JPH11106860A - Ferritic heat resistant steel excellent in creep characteristic in heat-affected zone - Google Patents

Ferritic heat resistant steel excellent in creep characteristic in heat-affected zone

Info

Publication number
JPH11106860A
JPH11106860A JP26683597A JP26683597A JPH11106860A JP H11106860 A JPH11106860 A JP H11106860A JP 26683597 A JP26683597 A JP 26683597A JP 26683597 A JP26683597 A JP 26683597A JP H11106860 A JPH11106860 A JP H11106860A
Authority
JP
Japan
Prior art keywords
heat
steel
creep
affected zone
ferritic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26683597A
Other languages
Japanese (ja)
Other versions
JP3434180B2 (en
Inventor
Noriyuki Fujitsuna
宣之 藤綱
Tadamichi Sakai
忠迪 酒井
Hiroyuki Uchida
博幸 内田
Takanari Okuda
隆成 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17436328&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11106860(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26683597A priority Critical patent/JP3434180B2/en
Publication of JPH11106860A publication Critical patent/JPH11106860A/en
Application granted granted Critical
Publication of JP3434180B2 publication Critical patent/JP3434180B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the segregation of Nb and W in a steel by allowing it to have a compsn. composed of specified amounts of C, N, Mn, Ni, Cr, Mo, W, V and Nb, in which the amounts of Mo and W are also regulated to specified ratios, and the balance Fe with inevitable impurities. SOLUTION: A ferritic heat resistant steel having a compsn. contg., by mass, 0.05 to 0.15% C, <=0.015% (including 0%) N, 0.05 to 0.5% Mn, <=0.5% (including 0%) Ni, 7.0 to 10.0% Cr, <=0.7% (including 0%) Mo, 1.0 to 2.5% W, 0.1 to 0.6%. V and 0.01 to 0.05% Nb, in which the amounts of Mo and W simultaneously satisfy 0.7% h(%Mo)+0.5×(%W)<=2.0 and (%W)/(%Mo)>=3.5, and the balance Fe with inevitable impurity elements is prepd. Furthermore, >=0.01% B and 0.1% Si may be added thereto according to necessary. In this way, the ferritic heat resistant steel having proof stress, tensile strength and absorbed energy at a room temp. and at about 550 deg.C can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高クリープ強度を
有し、さらに溶接熱影響部のクリープ特性を改善したフ
ェライト系耐熱鋼に関するもので、特に、化学工業用反
応装置や石油精製用圧力容器等のリアクターや、ロータ
等の高温用部材に使用するフェライト系耐熱鋼に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant ferritic steel having high creep strength and improved creep characteristics of a heat-affected zone of a weld, and particularly to a reactor for a chemical industry and a pressure vessel for petroleum refining. The present invention relates to a ferritic heat-resistant steel used for a high temperature member such as a reactor and a rotor.

【0002】[0002]

【従来の技術】化学工業用反応装置や石油精製用圧力容
器などは、現在2.25質量%(以下「質量%」を
「%」と称する。)Cr−1%Mo鋼や3%Cr−1%
Mo鋼が主に使用されているが、その使用上限温度は約
500℃であり、操業条件の高温高圧化を図るために、
より一層高温における強度特性が要望されている。50
0℃以上で使用可能な耐熱鋼としては、蒸気タービンや
ボイラーチューブ用として実用に9%Cr系鋼が使用さ
れ始めている。この9%Cr系耐熱鋼としては、米国A
STM基準のA387Fr.91鋼(9%Cr−1%M
o−0.2%V−0.1%Nb鋼)が知られている。
2. Description of the Related Art Currently, 2.25 mass% (hereinafter, "mass%" is referred to as "%") of Cr-1% Mo steel and 3% Cr- 1%
Mo steel is mainly used, but its upper limit temperature is about 500 ° C. In order to increase operating temperature and pressure,
There is a demand for strength characteristics at even higher temperatures. 50
As a heat-resistant steel usable at 0 ° C. or higher, 9% Cr-based steel has begun to be practically used for steam turbines and boiler tubes. As the 9% Cr heat-resistant steel, US A
A387 Fr. 91 steel (9% Cr-1% M
o-0.2% V-0.1% Nb steel) is known.

【0003】さらに、高温強度の要求が高くなり、クリ
ープ強度を改善するために、9%Cr系フェライト耐熱
鋼を基本鋼として、種々の合金を添加したCr系フェラ
イト耐熱鋼が開発されてきた。例えば、W添加によるク
リープ強度の改善(特開昭58−17820号公報参
照)、MoとWの複合添加によるクリープ強度の改善
(特開昭62−60845号公報、特公平3−6090
5号公報参照)、さらには、Ta2 5 の分散強化によ
るクリープ強度の改善(特開平6−65690号公報参
照)が提案されている。
Further, the demand for high-temperature strength has increased, and in order to improve the creep strength, a Cr-based ferrite heat-resistant steel to which various alloys have been added using 9% Cr-based ferritic heat-resistant steel as a basic steel has been developed. For example, improvement of creep strength by addition of W (see JP-A-58-17820), improvement of creep strength by addition of Mo and W (JP-A-62-60845, Japanese Patent Publication No. 3-6090)
No. 5 , Japanese Patent Laid-Open No. 6-65690), and improvement in creep strength by dispersion strengthening of Ta 2 O 5 (see Japanese Patent Application Laid-Open No. 6-65690) has been proposed.

【0004】特に、特公平3−60905号公報のフェ
ライト系耐熱鋼はクリープ強度とともに溶接性を改善し
た鋼である。このフェライト系耐熱鋼は、C添加量を低
減させて溶接性の改善を行ない、クリープ強度の改善
に、Mo、W、Nbの複合添加を行ない、さらに、Nを
0.02〜0.05%添加を行っている。
[0004] In particular, the ferritic heat-resistant steel disclosed in Japanese Patent Publication No. 3-60905 is a steel having improved weldability as well as creep strength. In this ferritic heat-resistant steel, the addition of C is reduced to improve weldability, and to improve the creep strength, a composite addition of Mo, W, and Nb is performed. Additions are being made.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特公平
3−60905号公報のフェライト系耐熱鋼は母材のク
リープ強度とともに溶接性に優れるが、溶接熱影響部の
クリープ強度については考慮されておらず、溶接熱影響
部のクリープ強度が低くなる場合がある。通常、母材に
比べて溶接熱影響部の材料特性が低下するため、溶接部
を有する高温用部材の性能は、この溶接熱影響部のクリ
ープ強度に左右される場合が多く、溶接施行を行う高温
用部材では、溶接熱影響部のクリープ強度の向上が重要
な課題となる。さらに、特開昭58−17820号公報
や特開平6−65690号公報でも、溶接熱影響部のク
リープ強度については考慮されておらず、同様に、溶接
熱影響部のクリープ強度が低くなる場合がある。
However, the ferritic heat-resistant steel disclosed in Japanese Patent Publication No. 3-60905 has excellent weldability along with the creep strength of the base metal, but does not consider the creep strength of the heat affected zone. In some cases, the creep strength of the heat affected zone is reduced. Normally, the material properties of the heat affected zone are lower than those of the base metal, so that the performance of a high-temperature member having a weld is often affected by the creep strength of the heat affected zone. For high temperature members, it is important to improve the creep strength of the heat affected zone. Further, Japanese Patent Application Laid-Open Nos. 58-17820 and 6-65690 do not consider the creep strength of the heat affected zone, and similarly, the creep strength of the heat affected zone may decrease. is there.

【0006】また、凝固時の冷却速度が遅い大型鋼塊を
製造する場合に、前述の特公平3−60905号公報の
場合では、Nb等の偏析が生じる場合があり、特開昭5
8−17820号公報の場合では、原子量の大きなWの
添加量が多くなるとWの重量偏析が生じやすくなり、さ
らに、特開平6−65690号公報の場合では、Ta 2
5 を均質に分散させることが困難となる場合がある。
In addition, large steel ingots having a slow cooling rate during solidification are used.
In the case of manufacturing, the above-mentioned Japanese Patent Publication No. 3-60905
In some cases, segregation of Nb or the like may occur.
In the case of Japanese Patent Application Laid-Open No. 8-17820, a large atomic weight W
When the amount of addition is large, weight segregation of W is likely to occur,
In addition, in the case of JP-A-6-65690, Ta Two
OFiveMay be difficult to uniformly disperse.

【0007】本発明は上述の問題に鑑みてなされたもの
であり、溶接熱影響部のクリープ強度に優れ、500℃
以上の温度で、従来の9%Cr系鋼(米国ASTM基準
のA387Fr.91鋼)より、強度、靱性およびクリ
ープ強度(母材)を有するフェライト系耐熱鋼を提供す
ることを目的とするものである。さらに、大型鋼塊の鋳
造時のNbの偏析やWの重量偏析を防止可能なフェライ
ト系耐熱鋼を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned problems, and has excellent creep strength of a heat affected zone at a temperature of 500 ° C.
It is an object of the present invention to provide a ferritic heat-resistant steel having strength, toughness and creep strength (base material) from the conventional 9% Cr-based steel (A387 Fr.91 steel based on US ASTM) at the above temperature. is there. Still another object of the present invention is to provide a heat-resistant ferritic steel capable of preventing Nb segregation and W weight segregation during casting of a large ingot.

【0008】[0008]

【課題を解決するための手段】発明者らは、フェライト
系耐熱鋼のクリープ強度(溶接熱影響部および母材)の
改善と、クリープ強度を高めるNbとWに関し、大型鋼
塊の鋳造時のNbやWの偏析の防止について鋭意研究を
行った。この結果、MoとWの添加量および添加比率の
最適化と、Nの添加量を従来よりさらに低減することに
より、母材のクリープ強度だけでなく、溶接熱影響部ク
リープ強度をも改善でき、さらに、NbとWの上限を規
定することにより、これら元素の鋳造時の偏析を防止で
きるという知見を得て、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have been concerned with improving the creep strength (weld heat affected zone and base metal) of heat-resistant ferritic steel and Nb and W for increasing the creep strength when casting large ingots. We conducted intensive research on prevention of segregation of Nb and W. As a result, not only the creep strength of the base metal but also the creep strength of the welded heat-affected zone can be improved by optimizing the amounts and ratios of Mo and W added and further reducing the amount of N added. Further, the present inventors have found that by defining the upper limits of Nb and W, it is possible to prevent segregation of these elements during casting, and have completed the present invention.

【0009】すなわち、Mo当量「(%Mo)+0.5
×(%W)」を0.75〜2.0%の範囲に規定し、さ
らに、(%W)/(%Mo)比を3.5、好ましくは
4.0以上にすることにより、クリープ過程中に、微量
のFe2 W(金属間化合物)がフェライト系耐熱鋼のマ
トリックス中に析出し、このFe2 Wがフェライト系耐
熱鋼の溶接熱影響部および母材のクリープ強度の維持、
改善に寄与することを見い出した。さらに、Nの添加量
が0.015%を越えると、溶接熱影響部の結晶粒径が
微細化して、溶接熱影響部のクリープ強度が低下すると
いう新しい知見を得て、N量を0.015%以下に規定
することにより溶接熱影響部のクリープ強度を改善でき
ることを見い出した。また、Nb量を0.06%以下、
W量を2.5%以下に規定にすることによって、大型鋼
塊中でのNb偏析やWの重量偏析を抑制でき、その後の
鍛造加工時の割れを防止できることを見い出した。
That is, the Mo equivalent “(% Mo) +0.5
× (% W) ”in the range of 0.75 to 2.0%, and further, by setting the (% W) / (% Mo) ratio to 3.5, preferably 4.0 or more. During the process, a small amount of Fe 2 W (intermetallic compound) precipitates in the matrix of the heat-resistant ferritic steel, and this Fe 2 W maintains the creep strength of the weld heat-affected zone and the base material of the heat-resistant ferritic steel,
It has been found that it contributes to improvement. Further, when the addition amount of N exceeds 0.015%, a new finding is obtained that the crystal grain size of the welded heat-affected zone becomes finer and the creep strength of the welded heat-affected zone is reduced. It has been found that the creep strength of the heat affected zone can be improved by setting the content to 015% or less. Further, the Nb content is 0.06% or less,
It has been found that by setting the W content to 2.5% or less, Nb segregation in a large ingot and weight segregation of W can be suppressed, and cracking during subsequent forging can be prevented.

【0010】本発明のうちで請求項1記載の発明は、質
量%(以下、%で示す。)でC:0.05〜0.15
%、N:0.015%以下(0%を含む)、Mn:0.
05〜0.5%、Ni:0.5%以下(0%を含む)、
Cr:7.0〜10.0%、Mo:0.7%以下(0%
を含む)、W:1.0〜2.5%、V:0.1〜0.6
%、Nb:0.01〜0.05%からなり、かつ、Mo
とWの量が、0.7%≦(%Mo)+0.5×(%W)
≦2.0%と、(%W)/(%Mo)≧3.5を同時に
満たし、残部がFeおよび不可避不純物元素からなるこ
とを特徴とするものである。各成分の限定理由を以下に
示す。
In the present invention, C: 0.05 to 0.15 by mass% (hereinafter, indicated by%).
%, N: 0.015% or less (including 0%), Mn: 0.
0.5 to 0.5%, Ni: 0.5% or less (including 0%),
Cr: 7.0 to 10.0%, Mo: 0.7% or less (0%
), W: 1.0-2.5%, V: 0.1-0.6.
%, Nb: 0.01 to 0.05%, and Mo
And the amount of W is 0.7% ≦ (% Mo) + 0.5 × (% W)
≦ 2.0% and (% W) / (% Mo) ≧ 3.5 at the same time, with the balance being Fe and unavoidable impurity elements. The reasons for limiting each component are shown below.

【0011】(イ)C:0.05〜0.15% 本発明では溶接性の改善のためにC量をできるだけ低減
しているが、高い高温強度を得るため、十分な炭化物量
と均一なマルテンサイト組織にするために、Cは0.0
5%以上必要である。一方、C量が0.15%を越える
と、溶接熱影響部の硬さが高くなり割れを生じ、溶接性
が悪化するので、C量は0.05〜0.15%とする。
(A) C: 0.05 to 0.15% In the present invention, the C content is reduced as much as possible in order to improve the weldability. In order to have a martensitic structure, C is 0.0
5% or more is required. On the other hand, if the C content exceeds 0.15%, the hardness of the heat-affected zone of the weld increases, causing cracks and deteriorating weldability. Therefore, the C content is set to 0.05 to 0.15%.

【0012】(ロ)N:0.015%以下 Cと同様に、溶接性の改善のためにN量をできるだけ低
減しているが、Nはマトリックスに固溶したり、窒化
物、炭窒化物として析出し、溶接熱影響部および母材の
クリープ強度(以下、特別な明示がないかぎり、単に、
「クリープ強度」と称す。)を高める効果があるので、
Nを0.005%以上添加することが好ましい。しか
し、N量が0.015%を越えて添加すると溶接熱影響
部の結晶粒径が微細となり、溶接熱影響部のクリープ強
度が低下する。この結果、N量は0.015%以下とす
る。
(B) N: 0.015% or less As in the case of C, the amount of N is reduced as much as possible in order to improve the weldability. However, N is dissolved in a matrix, nitrided or carbonitrided. As the weld heat affected zone and the base material creep strength (hereinafter, unless otherwise specified, simply
This is called "creep strength". ),
It is preferable to add N by 0.005% or more. However, when the N content exceeds 0.015%, the crystal grain size of the weld heat affected zone becomes fine, and the creep strength of the weld heat affected zone decreases. As a result, the N amount is set to 0.015% or less.

【0013】(ハ)Mo当量「(%Mo)+0.5×
(%W)」:0.75〜2.0% W、Moは固溶体強化により高温強度を顕著に高める元
素であり、固溶体強化により十分なクリープ強度を得る
ためには、Mo当量:(%Mo)+0.5×(%W)は
0.75%以上必要である。また、Mo当量が2%を越
えると金属間化合物の量が多くなり靱性が低下するとと
もに、耐酸化性の観点でも悪影響をおよぼす。このた
め、Mo当量は0.75〜2%とする。
(C) Mo equivalent “(% Mo) + 0.5 ×
(% W) ": 0.75 to 2.0% W and Mo are elements that significantly increase high-temperature strength by solid solution strengthening. To obtain sufficient creep strength by solid solution strengthening, Mo equivalent: (% Mo) ) + 0.5 × (% W) needs to be 0.75% or more. On the other hand, when the Mo equivalent exceeds 2%, the amount of the intermetallic compound is increased and the toughness is reduced, and also has an adverse effect on oxidation resistance. Therefore, the Mo equivalent is 0.75 to 2%.

【0014】(ニ)(%W)/(%Mo)比:3.5以
上 (%W)/(%Mo)比を3.5以上とすることによ
り、クリープ強度が著しく向上する。これは、Wの比率
をを多くすることにより、クリープ中に、微量のFe2
W(金属間化合物)が析出することにより、クリープ強
度が維持、改善されるためである。
(D) (% W) / (% Mo) ratio: 3.5 or more By setting the (% W) / (% Mo) ratio to 3.5 or more, the creep strength is remarkably improved. This is because, by increasing the proportion of W, a small amount of Fe 2
This is because the precipitation of W (intermetallic compound) maintains and improves the creep strength.

【0015】(ホ)W:1〜2.5% Wは原子量の大きい元素であり、Wを多量に添加すると
鋳造時の重量偏析が生じやすくなるため、最大添加量は
2.5%とした。また、クリープ強度の改善のために、
W量は1%以上必要である。
(E) W: 1 to 2.5% W is an element having a large atomic weight. If a large amount of W is added, weight segregation during casting tends to occur. . Also, to improve the creep strength,
The amount of W must be 1% or more.

【0016】(へ)Mo:0.71%以下(0%を含
む) (ニ)のMo当量の規定と(ホ)の(%W)/(%M
o)比の規定より、Mo量は0.71%以下となるが、
Mo量を0.4%以下、さらには、Wのみ添加してし
て、Moを添加しないこともできる。
(F) Mo: 0.71% or less (including 0%) (d) Mo equivalent specification and (e) (% W) / (% M)
o) From the regulation of the ratio, the amount of Mo is 0.71% or less,
The amount of Mo may be 0.4% or less, furthermore, only W may be added and Mo may not be added.

【0017】(ト)Nb:0.01〜0.05% Nbは炭化物や窒化物として析出するとともに、後から
析出する炭窒化物の分散状態を制御して、クリープ強度
を著しく高める元素である。Nb量が0.01%未満で
はこの効果が小さく、十分なクリープ強度が得られな
い。一方、Nbが0.05%を越えて添加した場合に
は、特に、大型鋼塊では鋼塊中に添加されたCとNとN
bによる炭窒化物等が生成してNb偏析が起こり、その
後の鍛造加工時に割れが生じやすくなる。また、本発明
では、耐溶接性の観点から、C、N量を低く設定してい
るため、0.06%を越えてNbを添加しても、焼入れ
のための溶体化処理時にNbCやNbNが十分に固溶で
きず、これ以上のクリープ強度の改善が期待できない。
このために、Nb量は0.01〜0.05%とした。
(G) Nb: 0.01-0.05% Nb is an element that precipitates as carbides and nitrides and controls the dispersion state of carbonitrides that precipitate later, thereby significantly increasing creep strength. . If the Nb content is less than 0.01%, this effect is small, and sufficient creep strength cannot be obtained. On the other hand, when Nb is added in excess of 0.05%, particularly in the case of large steel ingots, C, N and N added to the steel ingot are added.
Carbon nitride and the like due to b generate Nb segregation, and cracks are likely to occur during subsequent forging. Also, in the present invention, since the amounts of C and N are set low from the viewpoint of welding resistance, even if Nb is added in an amount exceeding 0.06%, NbC or NbN is not added during the solution treatment for quenching. Cannot be dissolved sufficiently, and further improvement in creep strength cannot be expected.
For this reason, the Nb content is set to 0.01 to 0.05%.

【0018】(チ)Cr:7〜10% Crは耐酸化性耐食性を確保するために重要な元素であ
るが、Cr量が10%を越えると、デルタフェライトが
析出して、高温特性が劣化する。また、Cr量が7%未
満ではクリープ強度、特に溶接熱影響部のクリープ強度
が十分に得られない。
(H) Cr: 7 to 10% Cr is an important element for securing oxidation resistance and corrosion resistance. However, if the Cr content exceeds 10%, delta ferrite precipitates and high-temperature characteristics deteriorate. I do. If the Cr content is less than 7%, the creep strength, particularly the creep strength of the weld heat affected zone, cannot be sufficiently obtained.

【0019】(リ)Ni:0.5%以下(0%を含む) Niはデルタフェライト相の防止や常温における靱性を
向上させるために必要であるが、0.5%を越えて添加
するとクリープ強度が十分に得られない。
(I) Ni: 0.5% or less (including 0%) Ni is necessary to prevent the delta ferrite phase and to improve the toughness at room temperature. Insufficient strength can be obtained.

【0020】(ヌ)Mn:0.05〜0.5% Mnは脱酸および焼入れ性を確保するために必要な元素
であり、Mnは0.05%以上必要である。一方、Mn
量が0.5%を越えると、クリープ強度を低下させる。
(M) Mn: 0.05 to 0.5% Mn is an element necessary for ensuring deoxidation and hardenability, and Mn needs to be 0.05% or more. On the other hand, Mn
If the amount exceeds 0.5%, the creep strength is reduced.

【0021】(ル)V:0.1〜0.6% Vはマトリックスに固溶し高温強度を上げると同時に、
炭化物や窒化物として析出して、高温強度を向上させ
る。しかし、V量が0.1%未満では十分な効果が得ら
れず、一方、V量が0.6%を越えて添加しても0.6
%までの添加の効果に差がない。このためV量は0.1
〜0.6%とする。
(V) V: 0.1-0.6% V is dissolved in a matrix to increase the high-temperature strength,
Precipitates as carbides and nitrides to improve high-temperature strength. However, if the V content is less than 0.1%, a sufficient effect cannot be obtained.
% There is no difference in the effect of addition. Therefore, the V amount is 0.1
To 0.6%.

【0022】また、請求項2記載の発明は、請求項1記
載の発明の構成に、Bを0.01%以下含有することを
特徴とするものである。請求項1記載のフェライト系耐
熱鋼に、さらに、Bを微量添加(好ましくは、Bを0.
001%以上、0.01以下%添加)することにより、
フェライト系耐熱鋼の焼入れ性を改善するとともに、ク
リープ強度を改善できる。Bを0.01%を越えて添加
すると熱間加工性が著しく低下するため、B量の上限は
0.01%とした。
A second aspect of the present invention is characterized in that the composition of the first aspect of the present invention contains 0.01% or less of B. A small amount of B is further added to the ferritic heat-resistant steel according to claim 1 (preferably, B is added to 0.1%).
001% or more and 0.01% or less).
It can improve the hardenability of ferritic heat-resistant steel and improve the creep strength. If B is added in excess of 0.01%, the hot workability is significantly reduced, so the upper limit of the B content was made 0.01%.

【0023】さらに、請求項3記載の発明は、請求項1
又は2記載の発明の構成に、Siを0.1質量%以下含
有することを特徴とするものである。請求項1又は2記
載のフェライト系耐熱鋼に、さらに、Siを添加(好ま
しくは、Siを0.04%以上、0.1以下%添加)す
ることにより、フェライト系耐熱鋼の鋳造時の脱酸を行
うとともに、フェライト系耐熱鋼の耐酸化性を改善す
る。鋳造時の脱酸および耐酸化性の改善のために、Si
量は0.04%以上必要である。一方、Si量が0.1
%を越えると、フェライト系耐熱鋼に金属間化合物(ラ
ーベス相)を増加させて靱性を低下させる。
[0023] Further, the invention according to claim 3 provides the invention according to claim 1.
Alternatively, the composition of the invention described in Item 2 contains 0.1% by mass or less of Si. The addition of Si (preferably, 0.04% or more and 0.1% or less of Si) to the ferritic heat-resistant steel according to claim 1 or 2 makes it possible to remove the ferritic heat-resistant steel during casting. Perform acid and improve oxidation resistance of heat resistant ferritic steel. In order to improve deoxidation and oxidation resistance during casting, Si
The amount needs to be 0.04% or more. On the other hand, when the amount of Si is 0.1
%, The intermetallic compound (Laves phase) is increased in the heat-resistant ferritic steel to lower the toughness.

【0024】また請求項4記載の発明は、請求項1又は
2又は3記載の溶接熱影響部のクリープ特性に優れたフ
ェライト系耐熱鋼が石油精製用圧力容器等のリアクタ
ー、ロータ等の大型の高温用部材に用いられることを特
徴とするものである。本発明のフェライト系耐熱鋼をリ
アクターや、ロータ等の大型の高温用部材に用いること
により効果を発揮する。すなわち、本発明のフェライト
系耐熱鋼は、母材だけでなく溶接熱影響部のクリープ強
度が高いので、石油精製用圧力容器等のリアクターや、
ロータ等の溶接施行を必要とする高温用部材の高温特性
を向上させ、安定して、優れた性能を発揮させる。さら
に、本発明を大型の高温用部材に用いた場合、鋳塊の鍛
造加工時の割れが防止でき、これら大型の高温用部材の
製作が容易である。
According to a fourth aspect of the present invention, there is provided a ferritic heat-resistant steel excellent in creep characteristics of a weld heat-affected zone according to the first, second or third aspect of the invention. It is characterized by being used for a high-temperature member. The effect is exhibited by using the ferritic heat-resistant steel of the present invention for a large-sized high-temperature member such as a reactor or a rotor. That is, the ferritic heat-resistant steel of the present invention has a high creep strength not only in the base material but also in the weld heat-affected zone.
It improves the high-temperature characteristics of high-temperature components that require welding, such as rotors, and provides stable and excellent performance. Furthermore, when the present invention is used for large-sized high-temperature members, cracks during forging of the ingot can be prevented, and these large-sized high-temperature members can be easily manufactured.

【0025】[0025]

【実施例】次に本発明の効果を実施例により、さらに具
体的に説明する。実施例1は溶接熱影響部および母材の
クリープ強度におよぼす合金元素の影響を調査したもの
であり、実施例2は凝固時の鋼塊の偏析におよぼすNb
およびWの影響を調査したものである。
EXAMPLES Next, the effects of the present invention will be described more specifically with reference to examples. Example 1 investigated the effect of alloying elements on the creep strength of the weld heat affected zone and the base metal, and Example 2 investigated the effect of Nb on the segregation of the steel ingot during solidification.
And W were investigated.

【0026】(実施例1)表1に示す化学成分になるよ
うに、真空誘導溶解炉で20kgの鋼塊を鋳造した。こ
れら鋼塊の内部組織の観察を行ない、初析のNbCやN
bNの有無と、Wの重量偏析の調査したしたところ、比
較例のNo.1(ASTM基準のA387Fr.91
鋼)とNo.20(Nb:0.08%)の鋼塊にNbの
偏析が観察された。しかし、他の鋼塊については、Nb
の偏析やWの重量偏析が認められなかった。
Example 1 A 20 kg steel ingot was cast in a vacuum induction melting furnace to have the chemical components shown in Table 1. By observing the internal structure of these ingots, NbC and N
The presence or absence of bN and the weight segregation of W were investigated. 1 (A387 Fr.91 of ASTM standard)
No.) and No. Nb segregation was observed in 20 (Nb: 0.08%) steel ingot. However, for other ingots, Nb
And the weight segregation of W were not recognized.

【0027】[0027]

【表1】 [Table 1]

【0028】次に、これら鋼塊を1200℃に加熱し、
鍛造して直径20mmの丸棒を作成した。さらに、これ
ら丸棒を、1050℃で1時間加熱後、空冷による焼き
ならし処理を行った後に、硬さ(Hv)が220になる
ように720〜760℃で3時間の焼き戻し処理を行っ
た。以下、これらの材料を母材と称する。また、溶接熱
影響部を再現するために、さらに、これら試料をオース
テナイト組織となる1000℃に加熱して、溶接模擬熱
処理を行なった。以下、これらの材料をHAZ再現材と
称する。
Next, these ingots are heated to 1200 ° C.
A round bar having a diameter of 20 mm was formed by forging. Further, after heating these round bars at 1050 ° C. for 1 hour, air-cooling normalizing was performed, and then tempering was performed at 720-760 ° C. for 3 hours so that the hardness (Hv) became 220. Was. Hereinafter, these materials are referred to as base materials. Further, in order to reproduce the heat affected zone by welding, these samples were further heated to 1000 ° C., which is an austenitic structure, and simulated heat treatment for welding was performed. Hereinafter, these materials are referred to as HAZ reproduction materials.

【0029】次に、母材について、室温および550℃
における引張試験と、−18℃におけるシャルピー衝撃
試験を行ない、この結果を表2に示す。なお、No.6
の試料(Cr:10%)は、母材の組織観察の結果、デ
ルタフェライトが認められたため、上記試験を行わなか
った。
Next, at room temperature and 550 ° C.
, And a Charpy impact test at -18 ° C. The results are shown in Table 2. In addition, No. 6
In the sample (Cr: 10%), the above test was not performed because delta ferrite was observed as a result of observation of the structure of the base material.

【0030】[0030]

【表2】 [Table 2]

【0031】表2に示されるように、各試料とも、N
o.1(ASTM A387Fr.91鋼)と同程度以
上の室温および550℃における耐力および引張強度と
吸収エネルギーを有していることを確認した。さらに、
本実施例の試料はいずれも、No.1より高い耐力、引
張強度および吸収エネルギーを示し、石油精製用圧力容
器に適した強度と靱性を十分に満足していることが確認
された。
As shown in Table 2, each sample had N
o. No. 1 (ASTM A387 Fr.91 steel) was confirmed to have proof stress, tensile strength, and absorbed energy at room temperature and 550 ° C. which were at least equal to those of ASTM A387 Fr.91 steel. further,
All of the samples of the present example were Nos. It exhibited a proof stress, tensile strength and absorbed energy higher than 1, confirming that the strength and toughness suitable for a pressure vessel for petroleum refining were sufficiently satisfied.

【0032】次に、各母材については、600℃、1
7.4kg/mm2 でのクリープ試験を行った。一方、
HAZ再現材については、結晶粒度測定(JIS G
0551 オーステナイト粒度試験)とともに、585
℃、14.0kg/mm2 でのクリープ試験を行った。
これらの結果を表3に示す。従来材のNo.1(AST
M A4387Fr.91鋼)のクリープ試験結果よ
り、母材のクリープ試験での破断時間が342時間を越
え、かつ、HAZ再現材でのクリープ試験での破断時間
が890時間を越えれば、この従来材が使用されている
石油精製用圧力容器に適用できるレベルとなる。
Next, each base material was heated at 600.degree.
A creep test at 7.4 kg / mm 2 was performed. on the other hand,
For HAZ reproduction material, crystal grain size measurement (JIS G
0551 along with austenitic grain size test)
A creep test was performed at 14.0 kg / mm 2 at ° C.
Table 3 shows the results. No. of conventional material 1 (AST
MA 4387 Fr. From the results of the creep test of (91 steel), if the rupture time in the creep test of the base material exceeds 342 hours and the rupture time in the creep test of the HAZ reproduction material exceeds 890 hours, this conventional material is used. Level that can be applied to existing oil refining pressure vessels.

【0033】[0033]

【表3】 [Table 3]

【0034】本発明の実施例の試験材では、母材および
HAZ再現材のクリープ破断時間はいずれも1000時
間以上となった。これにより、本発明の実施例の試験材
はASTM A4387Fr.91鋼(No.1)より
も、母材、HAZ再現材ともに、クリープ強度に優れて
いることが確認できた。
In the test materials of the examples of the present invention, the creep rupture times of the base metal and the HAZ reproduction material were all 1000 hours or more. As a result, the test material according to the example of the present invention has ASTM A4387 Fr. It was confirmed that both the base metal and the HAZ reproduction material had better creep strength than the steel No. 91 (No. 1).

【0035】次に、クリープ試験の結果におよぼす合金
元素の影響について、さらに説明する。なお、本実施例
では、本発明の成分範囲にあるNo.3の試験材(0.
1%C−7%Cr−0.35%Mo−1.3%W−0.
2%V−0.01%N鋼、Mo当量:1%、W/Mo
比:約3.8)をベースにして合金元素の影響について
試験を行った。
Next, the effect of alloying elements on the results of the creep test will be further described. In this example, No. 1 in the component range of the present invention was used. 3 test materials (0.
1% C-7% Cr-0.35% Mo-1.3% W-0.
2% V-0.01% N steel, Mo equivalent: 1%, W / Mo
A test was conducted on the effect of alloying elements based on a ratio of about 3.8).

【0036】Cr量の影響について、No.2〜7の結
果から説明する。Cr量が6%以下のNo.2のHAZ
再現材のクリープ強度が低く、一方、Cr量が約11%
のNo.7の試験材は、高温特性を劣化させるデルタフ
ェライトが析出した。本発明のCr量:6〜10%の範
囲にあるNo.2〜6は優れたクリープ特性を示し、特
に、No.4(Cr:8%)のHAZ再現材のクリープ
破断時間は2000時間以上となり、溶接熱影響部が優
れたクリープ強度を有することが判明した。
Regarding the effect of the amount of Cr, Explanation will be made from the results of 2 to 7. No. with a Cr content of 6% or less. HAZ of 2
The creep strength of the reproduction material is low, while the Cr content is about 11%
No. In the test material of No. 7, delta ferrite which deteriorates high temperature characteristics was precipitated. Cr content of the present invention: No. 2 in the range of 6 to 10%. Nos. 2 to 6 show excellent creep properties. The creep rupture time of the HAZ reproduction material of No. 4 (Cr: 8%) was 2000 hours or more, and it was found that the weld heat affected zone had excellent creep strength.

【0037】N量の影響について、No.3および7〜
9の結果から説明する。N量が増加することにより、母
材およびHAZ再現材のクリープ破断時間が短くなる傾
向があり、特にN量が0.015%越えるとNo.9の
試験材のクリープ破断時間が著しく低下する。また、ク
リープ強度が低下した試験材のHAZ再現材の結晶粒度
は、N量が0.015%越えるとJIS結晶粒度番号が
10以上となり結晶粒が微細化していることが判明し
た。
Regarding the influence of the amount of N, 3 and 7-
Explanation will be made from the result of No. 9. As the amount of N increases, the creep rupture time of the base material and the HAZ reproduction material tends to be shortened. The creep rupture time of the test material No. 9 was significantly reduced. Further, it was found that the crystal grain size of the HAZ reproduction material of the test material whose creep strength was reduced had a JIS grain size number of 10 or more when the N content exceeded 0.015%, and the crystal grains were fine.

【0038】W/Mo比の影響について、No.3およ
び10〜13の結果から説明する。W/Mo比の増加と
ともに母材およびHAZ再現材のクリープ破断時間が長
くなる傾向がある。特に、W/Mo比が3.5以上のN
o.3ではHAZ再現材のクリープ破断時間が1359
時間となり、W/Mo比が4.0以上のNo.13では
クリープ破断時間が1729時間以上の優れた、クリー
プ特性を示すことが判明した。なお、No.11はW量
が0.7%未満であったために、クリープ特性が低下し
たものと考えられる。
Regarding the effect of the W / Mo ratio, Explanation will be made from the results of Nos. 3 and 10 to 13. As the W / Mo ratio increases, the creep rupture time of the base material and the HAZ reproduction material tends to increase. In particular, when the W / Mo ratio is 3.5 or more,
o. In No. 3, the creep rupture time of the HAZ reproduction material was 1359
No. and the W / Mo ratio was 4.0 or more. No. 13 was found to exhibit excellent creep properties, with a creep rupture time of 1729 hours or more. In addition, No. In No. 11, it is considered that the creep characteristics were deteriorated because the W amount was less than 0.7%.

【0039】次に、Mo当量「(%Mo)+0.5×
(%W)」の影響について、No.3およびNo.14
〜17の結果から説明する。Mo当量が0.7%未満の
No.15のHAZ再現材のクリープ強度が低く、一
方、Mo当量が2.0%を越えるNo.17では、表3
に示されるように、No.1(ASTM A387F
r.91鋼)と同程度か若干劣るクリープ強度を示し
た。MoとWの添加量が、0.7%≦(%Mo)+0.
5×(%W)≦2.0%と、(%W)/(%Mo)≧
3.5を同時に満たす範囲に調製されたNo.15およ
びNo.16では、良好な特性が得られた。
Next, the Mo equivalent “(% Mo) + 0.5 ×
No. (% W) ". 3 and No. 3 14
Explanation will be made from the results of Nos. To 17. When the Mo equivalent is less than 0.7%. No. 15 has a low creep strength of the HAZ reproduction material, whereas the Mo equivalent of No. 15 exceeds 2.0%. In Table 17, Table 3
As shown in FIG. 1 (ASTM A387F
r. 91 steel). The addition amount of Mo and W is 0.7% ≦ (% Mo) +0.
5 × (% W) ≦ 2.0%, (% W) / (% Mo) ≧
No. 3.5 prepared in a range that simultaneously satisfies 3.5. 15 and No. In No. 16, good characteristics were obtained.

【0040】Nb量の影響について、No.3およびN
o.18〜20の結果から説明する。Nb量の増加とと
もに母材およびHAZ再現材のクリープ破断時間が長く
なる傾向があるが、Nb量が約0.05%のNo.19
のクリープ破断時間とNb量が0.08%のNo.20
のクリープ破断時間との間に大きな差が認められなかっ
た。また、Nb量が0.05%を越えた、Nb量が0.
08%のNo.20は前述したように、鋼塊中にNbの
偏析が観察された。
Regarding the influence of the amount of Nb, 3 and N
o. Explanation will be made from the results of Nos. 18 to 20. The creep rupture time of the base metal and the HAZ reproduction material tends to increase with an increase in the Nb content. 19
The creep rupture time and Nb amount of No. 20
No significant difference was found with the creep rupture time of the sample. Further, when the Nb amount exceeds 0.05%, the Nb amount is 0.1%.
No. 08%. In No. 20, Nb segregation was observed in the steel ingot as described above.

【0041】V量の影響について、No.21とNo.
22の結果から説明する。Nbと同様に、V量の増加と
ともに母材およびHAZ再現材のクリープ破断時間が長
くなる傾向があるが、V量が0.6%のNo.21のク
リープ破断時間とV量が0.8%のNo.22のクリー
プ破断時間との間に大きな差が認められなかった。
Regarding the influence of the amount of V, 21 and no.
Explanation will be made from the result of No. 22. Similar to Nb, the creep rupture time of the base metal and the HAZ reproduction material tends to increase as the V amount increases. No. 21 having a creep rupture time and a V amount of 0.8%. No significant difference from the creep rupture time of No. 22 was observed.

【0042】B量の影響について、No.3とNo.2
3の結果から説明する。No.3とBを添加したNo.
23とを比較すると、Bを添加することにより母材およ
びHAZ再現材のクリープ破断時間が長くなってクリー
プ強度が改善される。
Regarding the influence of the B amount, 3 and No. 2
Explanation will be made from the result of No. 3. No. Nos. 3 and B were added.
In comparison with No. 23, the addition of B increases the creep rupture time of the base metal and the HAZ reproduction material, thereby improving the creep strength.

【0043】(実施例2)さらに、凝固時の鋼塊の偏析
におよぼすNbおよびWの影響を調査するために、表4
に示す化学組成の溶湯を溶製し、凝固時の冷却速度が5
℃/分になるように加熱を行っている鋳型に前記溶湯を
鋳造して鋳塊を製作した。次に、これら鋳塊の内部組織
の観察を行ない、初析のNbCやNbNの有無と、Wの
重量偏析の調査した。この結果を表4に示す。
Example 2 Further, in order to investigate the influence of Nb and W on segregation of the steel ingot during solidification, Table 4 was used.
A molten metal having the chemical composition shown in Fig. 3 is melted, and the cooling rate during solidification is 5
The molten metal was cast in a mold heated at a rate of ° C./min to produce an ingot. Next, the internal structures of these ingots were observed, and the presence / absence of primary NbC and NbN and the weight segregation of W were investigated. Table 4 shows the results.

【0044】[0044]

【表4】 [Table 4]

【0045】表4に示すように、Nbの添加量が0.0
5%を越えるNo.Fの鋼塊にNb炭窒化物によるNb
偏析が観察され、一方、Wの添加量が2.5%を越える
No.CおよびNo.Dの鋼塊にはWの重量偏析が見出
された。この結果から、Nbの最大添加量を0.05
%、Wの最大添加量を2.5%とすることにより、偏析
のない大型鋼塊を製造できることが判明した。
As shown in Table 4, the amount of Nb added was 0.0
No. exceeding 5% Nb with Nb carbonitride
No segregation was observed. On the other hand, when the addition amount of W exceeded 2.5%, C and No. Weight segregation of W was found in the D ingot. From this result, the maximum amount of Nb added was 0.05
% And the maximum amount of W added to 2.5%, it was found that a large steel ingot without segregation could be produced.

【0046】以上、説明したように、本発明のフェライ
ト系耐熱鋼の溶接熱影響部のクリープ強度を、従来の9
%Cr系鋼(ASTM A387Fr.91鋼)より、
著しく改善できることが判明した。さらに、本発明のフ
ェライト系耐熱鋼は、この9%Cr系鋼よりも、常温お
よび550℃で高い耐力、引張強度と−18℃での優れ
た衝撃特性を示し、母材のクリープ強度も高いことが明
らかになった。また、本発明のフェライト系耐熱鋼は、
大型鋼塊の鋳造時のNbやWの偏析を防止せきることが
判明した。
As explained above, the creep strength of the heat affected zone of the ferritic heat-resistant steel of the present invention is set to 9
% Cr based steel (ASTM A387 Fr.91 steel)
It has been found that it can be remarkably improved. Furthermore, the ferritic heat-resistant steel of the present invention exhibits higher proof stress, tensile strength and excellent impact properties at -18 ° C at normal temperature and 550 ° C, and higher creep strength of the base material than this 9% Cr-based steel. It became clear. Further, the heat-resistant ferritic steel of the present invention,
It has been found that segregation of Nb and W during casting of large ingots can be prevented.

【0047】このようなすぐれた特性を有するフェライ
ト系耐熱鋼は、溶接施行を必要とする石油精製用圧力容
器等のリアクターや、ロータ等の高温用部材に用いるこ
とにより、安定して優れた高温優れた性能を発揮する。
その上、大型鋼塊の鋳造時の偏析を防止しできるので、
大型の高温用部材への適用に効果がある。
The ferritic heat-resistant steel having such excellent properties can be used in a reactor such as a pressure vessel for petroleum refining and a high-temperature member such as a rotor, which require welding, to obtain a stable and excellent high-temperature material. Demonstrates excellent performance.
In addition, segregation during casting of large ingots can be prevented,
It is effective for application to large high-temperature members.

【0048】[0048]

【発明の効果】以上の説明したように、本発明のフェラ
イト系耐熱鋼は、MoとWの添加量および添加比率の最
適化と、Nの添加量を0.015%以下にすることによ
り、母材のクリープ強度だけでなく、溶接熱影響部クリ
ープ強度をも改善できる。さらに、従来の耐熱鋼よりも
合金元素量を低減しても、ASTM A387Fr.9
1鋼より優れた、室温および550℃における耐力およ
び引張強度と吸収エネルギーを有するものである。そし
て、合金元素量を低減により、溶接性が改善できるとい
う効果もある。
As described above, the heat-resistant ferritic steel of the present invention can be obtained by optimizing the addition amount and the addition ratio of Mo and W, and by controlling the addition amount of N to 0.015% or less. It is possible to improve not only the creep strength of the base material but also the creep strength of the heat affected zone. Further, even if the amount of alloying elements is reduced as compared with the conventional heat-resistant steel, ASTM A387 Fr. 9
It has proof stress, tensile strength and absorbed energy at room temperature and 550 ° C., which are superior to steel No. 1. Further, there is also an effect that the weldability can be improved by reducing the amount of the alloy element.

【0049】その上、NbとWの上限を規定することに
より、Nb炭窒化物等の偏析やWの重量偏析を防止し、
特に大型鋼塊の鋳造時における、これら元素の偏析を効
果的に抑制できるので、大型鋼塊の鍛造時の鍛造割れを
防止できる効果もある。
Further, by defining the upper limits of Nb and W, segregation of Nb carbonitride and the like and weight segregation of W are prevented.
In particular, since segregation of these elements can be effectively suppressed at the time of casting of a large ingot, there is also an effect of preventing forging cracks at the time of forging of a large ingot.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥田 隆成 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takanari Okuda 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel, Ltd. Kobe Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量%でC:0.05〜0.15%、
N:0.015%以下(0%を含む)、Mn:0.05
〜0.5%、Ni:0.5%以下(0%を含む)、C
r:7.0〜10.0%、Mo:0.7%以下(0%を
含む)、W:1.0〜2.5%、V:0.1〜0.6
%、Nb:0.01〜0.05%からなり、 かつ、MoとWの量が、0.7%≦(%Mo)+0.5
×(%W)≦2.0%と、(%W)/(%Mo)≧3.
5を同時に満たし、 残部がFeおよび不可避不純物元素からなるフェライト
系耐熱鋼。
C: 0.05 to 0.15% by mass%,
N: 0.015% or less (including 0%), Mn: 0.05
0.5% or less, Ni: 0.5% or less (including 0%), C
r: 7.0 to 10.0%, Mo: 0.7% or less (including 0%), W: 1.0 to 2.5%, V: 0.1 to 0.6
%, Nb: 0.01 to 0.05%, and the amount of Mo and W is 0.7% ≦ (% Mo) +0.5
× (% W) ≦ 2.0%, (% W) / (% Mo) ≧ 3.
A ferritic heat-resistant steel that satisfies 5 at the same time, with the balance being Fe and inevitable impurity elements.
【請求項2】 さらに、Bを0.01質量%以下含有す
る請求項1記載の溶接熱影響部のクリープ特性に優れた
フェライト系耐熱鋼。
2. The heat resistant ferritic steel according to claim 1, further comprising B in an amount of 0.01% by mass or less.
【請求項3】 さらに、Siを0.1質量%以下含有す
る請求項1又は2記載の溶接熱影響部のクリープ特性に
優れたフェライト系耐熱鋼。
3. The heat-resistant ferritic steel according to claim 1, further comprising 0.1% by mass or less of Si.
【請求項4】 リアクター、ロータ等の大型の高温用部
材に用いられることを特徴とする請求項1又は2又は3
記載の溶接熱影響部のクリープ特性に優れたフェライト
系耐熱鋼。
4. A high temperature member such as a reactor or a rotor for use in a large temperature member.
A ferritic heat-resistant steel with excellent creep characteristics in the weld heat affected zone described.
JP26683597A 1997-09-30 1997-09-30 Ferritic heat-resistant steel with excellent creep characteristics in the weld heat affected zone Ceased JP3434180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26683597A JP3434180B2 (en) 1997-09-30 1997-09-30 Ferritic heat-resistant steel with excellent creep characteristics in the weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26683597A JP3434180B2 (en) 1997-09-30 1997-09-30 Ferritic heat-resistant steel with excellent creep characteristics in the weld heat affected zone

Publications (2)

Publication Number Publication Date
JPH11106860A true JPH11106860A (en) 1999-04-20
JP3434180B2 JP3434180B2 (en) 2003-08-04

Family

ID=17436328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26683597A Ceased JP3434180B2 (en) 1997-09-30 1997-09-30 Ferritic heat-resistant steel with excellent creep characteristics in the weld heat affected zone

Country Status (1)

Country Link
JP (1) JP3434180B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712913B2 (en) 2001-05-09 2004-03-30 Sumitomo Metal Industries, Ltd. Ferritic heat-resisting steel
WO2004087979A1 (en) 2003-03-31 2004-10-14 National Institute For Materials Science Welded joint of tempered martensite based heat-resistant steel
JP2008214753A (en) * 2007-02-09 2008-09-18 Nippon Steel Corp Ferritic heat resistant steel having excellent creep property in weld heat-affected zone, and heat resistant structure
JP2008266786A (en) * 2007-03-28 2008-11-06 Nippon Steel Corp Heat-resistant ferritic steel material superior in creep characteristics at weld heat-affected zone, and heat-resistant structure
JP2008266785A (en) * 2007-03-29 2008-11-06 Nippon Steel Corp Heat-resistant ferritic steel material superior in creep characteristics at weld heat-affected zone, and heat-resistant structure
CN110055455A (en) * 2019-03-15 2019-07-26 舞阳钢铁有限责任公司 A kind of partition board of steam turbine ring super-thick steel plate and its production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712913B2 (en) 2001-05-09 2004-03-30 Sumitomo Metal Industries, Ltd. Ferritic heat-resisting steel
WO2004087979A1 (en) 2003-03-31 2004-10-14 National Institute For Materials Science Welded joint of tempered martensite based heat-resistant steel
JP2008214753A (en) * 2007-02-09 2008-09-18 Nippon Steel Corp Ferritic heat resistant steel having excellent creep property in weld heat-affected zone, and heat resistant structure
JP2008266786A (en) * 2007-03-28 2008-11-06 Nippon Steel Corp Heat-resistant ferritic steel material superior in creep characteristics at weld heat-affected zone, and heat-resistant structure
JP2008266785A (en) * 2007-03-29 2008-11-06 Nippon Steel Corp Heat-resistant ferritic steel material superior in creep characteristics at weld heat-affected zone, and heat-resistant structure
CN110055455A (en) * 2019-03-15 2019-07-26 舞阳钢铁有限责任公司 A kind of partition board of steam turbine ring super-thick steel plate and its production method

Also Published As

Publication number Publication date
JP3434180B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
EP0381121B1 (en) High-strength heat-resistant steel with improved workability
JP3315702B2 (en) Method for producing ferritic iron-based alloy and heat-resistant ferritic steel
EP0787813B1 (en) A low mn-low Cr ferritic heat resistant steel excellent in strength at elevated temperatures
EP1081245B1 (en) Heat resistant Cr-Mo alloy steel
JP5657523B2 (en) Ultra-supercritical boiler header alloy and manufacturing method
EP0384433B1 (en) Ferritic heat resisting steel having superior high-temperature strength
EP0806490B1 (en) Heat resisting steel and steam turbine rotor shaft
EP1867743A1 (en) Austenitic stainless steel
EP0828010B1 (en) High strength and high-toughness heat-resistant cast steel
EP0770696B1 (en) High strength and high toughness heat resisting steel and its manufacturing method
JP3434180B2 (en) Ferritic heat-resistant steel with excellent creep characteristics in the weld heat affected zone
JP3422658B2 (en) Heat resistant steel
JPH11209851A (en) Gas turbine disk material
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
EP0669405B1 (en) Heat resisting steel
JPH0543986A (en) High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone
JP2819906B2 (en) Ni-base alloy for tools with excellent room and high temperature strength
JP2716807B2 (en) High strength low alloy heat resistant steel
JP3468975B2 (en) Low alloy heat resistant steel and steam turbine rotor
JPH1036944A (en) Martensitic heat resistant steel
JP2004124188A (en) HIGH Cr HEAT-RESISTANT STEEL AND METHOD FOR MANUFACTURING THE SAME
JP3662151B2 (en) Heat-resistant cast steel and heat treatment method thereof
JP3396372B2 (en) Low Cr ferritic steel with excellent high temperature strength and weldability
JPH0931600A (en) Steam turbine rotor material for high temperature use
JP3901801B2 (en) Heat-resistant cast steel and heat-resistant cast steel parts

Legal Events

Date Code Title Description
RVOP Cancellation by post-grant opposition