JPH07103263B2 - Silica for filling sealing resin - Google Patents

Silica for filling sealing resin

Info

Publication number
JPH07103263B2
JPH07103263B2 JP63091248A JP9124888A JPH07103263B2 JP H07103263 B2 JPH07103263 B2 JP H07103263B2 JP 63091248 A JP63091248 A JP 63091248A JP 9124888 A JP9124888 A JP 9124888A JP H07103263 B2 JPH07103263 B2 JP H07103263B2
Authority
JP
Japan
Prior art keywords
silica
average particle
particle size
filling
coarse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63091248A
Other languages
Japanese (ja)
Other versions
JPH01263131A (en
Inventor
幸裕 和田
邦彦 中村
正行 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP63091248A priority Critical patent/JPH07103263B2/en
Publication of JPH01263131A publication Critical patent/JPH01263131A/en
Publication of JPH07103263B2 publication Critical patent/JPH07103263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、IC封止樹脂充填用シリカに係り、特に熱硬
化性樹脂に対して優れた充填性及び流動性を有するIC封
止材フィラー用シリカに関する。
TECHNICAL FIELD The present invention relates to silica for filling an IC encapsulating resin, and particularly to an IC encapsulating material filler having excellent filling property and fluidity for a thermosetting resin. Silica for use.

[従来の技術] 従来、この種の封止樹脂充填用シリカとしては、平均粒
径7〜30μmの破砕又は球状シリカが一般に使用されて
いる。
[Prior Art] Conventionally, crushed or spherical silica having an average particle size of 7 to 30 μm is generally used as this type of sealing resin-filling silica.

しかしながら、このような粒径を有する破砕又は球状シ
リカは、これを樹脂中にフィラーとして充填する場合、
3μm以下の粒子間空隙が約20容量%存在し、この樹脂
中へのフィラー充填率が必然的に80容量%以下に制限さ
れてしまうほか、同じフィラー充填率でも粒子間空隙の
大きいものは樹脂とシリカのコンパウンドの良好な流動
性が得られず、高添加率でシリカを添加することができ
ず、IC封止材とした場合にその熱膨張係数や吸水率の低
下を図り、耐湿性の向上を図ることが難しくなる。
However, crushed or spherical silica having such a particle size, when filled as a filler in the resin,
About 20% by volume of interparticle voids with a size of 3 μm or less is present, and the filler filling rate in this resin is necessarily limited to 80% by volume or less. The good fluidity of the compound of silica and silica cannot be obtained, silica cannot be added at a high addition rate, and when it is used as an IC encapsulant, its coefficient of thermal expansion and water absorption are reduced, and moisture resistance is improved. It will be difficult to improve.

また、平均粒径1μm以上の溶融石英粉末20〜97重量%
に平均粒径10〜800mμの球状珪酸質粉末80〜3重量%を
混合することも提案されており(特開昭59−204,633号
公報)、具体的にはその実施例として平均粒径25μmの
溶融石英粉末と平均粒径20mμのアエロジル(球状珪酸
質粉末)とを混合使用することが行われている。
20 to 97% by weight of fused silica powder having an average particle size of 1 μm or more
It has also been proposed to mix 80 to 3% by weight of spherical siliceous powder having an average particle size of 10 to 800 mμ (JP-A-59-204,633). Fused silica powder and Aerosil (spherical siliceous powder) having an average particle size of 20 mμ are mixed and used.

しかしながら、この方法においても、平均粒径20mμの
アエロジルではその粒径が小さすぎ、このためにこれら
微粒子間に働くファンデルワルス力の影響が大きくなり
すぎ、かえってその充填性が低下するという問題があ
り、しかも、このアエロジルについては、その製法上の
理由から粒径が100mμ以上のものが得られない。
However, even in this method, the particle size of Aerosil having an average particle size of 20 mμ is too small, and therefore, the influence of the Van der Waals force acting between these particles becomes too large, and the filling property is rather lowered. However, regarding this Aerosil, it is not possible to obtain a particle size of 100 mμ or more because of its manufacturing method.

ところで、充填シリカとして破砕シリカを使用する場
合、その粉砕の程度が異なるものを適宜混合して粒度調
整を行うことにより、ある程度の充填性を得ることがで
きるが、この場合においても充分に満足できるものでは
なかった。
By the way, when crushed silica is used as the packed silica, it is possible to obtain a certain degree of packing property by appropriately mixing particles having different degrees of crushing to adjust the particle size, but in this case also, it is sufficiently satisfactory. It wasn't something.

[発明が解決しようとする課題] 本発明者らは、かかる観点に鑑みて鋭意研究を重ねた結
果、封止樹脂充填用シリカとしてある特定の粒度分布と
粒子形状とを有するシリカを選択することにより、樹脂
中、特に熱硬化性樹脂中への充填性及び流動性を顕著に
改善できることを見出し、本発明に到達した。
[Problems to be Solved by the Invention] As a result of intensive studies in view of such viewpoints, the present inventors have selected silica having a specific particle size distribution and particle shape as sealing resin-filling silica. According to the above, it was found that the filling property and the fluidity in the resin, particularly in the thermosetting resin can be remarkably improved, and the present invention has been completed.

従って、本発明の目的は、封止樹脂に対して優れた充填
性と流動性とを有する封止樹脂充填用シリカを提供する
ことにある。
Therefore, an object of the present invention is to provide a sealing resin-filling silica having excellent filling properties and fluidity with respect to the sealing resin.

[課題を解決するための手段] すなわち、本発明は、平均粒径Dが7〜30μmの範囲の
破砕若しくは球状の粗粒シリカに、平均粒径dが0.1〜
3μmの範囲の単分散球状微粒シリカを全体の5〜40重
量%混合してなる封止樹脂充填用シリカである。
[Means for Solving the Problems] That is, according to the present invention, crushed or spherical coarse silica having an average particle diameter D in the range of 7 to 30 μm has an average particle diameter d of 0.1 to
A silica for filling a sealing resin, which is obtained by mixing 5 to 40% by weight of monodisperse spherical fine silica particles in the range of 3 μm.

本発明で使用する粗粒シリカとしては、それが粉砕シリ
カであっても、また、球状シリカであってもよいが、そ
の平均粒径Dについては7〜30μm、好ましくは8〜15
μmの範囲のものであり、平均粒径が7μmより小さい
と樹脂コンパウンドの流動性が急激に低下し、また、30
μmを越えるとこの粗粒シリカが被封止物の表面を傷付
け易く、特にIC封止の場合にはICの細密なパターンをシ
リカ粒子の角で損傷し、ボンディングワイヤーのワイヤ
ー流れやワイヤーオープンを引起こす場合がある。な
お、粉砕シリカの場合には、上述したようにその粒度調
整を行ってある程度の充填性を達成することができる
が、球状シリカの場合には、このような粒度調整が困難
なので、本発明の効果がより効果的に発揮される。
The coarse-grain silica used in the present invention may be pulverized silica or spherical silica, but the average particle diameter D thereof is 7 to 30 μm, preferably 8 to 15 μm.
When the average particle size is less than 7 μm, the fluidity of the resin compound decreases sharply.
If the particle size exceeds μm, the coarse silica particles are likely to damage the surface of the object to be encapsulated, and especially in the case of IC encapsulation, the fine pattern of the IC is damaged by the corners of the silica particles, causing wire flow and wire opening of the bonding wire. It may cause it. Incidentally, in the case of pulverized silica, it is possible to achieve a certain packing property by adjusting the particle size as described above, but in the case of spherical silica, such particle size adjustment is difficult, so that The effect is exerted more effectively.

このような平均粒径D(7〜30μm)の粗粒シリカに配
合される単分散球状微粒シリカは、その平均粒径dが0.
1〜3μm、好ましくは0.2〜1μmの範囲であることが
必要であり、また、その配合割合が全体の5〜40重量
%、好ましくは10〜30重量%である。平均粒径dが0.1
μmより小さいと微粒子間の凝集傾向が増して充填率が
低下し、反対に、平均粒径dが3μmより大きいと粗粒
シリカが形成する空隙よりも大きくなって空隙充填効果
が損なわれるという問題が生じる。また、配合割合が5
重量%より少ないと粗粒シリカの空隙を埋める上で量的
に不足し、反対に、配合割合が40重量%より多くなると
粗粒シリカの空隙より必要以上に過剰になるという問題
が生じる。
The average particle size d of the monodisperse spherical fine particle silica blended with the coarse particle silica having such an average particle size D (7 to 30 μm) is 0.1.
It is necessary to be in the range of 1 to 3 μm, preferably 0.2 to 1 μm, and the blending ratio is 5 to 40% by weight, preferably 10 to 30% by weight of the whole. Average particle size d is 0.1
If it is smaller than μm, the tendency of agglomeration between the fine particles is increased and the filling rate is lowered. On the contrary, if the average particle diameter d is larger than 3 μm, it is larger than the void formed by the coarse silica and the void filling effect is impaired. Occurs. Also, the mixing ratio is 5
If it is less than wt%, the amount will be insufficient in filling the voids of the coarse-grained silica, and conversely, if the blending ratio is more than 40 wt%, there will be a problem that it will be excessively larger than the voids of the coarse-grained silica.

さらに、本発明においては、より一層の高充填性と高流
動性を達成するために、上記粗粒シリカの平均粒径Dと
微粒シリカの平均粒径dの間に、0.02D<d<0.1Dの関
係、より好ましくは0.03D<d<0.07Dの関係が存在する
のがよい。このような関係を有する粗粒シリカと微粒シ
リカとを使用し、その配合割合を上記範囲内から選択す
ることにより、粗粒シリカの充填の際に形成される空隙
を単分散球状微粒シリカで密に埋めることができ、封止
樹脂、好ましくは熱硬化性樹脂中にIC封止材用フィラー
としてシリカを高密度充填することができ、しかも、得
られたコンパウンドの高流動性を可能とすることができ
る。
Further, in the present invention, in order to achieve higher packing property and higher fluidity, 0.02D <d <0.1 between the average particle diameter D of the coarse silica and the average particle diameter d of the fine silica. There should be a relationship of D, more preferably a relationship of 0.03D <d <0.07D. By using the coarse-grained silica and the fine-grained silica having such a relationship, and selecting the compounding ratio from the above range, the voids formed at the time of filling the coarse-grained silica are densely packed with the monodisperse spherical fine-grained silica. That can be filled with silica and can be densely filled with silica as a filler for an IC encapsulant in a sealing resin, preferably a thermosetting resin, and yet enables high fluidity of the obtained compound. You can

なお、空隙充填の目的で不定形の破砕微粒シリカを用い
ることも考えられるが、単分散球状微粒シリカに比べて
その充填性に劣り、また、同じ球状微粒シリカでも広い
分布を持ったシリカを使用することも考えられるが、そ
の粒度分布により粗粒シリカとの最適配合割合を決定す
るのが難しくなる。
Although it is possible to use irregularly crushed finely divided silica for the purpose of filling voids, its filling property is inferior to that of monodispersed spherical finely divided silica, and silica having a wide distribution is used even for the same spherical finely divided silica. However, it is difficult to determine the optimum blending ratio with the coarse-grained silica due to the particle size distribution.

そして、本発明で使用するこのような単分散球状微粒シ
リカの製造法としては、例えば、シリコンアルコラート
をアルコール−水−アンモニア溶液中で加水分解し、得
られた球状シリカ粒子を乾燥し焼成して製造する方法
(W.Stober等、J.Colloid Interface Sci.,Vol.26,p62
(1968))があり、この方法により平均粒径0.1〜3μ
mで比表面積30m2/g以下の単分散球状微粒シリカを製造
することができる。このようにして得られた単分散球状
微粒シリカは、それ自体ではたとえ六方最密充填して
も、なお約25%の空隙率が存在して高充填性は得られな
いが、粗粒シリカと適当な割合、すなわち粗粒シリカに
対してこの微粒シリカを5〜40重量%の範囲で配合する
ことにより、優れた充填性と流動性とを得ることができ
る。
Then, as a method for producing such monodisperse spherical fine silica used in the present invention, for example, silicon alcoholate is hydrolyzed in an alcohol-water-ammonia solution, and the obtained spherical silica particles are dried and calcined. Manufacturing method (W. Stober et al., J. Colloid Interface Sci., Vol.26, p62
(1968)), the average particle size is 0.1 to 3μ by this method.
It is possible to produce monodisperse spherical fine silica particles having a specific surface area of 30 m 2 / g or less in m. The monodisperse spherical fine silica particles obtained in this manner, even if they are hexagonal close-packed by themselves, still have a porosity of about 25% and high packing property cannot be obtained. Excellent filling properties and fluidity can be obtained by adding an appropriate ratio, that is, the fine silica particles to the coarse silica particles in the range of 5 to 40% by weight.

また、上記粗粒シリカと単分散球状微粒シリカの混合に
際しては、ボールミルやヘンシェルミキサーが適してい
るが、ボールミルを使用する場合には単分散球状シリカ
の破砕が起らないようにボールとしてプラスチックボー
ルを使用する必要がある。
In addition, when mixing the coarse-grained silica and the monodisperse spherical fine-grained silica, a ball mill or a Henschel mixer is suitable, but when a ball mill is used, a plastic ball is used as a ball so that crushing of the monodisperse spherical silica does not occur. Need to use.

本発明の充填用シリカは、種々の樹脂、例えばエポキシ
樹脂、ポリイミド樹脂等にそのIC封止材用フィラーとし
て配合することができ、また、その配合方法としては、
従来公知の封止材用シリカと同様に、加熱ロール等の手
段で混練する方法等を採用することができる。
Filling silica of the present invention, various resins, for example, epoxy resin, can be blended as a filler for the IC encapsulant resin such as a polyimide resin, as a blending method,
As with the conventionally known silica for sealing material, a method of kneading with a means such as a heating roll can be adopted.

[実施例] 以下、実施例及び比較例に基づいて、本発明を具体的に
説明する。
[Examples] Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples.

実施例1〜6並びに比較例1〜4 エポキシ当量200のオルソクレゾールノボラックエポキ
シ樹脂(エポキシ樹脂A)80重量部、臭素化フェノール
ノボラックエポキシ樹脂(エポキシ樹脂B)20重量部、
フェノール当量105のフェノールノボラック樹脂(硬化
剤)50重量部、2−メチルイミダゾール(硬化促進剤)
0.5重量部、カルナバワックス(離型剤)1重量部、三
酸化アンチモン(難燃剤)4重量部、γ−グリシドキシ
プロピルトリメトキシシラン(カップリング剤)1重量
部及びカーボンブラック(着色剤)1重量部と、平均粒
径16μmの破砕シリカ(シリカA)、平均粒径7μmの
破砕シリカ(シリカB)、平均粒径1.0μmの単分散球
状シリカ(シリカC)、平均粒径0.2μmの単分散球状
シリカ(シリカD)及び平均粒径1.0μmの破砕微粒シ
リカ(シリカE)とを第1表に示す割合で配合し、加熱
ロールで混練し、冷却した後粉砕し、各実施例及び比較
例のエポキシ樹脂組成物を得た。
Examples 1 to 6 and Comparative Examples 1 to 4 80 parts by weight of orthocresol novolac epoxy resin (epoxy resin A) having an epoxy equivalent of 200, 20 parts by weight of brominated phenol novolac epoxy resin (epoxy resin B),
50 parts by weight of phenol novolac resin (curing agent) with phenol equivalent of 105, 2-methylimidazole (curing accelerator)
0.5 parts by weight, carnauba wax (release agent) 1 part by weight, antimony trioxide (flame retardant) 4 parts by weight, γ-glycidoxypropyltrimethoxysilane (coupling agent) 1 part by weight and carbon black (colorant) 1 part by weight, crushed silica having an average particle size of 16 μm (silica A), crushed silica having an average particle size of 7 μm (silica B), monodispersed spherical silica having an average particle size of 1.0 μm (silica C), having an average particle size of 0.2 μm Monodispersed spherical silica (silica D) and crushed finely divided silica (silica E) having an average particle size of 1.0 μm were blended in the proportions shown in Table 1, kneaded with a heating roll, cooled and then pulverized to obtain each Example and The epoxy resin composition of the comparative example was obtained.

これら各実施例及び比較例のエポキシ樹脂組成物につい
て、そのスパイラルフローとゲルタイムを測定し、樹脂
中でのシリカの充填性と得られたエポキシ樹脂組成物の
流動性とを評価した。結果を第1表に示す。
The spiral flow and gel time of the epoxy resin compositions of these Examples and Comparative Examples were measured, and the filling property of silica in the resin and the fluidity of the obtained epoxy resin composition were evaluated. The results are shown in Table 1.

なお、スパイラルフローはEMMI−1−66法に従って測定
し、また、ゲルタイムはJIS K−6911法に従って175℃で
測定した。
The spiral flow was measured according to the EMMI-1-66 method, and the gel time was measured at 175 ° C according to the JIS K-6911 method.

実施例1及び3は平均粒径16μmの粗粒シリカに平均粒
径1μmの単分散球状微粒シリカをブレンドした場合で
あり、比較例1よりもスパイラルフローが長いが、実施
例2ではブレンドした単分散球状微粒シリカが小さすぎ
るために効果が少ない。また、実施例4は平均粒径7μ
mの粗粒シリカに平均粒径1μmの単分散球状微粒シリ
カをブレンドした場合であり、微粒シリカが大きすぎて
効果が少ない。実施例5及び6は同じ平均粒径7μmの
粗粒シリカに平均粒径0.3μmの単分散球状微粒シリカ
をブレンドしているが、比較例2と比べ流動性が向上し
ている。流動性の向上はシリカの充填性が向上したこと
による。
In Examples 1 and 3, coarse silica particles having an average particle size of 16 μm were blended with monodisperse spherical fine particle silica particles having an average particle size of 1 μm, and the spiral flow was longer than that of Comparative Example 1, but in Example 2, the blended single particles were blended. Since the dispersed spherical fine particle silica is too small, the effect is small. In Example 4, the average particle size is 7μ.
This is a case in which monodisperse spherical fine silica particles having an average particle diameter of 1 μm are blended with m coarse silica particles, and the effect is small because the fine silica particles are too large. In Examples 5 and 6, the same coarse particle silica having an average particle size of 7 μm was blended with monodisperse spherical fine particle silica having an average particle size of 0.3 μm, but the fluidity was improved as compared with Comparative Example 2. The improvement in fluidity is due to the improvement in the filling property of silica.

なお、粗粒シリカ、すなわちシリカA及びシリカBと、
単分散球状シリカ(即ち、シリカC及びD)とを、ま
た、破砕微粒シリカ(即ち、シリカE)とをそれぞれ種
々の組合せで配合した場合について、そのブレンドによ
る流動性向上効果の有無を調べた。結果を第2表に示
す。なお、第2表において、ブレンドによる流動性向上
効果がある場合を○、少ない場合を△として表した。
In addition, coarse-grained silica, that is, silica A and silica B,
When the monodispersed spherical silica (that is, silica C and D) and the crushed fine particle silica (that is, silica E) were mixed in various combinations, the presence or absence of the fluidity improving effect by the blend was examined. . The results are shown in Table 2. In Table 2, the case where the fluidity-improving effect by the blending is exhibited is indicated by ◯, and the case where the blending effect is small is indicated by Δ.

[発明の効果] 本発明の封止樹脂充填用シリカは、封止樹脂中への充填
性及びこれを使用して調製された封止樹脂組成物の成形
時の流動性が著しく向上し、これによって未充填、ボイ
ド発生等の成形性の問題を解決でき、また、シリカの高
密度充填により熱膨張係数や吸水率を小さくし、熱応力
や水分の問題を解決することができる。
[Effects of the Invention] The silica for sealing resin filling of the present invention significantly improves the filling property into the sealing resin and the fluidity at the time of molding of the sealing resin composition prepared using the same. Can solve the problems of moldability such as unfilling and generation of voids, and can reduce the thermal expansion coefficient and water absorption rate by high density packing of silica to solve the problems of thermal stress and moisture.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野沢 正行 福岡県北九州市小倉北区中井4丁目7―9 ―103 (56)参考文献 特開 昭59−22955(JP,A) 特開 昭61−254619(JP,A) 特開 昭63−297436(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Masayuki Nozawa Inventor Masayuki Nozawa 4-7-9-9 Nakai, Kokurakita-ku, Kitakyushu City, Fukuoka (56) References JP-A-59-22955 (JP, A) JP-A-61- 254619 (JP, A) JP-A-63-297436 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】平均粒径Dが7〜30μmの範囲の破砕若し
くは球状の粗粒シリカに、平均粒径dが0.1〜3μmの
範囲の単分散球状微粒シリカを全体の5〜40重量%混合
してなることを特徴とする封止樹脂充填用シリカ。
1. A crushed or spherical coarse silica having an average particle diameter D in the range of 7 to 30 μm is mixed with 5 to 40% by weight of monodispersed spherical fine silica having an average particle diameter d in the range of 0.1 to 3 μm. A silica for filling a sealing resin, characterized in that
【請求項2】粗粒シリカの平均粒径Dと単分散球状微粒
シリカの平均粒径dとの間に0.02D<d<0.1Dの関係が
ある請求項1記載の封止樹脂充填用シリカ。
2. The sealing resin-filling silica according to claim 1, wherein the average particle diameter D of the coarse silica particles and the average particle diameter d of the monodisperse spherical fine silica particles have a relationship of 0.02D <d <0.1D. .
JP63091248A 1988-04-15 1988-04-15 Silica for filling sealing resin Expired - Lifetime JPH07103263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63091248A JPH07103263B2 (en) 1988-04-15 1988-04-15 Silica for filling sealing resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63091248A JPH07103263B2 (en) 1988-04-15 1988-04-15 Silica for filling sealing resin

Publications (2)

Publication Number Publication Date
JPH01263131A JPH01263131A (en) 1989-10-19
JPH07103263B2 true JPH07103263B2 (en) 1995-11-08

Family

ID=14021121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63091248A Expired - Lifetime JPH07103263B2 (en) 1988-04-15 1988-04-15 Silica for filling sealing resin

Country Status (1)

Country Link
JP (1) JPH07103263B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4219287A1 (en) * 1992-06-12 1993-12-16 Merck Patent Gmbh Inorganic fillers and organic matrix materials with refractive index adjustment
JP4112125B2 (en) * 1999-08-13 2008-07-02 電気化学工業株式会社 Method for producing fine spherical silica powder
JP2002201339A (en) * 2000-12-28 2002-07-19 Toagosei Co Ltd Particulate silica composition and epoxy resin composition comprising the same
WO2003101164A1 (en) 2002-05-23 2003-12-04 3M Innovative Properties Company Nanoparticle filled underfill
EP1584989B1 (en) * 2004-03-23 2011-09-21 Seiko Epson Corporation Use of a toner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922955A (en) * 1982-07-29 1984-02-06 Toshiba Chem Corp Resin composition for sealing semiconductor
JPS61254619A (en) * 1985-05-07 1986-11-12 Shin Etsu Chem Co Ltd Epoxy resin composition for encapsulation of semiconductor

Also Published As

Publication number Publication date
JPH01263131A (en) 1989-10-19

Similar Documents

Publication Publication Date Title
KR100251853B1 (en) Epoxy resin composition and semiconductor device encapsulated therewith
KR100497456B1 (en) Epoxy Resin Composition
JPH1067883A (en) Inorganic filler, epoxy resin composition, and semiconductor device
JPH07103263B2 (en) Silica for filling sealing resin
JP2853550B2 (en) Epoxy resin composition, method for producing the same, and semiconductor device using the same
JPH01266152A (en) Silica used as filler in sealing resin
JP2005239892A (en) Resin composition for semiconductor encapsulation and semiconductor device using the same
JPS6296568A (en) Semiconductor sealing resin composition
JPS6296567A (en) Semiconductor sealing resin composition
JP2008184584A (en) Resin composition for sealing semiconductor and semiconductor device obtained using the same
JP2000319633A (en) Silica filter for epoxy resin sealing material
JPS6296569A (en) Semiconductor sealing resin composition
JP2593843B2 (en) Semiconductor device
JP2505485B2 (en) Additive for semiconductor resin encapsulation
JPH02145416A (en) Fused spherical silica and sealing resin composition using the same
JP3375107B2 (en) Epoxy resin composition for semiconductor encapsulation
JP4040715B2 (en) Filler and semiconductor sealing resin composition
JP2601255B2 (en) Filler for semiconductor resin sealing
JP2925088B2 (en) Fine fused spherical silica and resin composition for sealing using the same
JP2000128960A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2008184585A (en) Resin composition for sealing semiconductor and semiconductor device obtained using the same
JPS5991137A (en) Resin composition
JP2003160713A (en) Epoxy resin composition and semiconductor device
JP2586002B2 (en) Epoxy resin sealing material
JPH11166105A (en) Resin composition for semiconductor encapsulation