JP4993328B2 - Ni-base alloy for machine structures - Google Patents

Ni-base alloy for machine structures Download PDF

Info

Publication number
JP4993328B2
JP4993328B2 JP2000370945A JP2000370945A JP4993328B2 JP 4993328 B2 JP4993328 B2 JP 4993328B2 JP 2000370945 A JP2000370945 A JP 2000370945A JP 2000370945 A JP2000370945 A JP 2000370945A JP 4993328 B2 JP4993328 B2 JP 4993328B2
Authority
JP
Japan
Prior art keywords
less
content
forging
hot
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000370945A
Other languages
Japanese (ja)
Other versions
JP2002173721A (en
Inventor
宜郎 川下
昆 王
正則 御幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2000370945A priority Critical patent/JP4993328B2/en
Publication of JP2002173721A publication Critical patent/JP2002173721A/en
Application granted granted Critical
Publication of JP4993328B2 publication Critical patent/JP4993328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は機械構造物用のNi基合金に関し、特に耐粒界腐食性及び耐力に優れ原子力発電設備用の機械構造物、例えば炉心材料の部材として望ましいNi基合金に関する。
【0002】
【従来の技術】
Ni基合金は耐食性及び耐熱性が優れた合金であるため使用環境の厳しい条件で多用されている。最近は更に材料の安全に対する信頼性要求が高くなっている。これらのNi基合金のうちインコネル600は原子炉の炉心材料として使用されているが、高い耐応力腐食割れ性及び耐粒界腐食性等を要求されているため、通常Nb等の安定化元素を添加して予め固溶炭素(C)を固定することが行われている。
【0003】
熱間加工性を向上させるために特開昭63−53235号公報ではNbCの溶体化熱処理を提案しており、特開昭61−84348号公報ではB添加およびO含有量低減による粒界強度の改善を提案している。
【0004】
【発明が解決しようとする課題】
上記従来例によれば、炭素量は少ないことが望ましい。しかし炭素量を低下させると強度、即ち耐力が低下する問題がある。そこで、耐粒界腐食性とバランスをどのようにとるかが問題となる。なお、Nbを添加したNi基合金のインゴットは熱間加工性が悪いため、鍛造又は熱間圧延工程に通すと割れ及び破損等の材料欠陥が生じる場合がある。これらの欠陥が生じると疵取りが不可欠となり製造歩留まりが著しく低下するという問題も生じる。
【0005】
更に、上記の発明はいずれも10年以上も前に提案されたものであり、これらの材料では新しい性能要求に対処できない。
【0006】
上記のように、Nb含有Ni基合金においては耐粒界腐食性と耐力とのバランスをとり、耐粒界腐食性と耐力を共に従来よりも優れたNi基合金を提案することにある。なお、従来の合金では必ずしも安定した熱間加工性が得られず熱間加工中に割れが発生する点も改善する必要があった
【0007】
【課題を解決するための手段】
上記課題を解決するために本発明の第1の態様は、質量%で、下記の成分組成を有することを特徴とするNi基合金である。(a)C:0.045%以下、Fe:3〜25%、Cr:14〜26%、Nb:4%以下、N:0.005〜0.04%、Si:1.0%以下、Al:0.2%以下、P:0.030%以下、Mn:1.0%以下、S:0.03%以下、O:0.01%以下、残部がNiと不可避的不純物であり、(b)更に、前記Ni基合金を大気誘導炉で溶解してインゴットを溶製し、次いで前記インゴットを少なくとも60%以上の絞り値にて鍛造又は熱間圧延を実施することにより、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が、G.S.No.≦0となる前記鍛造又は熱間圧延の条件では前記成分組成のC量がC≦0.005%、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が0<G.S.No.≦2となる前記鍛造又は熱間圧延の条件では前記成分組成のC量がC≦[0.0025×G.S.No.+0.005]%、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が G.S.No.>2となる前記鍛造又は熱間圧延の条件では前記成分組成のC量がC<0.045%であり、熱間加工後の0.2%耐力が245MPa以上である。上記Ni基合金は特に耐粒界腐食性が優れた合金である。
【0008】
発明の第2の態様は、質量%で、下記の成分組成を有することを特徴とするNi基合金である。(a)C:0.045%以下、Fe:3〜25%、Cr:14〜26%、Nb:4%以下、N:0.005〜0.04%、Si:1.0%以下、Al:0.2%以下、P:0.030%以下、Mn:1.0%以下、S:0.03%以下、O:0.01%以下、残部がNiと不可避的不純物であり、(b)更に、前記Ni基合金を大気誘導炉で溶解してインゴットを溶製し、次いで前記インゴットを少なくとも60%以上の絞り値にて鍛造又は熱間圧延を実施することにより、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が2〜5の範囲となる前記鍛造又は熱間圧延の条件では前記成分組成のNb/(C+N)はNb/(C+N)≧[320−55×(G.S.No.)]/3であり、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が5を超え6以下の範囲となる前記鍛造又は熱間圧延の条件では前記成分組成のNb/(C+N)はNb/(C+N)≧15であり、熱間加工後の0.2%耐力が245MPa以上である。この合金は特に耐力に優れた合金である。
【0009】
発明の第3の態様は、質量%で、下記の成分組成を有することを特徴とするNi基合金である。(a)C:0.045%以下、Fe:3〜25%、Cr:14〜26%、Nb:4%以下、N:0.005〜0.04%、Si:1.0%以下、Al:0.2%以下、P:0.030%以下、Mn:1.0%以下、S:0.03%以下、O:0.01%以下、残部がNiと不可避的不純物であり、(b)前記Ni基合金を大気誘導炉で溶解してインゴットを溶製し、次いで前記インゴットを少なくとも60%以上の絞り値にて鍛造又は熱間圧延を実施することにより、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が、G.S.No.≦0となる前記鍛造又は熱間圧延の条件では前記成分組成のC量がC≦0.005%、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が0<G.S.No.≦2となる前記鍛造又は熱間圧延の条件では前記成分組成のC量がC≦[0.0025×G.S.No.+0.005]%、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)がG.S.No.>2となる前記鍛造又は熱間圧延の条件では前記成分組成のC量がC<0.045%であり、(c)更に、前記Ni基合金を大気誘導炉で溶解してインゴットを溶製し、次いで前記インゴットを少なくとも60%以上の絞り値にて鍛造又は熱間圧延を実施することにより、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が、G.S.No.が2〜5の範囲となる前記鍛造又は熱間圧延の条件では、前記成分組成のNb/(C+N)がNb/(C+N)≧[320−55×(G.S.No.)]/3であり、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が、G.S.No.が5を超え6以下の範囲となる前記鍛造又は熱間圧延の条件では、前記成分組成のNb/(C+N)がNb/(C+N)≧15であり、(d)熱間加工後の0.2%耐力が245MPa以上である。この合金は特に耐粒界腐食性と耐力に優れた合金である。
【0010】
発明の第4の態様は、前記Cの含有量は0.003〜0.045%、前記Nbの含有量は2〜4%、前記Sの含有量は20ppm以下、前記Oの含有量は20ppm以下であることを特徴とするNi基合金である。
【0011】
発明の第5の態様は、前記Alの含有量が0.1%以下であることを特徴とするNi基合金である。この合金は、AlとOを同時に低減することで絞り値に優れ、従って熱間加工性も優れた合金である。
【0012】
発明の第6の態様は、更に、Bを0.01%以下含有することを特徴とするNi基合金である。この合金は、Bを適量含有しているため粒界のS偏析を低減すると同時に炭素と窒素を固定するので耐粒界腐食性が改善されている。
【0013】
発明の第7の態様は、前記Ni基合金が機械構造用であることを特徴とする。
【0014】
【発明の実施の形態】
本発明の基本成分組成について説明する。Cは本合金の機械的強度の向上に寄与する成分である。含有量が多すぎる場合は耐食性が悪くなるので含有量の上限は0.045%とし、好ましくは0.040%以下(0%を含む)とする。なお、強度を確保するため0.003%以上が望ましく、より望ましくは0.005%以上である。
【0015】
Feは靭性に寄与する成分である。含有量が多すぎる場合は耐食性が劣化し易くなるので含有量の上限は25%とする。なお、靭性を確保するため下限は3%とし、好ましくは5%以上の含有量とする。
【0016】
Crは耐食性を発揮させるのに不可欠の元素である。含有量が14%より少ないと耐食性が劣化する。26%より多いと高温強度が高くなって加工が困難となるので14〜26%の範囲内とする。
【0017】
Nbは固溶炭素(C)、及び固溶窒素(N)を炭化物、及び窒化物として析出させて耐食性を向上させる効果がある。ただし、含有量が多すぎると過剰に析出した析出物により粒界脆化が生じる場合があるので4%以下とする。また、含有量が少なすぎると耐食性が悪くなるので含有量は好ましくは2%以上とする。Nbの含有量はC含有量、及びN含有量に応じて望ましくはNb/(C+N)≧15であり、より好ましくは30以上、更に好ましくは60以上となるように含有するものとする。
【0018】
Nは機械的強度、耐食性、及び耐粒界腐食性の向上に有効である。含有量が0.04%を超えるとNの固溶限に近づいてブローホールを生じ易くなるので0.04%以下とする。なお、耐力を確保するため0.005%以上とし好ましくは0.01%以上とする。
【0019】
Alは脱酸剤として添加される。含有量が多すぎると熱間加工性を阻害するため0.2%以下とする。しかし、Alは酸化し易く、脱酸生成物を巻き込み清浄度が低下することがあるため、本合金の酸素(O)量を高くすることがあるので0.1%以下がより望ましい。
【0020】
Bは熱間加工性を改善するので含有量は0.01%以下とする。0.01%を超えると熱間加工性が劣化する。
【0021】
Siは含有量が1.0%より多いと耐粒界腐食性が劣化するので1.0%以下とする。
【0022】
Pは含有量が0.030%より多いと耐粒界腐食性、及び溶接性が劣化するので0.030%以下とする。
【0023】
Mnは含有量が1.0%より多いと耐粒界腐食性が劣化するので1.0%以下とする。
【0024】
Sは粒界偏析して析出して、熱間加工性を損なうので、含有量は0.03%以下とする。
【0025】
Oは通常Al 又はSiと結合して酸化物介在物となり、合金の清浄度を損なうので含有量は0.01%以下とする。なお、一般にSとOはNi合金において熱間加工性を損なうのでより低い方が望ましい。
【0026】
本発明のNi合金は原子力用の機械構造部材として利用される点から、特に耐粒界腐食性を向上させる必要がある。粒界腐食はC含有量が高いほど劣るので耐食性向上にはC含有量を低く押さえる必要がある。本発明者らは、実際に粒界腐食を左右するのは粒界偏析した固溶Cであると推定した。これから、結晶粒度を微細化して単位粒界面積当たりのC含有量を低下させることで耐粒界腐食性が向上すると考えた。
【0027】
検討の結果、結晶粒度とC含有量を制御することで優れた耐食性を有するNi基合金が得られることが分かった。図1はインコネル合金を基本として、C含有量および結晶粒度を変化させたときの粒界腐食試験における腐食速度d(μm/day)に対するC含有量とG.S.No.の関係を示した図である。なお、結晶粒度の測定はリン酸又は蓚酸電解によりミクロ組織を顕出した後JISG0551に準じて行なった。
【0028】
粒界腐食試験は、3mm厚さ×15mm巾×50mm長さの試験片を#800まで湿式研磨し、50mm半径の曲げ加工を施した後50%H2SO4+83gFe2(SO4)3の沸騰溶液中で24hr煮沸して腐食速度dを求めた。その結果、G.S.No.が2以上のときC含有量は0.045%まで添加しても最大腐食速度dは500μm/day以下であり、耐腐食性は良好である。なお、好ましくは、Cは0.043%以下とし、更に好ましくは0.040%以下とする。
【0029】
0<G.S.No.≦2の場合、C≦[0.0025×G.S.No.+0.015]%を満足する範囲で、最大腐食速度dは500μm/day以下であり、耐粒界腐食性は良好である。C含有量がこれより高い場合に単位粒界面積あたりの固溶Cが過剰になり耐腐食性が低下する。
【0030】
G.S.No.≦0では、C≦0.005%を満足する必要がある。C含有量がこれより高い場合には単位粒界面積あたりの固溶炭素(C)が過剰になり耐食性が低下する。但し、Cは強度を確保するため、好ましくは0.003%以上とする。即ち、上記の関係をまとめると以下のようになる。
G.S.No.≦0では、C≦0.005%以下、
0<G.S.No.≦2では、C≦[0.0025×G.S.No.+0.015]%
G.S.No.>2では、C<0.045%
【0031】
結晶粒度を微細化するとそれだけで耐力向上が可能であるが、析出物が存在する場合に析出物の微細化、均一分散により更に析出強化することが可能になる。Nb、C及びNの添加は析出強化と固溶強化により耐力を向上させる効果がある。しかし、熱間加工後のオーステナイト結晶粒度(以下単に結晶粒度という)が大きい場合に析出物の多くは粒界で粗大化し、耐力向上に寄与しないばかりか粒界強度を減少させる。また、粒界強度と粒内強度の差が大きくなるため熱間加工性が低下する。
【0032】
そこで、本発明者らは単位粒界面積あたりの析出物量を制御するため、粒界面積の指標である結晶粒度とNb/(C+N)との関係を特定の範囲に制限することで、更に十分な耐力を有するNi基合金が得られることを見出した。図2に耐力に与える結晶粒度番号とNb/(C+N)との関係を示した。
【0033】
図2において、0.2%耐力は240MPa以上であるとインコネル600の規格値を満足するので望ましい値である。従って、Nb/(C+N)が、G.S.No.が2〜5の範囲において、Nb/(C+N)≧[320−55×(G.S.No.)]/3であり、G.S.No.が5を超える範囲においてはNb/(C+N)≧15であることが望ましい。
【0034】
Alは脱酸剤として作用するので、添加すると酸素含有量が低減して熱間加工性が向上する。図3にAl含有量の絞り値に与える影響を示した。しかし、Alが過剰に存在すると熱間加工性が損なわれる。そこでAl含有量を0.2%以下の範囲としてOとSの熱間加工性に与える影響を調査したところ、O≦20ppm、S≦20ppmの領域で熱間加工性が極めて優れた合金が得られた。図3からも分かるようにAlを0.1%以下とすると熱間加工性は確実に改善されるので更に望ましい。Al添加により生じた脱酸生成物を巻き込み清浄度が低下することがあるためである。
【0035】
以上述べたように、各条件を満足することにより熱間加工性、粒界腐食性および耐力に優れたNi基合金が得られる。
【0036】
本発明においては特に熱間加工性を改良すること考慮していないが、一般にS(硫黄)とO(酸素)は前述の通り熱間加工性を損なう。即ち、S、Oは一般に粒界に偏析して粒界を脆化させる有害元素である。従来、低濃度での制御が困難であったO、S、Alなどの合金成分組成が近年の製錬技術の向上に伴い低濃度に制御できるようになった。
【0037】
インコネル600合金を基本とし、OとS含有量を変化させた合金について1050℃で熱間引張り試験を行った。試験片の試験前後の断面減少率(絞り値)に及ぼすO含有量とS含有量の影響を調査した。Ni合金について鍛造、及び熱間圧延等の熱間加工時に割れ、及び破損等を起こさないためには、絞り値は少なくとも60%以上、より望ましくは70%以上、更に望ましくは80%以上、最も望ましいのは90%以上である。従って、S≦50ppm、かつO≦60ppmがより望ましく、最も望ましい範囲はS≦20ppm、かつO≦20ppmである。
【0038】
【実施例】
図4として示す表1に記載した成分組成のNi基合金を大気誘導炉で溶解してインゴットを溶製し、次いで鍛造又は熱間圧延した。得られた熱間圧延板について粒界腐食試験を行ない最大腐食速度d(μm/day)を測定した。また、得られた熱間圧延板の表面割れ発生状態を観察した。その結果を成分組成とともに表1に示した。表において、成分O及びSの単位は重量ppmであり、その他は重量%である。また表に掲載していないが、Siは0.05〜0.5%、Pは0.001〜0.01%、Mnは0.02〜0.5%の含有範囲である。試料番号3はBを0.0020重量%含有し試料番号6はBを0.0060重量%含有する。
【0039】
表1において、試料番号が1〜9、12は最大腐食速度が500μm以下である。試料番号が10、11及び13は500μmを上回るが、これらは、結晶粒度番号とC含有量が特定の範囲にあるものである。試料番号が1〜6、12〜13は表面割れがなく、試料番号が7〜11までは表面割れが発生した。これから本発明の効果は明らかである。
【0040】
図5として示す表2に記載した成分組成のNi基合金を大気誘導炉で溶解してインゴットを溶製し、次いで鍛造又は熱間圧延した。得られた熱間圧延板について0.2%耐力試験を行なった。更に、得られた熱間圧延板の表面割れ発生状態を観察した。その結果を成分組成とともに表2に示した。表2の表記は上記表1に同様である。0.2%耐力の単位はMPaである。
【0041】
表2において、試料番号が1〜11までは0.2%耐力が240MPa以上であり、12〜13では240MPaを下回る。試料番号が1〜6、12〜13は表面割れがなく、試料番号が7〜11までは表面割れが発生した。これから本発明の効果は明らかである。
【0042】
図6として示す表3に記載した成分組成のNi基合金を大気誘導炉で溶解してインゴットを溶製し、次いで鍛造又は熱間圧延した。得られた熱間圧延板について粒界腐食試験を行ない最大腐食速度を測定した。また、得られた熱間圧延板の0.2%耐力試験を行なった。更に、得られた熱間圧延板の表面割れ発生状態を観察した。その結果を成分組成とともに表3に示した。表3の表記は上記表1及び表2に同様である。
【0043】
表3において、試料番号が1〜11までは0.2%耐力が240Mpa以上であり、12〜13までは240Mpaを下回る。同様試料番号が1〜9、12は最大腐食速度が500μm以下であり、試料番号が10、11及び13は500μmを上回る。試料番号が1〜6、12〜13は表面割れがなく、試料番号が7〜11までは表面割れが発生した。これから本発明の効果は明らかである。
【0044】
【発明の効果】
本発明のNi基合金は、耐粒界腐食及び耐力、更には熱間加工性に優れており、各種原子炉構造部材などに適用できる有用な合金である。また、本発明のNi基合金は、熱間加工性に優れるので、割れ、破損などの補修による歩留まり損失が少なく、生産性の向上と生産コストに多大な寄与をする。
【図面の簡単な説明】
【図1】結晶粒度番号とC含有量との関係を示す図である。
【図2】結晶粒度番号とNb/(C+N)との関係を示す図である。
【図3】 Al含有量が絞り値に与える影響を示す図である。
【図4】耐粒界腐食性優れた本発明合金例を表1として示す図である。
【図5】耐力に優れた本発明合金例を表2として示す図である。
【図6】耐粒界腐食性、耐力とに優れた本発明合金例を表3として示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Ni-base alloy for a machine structure, and more particularly to a Ni-base alloy that has excellent intergranular corrosion resistance and proof strength and is desirable as a member for a nuclear power plant, for example, a core material.
[0002]
[Prior art]
Ni-based alloys are excellent in corrosion resistance and heat resistance, and are therefore frequently used under severe conditions. Recently, the reliability requirement for the safety of materials is further increased. Of these Ni-based alloys, Inconel 600 is used as the core material of nuclear reactors, but because it requires high stress corrosion cracking resistance, intergranular corrosion resistance, etc., a stabilizing element such as Nb is usually used. Adding and fixing solute carbon (C) in advance is performed.
[0003]
In order to improve the hot workability, Japanese Patent Laid-Open No. 63-53235 proposes a solution heat treatment of NbC, and Japanese Patent Laid-Open No. 61-84348 discloses the grain boundary strength by adding B and reducing the O content. Suggest improvements.
[0004]
[Problems to be solved by the invention]
According to the above conventional example, it is desirable that the amount of carbon is small. However, when the amount of carbon is reduced, there is a problem that strength, that is, proof stress is reduced. Therefore, how to balance with intergranular corrosion resistance becomes a problem. In addition, since the Ni-base alloy ingot added with Nb has poor hot workability, material defects such as cracks and breakage may occur when it is passed through a forging or hot rolling process. If these defects occur, scraping becomes indispensable and the manufacturing yield is significantly reduced.
[0005]
Furthermore, all of the above inventions were proposed over 10 years ago, and these materials cannot address new performance requirements.
[0006]
As described above, the Nb-containing Ni-based alloy balances the intergranular corrosion resistance and the proof stress, and proposes a Ni-based alloy that is superior in both the intergranular corrosion resistance and the proof strength. It should be noted that the conventional alloys do not necessarily provide stable hot workability, and it is necessary to improve the point at which cracking occurs during hot working.
[Means for Solving the Problems]
A first aspect of the present invention to solve the above problems, in mass%, an Ni-based alloy characterized by having a component couples formed below. (A) C: 0.045% or less, Fe: 3-25%, Cr: 14-26%, Nb: 4% or less, N: 0.005-0.04%, Si: 1.0% or less, Al: 0.2% or less, P: 0.030% or less, Mn: 1.0% or less, S: 0.03% or less, O: 0.01% or less, the balance being Ni and inevitable impurities, (B) Furthermore, the Ni-based alloy is melted in an atmospheric induction furnace to produce an ingot, and then the ingot is subjected to hot working by forging or hot rolling at a drawing value of at least 60% or more. The subsequent austenite grain size number (GS No.) S. No. In the forging or hot rolling conditions where ≦ 0, the C content of the component composition is C ≦ 0.005%, and the austenite grain size number (GS No.) after hot working is 0 <G. S. No. In the forging or hot rolling conditions where ≦ 2, the C content of the component composition is C ≦ [0.0025 × G. S. No. + 0.005]%, hot austenite grain size number after processing (G.S.No.) is G. S. No. Under the forging or hot rolling conditions of> 2, the C content of the component composition is C <0.045%, and the 0.2% yield strength after hot working is 245 MPa or more. The Ni-based alloy is an alloy particularly excellent in intergranular corrosion resistance.
[0008]
A second aspect of the invention, in mass%, an Ni-based alloy characterized by having a component couples formed below. (a) C: 0.045% or less, Fe: 3-25%, Cr: 14-26%, Nb: 4% or less, N: 0.005-0.04%, Si: 1.0% or less, Al: 0.2% or less, P: 0.030% or less, Mn: 1.0% or less, S: 0.03% or less, O: 0.01% or less, the balance being Ni and inevitable impurities, (B) Furthermore, the Ni-based alloy is melted in an atmospheric induction furnace to produce an ingot, and then the ingot is subjected to hot working by forging or hot rolling at a drawing value of at least 60% or more. Nb / (C + N) of the component composition is Nb / (C + N) ≧ [320− under the forging or hot rolling conditions in which the subsequent austenite grain size number (GS No.) is in the range of 2 to 5. 55 × (GS No.)] / 3, and the austenite grain size number after hot working (GS No. Nb / (C + N) of the component composition is Nb / (C + N) ≧ 15 under the forging or hot rolling conditions in which) is in the range of more than 5 to 6 or less, and 0.2% yield strength after hot working Is 245 MPa or more. This alloy is particularly excellent in proof stress.
[0009]
A third aspect of the invention, in mass%, an Ni-based alloy characterized by having a component couples formed below. (A) C: 0.045% or less, Fe: 3-25%, Cr: 14-26%, Nb: 4% or less, N: 0.005-0.04%, Si: 1.0% or less, Al: 0.2% or less, P: 0.030% or less, Mn: 1.0% or less, S: 0.03% or less, O: 0.01% or less, the balance being Ni and inevitable impurities, (B) The Ni-based alloy is melted in an atmospheric induction furnace to produce an ingot, and then the ingot is subjected to forging or hot rolling at a drawing value of at least 60% or more, and after hot working The austenite grain size number (GS No.) is G.S. S. No. In the forging or hot rolling conditions where ≦ 0, the C content of the component composition is C ≦ 0.005%, and the austenite grain size number (GS No.) after hot working is 0 <G. S. No. In the forging or hot rolling conditions where ≦ 2, the C content of the component composition is C ≦ [0.0025 × G. S. No. + 0.005]%, hot austenite grain size number after processing (G.S.No.) is G. S. No. Under the forging or hot rolling conditions of> 2, the C content of the component composition is C <0.045%. (C) Further, the Ni-based alloy is melted in an air induction furnace to produce an ingot. Then, the ingot is subjected to forging or hot rolling at a drawing value of at least 60%, so that the austenite grain size number (GS No.) after hot working is set to G.S. S. No. Nb / (C + N) of the component composition is Nb / (C + N) ≧ [320−55 × (GS No.)] / 3 The austenite grain size number (GS No.) after hot working is G.S. S. No. Nb / (C + N) of the component composition is Nb / (C + N) ≧ 15 under the conditions of the forging or hot rolling in which N is in the range of more than 5 and 6 or less, and (d) 0. 0 after hot working. The 2% proof stress is 245 MPa or more. This alloy is particularly superior in intergranular corrosion resistance and strength.
[0010]
In a fourth aspect of the invention, the C content is 0.003 to 0.045%, the Nb content is 2 to 4%, the S content is 20 ppm or less, and the O content is 20 ppm or less. Ni-based alloy characterized by
[0011]
A fifth aspect of the present invention is a Ni-based alloy characterized in that the Al content is 0.1% or less. This alloy is excellent in drawing value by reducing Al and O at the same time, and therefore excellent in hot workability.
[0012]
The sixth aspect of the present invention is a Ni-based alloy characterized by further containing 0.01% or less of B. Since this alloy contains an appropriate amount of B, S segregation at the grain boundary is reduced, and at the same time, carbon and nitrogen are fixed, so that the intergranular corrosion resistance is improved.
[0013]
A seventh aspect of the present invention is characterized in that the Ni-based alloy is for a mechanical structure.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The basic component composition of the present invention will be described. C is a component that contributes to improving the mechanical strength of the alloy. If the content is too high, the corrosion resistance will deteriorate, so the upper limit of the content is 0.045%, preferably 0.040% or less (including 0%). In order to secure the strength, 0.003% or more is desirable, and more desirably 0.005% or more.
[0015]
Fe is a component that contributes to toughness. If the content is too high, the corrosion resistance tends to deteriorate, so the upper limit of the content is 25%. In order to ensure toughness, the lower limit is 3%, preferably 5% or more.
[0016]
Cr is an essential element for exerting corrosion resistance. If the content is less than 14%, the corrosion resistance deteriorates. If it exceeds 26%, the high-temperature strength becomes high and it becomes difficult to process, so the range is 14-26%.
[0017]
Nb has the effect of improving the corrosion resistance by precipitating solute carbon (C) and solute nitrogen (N) as carbides and nitrides. However, if the content is too large, grain boundary embrittlement may occur due to excessively precipitated precipitates. Further, if the content is too small, the corrosion resistance deteriorates, so the content is preferably 2% or more. The Nb content is desirably Nb / (C + N) ≧ 15 depending on the C content and the N content, more preferably 30 or more, and even more preferably 60 or more.
[0018]
N is effective in improving mechanical strength, corrosion resistance, and intergranular corrosion resistance. If the content exceeds 0.04%, it becomes close to the solid solubility limit of N and blowholes are likely to occur. In addition, in order to ensure proof stress, it is 0.005% or more, preferably 0.01% or more.
[0019]
Al is added as a deoxidizer. If the content is too large, the hot workability is impaired, so the content is made 0.2% or less. However, Al is easy to oxidize, and deoxidation products may be involved and the cleanliness may be lowered. Therefore, the oxygen (O) content of the alloy may be increased, so 0.1% or less is more desirable.
[0020]
B improves the hot workability, so the content is 0.01% or less. When it exceeds 0.01%, hot workability deteriorates.
[0021]
If the Si content exceeds 1.0%, the intergranular corrosion resistance deteriorates.
[0022]
If the P content exceeds 0.030%, the intergranular corrosion resistance and weldability deteriorate, so 0.030% or less.
[0023]
If Mn content exceeds 1.0%, intergranular corrosion resistance deteriorates, so 1.0% or less.
[0024]
S segregates at the grain boundaries and precipitates and impairs hot workability, so the content is set to 0.03% or less.
[0025]
O is usually combined with Al or Si to form oxide inclusions, which impairs the cleanliness of the alloy, so the content should be 0.01% or less. In general, S and O are preferably lower because they impair hot workability in Ni alloys.
[0026]
Since the Ni alloy of the present invention is used as a machine structural member for nuclear power, it is particularly necessary to improve the intergranular corrosion resistance. Intergranular corrosion is inferior when the C content is high, so it is necessary to keep the C content low to improve corrosion resistance. The present inventors presume that it is the solid solution C that segregates at the grain boundary that actually affects the grain boundary corrosion. From this, it was considered that the intergranular corrosion resistance is improved by reducing the grain size and decreasing the C content per unit grain interfacial area.
[0027]
As a result of investigation, it was found that a Ni-based alloy having excellent corrosion resistance can be obtained by controlling the crystal grain size and the C content. FIG. 1 is a graph showing the relationship between the C content and the GSNo. With respect to the corrosion rate d (μm / day) in the intergranular corrosion test when the C content and crystal grain size are changed based on the Inconel alloy. The crystal grain size was measured according to JISG0551 after revealing the microstructure by phosphoric acid or oxalic acid electrolysis.
[0028]
In the intergranular corrosion test, a test piece of 3 mm thickness x 15 mm width x 50 mm length was wet-polished to # 800, bent to a radius of 50 mm, and then 50% H 2 SO 4 +83 gFe 2 (SO 4 ) 3 The boil solution was boiled for 24 hours to determine the corrosion rate d. As a result, when the GSNo. Is 2 or more, even when the C content is added to 0.045%, the maximum corrosion rate d is 500 μm / day or less, and the corrosion resistance is good. Preferably, C is 0.043% or less, more preferably 0.040% or less.
[0029]
When 0 <GSNo. ≦ 2, C ≦ [0.0025 × GSNo. + 0.015]% is satisfied, the maximum corrosion rate d is 500 μm / day or less, and the intergranular corrosion resistance is good. When the C content is higher than this, the solid solution C per unit grain interfacial area becomes excessive and the corrosion resistance decreases.
[0030]
When GSNo. ≦ 0, it is necessary to satisfy C ≦ 0.005%. If the C content is higher than this, the solid solution carbon (C) per unit grain interfacial area becomes excessive and the corrosion resistance decreases. However, C is preferably 0.003% or more in order to ensure strength. That is, the above relationship is summarized as follows.
GSNo. ≦ 0, C ≦ 0.005% or less,
When 0 <GSNo. ≤ 2, C ≤ [0.0025 x GSNo. + 0.015]%
For GSNo.> 2, C <0.045%
[0031]
If the crystal grain size is made finer, it is possible to improve the yield strength by itself. However, when a precipitate is present, it becomes possible to further strengthen the precipitation by making the precipitate finer and uniformly dispersing. The addition of Nb, C and N has the effect of improving yield strength by precipitation strengthening and solid solution strengthening. However, when the austenite grain size after hot working (hereinafter simply referred to as crystal grain size) is large, most of the precipitates are coarsened at the grain boundaries, and not only do not contribute to the improvement in yield strength but also reduce the grain boundary strength. Moreover, since the difference between the grain boundary strength and the intragranular strength is increased, the hot workability is lowered.
[0032]
Therefore, in order to control the amount of precipitates per unit grain interfacial area, the inventors of the present invention are more sufficient by limiting the relationship between the crystal grain size, which is an index of grain interfacial area, and Nb / (C + N) to a specific range It was found that a Ni-based alloy having a sufficient yield strength can be obtained. FIG. 2 shows the relationship between the grain size number given to yield strength and Nb / (C + N).
[0033]
In FIG. 2, if the 0.2% proof stress is 240 MPa or more, it satisfies the standard value of Inconel 600, which is a desirable value. Therefore, Nb / (C + N) is Nb / (C + N) ≧ [320−55 × (GSNo.)] / 3 in the range of GSNo. 2 to 5, and Nb / (C + N) ≧ 5 in the range of GSNo. It is desirable that / (C + N) ≧ 15.
[0034]
Since Al acts as a deoxidizer, when added, the oxygen content is reduced and hot workability is improved. FIG. 3 shows the effect of the Al content on the aperture value. However, if Al is present in excess, hot workability is impaired. Therefore, when the influence of the Al content on the range of 0.2% or less on the hot workability of O and S was investigated, an alloy with extremely excellent hot workability was obtained in the region of O ≦ 20ppm and S ≦ 20ppm. . As can be seen from FIG. 3, it is further preferable that Al is 0.1% or less because the hot workability is surely improved. This is because the deoxidation product generated by the addition of Al may involve the cleanliness of the product.
[0035]
As described above, a Ni-based alloy excellent in hot workability, intergranular corrosion resistance and proof stress can be obtained by satisfying each condition.
[0036]
In the present invention, no particular consideration is given to improving hot workability, but generally S (sulfur) and O (oxygen) impair hot workability as described above. That is, S and O are harmful elements that generally segregate at the grain boundaries and embrittle the grain boundaries. Conventionally, the composition of alloy components such as O, S, and Al, which has been difficult to control at a low concentration, can be controlled at a low concentration with recent improvements in smelting technology.
[0037]
A hot tensile test was performed at 1050 ° C. on an alloy based on Inconel 600 alloy with varying O and S contents. The effects of O content and S content on the cross-sectional reduction rate (drawing value) of the test piece before and after the test were investigated. In order to prevent cracking and breakage during hot working such as forging and hot rolling for Ni alloys, the drawing value is at least 60% or more, more desirably 70% or more, and even more desirably 80% or more. Desirable is 90% or more. Therefore, S ≦ 50 ppm and O ≦ 60 ppm are more desirable, and the most desirable ranges are S ≦ 20 ppm and O ≦ 20 ppm.
[0038]
【Example】
The Ni-based alloy having the composition shown in Table 1 shown in FIG. 4 was melted in an atmospheric induction furnace to produce an ingot, and then forged or hot rolled. The obtained hot rolled sheet was subjected to a grain boundary corrosion test, and the maximum corrosion rate d (μm / day) was measured. Moreover, the surface crack generation | occurrence | production state of the obtained hot rolled sheet was observed. The results are shown in Table 1 together with the component composition. In the table, the units of components O and S are ppm by weight, and the others are% by weight. Although not listed in the table, Si is 0.05 to 0.5%, P is 0.001 to 0.01%, and Mn is 0.02 to 0.5%. Sample No. 3 contains 0.0020 wt% B and Sample No. 6 contains 0.0060 wt% B.
[0039]
In Table 1, sample numbers 1 to 9 and 12 have maximum corrosion rates of 500 μm or less. Sample numbers 10, 11, and 13 are over 500 μm, but these are those in which the grain size number and C content are in a specific range. Sample numbers 1 to 6 and 12 to 13 had no surface cracks, and surface cracks occurred in sample numbers 7 to 11. From this, the effect of the present invention is clear.
[0040]
A Ni-based alloy having the composition described in Table 2 shown in FIG. 5 was melted in an atmospheric induction furnace to produce an ingot, and then forged or hot rolled. The obtained hot rolled sheet was subjected to a 0.2% proof stress test. Furthermore, the surface crack generation state of the obtained hot rolled sheet was observed. The results are shown in Table 2 together with the component composition. The notation in Table 2 is the same as in Table 1 above. The unit of 0.2% proof stress is MPa.
[0041]
In Table 2, 0.2% proof stress is 240 MPa or more for sample numbers 1 to 11 and less than 240 MPa for 12-13. Sample numbers 1 to 6 and 12 to 13 had no surface cracks, and surface cracks occurred in sample numbers 7 to 11. From this, the effect of the present invention is clear.
[0042]
An Ni-base alloy having the composition shown in Table 3 shown in FIG. 6 was melted in an atmospheric induction furnace to produce an ingot, and then forged or hot-rolled. Intergranular corrosion tests were performed on the obtained hot rolled sheets to determine the maximum corrosion rate. Moreover, the 0.2% yield strength test of the obtained hot-rolled sheet was performed. Furthermore, the surface crack generation state of the obtained hot rolled sheet was observed. The results are shown in Table 3 together with the component composition. The notations in Table 3 are the same as in Tables 1 and 2 above.
[0043]
In Table 3, 0.2% proof stress is 240 Mpa or more for sample numbers 1 to 11 and less than 240 Mpa for 12 to 13. Similarly, sample numbers 1-9 and 12 have a maximum corrosion rate of 500 μm or less, and sample numbers 10, 11 and 13 exceed 500 μm. Sample numbers 1 to 6 and 12 to 13 had no surface cracks, and surface cracks occurred in sample numbers 7 to 11. From this, the effect of the present invention is clear.
[0044]
【Effect of the invention】
The Ni-based alloy of the present invention is excellent in intergranular corrosion resistance and proof stress, and further in hot workability, and is a useful alloy applicable to various nuclear reactor structural members. Further, since the Ni-based alloy of the present invention is excellent in hot workability, there is little yield loss due to repairs such as cracking and breakage, and greatly contributes to improvement in productivity and production cost.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the crystal grain size number and the C content.
FIG. 2 is a diagram showing the relationship between the crystal grain size number and Nb / (C + N).
FIG. 3 is a diagram showing the influence of the Al content on the aperture value.
FIG. 4 is a diagram showing examples of alloys of the present invention having excellent intergranular corrosion resistance as Table 1.
FIG. 5 is a diagram showing an example of an alloy of the present invention excellent in yield strength as Table 2.
FIG. 6 is a diagram showing an example of an alloy of the present invention excellent in intergranular corrosion resistance and yield strength as Table 3.

Claims (7)

質量%で、下記の成分組成を有することを特徴とするNi基合金。
(a)C:0.045%以下、Fe:3〜25%、Cr:14〜26%、Nb:4%以下、N:0.005〜0.04%、Si:1.0%以下、Al:0.2%以下、P:0.030%以下、Mn:1.0%以下、S:0.03%以下、O:0.01%以下、残部がNiと不可避的不純物であり、
(b)更に、前記Ni基合金を大気誘導炉で溶解してインゴットを溶製し、次いで前記インゴットを少なくとも60%以上の絞り値にて鍛造又は熱間圧延を実施することにより、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が、G.S.No.≦0となる前記鍛造又は熱間圧延の条件では前記成分組成のC量がC≦0.005%、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が0<G.S.No.≦2となる前記鍛造又は熱間圧延の条件では前記成分組成のC量がC≦[0.0025×G.S.No.+0.005]%、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が G.S.No.>2となる前記鍛造又は熱間圧延の条件では前記成分組成のC量がC<0.045%であり、熱間加工後の0.2%耐力が245MPa以上である。
By mass%, Ni base alloy and having a component couples formed below.
(A) C: 0.045% or less, Fe: 3-25%, Cr: 14-26%, Nb: 4% or less, N: 0.005-0.04%, Si: 1.0% or less, Al: 0.2% or less, P: 0.030% or less, Mn: 1.0% or less, S: 0.03% or less, O: 0.01% or less, the balance being Ni and inevitable impurities,
(B) Furthermore, the Ni-based alloy is melted in an atmospheric induction furnace to produce an ingot, and then the ingot is subjected to hot working by forging or hot rolling at a drawing value of at least 60% or more. The subsequent austenite grain size number (GS No.) S. No. In the forging or hot rolling conditions where ≦ 0, the C content of the component composition is C ≦ 0.005%, and the austenite grain size number (GS No.) after hot working is 0 <G. S. No. In the forging or hot rolling conditions where ≦ 2, the C content of the component composition is C ≦ [0.0025 × G. S. No. + 0.005]%, hot austenite grain size number after processing (G.S.No.) is G. S. No. Under the forging or hot rolling conditions of> 2, the C content of the component composition is C <0.045%, and the 0.2% yield strength after hot working is 245 MPa or more.
質量%で、下記の成分組成を有することを特徴とするNi基合金。
(a)C:0.045%以下、Fe:3〜25%、Cr:14〜26%、Nb:4%以下、N:0.005〜0.04%、Si:1.0%以下、Al:0.2%以下、P:0.030%以下、Mn:1.0%以下、S:0.03%以下、O:0.01%以下、残部がNiと不可避的不純物であり、
(b)更に、前記Ni基合金を大気誘導炉で溶解してインゴットを溶製し、次いで前記インゴットを少なくとも60%以上の絞り値にて鍛造又は熱間圧延を実施することにより、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が2〜5の範囲となる前記鍛造又は熱間圧延の条件では前記成分組成のNb/(C+N)はNb/(C+N)≧[320−55×(G.S.No.)]/3であり、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が5を超え6以下の範囲となる前記鍛造又は熱間圧延の条件では前記成分組成のNb/(C+N)はNb/(C+N)≧15であり、熱間加工後の0.2%耐力が245MPa以上である。
By mass%, Ni base alloy and having a component couples formed below.
(a) C: 0.045% or less, Fe: 3-25%, Cr: 14-26%, Nb: 4% or less, N: 0.005-0.04%, Si: 1.0% or less, Al: 0.2% or less, P: 0.030% or less, Mn: 1.0% or less, S: 0.03% or less, O: 0.01% or less, the balance being Ni and inevitable impurities,
(B) Furthermore, the Ni-based alloy is melted in an atmospheric induction furnace to produce an ingot, and then the ingot is subjected to hot working by forging or hot rolling at a drawing value of at least 60% or more. Nb / (C + N) of the component composition is Nb / (C + N) ≧ [320− under the forging or hot rolling conditions in which the subsequent austenite grain size number (GS No.) is in the range of 2 to 5. 55 × (GS No.)] / 3, and the forging or hot rolling of the austenite grain size number (GS No.) after hot working is in the range of more than 5 and 6 or less. Under the conditions, Nb / (C + N) of the component composition is Nb / (C + N) ≧ 15, and the 0.2% proof stress after hot working is 245 MPa or more.
質量%で、下記の成分組成を有することを特徴とするNi基合金。
(a)C:0.045%以下、Fe:3〜25%、Cr:14〜26%、Nb:4%以下、N:0.005〜0.04%、Si:1.0%以下、Al:0.2%以下、P:0.030%以下、Mn:1.0%以下、S:0.03%以下、O:0.01%以下、残部がNiと不可避的不純物であり、
(b)前記Ni基合金を大気誘導炉で溶解してインゴットを溶製し、次いで前記インゴットを少なくとも60%以上の絞り値にて鍛造又は熱間圧延を実施することにより、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が、G.S.No.≦0となる前記鍛造又は熱間圧延の条件では前記成分組成のC量がC≦0.005%、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が0<G.S.No.≦2となる前記鍛造又は熱間圧延の条件では前記成分組成のC量がC≦[0.0025×G.S.No.+0.005]%、
熱間加工後のオーステナイト結晶粒度番号(G.S.No.)がG.S.No.>2となる前記鍛造又は熱間圧延の条件では前記成分組成のC量がC<0.045%であり、
(c)更に、前記Ni基合金を大気誘導炉で溶解してインゴットを溶製し、次いで前記インゴットを少なくとも60%以上の絞り値にて鍛造又は熱間圧延を実施することにより、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が、G.S.No.が2〜5の範囲となる前記鍛造又は熱間圧延の条件では、前記成分組成のNb/(C+N)がNb/(C+N)≧[320−55×(G.S.No.)]/3であり、熱間加工後のオーステナイト結晶粒度番号(G.S.No.)が、G.S.No.が5を超え6以下の範囲となる前記鍛造又は熱間圧延の条件では、前記成分組成のNb/(C+N)がNb/(C+N)≧15であり、
(d)熱間加工後の0.2%耐力が245MPa以上である。
By mass%, Ni base alloy and having a component couples formed below.
(A) C: 0.045% or less, Fe: 3-25%, Cr: 14-26%, Nb: 4% or less, N: 0.005-0.04%, Si: 1.0% or less, Al: 0.2% or less, P: 0.030% or less, Mn: 1.0% or less, S: 0.03% or less, O: 0.01% or less, the balance being Ni and inevitable impurities,
(B) The Ni-based alloy is melted in an atmospheric induction furnace to produce an ingot, and then the ingot is subjected to forging or hot rolling at a drawing value of at least 60% or more, and after hot working The austenite grain size number (GS No.) is G.S. S. No. In the forging or hot rolling conditions where ≦ 0, the C content of the component composition is C ≦ 0.005%, and the austenite grain size number (GS No.) after hot working is 0 <G. S. No. In the forging or hot rolling conditions where ≦ 2, the C content of the component composition is C ≦ [0.0025 × G. S. No. +0.005 ]%,
The austenite grain size number (GS No.) after hot working is G.S. S. No. In the forging or hot rolling conditions where> 2, the C content of the component composition is C <0.045%,
(C) Furthermore, the Ni-based alloy is melted in an air induction furnace to produce an ingot, and then the ingot is subjected to hot working by forging or hot rolling at a drawing value of at least 60% or more. The subsequent austenite grain size number (GS No.) S. No. Nb / (C + N) of the component composition is Nb / (C + N) ≧ [320−55 × (GS No.)] / 3 The austenite grain size number (GS No.) after hot working is G.S. S. No. Nb / (C + N) of the component composition is Nb / (C + N) ≧ 15 under the conditions of forging or hot rolling in which is in the range of more than 5 and 6 or less,
(D) The 0.2% yield strength after hot working is 245 MPa or more.
前記Cの含有量は0.003〜0.045%、前記Nbの含有量は2〜4%、前記Sの含有量は20ppm以下、前記Oの含有量は20ppm以下であることを特徴とする請求項1〜3のいずれかに記載のNi基合金。  The C content is 0.003 to 0.045%, the Nb content is 2 to 4%, the S content is 20 ppm or less, and the O content is 20 ppm or less. The Ni-based alloy according to any one of claims 1 to 3. 前記Alの含有量が0.1%以下であることを特徴とする請求項1〜4のいずれかに記載のNi基合金。  The Ni-based alloy according to any one of claims 1 to 4, wherein the Al content is 0.1% or less. 更に、Bを0.01%以下含有することを特徴とする請求項1〜5のいずれかに記載のNi基合金。  The Ni-based alloy according to any one of claims 1 to 5, further comprising 0.01% or less of B. 前記Ni基合金が機械構造用であることを特徴とする請求項1〜6のいずれかに記載のNi基合金。  The Ni-based alloy according to any one of claims 1 to 6, wherein the Ni-based alloy is for a mechanical structure.
JP2000370945A 2000-12-06 2000-12-06 Ni-base alloy for machine structures Expired - Lifetime JP4993328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000370945A JP4993328B2 (en) 2000-12-06 2000-12-06 Ni-base alloy for machine structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000370945A JP4993328B2 (en) 2000-12-06 2000-12-06 Ni-base alloy for machine structures

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010277189A Division JP2011122247A (en) 2010-12-13 2010-12-13 Method of producing ni-based alloy for machine structure

Publications (2)

Publication Number Publication Date
JP2002173721A JP2002173721A (en) 2002-06-21
JP4993328B2 true JP4993328B2 (en) 2012-08-08

Family

ID=18840749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000370945A Expired - Lifetime JP4993328B2 (en) 2000-12-06 2000-12-06 Ni-base alloy for machine structures

Country Status (1)

Country Link
JP (1) JP4993328B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023346A (en) * 2003-06-30 2005-01-27 Nippon Yakin Kogyo Co Ltd METHOD OF REFINING Ni BASED ALLOY HAVING EXCELLENT HOT WORKABILITY
JP5256727B2 (en) * 2007-12-25 2013-08-07 大同特殊鋼株式会社 Grain boundary appearance method of Cr-Mo-V hot die steel
SE533124C2 (en) * 2008-05-28 2010-06-29 Westinghouse Electric Sweden Nuclear fuel rods spreader
JP5155141B2 (en) * 2008-12-26 2013-02-27 日本冶金工業株式会社 Method for refining Ni-base alloy with excellent hot workability
CN112575227B (en) * 2020-11-02 2021-12-07 抚顺特殊钢股份有限公司 Manufacturing method of high-silicon nickel-based alloy cold-rolled sheet
CN114523065B (en) * 2021-12-30 2024-02-20 上海新闵新能源科技股份有限公司 Method for manufacturing middle ring of in-pile member

Also Published As

Publication number Publication date
JP2002173721A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
EP2199420B1 (en) Austenitic stainless steel
KR101291419B1 (en) Ni-BASED HEAT-RESISTANT ALLOY
EP1867740B1 (en) Low thermal expansion Ni-base superalloy
EP2199419B1 (en) Austenitic stainless steel
EP2725112B1 (en) Carburization-resistant metal material and uses of the carburization-resistant metal material
JP6075349B2 (en) Ferritic stainless steel
EP2048255A1 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
EP2412837A1 (en) Ferritic stainless steel plate having excellent heat resistance and excellent workability
WO2018151222A1 (en) Ni-BASED HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING SAME
JP6675846B2 (en) Fe-Cr-Ni alloy with excellent high-temperature strength
WO2009154161A1 (en) Heat-resistant austenitic alloy, heat-resistant pressure-resistant member comprising the alloy, and process for producing the same
CN108026623B (en) Ferritic stainless steel
KR20120099152A (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
EP3445884B1 (en) Ferritic alloy
JP4993328B2 (en) Ni-base alloy for machine structures
JPS6184348A (en) Ni alloy having superior resistance to intergranular corrosion and stress corrosion cracking and superior hot workability
EP2993243B1 (en) High-strength ni-base alloy
JP4683712B2 (en) Ni-base alloy with excellent hot workability
EP0669405B1 (en) Heat resisting steel
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
WO2019151124A1 (en) Ferritic stainless steel
JP2011094237A (en) Ni BASED ALLOY HAVING EXCELLENT HOT WORKABILITY
JP2011122247A (en) Method of producing ni-based alloy for machine structure
JP3687315B2 (en) B-containing stainless steel and method for producing hot rolled sheet thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824

AA92 Notification of invalidation

Free format text: JAPANESE INTERMEDIATE CODE: A971092

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110111

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4993328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term