. using a 10 mm square full size). Tensile test: A test piece having a parallel part shape of φ6 mm × 30 mml was used at room temperature. The pulling rate was 0.1 mm / min until the yield strength and 3 mm / min until the break. Torsional test: The hot workability of the as-cast alloy was evaluated.
Using a test piece having a parallel portion of φ10 mm × 30 mml, the test piece was held at 1150 ° C. and a torsion test was performed at a rotation speed of 100 rpm, and the rotation speed before breaking was evaluated. Low strain rate tensile (SSRT) test: A low strain rate tensile test was performed in the environment and in the air to evaluate the environmental embrittlement resistance under a light water reactor environment. The test conditions at this time are shown in Table 3 below.
The environment simulated the primary cooling water of a pressurized water type light water reactor. The evaluation was made based on the fracture ductility of the fractured material tested in the atmosphere and the presence or absence of a brittle fracture surface of the fractured material in the environment.

【0030】[0030]

【表3】 [Table 3]

【0031】以上の試験のうち衝撃試験と引張試験の結
果は上記表2に、又、SSRT試験の結果は下記表4に
示す通りである。又、Fe,C量とSSRT試験の環境脆
化の関係において図示したものが図1、表1のG値と引
張強度及びねじり試験による熱間加工性の関係を図示し
たものが図2、更に引張強度とシャルピー吸収エネルギ
の関係において示したものが図3である。
Among the above tests, the results of the impact test and the tensile test are shown in Table 2 above, and the results of the SSRT test are shown in Table 4 below. The relationship between the Fe and C contents and the environmental embrittlement in the SSRT test is shown in FIG. 1, and the relationship between the G value in Table 1 and the tensile strength and hot workability by the torsion test is shown in FIG. FIG. 3 shows the relationship between the tensile strength and the Charpy absorbed energy.

【0032】[0032]

【表4】 [Table 4]

【0033】SSRT試験による耐SCCの評価におい
て、Cr及びMoが高い材料、Cが低い材料が優れた耐SC
C性を示すことは一般に知られており、特に図1に示す
ようにCは 0.05%以下に抑えることが脆性を示さないた
めに必要である。なお且つ、この環境のように水素を含
む系では、おそらく水素脆性のための粒界破断が著し
く、この傾向はFe添加量を5%以下に抑えることで回避
し得ることが同じ図に示されている。
In the SCC resistance evaluation by the SSRT test, the material having high Cr and Mo and the material having low C have excellent SC resistance.
It is generally known that C property is exhibited, and particularly as shown in FIG. 1, it is necessary to suppress C to 0.05% or less so as not to exhibit brittleness. Moreover, in a system containing hydrogen as in this environment, grain boundary rupture is probably significant due to hydrogen embrittlement, and this tendency can be avoided by suppressing the Fe addition amount to 5% or less, as shown in the same figure. ing.

【0034】又、G値として示した金属間化合物 Ni3(N
b,Al,Ti)生成能は、合金の熱間加工性に多大な影響
を及ぼし、これが大きすぎると二重の真空溶解を施すこ
とで組織を改善しなければ、鋳造ままで良好に熱間加工
することができない。本発明者等はこれを熱間ねじり試
験によって評価すべく種々試みた結果、熱間でのねじり
破断値において3.5回以上を数える合金では、再溶解抜
きの真空溶解鋳造ままで、割れを生じないで良好に鋳造
し得ることを知得し、しかもG値がこの熱間加工性を整
理する優れたパラメータの一つとして用い得ることが可
能なことが判った。
The intermetallic compound Ni 3 (N
b, Al, Ti) forming ability has a great influence on the hot workability of the alloy, and if it is too large, it will be satisfactorily hot-worked as cast unless the structure is improved by performing double vacuum melting. It cannot be processed. As a result of various attempts by the present inventors to evaluate this by a hot torsion test, an alloy that counts a torsional breaking value of 3.5 times or more in a hot state does not cause cracking in vacuum melting casting without remelting. It has been found that good castability can be achieved with, and that the G value can be used as one of the excellent parameters for arranging the hot workability.

【0035】図2には、ねじり破断値3.5回以上の得ら
れる合金を白抜きのプロットで示したが、このようにG
値を14で制御することにより、良好な熱間加工性を示す
合金を得ることができる。
In FIG. 2, the obtained alloy having a torsional rupture value of 3.5 times or more is shown by an outline plot.
By controlling the value at 14, it is possible to obtain an alloy exhibiting good hot workability.

【0036】[0036]

【発明の効果】以上詳述した本発明によれば、原子炉内
冷却水環境下で用いる構造物用のNi基合金に関し、耐応
力腐食割れ性、強度及び熱間加工性に優れたものが得ら
れ、特に炉内構造物締結ボルト用に用いられた場合、現
用インコネルX−750合金を上回る特性を示すことが明
らかとなった。
EFFECTS OF THE INVENTION According to the present invention described in detail above, there is provided a Ni-based alloy for a structure used in a cooling water environment in a nuclear reactor, which is excellent in stress corrosion cracking resistance, strength and hot workability. It was clarified that when it was obtained, and particularly when it was used for fastening bolts for the internal structure of the furnace, it exhibited properties superior to those of the current Inconel X-750 alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】Fe,C量と環境脆化の関係を示すグラフ図であ
る。
FIG. 1 is a graph showing the relationship between the amounts of Fe and C and environmental embrittlement.

【図2】G値と引張強度及び熱間加工性の関係を示すグ
ラフ図である。
FIG. 2 is a graph showing the relationship among G value, tensile strength and hot workability.

【図3】TSとシャルピー吸収エネルギの関係を示すグ
ラフ図である。
FIG. 3 is a graph showing the relationship between TS and Charpy absorbed energy.

フロントページの続き (72)発明者 南 雄介 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 米澤 利夫 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 岩村 俊彦 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 伴 實 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 安食 和英 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 審査官 原 賢一 (56)参考文献 特開 昭63−53233(JP,A) 特開 昭57−123948(JP,A) 特開 昭62−167838(JP,A)(72) Inventor Yusuke Minami 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) Inventor Toshio Yonezawa 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. In-house (72) Inventor Toshihiko Iwamura 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) In-house companion 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) The inventor, Kazuhide Aki, 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Kenichi Hara, Examiner, Sanryo Heavy Industries Co., Ltd. (56) Reference JP 63-53233 (JP, A) JP 57-123948 (JP, A) JP 62-167838 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量比でC:0.05%以下、Si:0.5%以
下、Mn:0.5%以下、Fe:5%以下、Cr:18〜30%、Mo:
1.5〜7%を含有すると共に、Ta+Nb:5%以下、Ti:2%
以下、Al:2%以下であって下式数1の条件を満たし、
更に希土類元素:0.1%以下、Ca:0.1%以下、Mg:0.1
%以下のうち1乃至2種以上を含み、残部Ni及び不可避
不純物から成り、且つ熱処理によってオーステナイト基
地中に金属間化合物 Ni3(Al,Ti,Nb,Ta)を析出させ
て用いることを特徴とする耐応力腐食割れ性に優れたNi
基合金。 【数1】Ta+1.9Nb+3.8Ti+6.7Al≦14
1. A weight ratio of C: 0.05% or less, Si: 0.5% or less, Mn: 0.5% or less, Fe: 5% or less, Cr: 18 to 30%, Mo:
Contains 1.5 to 7%, Ta + Nb: 5% or less, Ti: 2%
Below, Al: 2% or less and satisfy the condition of the following formula number 1,
Rare earth elements: 0.1% or less, Ca: 0.1% or less, Mg: 0.1
% Or less, including 1 to 2 or more, balance Ni and unavoidable impurities, and characterized by using an intermetallic compound Ni 3 (Al, Ti, Nb, Ta) precipitated in an austenite matrix by heat treatment. Ni with excellent stress corrosion cracking resistance
Base alloy. [Equation 1] Ta + 1.9Nb + 3.8Ti + 6.7Al ≦ 14
JP5225054A 1990-11-29 1993-08-19 Ni-based alloy with excellent stress corrosion cracking resistance Expired - Lifetime JPH07103437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5225054A JPH07103437B2 (en) 1990-11-29 1993-08-19 Ni-based alloy with excellent stress corrosion cracking resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2325314A JPH0674475B2 (en) 1990-11-29 1990-11-29 Ni-based alloy with excellent stress corrosion cracking resistance
JP5225054A JPH07103437B2 (en) 1990-11-29 1993-08-19 Ni-based alloy with excellent stress corrosion cracking resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2325314A Division JPH0674475B2 (en) 1990-11-29 1990-11-29 Ni-based alloy with excellent stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPH06172901A JPH06172901A (en) 1994-06-21
JPH07103437B2 true JPH07103437B2 (en) 1995-11-08

Family

ID=26526406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5225054A Expired - Lifetime JPH07103437B2 (en) 1990-11-29 1993-08-19 Ni-based alloy with excellent stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPH07103437B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042770A (en) * 2013-08-26 2015-03-05 日立金属株式会社 HIGH-STRENGTH Ni-BASED ALLOY
JP6347408B2 (en) * 2014-09-04 2018-06-27 日立金属株式会社 High strength Ni-base alloy

Also Published As

Publication number Publication date
JPH06172901A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
JP5270123B2 (en) Nitride reinforced cobalt-chromium-iron-nickel alloy
EP2206796B1 (en) Austenitic heat resistant alloy
US6702906B2 (en) Ni-base heat resistant alloy and welded joint thereof
US8293169B2 (en) Ni-base heat resistant alloy
JP2006070360A (en) Ni-Cr-Co ALLOY FOR ADVANCED GAS TURBINE ENGINE
US6562157B2 (en) Manufacturing process of nickel-based alloy having improved high temperature sulfidation-corrosion resistance
JP3781402B2 (en) Low thermal expansion Ni-base superalloy
JPH086164B2 (en) Method for enhancing crevice and pitting corrosion resistance of nickel-base alloys
JP3308090B2 (en) Fe-based super heat-resistant alloy
US6902633B2 (en) Nickel-base-alloy
JP4315582B2 (en) Co-Ni base heat-resistant alloy and method for producing the same
JP2819906B2 (en) Ni-base alloy for tools with excellent room and high temperature strength
JP3424314B2 (en) Heat resistant steel
JPH07103437B2 (en) Ni-based alloy with excellent stress corrosion cracking resistance
JP4993328B2 (en) Ni-base alloy for machine structures
JP2002235134A (en) Heat resistant alloy having excellent strength and toughness and heat resistant alloy parts
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JPH0674475B2 (en) Ni-based alloy with excellent stress corrosion cracking resistance
JPH11106860A (en) Ferritic heat resistant steel excellent in creep characteristic in heat-affected zone
JP6745050B2 (en) Ni-based alloy and heat-resistant plate material using the same
JPS6353234A (en) Structural member having heat resistance and high strength
JPS60238442A (en) Heat and corrosion resistant alloy
JPH0660365B2 (en) High strength / high corrosion resistance alloy
JPS6320436A (en) Austenitic high-alloy stainless steel having superior hot workability

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term