JPH11166105A - Resin composition for semiconductor encapsulation - Google Patents

Resin composition for semiconductor encapsulation

Info

Publication number
JPH11166105A
JPH11166105A JP33209497A JP33209497A JPH11166105A JP H11166105 A JPH11166105 A JP H11166105A JP 33209497 A JP33209497 A JP 33209497A JP 33209497 A JP33209497 A JP 33209497A JP H11166105 A JPH11166105 A JP H11166105A
Authority
JP
Japan
Prior art keywords
particle size
silica powder
resin composition
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33209497A
Other languages
Japanese (ja)
Other versions
JP3792870B2 (en
Inventor
Minoru Nakao
稔 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP33209497A priority Critical patent/JP3792870B2/en
Publication of JPH11166105A publication Critical patent/JPH11166105A/en
Application granted granted Critical
Publication of JP3792870B2 publication Critical patent/JP3792870B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition for semiconductor encapsulation of an excellent moldability which prevents, on molding, a gold wire deformation, a lead pin deformation and die pad shift as well as molding flash in spite of large amount of a filler used in a manufacture of a thin semiconductor package. SOLUTION: A resin composition for semiconductor encapsulation comprises a thermosetting resin and an inorganic filler. The inorganic filler mainly consists of a silica powder (A) comprising (a1) a super fine silica powder having an average particle size of 0.01-0.5 μm and (a2) a silica powder having a circularity of 0.8 or more and an accumulated particle size distribution which satisfies the conditions described below (the total of (1) to (3 is 100 wt.%). 1) Particles of a particle size of 5.0 μm or less constitute 5-30 wt.%. (2) Particles of a particle size of 48 μm or less constitute 50 wt.% or more. (3) Particles of a particle size of 100 μm or more constitute 5 wt.% or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、成形時のパッケー
ジ内に与える金線流れ、リードピンの変形、ダイパッド
シフト等の問題がなく、かつ成形バリの発生の抑制効果
に優れた成形性を有する半導体封止用樹脂組成物に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor which is free from problems such as gold wire flow, lead pin deformation and die pad shift given to a package at the time of molding, and which has excellent moldability with an excellent effect of suppressing molding burrs. The present invention relates to a sealing resin composition.

【0002】[0002]

【従来の技術】トランジスタ,IC,LSI等の半導体
素子は、外部環境からの保護および半導体素子のハンド
リングを簡易にする観点から、プラスチックパッケージ
等により封止され半導体装置化されている。この種のプ
ラスチックパッケージの代表例としては、デュアルイン
ラインパッケージ(DIP)がある。最近では、電子装
置の携帯性を向上させるために、パッケージの薄型化、
リードピンの微細化を進めた、シンクワッドフラットパ
ッケージ(TQFP)や、シンスモールアウトラインパ
ッケージ(TSOP)等の、パッケージの厚さが1.0
〜1.4mm程度の薄型パッケージが主流になりつつあ
る。
2. Description of the Related Art Semiconductor devices such as transistors, ICs, and LSIs are encapsulated in plastic packages or the like to form semiconductor devices from the viewpoint of protection from external environments and easy handling of the semiconductor devices. A typical example of this type of plastic package is a dual in-line package (DIP). Recently, in order to improve the portability of electronic devices, thinner packages,
Package thickness of 1.0, such as Think Quad Flat Package (TQFP) and Thin Small Outline Package (TSOP), with advanced miniaturization of lead pins
Thin packages of about 1.4 mm are becoming mainstream.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記のよう
な薄型のパッケージについては、成形時での欠陥、すな
わち、金線流れ、リードピンの変形、ダイパッドシフト
等が発生し易いという問題がある。この発生の原因は、
これら薄型パッケージにおいては表面実装工程での耐半
田性を防止するために、無機質充填剤(フィラー)含有
量の多い樹脂組成物を用いて封止することに起因する。
つまり、パッケージの吸湿を抑え、樹脂強度を向上させ
る目的でフィラーの含有量を極限近くまで多量に充填し
た樹脂組成物を用いているためである。このような樹脂
組成物を用いた場合、流動性が著しく低下し、上記のよ
うな成形上の種々の問題を引き起こすこととなる。
However, such a thin package as described above has a problem that defects at the time of molding, that is, gold wire flow, deformation of lead pins, die pad shift, and the like are easily generated. The cause of this occurrence is
This is because these thin packages are sealed with a resin composition containing a large amount of an inorganic filler in order to prevent solder resistance in the surface mounting process.
In other words, this is because a resin composition filled with a large amount of filler to near the limit is used for the purpose of suppressing moisture absorption of the package and improving the resin strength. When such a resin composition is used, the fluidity is remarkably reduced, which causes various problems in molding as described above.

【0004】このような問題を解消するために、フィラ
ーの形状を真球に近い形状にしたり、粒径の大きな粒子
のフィラーを主体とすることで樹脂の流動性を向上させ
ることが検討されている。また、高密度充填を可能にす
るために、Hudsonモデルを応用した粒度設計が用
いられている。
In order to solve such a problem, it has been studied to improve the fluidity of the resin by making the shape of the filler a shape close to a true sphere or by mainly using a filler having a large particle diameter. I have. Further, in order to enable high-density packing, a grain size design applying a Hudson model is used.

【0005】本発明は、このような事情に鑑みなされた
もので、薄型の半導体パッケージの成形において、高充
填のフィラーを用いるにもかかわらず、成形時の金線流
れ、リードピンの変形、ダイパッドシフトの発生が抑制
され、かつ成形バリの発生も抑制された優れた成形性を
有する半導体封止用樹脂組成物の提供をその目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and in the molding of a thin semiconductor package, despite the use of highly filled fillers, the flow of gold wires during molding, deformation of lead pins, and die pad shift. It is an object of the present invention to provide a resin composition for semiconductor encapsulation having excellent moldability, in which generation of molding is suppressed and generation of molding burrs is suppressed.

【0006】[0006]

【課題を解決するための手段】上記目的を解決するため
に、本発明の半導体封止用樹脂組成物は、熱硬化性樹脂
とともに無機質充填剤が含有されてなる半導体封止用樹
脂組成物であって、上記無機質充填剤が、下記のシリカ
粉末(A)を主成分とするものであるという構成をと
る。 (A)下記の(a1)および(a2)からなるシリカ粉
末であって、両者の混合割合〔(a1)/(a2)〕
が、重量比で(a1)/(a2)=0.1/99.9〜
1.0/99.0の範囲に設定されているシリカ粉末。 (a1)平均粒径が0.01〜0.05μmに設定され
た超微細シリカ粉末。 (a2)真円度0.8以上であり、かつその粒度分布が
下記の〜に示す累積粒度分布に設定されているシリ
カ粉末(但し、累積粒度分布の合計は100重量%とな
る)。 粒径5.0μm以下のものが5〜30重量%。 粒径48μm以下のものが50重量%以上。 粒径100μm以上のものが5重量%以下。
Means for Solving the Problems In order to solve the above-mentioned object, a resin composition for semiconductor encapsulation of the present invention is a resin composition for semiconductor encapsulation containing a thermosetting resin and an inorganic filler. In addition, the inorganic filler has a configuration in which the following silica powder (A) is a main component. (A) A silica powder comprising the following (a1) and (a2), and a mixing ratio of both ((a1) / (a2))
Is (a1) / (a2) = 0.1 / 99.9-
Silica powder set in the range of 1.0 / 99.0. (A1) Ultrafine silica powder having an average particle size of 0.01 to 0.05 μm. (A2) Silica powder having a roundness of 0.8 or more and a particle size distribution set to the following cumulative particle size distribution (provided that the total cumulative particle size distribution is 100% by weight). 5 to 30% by weight having a particle size of 5.0 μm or less. Those with a particle size of 48 μm or less are 50% by weight or more. 5% by weight or less of particles having a particle size of 100 μm or more.

【0007】上記目的を達成するために、この発明者
は、半導体装置の封止に用いられる熱硬化性樹脂組成物
の組成を中心に一連の研究を重ねた。その結果、無機質
充填剤として用いられるシリカ粉末として、平均粒径が
0.01〜0.05μmの非常に粒径の細かな超微細シ
リカ粉末〔(a1)〕と、真円度が0.8以上と高く、
かつ累積粒度分布が上記特定の範囲に設定された凹凸の
小さなシリカ粉末〔(a2)〕とを、上記特定の混合割
合(重量比)となるよう混合されたシリカ粉末を用いる
と、上記凹凸の小さなシリカ粉末〔(a2)〕間に上記
粒径の細かな超微細シリカ粉末〔(a1)〕が入り込
み、高密度充填された状態となり、高充填のわりに、流
動性が良好であって、結果、成形時のパッケージ内での
金線流れ、リードピンの変形、ダイパッドシフト等の発
生が抑制され、しかも成形バリの発生が効果的に抑制さ
れることを見出し本発明に到達した。
In order to achieve the above object, the present inventors have conducted a series of studies focusing on the composition of a thermosetting resin composition used for encapsulating a semiconductor device. As a result, as the silica powder used as the inorganic filler, an ultrafine silica powder [(a1)] having a very small average particle diameter of 0.01 to 0.05 μm and a roundness of 0.8 were used. Above and high,
When the silica powder mixed with the silica powder [(a2)] having a small unevenness whose cumulative particle size distribution is set in the above specific range so as to have the above specific mixing ratio (weight ratio), the unevenness of the above unevenness is obtained. The ultrafine silica powder [(a1)] having the above-mentioned fine particle diameter enters between the small silica powder [(a2)] and is in a state of high density packing. The present inventors have found that the flow of gold wires, deformation of lead pins, die pad shift, and the like in the package during molding are suppressed, and that the occurrence of molding burrs is effectively suppressed.

【0008】そして、本発明において、上記(a2)の
シリカ粉末として溶融シリカ粉末を用いるのが好まし
い。
In the present invention, it is preferable to use a fused silica powder as the silica powder (a2).

【0009】[0009]

【発明の実施の形態】つぎに、本発明について詳しく説
明する。
Next, the present invention will be described in detail.

【0010】本発明の半導体封止用樹脂組成物は、熱硬
化性樹脂とともに、特定のシリカ粉末を主成分とする無
機質充填剤を用いることにより得ることができ、通常、
粉末状もしくはこれを打錠したタブレット状になってい
る。なお、本発明において、特定のシリカ粉末を主成分
とする無機質充填剤とは、無機質充填剤が特定のシリカ
粉末のみからなる場合も含める趣旨である。
The resin composition for encapsulating a semiconductor of the present invention can be obtained by using an inorganic filler mainly composed of a specific silica powder together with a thermosetting resin.
It is in the form of a powder or a tablet obtained by compressing it. In the present invention, the term “inorganic filler containing a specific silica powder as a main component” is intended to include the case where the inorganic filler is composed of only a specific silica powder.

【0011】上記熱硬化性樹脂としては、特に限定する
ものではなく、従来公知の各種の熱硬化性樹脂を用いる
ことができる。そのなかでも、エポキシ樹脂が好適に用
いられる。
The thermosetting resin is not particularly limited, and various conventionally known thermosetting resins can be used. Among them, an epoxy resin is preferably used.

【0012】上記エポキシ樹脂は、1分子中に2個以上
のエポキシ基を有するものを用いることが好ましく、例
えば、クレゾールノボラック型エポキシ樹脂,フェノー
ルノボラック型エポキシ樹脂,ビスフェノールA型エポ
キシ樹脂,ビフェニル型エポキシ樹脂があげられる。こ
れらは、単独であるいは2種類以上併せて使用される。
これらのなかでも、エポキシ当量が100〜300,軟
化点が50〜130℃のものが特に好適に用いられる。
さらに、本発明に用いられるエポキシ樹脂としては、上
記条件に加え、耐湿信頼性という観点から、イオン性不
純物および加水分解性イオンの含有量が少ないものほど
特に好ましく用いられる。具体的には、遊離のナトリウ
ムイオン濃度および塩素イオン濃度がそれぞれ5ppm
以下であり、かつ加水分解性の塩素イオン濃度が600
ppm以下のエポキシ樹脂である。
The epoxy resin preferably has two or more epoxy groups in one molecule. For example, cresol novolak epoxy resin, phenol novolak epoxy resin, bisphenol A epoxy resin, biphenyl epoxy resin Resins. These may be used alone or in combination of two or more.
Among them, those having an epoxy equivalent of 100 to 300 and a softening point of 50 to 130 ° C. are particularly preferably used.
Further, as the epoxy resin used in the present invention, in addition to the above-mentioned conditions, from the viewpoint of moisture resistance reliability, those having lower contents of ionic impurities and hydrolyzable ions are particularly preferably used. Specifically, the free sodium ion concentration and the chloride ion concentration are each 5 ppm
Or less and a hydrolyzable chloride ion concentration of 600
ppm or less of epoxy resin.

【0013】上記熱硬化性樹脂としてエポキシ樹脂を用
いる場合、通常、このエポキシ樹脂とともにフェノール
樹脂が用いられる。上記フェノール樹脂はエポキシ樹脂
の硬化剤として作用するものであって、特に限定するも
のではなく各種フェノール樹脂が用いられる。例えば、
フェノールノボラック樹脂があげられ、なかでも、この
フェノールノボラック樹脂として、水酸基当量が70〜
150、軟化点が50〜110℃のものを用いることが
好ましい。
When an epoxy resin is used as the thermosetting resin, a phenol resin is usually used together with the epoxy resin. The phenol resin acts as a curing agent for the epoxy resin, and is not particularly limited, and various phenol resins are used. For example,
Phenol novolak resins, among which, as the phenol novolak resin, a hydroxyl equivalent of 70 to
It is preferable to use those having a softening point of 150 to 150 ° C.

【0014】上記エポキシ樹脂とフェノール樹脂との配
合割合は、上記エポキシ樹脂中のエポキシ基1当量当た
りフェノール樹脂中の水酸基が0.5〜2.0当量とな
るように設定することが好ましい。より好ましくは、
0.8〜1.2当量の範囲である。
The mixing ratio of the epoxy resin and the phenol resin is preferably set such that the hydroxyl group in the phenol resin is 0.5 to 2.0 equivalent per 1 equivalent of the epoxy group in the epoxy resin. More preferably,
It is in the range of 0.8 to 1.2 equivalents.

【0015】そして、上記熱硬化性樹脂とともに用いら
れる、特定のシリカ粉末を主成分とする無機質充填剤に
おいて、上記特定のシリカ粉末(A)は、下記の(a
1)および(a2)からなるシリカ粉末である。
[0015] In the inorganic filler mainly composed of a specific silica powder used together with the thermosetting resin, the specific silica powder (A) has the following (a)
It is a silica powder consisting of 1) and (a2).

【0016】(a1)平均粒径が0.01〜0.05μ
mに設定された超微細シリカ粉末。 (a2)真円度0.8以上であり、かつその粒度分布が
下記の〜に示す累積粒度分布に設定されているシリ
カ粉末(但し、累積粒度分布の合計は100重量%とな
る)。 粒径5.0μm以下のものが5〜30重量%。 粒径48μm以下のものが50重量%以上。 粒径100μm以上のものが5重量%以下。
(A1) The average particle size is 0.01 to 0.05 μm
Ultrafine silica powder set to m. (A2) Silica powder having a roundness of 0.8 or more and a particle size distribution set to the following cumulative particle size distribution (provided that the total cumulative particle size distribution is 100% by weight). 5 to 30% by weight having a particle size of 5.0 μm or less. Those with a particle size of 48 μm or less are 50% by weight or more. 5% by weight or less of particles having a particle size of 100 μm or more.

【0017】上記シリカ粉末(a2)において、真円度
が0.8以上であるとは、つぎに説明する真円度の定義
において、0.8以上となる、より真円に近いものが用
いられるということである。上記真円度は、つぎのよう
にして算出される。すなわち、真円度の測定対象となる
対象物の投影像1〔図1(a)参照〕において、その実
面積をαとし、上記投影像1の周囲の長さをPMとした
場合、上記投影像1と周囲の長さが同じPMとなる真円
の投影像2〔図1(b)参照〕を想定する。そして、上
記投影像2の面積α′を算出する。つぎに、上記投影像
1の実面積αと投影像2の面積α′の比(α/α′)が
真円度を示し、この値(α/α′)は下記の数式(1)
により算出される。したがって、真円度が1.0とは、
この定義からも明らかなように、真円であるといえる。
そして、対象物の周囲に凹凸が多ければ多いほど真円度
は1.0よりも順次小さくなる。
In the above silica powder (a2), a roundness of 0.8 or more is defined as a roundness of 0.8 or more, which is closer to a perfect circle, in the definition of the roundness described below. That is to be done. The roundness is calculated as follows. That is, in a projected image 1 (see FIG. 1 (a)) of an object whose roundness is to be measured, the actual area is α and the length of the periphery of the projected image 1 is PM. Assume a projected image 2 (see FIG. 1 (b)) of a perfect circle having the same PM as the circumference of 1. Then, the area α ′ of the projection image 2 is calculated. Next, the ratio (α / α ′) between the real area α of the projection image 1 and the area α ′ of the projection image 2 indicates roundness, and this value (α / α ′) is calculated by the following equation (1).
Is calculated by Therefore, the roundness of 1.0 is
As is clear from this definition, it can be said that it is a perfect circle.
Then, the more irregularities around the object, the smaller the roundness becomes sequentially smaller than 1.0.

【0018】[0018]

【数1】 (Equation 1)

【0019】また、上記シリカ粉末(a2)の累積粒度
分布において、の粒径5.0μm以下のものについ
て、その粒径の範囲は、0.2μm以上5.0μm以下
の範囲が好適である。また、の粒径48μm以下のも
のが50重量%以上とあるが、より好適には、粒径48
μm以下のものが50〜75重量%の範囲である。そし
て、の粒径100μm以上のものが5重量%以下とあ
るが、より好適には、粒径100μm以上のものが3重
量%以下である。なお、上記に示す累積粒度分布は、例
えば、の粒径48μm以下のものが50重量%以上と
は、このの累積重量%には、の粒径5.0μm以下
のものも含む趣旨である。
In the cumulative particle size distribution of the silica powder (a2), the particle size is preferably 5.0 μm or less, and the range of the particle size is preferably 0.2 μm or more and 5.0 μm or less. The particle size of the particles having a particle size of 48 μm or less is 50% by weight or more.
Those having a size of less than μm are in the range of 50 to 75% by weight. Those having a particle size of 100 μm or more are 5% by weight or less, and those having a particle size of 100 μm or more are more preferably 3% by weight or less. In the cumulative particle size distribution described above, for example, 50% by weight or more of those having a particle size of 48 μm or less means that the cumulative weight% includes those having a particle size of 5.0 μm or less.

【0020】このように、シリカ粉末として、平均粒径
が0.01〜0.05μmの粒径の小さい超微細シリカ
粉末〔(a1)〕と、上記真円度が0.8以上の高真円
度であり、かつ特定の累積粒度分布を有するシリカ粉末
〔(a2)〕を併用するとともに、両者の混合割合を特
定範囲に設定したシリカ粉末(A)を用いることによ
り、上記高真円度である凹凸の小さなシリカ粉末〔(a
2)〕間に上記粒径の小さい超微細シリカ粉末〔(a
1)〕が入り込み、高密度充填された状態となり、高充
填のわりに、流動性が良好であって、結果、成形時のパ
ッケージ内での金線流れ、リードピンの変形、ダイパッ
ドシフト等の発生が抑制され、しかも成形バリの発生が
効果的に抑制されることとなる。
As described above, the ultrafine silica powder [(a1)] having a small average particle diameter of 0.01 to 0.05 μm as the silica powder and the high fineness having a roundness of 0.8 or more are used. The use of silica powder [(a2)] having a roundness and a specific cumulative particle size distribution and using a silica powder (A) in which the mixing ratio of both is set in a specific range allows the high roundness described above. Silica powder with small irregularities [(a
2)] In the meantime, the ultrafine silica powder having a small particle size described above [(a
1)] enters and is in a state of high-density filling, and the fluidity is good in spite of high filling. As a result, gold wire flow in the package at the time of molding, deformation of lead pins, die pad shift and the like occur. It is suppressed, and the generation of molding burrs is effectively suppressed.

【0021】そして、上記平均粒径が0.01〜0.0
5μmの粒径の小さいシリカ粉末(a1)と、真円度が
0.8以上であり、かつ特定の累積粒度分布を有するシ
リカ粉末(a2)の両者の混合割合〔(a1)/(a
2)〕は、重量比で(a1)/(a2)=0.1/9
9.9〜1.0/99.0の範囲に設定する必要があ
る。すなわち、超微細シリカ粉末(a1)が0.1未満
〔シリカ粉末(a2)が99.9を超える〕では、成形
時のバリが多く発生し、逆に超微細シリカ粉末(a1)
が1.0を超える〔シリカ粉末(a2)が99.0未
満〕では、樹脂組成物の流動性が低下し、パッケージ内
の金線流れ,リードピンの変形,ダイパッドシフト等が
発生し易くなるからである。
The average particle size is 0.01 to 0.0
Mixing ratio of silica powder (a1) having a small particle size of 5 μm and silica powder (a2) having a roundness of 0.8 or more and having a specific cumulative particle size distribution [(a1) / (a
2)] is (a1) / (a2) = 0.1 / 9 in weight ratio.
It must be set in the range of 9.9 to 1.0 / 99.0. That is, when the ultrafine silica powder (a1) is less than 0.1 [the silica powder (a2) exceeds 99.9], a lot of burrs are generated during molding, and conversely, the ultrafine silica powder (a1)
Is more than 1.0 [the silica powder (a2) is less than 99.0], the fluidity of the resin composition is reduced, and the flow of gold wires in the package, deformation of lead pins, die pad shift and the like are likely to occur. It is.

【0022】上記特定のシリカ粉末(A)は、例えば、
下記の(x)〜(z)に示す累積粒度分布に設定されて
いるシリカ粉末を混合することにより得ることができ
る。すなわち、下記の(x)〜(z)に示す累積粒度分
布に設定されている各シリカ粉末の混合物が、特定のシ
リカ粉末(A)となる。 (x)真円度が0.8以上であり、平均粒径25〜45
μmの範囲のものが69〜95重量%。 (y)真円度が0.8以上であり、平均粒径0.2〜2
0μmの範囲のものが4〜30重量%。 (z)平均粒径0.01〜0.05μmの範囲のものが
0.1〜1重量%。
The specific silica powder (A) is, for example,
It can be obtained by mixing silica powders set in the following cumulative particle size distributions (x) to (z). That is, a mixture of the silica powders set in the following cumulative particle size distributions (x) to (z) becomes the specific silica powder (A). (X) the circularity is 0.8 or more, and the average particle size is 25 to 45;
69-95% by weight in the range of μm. (Y) the circularity is 0.8 or more, and the average particle size is 0.2 to 2;
4 to 30% by weight in the range of 0 μm. (Z) 0.1 to 1% by weight having an average particle size in the range of 0.01 to 0.05 μm.

【0023】さらに、本発明においては、上記特定のシ
リカ粉末(A)のみで無機質充填剤成分を構成してもよ
いし、上記特定のシリカ粉末(A)以外の無機質充填剤
を併用してもよい。上記特定のシリカ粉末(A)以外の
無機質充填剤としては、アルミナ,窒化アルミニウム,
タルク,炭酸カルシウム等があげられる。このように、
上記特定のシリカ粉末(A)以外の他の無機質充填剤を
併用する場合の他の無機質充填剤の割合は、無機質充填
剤成分全体の10重量%以下となるように設定すること
が好ましい。
Further, in the present invention, the inorganic filler component may be constituted only by the specific silica powder (A), or may be used in combination with an inorganic filler other than the specific silica powder (A). Good. As the inorganic filler other than the specific silica powder (A), alumina, aluminum nitride,
Talc, calcium carbonate and the like. in this way,
When the inorganic filler other than the above specific silica powder (A) is used in combination, the ratio of the other inorganic filler is preferably set to be 10% by weight or less of the entire inorganic filler component.

【0024】上記特定のシリカ粉末(A)を主成分とす
る無機質充填剤の含有量は、エポキシ樹脂組成物全体に
対して70〜95重量%の範囲に設定することが好まし
く、特に好ましくは80〜92重量%である。すなわ
ち、無機質充填剤の含有量が少な過ぎると、パッケージ
の耐半田性が低下する傾向がみられ、逆に多過ぎると流
動性が低下し、パッケージ内のワイヤー流れ,ダイパッ
ドシフト,リードピンの変形が多発する傾向がみられる
からである。
The content of the inorganic filler containing the specific silica powder (A) as a main component is preferably set in the range of 70 to 95% by weight, particularly preferably 80 to 95% by weight, based on the whole epoxy resin composition. ~ 92% by weight. That is, if the content of the inorganic filler is too small, the solder resistance of the package tends to decrease. Conversely, if the content is too large, the flowability decreases, and the wire flow in the package, die pad shift, and deformation of the lead pins are reduced. This is because there is a tendency to occur frequently.

【0025】本発明の半導体封止用樹脂組成物において
は、上記熱硬化性樹脂および特定のシリカ粉末(A)を
主成分とする無機質充填剤以外に、必要に応じて、シラ
ンカップリング剤,硬化促進剤,離型剤,難燃剤,難燃
助剤,カーボンブラック等の着色剤等の各種添加剤が適
宜配合される。
In the resin composition for encapsulating a semiconductor of the present invention, in addition to the above-mentioned thermosetting resin and an inorganic filler mainly composed of a specific silica powder (A), a silane coupling agent, if necessary, Various additives such as a curing accelerator, a release agent, a flame retardant, a flame retardant auxiliary, and a coloring agent such as carbon black are appropriately blended.

【0026】上記シランカップリング剤は、γ−グリシ
ドキシプロピルトリメトキシシラン、β−(3,4−エ
ポキシシクロヘキシル)エチルトリメトキシシラン等が
あげられる。
Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like.

【0027】上記硬化促進剤は、2−メチルイミダゾー
ル等のイミダゾール類,三級アミン類,有機リン化合物
等があげられる。
Examples of the curing accelerator include imidazoles such as 2-methylimidazole, tertiary amines, and organic phosphorus compounds.

【0028】上記離型剤は、ステアリン酸,パルミチン
酸等の長鎖カルボン酸、ステアリン酸亜鉛,ステアリン
酸カルシウム等の長鎖カルボン酸の金属塩、カルナバワ
ックス,モンタンワックス等のワックス類等があげられ
る。
Examples of the release agent include long-chain carboxylic acids such as stearic acid and palmitic acid, metal salts of long-chain carboxylic acids such as zinc stearate and calcium stearate, and waxes such as carnauba wax and montan wax. .

【0029】上記難燃剤は、ノボラック型ブロム化エポ
キシ樹脂,ビスフェノールA型ブロム化エポキシ樹脂等
があげられる。
Examples of the flame retardant include a novolak type brominated epoxy resin and a bisphenol A type brominated epoxy resin.

【0030】上記難燃助剤は、三酸化アンチモン,五酸
化アンチモン等があげられる。
Examples of the flame retardant aid include antimony trioxide and antimony pentoxide.

【0031】本発明の半導体封止用樹脂組成物には、上
記添加剤の他に、さらに、耐湿信頼性テストにおける信
頼性向上を目的として、ハイドロタルサイト類等のイオ
ントラップ剤等を配合してもよい。
The resin composition for encapsulating a semiconductor of the present invention further contains, in addition to the above additives, an ion trapping agent such as hydrotalcite for the purpose of improving reliability in a moisture resistance reliability test. You may.

【0032】本発明の半導体封止用樹脂組成物は、例え
ば、つぎのようにして製造することができる。すなわ
ち、上記熱硬化性樹脂、および、特定のシリカ粉末
(A)を主成分とする無機質充填剤、さらに必要に応じ
て各種の添加剤をそれぞれ適宜の割合で配合し、ミキシ
ングロール機等の混練機により加熱状態で混練して溶融
混合する。ついで、これを室温に冷却した後、公知の手
段によって粉砕し、必要に応じて打錠するという一連の
工程により製造することができる。
The resin composition for semiconductor encapsulation of the present invention can be produced, for example, as follows. That is, the thermosetting resin, the inorganic filler mainly composed of the specific silica powder (A), and various additives as necessary are blended at appropriate ratios, and kneading with a mixing roll machine or the like. It is kneaded in a heated state by a machine and melt-mixed. Then, after cooling to room temperature, it can be manufactured by a series of steps of pulverizing by a known means and tableting as required.

【0033】上記特定のシリカ粉末(A)のうち、シリ
カ粉末(a2)は、例えば、粒度分布、真円度の異なる
数種類のフィラーを所望の粒度分布となるよう適宜に混
合することにより、前述の真円度および累積粒度分布を
備えたシリカ粉末を得ることができる。そして、前記超
微細シリカ粉末(a1)と上記シリカ粉末(a2)とを
先に述べた特定の割合で混合することにより本発明の特
徴的構成である特定のシリカ粉末(A)を得ることがで
きる。
Of the above specific silica powder (A), the silica powder (a2) is prepared by, for example, appropriately mixing several types of fillers having different particle size distributions and roundnesses into a desired particle size distribution. Can be obtained. Then, by mixing the ultrafine silica powder (a1) and the silica powder (a2) at the above-described specific ratio, it is possible to obtain a specific silica powder (A) which is a characteristic configuration of the present invention. it can.

【0034】上記製造方法により得られる半導体封止用
樹脂組成物を用いての半導体素子の封止方法は、特に制
限されるものではなく、通常のトランスファー成形等の
公知のモールド法により行うことができる。これにより
得られた半導体装置は、前記特定のシリカ粉末(A)を
主成分とする無機質充填剤を用いた、高配合にもかかわ
らず優れた成形性を有する樹脂組成物により封止される
ため、成形時の金線流れ、リードピンの変形およびダイ
パッドシフトの発生が抑制され、かつ成形バリの発生も
効果的に抑制された信頼性の高い半導体装置が得られ
る。
The method for encapsulating a semiconductor element using the resin composition for encapsulating a semiconductor obtained by the above-mentioned production method is not particularly limited, and may be carried out by a known molding method such as ordinary transfer molding. it can. The semiconductor device thus obtained is sealed with a resin composition having excellent moldability despite high blending, using an inorganic filler containing the specific silica powder (A) as a main component. In addition, a highly reliable semiconductor device in which the flow of gold wires during molding, the deformation of lead pins, and the occurrence of die pad shift are suppressed, and the occurrence of molding burrs is also effectively suppressed can be obtained.

【0035】つぎに、実施例について比較例と併せて説
明する。
Next, examples will be described together with comparative examples.

【0036】まず、エポキシ樹脂組成物の調製に先立っ
て、下記に示す成分を準備した。
First, prior to the preparation of the epoxy resin composition, the following components were prepared.

【0037】〔エポキシ樹脂〕o−クレゾールノボラッ
ク型エポキシ樹脂(エポキシ当量195、軟化点70
℃)
[Epoxy resin] o-cresol novolak type epoxy resin (epoxy equivalent 195, softening point 70
℃)

【0038】〔フェノール樹脂〕フェノールノボラック
樹脂(水酸基当量105、軟化点83℃)
[Phenol resin] Phenol novolak resin (hydroxyl equivalent 105, softening point 83 ° C)

【0039】〔硬化促進剤〕2−メチルイミダゾール[Curing accelerator] 2-methylimidazole

【0040】〔無機質充填剤A〜E〕まず、粒度分布、
真円度の異なるフィラーを混合することにより、6種類
の溶融シリカ粉末A〜Fを準備した。これら6種類の無
機質充填剤(混合溶融シリカ粉末)A〜Fの真円度およ
び粒度分布の結果を下記の表1に示す。
[Inorganic fillers A to E] First, particle size distribution,
Six types of fused silica powders A to F were prepared by mixing fillers having different roundnesses. The results of roundness and particle size distribution of these six types of inorganic fillers (mixed fused silica powder) A to F are shown in Table 1 below.

【0041】[0041]

【表1】 [Table 1]

【0042】〔超微細シリカ粉末〕平均粒径0.04μ
mのシリカ粉末
[Ultra fine silica powder] Average particle size 0.04μ
m silica powder

【0043】〔シランカップリング剤〕γ−グリシドキ
シプロピルトリメトキシシラン
[Silane coupling agent] γ-glycidoxypropyltrimethoxysilane

【0044】〔離型剤〕カルナバワックス[Releasing agent] Carnauba wax

【0045】〔難燃剤〕ノボラック型ブロム化エポキシ
樹脂(エポキシ当量275、軟化点84℃)
[Flame retardant] Novolak type brominated epoxy resin (epoxy equivalent: 275, softening point: 84 ° C.)

【0046】〔難燃助剤〕三酸化アンチモン[Flame retardant aid] Antimony trioxide

【0047】[0047]

【実施例1〜6、比較例1〜6】下記の表2〜表3に示
す原料を同表に示す割合で配合し、ミキシングロール機
を用いて100℃で3分間混練してシート状組成物を得
た。そして、このシート状組成物を粉砕し、目的とする
粉末状エポキシ樹脂組成物を得た。
Examples 1 to 6 and Comparative Examples 1 to 6 The raw materials shown in the following Tables 2 and 3 were mixed in the proportions shown in the same table and kneaded at 100 ° C. for 3 minutes using a mixing roll machine to form a sheet composition. I got something. Then, the sheet-like composition was pulverized to obtain a target powdery epoxy resin composition.

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】上記各エポキシ樹脂組成物を用いて、スパ
イラルフロー値,成形バリ量,ダイパッドシフト発生
量,金線流れの発生量,ピン変形量を下記の方法に従っ
て測定した。その結果を後記の表4〜表6に示す。
Using each of the above epoxy resin compositions, a spiral flow value, a molding burr amount, a die pad shift generation amount, a gold wire flow generation amount, and a pin deformation amount were measured according to the following methods. The results are shown in Tables 4 to 6 below.

【0051】〔スパイラルフロー値〕EMMI規格に準
じた金型を使用し、175℃×70kg/cm2 の条件
で測定した。
[Spiral Flow Value] The spiral flow value was measured under the conditions of 175 ° C. × 70 kg / cm 2 using a mold conforming to the EMMI standard.

【0052】〔成形バリ〕厚み5μmおよび厚み50μ
mのそれぞれのスリットを備えた各金型を用い、175
℃×70kg/cm2 の成形条件で成形し、エポキシ樹
脂組成物の流動長を測定した。
[Molding burr] 5 μm thick and 50 μm thick
175 using each mold with a respective slit of m
Molding was performed under molding conditions of 70 ° C. × 70 kg / cm 2 , and the flow length of the epoxy resin composition was measured.

【0053】〔ダイパッドシフト発生量〕上記各エポキ
シ樹脂組成物を用いて、図2に示す形状の、半導体チッ
プ15が搭載された10mm角のダイパッド10を有す
る144ピン−シンクワッドフラットパッケージ(14
4p−TQFP:大きさ20mm×20mm×厚み1.
4mm)11を成形し、このパッケージ11を切断(一
点鎖線で切断面を示す)して、その切断面を観察し、ダ
イパッドの設計値との差によりダイパッドの変形量を測
定した。すなわち、図3(a)に示すように、ダイパッ
ドシフトが発生した状態のパッケージについて、ダイパ
ッド10の四隅の下の樹脂層の厚み(厚みaμm)を測
定した。一方、図3(b)に示すように、ダイパッドシ
フトが発生してない正常な状態のパッケージにおいて、
ダイパッド10の四隅の下の樹脂層の厚み(厚みbμ
m)を測定した。このような測定をダイパッド10の四
隅全てで行い、これら測定値と上記正常品との差(a−
b)を絶対値で求め、これを平均値で示した。
[Amount of Die Pad Shift] Using each of the above epoxy resin compositions, a 144-pin sink quad flat package (14) having a 10 mm square die pad 10 having a shape shown in FIG.
4p-TQFP: size 20 mm x 20 mm x thickness 1.
4 mm), the package 11 was cut (indicated by a dashed-dotted line indicates the cut surface), the cut surface was observed, and the amount of deformation of the die pad was measured based on the difference from the design value of the die pad. That is, as shown in FIG. 3A, the thickness (thickness a μm) of the resin layer under the four corners of the die pad 10 was measured for the package in which the die pad shift occurred. On the other hand, as shown in FIG. 3B, in a package in a normal state where no die pad shift occurs,
The thickness (thickness bμ) of the resin layer below the four corners of the die pad 10
m) was measured. Such a measurement is performed at all four corners of the die pad 10, and the difference between these measured values and the normal product (a-
b) was obtained as an absolute value, and this was shown as an average value.

【0054】〔金線流れの発生量〕図4に示すように、
上記で用いた10mm角のダイパッド10を有する14
4p−TQFPフレームに金線ワイヤー(直径25μm
×最大長2.5mm)14を張り、これを用い上記エポ
キシ樹脂組成物により樹脂封止してパッケージを作製し
た。図4において、15は半導体チップ、16はリード
ピンである。そして、作製したパッケージをX線解析装
置を用いて、金線流れ量を測定した。測定は、各パッケ
ージから10本ずつ金線を選定して測定し、図5に示す
ように、正面方向からの金線ワイヤー14の流れ量を測
定した。そして、金線ワイヤー14の流れ量の最大部分
となる値をそのパッケージの金線流れ量の値(dmm)
とし、金線流れ率〔(d/L)×100〕を算出した。
なお、Lは金線ワイヤー14間の距離(mm)を示す。
各エポキシ樹脂組成物について5個のパッケージを測定
し、その平均値を金線流れの発生量とした。
[Amount of Gold Wire Flow] As shown in FIG.
14 having the 10 mm square die pad 10 used above
4p-TQFP frame with gold wire (25μm in diameter)
× maximum length 2.5 mm) 14 and resin-sealed with the epoxy resin composition to prepare a package. In FIG. 4, 15 is a semiconductor chip, and 16 is a lead pin. Then, the flow rate of the gold wire of the produced package was measured using an X-ray analyzer. The measurement was performed by selecting 10 gold wires from each package and measuring the flow rate of the gold wire 14 from the front as shown in FIG. Then, the value that is the maximum part of the flow rate of the gold wire 14 is determined as the value of the flow rate of the gold wire of the package (dmm).
And the gold wire flow rate [(d / L) × 100] was calculated.
L indicates the distance (mm) between the gold wires 14.
Five packages were measured for each epoxy resin composition, and the average value was defined as the amount of gold wire flow.

【0055】〔ピン変形量〕上記144p−TQFP
を、図6に示す形状に切断し、その切断面を顕微鏡にて
観察することによりリードピン16の変形量を測定し
た。すなわち、図7に示すように、封止樹脂18内のリ
ードピン16の変形量は、リードピン16の下面の位置
と変形したリードピン16先端部の位置の差(xμm)
を測定することにより、どれだけリードピンが変形した
か評価した。これを各エポキシ樹脂組成物について5個
のパッケージを測定し、その平均値をピン変形量とし
た。
[Pin deformation amount] The above 144p-TQFP
Was cut into the shape shown in FIG. 6, and the cut surface was observed with a microscope to measure the amount of deformation of the lead pin 16. That is, as shown in FIG. 7, the deformation amount of the lead pin 16 in the sealing resin 18 is the difference (x μm) between the position of the lower surface of the lead pin 16 and the position of the tip of the deformed lead pin 16.
Was measured to evaluate how much the lead pin was deformed. This was measured for five packages for each epoxy resin composition, and the average value was defined as the pin deformation.

【0056】[0056]

【表4】 [Table 4]

【0057】[0057]

【表5】 [Table 5]

【0058】上記表4〜表5より、実施例品は比較例品
と比べてスパイラルフロー値は略同等以上の値を有して
おり良好な流動性を有していることがわかる。さらに、
成形バリの長さも比較例品と比べて非常に小さいことか
ら、パッケージの成形品質においても優れたものである
ことは明らかである。また、ダイパッドシフトに関して
も、比較例品と比べてシフト量が小さく、さらに、金線
流れやピン変形量についても同様にこれら値が小さく、
良好な成形品質を有していた。
From the above Tables 4 and 5, it can be seen that the Example product has a spiral flow value substantially equal to or higher than that of the Comparative product and has good fluidity. further,
Since the length of the molding burr is also very small as compared with the comparative example, it is clear that the molding quality of the package is also excellent. Also, with respect to the die pad shift, the shift amount is smaller than that of the comparative example product.
It had good molding quality.

【0059】さらに詳しくみると、本発明の特徴的構成
である累積粒度分布を外れた分布を有する無機質充填剤
C,Dを用いた比較例1,2は、実施例品に比べてスパ
イラルフローは良好であるが、成形バリが充分に止まら
ず、かつフィラーの平均粒径の大きな比較例1品では、
大きなピン変形量が確認された。また、真円度の小さい
無機質充填剤を用いた比較例3品では、スパイラルフロ
ー値が小さいことから流動性に劣っていることがわか
り、かつダイパッドシフト量,金線流れおよびピン変形
量も大きくパッケージ品質に劣っていることは明らかで
ある。さらに、平均粒子径の大きな比較例4品では、流
動性に関しては良好な結果が得られているが、大粒径の
フィラーがリードピンの隙間で詰まり気味となり、結
果、ピン変形やダイパットシフトを発生させたため、パ
ッケージ品質に劣ってしまった。そして、本発明の特徴
的構成である超微粒子の無機質充填剤を用いていない比
較例5品では、成形バリが充分に止まらず、また、超微
粒子を過剰に用いた比較例6品では流動性が低下し、か
つダイパッドシフト,金線流れおよびピン変形が発生し
た結果となってしまった。
More specifically, Comparative Examples 1 and 2 using inorganic fillers C and D having a distribution deviating from the cumulative particle size distribution, which is a characteristic configuration of the present invention, have a spiral flow which is smaller than that of the product of the Example. Good, but the molding burr did not stop sufficiently, and the comparative example 1 product having a large average particle size of the filler,
A large pin deformation was confirmed. In Comparative Example 3 using an inorganic filler having a small roundness, the spiral flow value was small, indicating that the fluidity was poor, and the die pad shift amount, the gold wire flow, and the pin deformation amount were large. It is clear that the package quality is inferior. Further, in Comparative Example 4 having a large average particle diameter, good results were obtained with respect to fluidity, but the filler having a large particle diameter tended to be clogged in the gap between the lead pins, resulting in pin deformation and die pad shift. Due to this, the package quality was inferior. In Comparative Example 5 using no ultrafine inorganic filler, which is a feature of the present invention, molding burrs did not stop sufficiently, and in Comparative Example 6 using excessive ultrafine particles, fluidity was low. As a result, die pad shift, gold wire flow, and pin deformation occurred.

【0060】[0060]

【発明の効果】以上のように、本発明の半導体封止用樹
脂組成物は、熱硬化性樹脂とともに、前記特定のシリカ
粉末(A)を主成分とする無機質充填剤を含むものであ
る。このため、上記特定のシリカ粉末(A)のうち、凹
凸の小さなシリカ粉末〔(a2)〕間に粒径の細かな超
微細シリカ粉末〔(a1)〕が入り込み、高密度充填さ
れた状態となり、無機質充填剤を高充填しても高充填に
かかわらず、流動性が良好であって、結果、成形時のパ
ッケージ内での金線流れ、リードピンの変形、ダイパッ
ドシフト等の発生が抑制され、しかも成形バリの発生が
効果的に抑制される。
As described above, the resin composition for encapsulating a semiconductor of the present invention contains, in addition to the thermosetting resin, an inorganic filler mainly composed of the specific silica powder (A). For this reason, among the specific silica powders (A), the ultrafine silica powder [(a1)] having a small particle diameter enters between the silica powders [(a2)] having small irregularities, and becomes a state of high density filling. Even if the inorganic filler is highly filled, regardless of the high filling, the fluidity is good, and as a result, the occurrence of gold wire flow, deformation of lead pins, die pad shift, etc. in the package during molding is suppressed, Moreover, the occurrence of molding burrs is effectively suppressed.

【0061】このような本発明の半導体封止用樹脂組成
物は、半導体装置全般にわたって好適に適用されるが、
なかでも、例えば、厚み1.0〜2.0mm程度の薄型
の半導体装置の封止材料として最適である。
Such a resin composition for encapsulating a semiconductor of the present invention is suitably applied to all semiconductor devices.
Among them, for example, it is most suitable as a sealing material for a thin semiconductor device having a thickness of about 1.0 to 2.0 mm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)および(b)はシリカ粉末の真円度の測
定方法を示す説明図である。
FIGS. 1A and 1B are explanatory diagrams showing a method for measuring the roundness of silica powder.

【図2】エポキシ樹脂組成物を用いて成形された144
p−TQFPを示す正面図である。
[FIG. 2] 144 molded using an epoxy resin composition
It is a front view showing p-TQFP.

【図3】ダイパッドシフトの測定方法を示す説明図であ
り、(a)はダイパッドシフトが発生した状態を示す断
面図であり、(b)は正常な状態を示す断面図である。
3A and 3B are explanatory views showing a method for measuring a die pad shift, wherein FIG. 3A is a cross-sectional view showing a state where a die pad shift has occurred, and FIG. 3B is a cross-sectional view showing a normal state.

【図4】金線流れ量を測定するために用いる144p−
TQFPを示す正面図である。
FIG. 4: 144p- used to measure the gold wire flow rate
It is a front view which shows TQFP.

【図5】金線流れ量の測定方法を示す説明図である。FIG. 5 is an explanatory diagram showing a method of measuring a gold wire flow rate.

【図6】ピン変形量を測定するために用いる所定形状に
切断された144p−TQFPを示す断面斜視図であ
る。
FIG. 6 is a sectional perspective view showing a 144p-TQFP cut into a predetermined shape used for measuring a pin deformation amount.

【図7】ピン変形量の測定方法を示す説明図である。FIG. 7 is an explanatory view showing a method of measuring a pin deformation amount.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂とともに無機質充填剤が含
有されてなる半導体封止用樹脂組成物であって、上記無
機質充填剤が、下記のシリカ粉末(A)を主成分とする
ものであることを特徴とする半導体封止用樹脂組成物。 (A)下記の(a1)および(a2)からなるシリカ粉
末であって、両者の混合割合〔(a1)/(a2)〕
が、重量比で(a1)/(a2)=0.1/99.9〜
1.0/99.0の範囲に設定されているシリカ粉末。 (a1)平均粒径が0.01〜0.05μmに設定され
た超微細シリカ粉末。 (a2)真円度0.8以上であり、かつその粒度分布が
下記の〜に示す累積粒度分布に設定されているシリ
カ粉末(但し、累積粒度分布の合計は100重量%とな
る)。 粒径5.0μm以下のものが5〜30重量%。 粒径48μm以下のものが50重量%以上。 粒径100μm以上のものが5重量%以下。
1. A resin composition for encapsulating a semiconductor comprising an inorganic filler together with a thermosetting resin, wherein the inorganic filler comprises the following silica powder (A) as a main component. A resin composition for semiconductor encapsulation, comprising: (A) A silica powder comprising the following (a1) and (a2), and a mixing ratio of both ((a1) / (a2))
Is (a1) / (a2) = 0.1 / 99.9-
Silica powder set in the range of 1.0 / 99.0. (A1) Ultrafine silica powder having an average particle size of 0.01 to 0.05 μm. (A2) Silica powder having a roundness of 0.8 or more and a particle size distribution set to the following cumulative particle size distribution (provided that the total cumulative particle size distribution is 100% by weight). 5 to 30% by weight having a particle size of 5.0 μm or less. Those with a particle size of 48 μm or less are 50% by weight or more. 5% by weight or less of particles having a particle size of 100 μm or more.
【請求項2】 上記シリカ粉末(A)が、下記の(x)
〜(z)に示す累積粒度分布に設定されているシリカ粉
末の混合物である請求項1記載の半導体封止用樹脂組成
物。 (x)真円度が0.8以上であり、平均粒径25〜45
μmの範囲のものが69〜95重量%。 (y)真円度が0.8以上であり、平均粒径0.2〜2
0μmの範囲のものが4〜30重量%。 (z)平均粒径0.01〜0.05μmの範囲のものが
0.1〜1重量%。
2. The above-mentioned silica powder (A) comprises the following (x)
The resin composition for semiconductor encapsulation according to claim 1, which is a mixture of silica powders set to the cumulative particle size distribution shown in (z). (X) the circularity is 0.8 or more, and the average particle size is 25 to 45;
69-95% by weight in the range of μm. (Y) the circularity is 0.8 or more, and the average particle size is 0.2 to 2;
4 to 30% by weight in the range of 0 μm. (Z) 0.1 to 1% by weight having an average particle size in the range of 0.01 to 0.05 μm.
【請求項3】 上記シリカ粉末(a2)が溶融シリカ粉
末である請求項1または2記載の半導体封止用樹脂組成
物。
3. The resin composition for semiconductor encapsulation according to claim 1, wherein the silica powder (a2) is a fused silica powder.
【請求項4】 上記熱硬化性樹脂がエポキシ樹脂である
請求項1〜3のいずれか一項に記載の半導体封止用樹脂
組成物。
4. The resin composition for semiconductor encapsulation according to claim 1, wherein the thermosetting resin is an epoxy resin.
JP33209497A 1997-12-02 1997-12-02 Resin composition for semiconductor encapsulation Expired - Lifetime JP3792870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33209497A JP3792870B2 (en) 1997-12-02 1997-12-02 Resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33209497A JP3792870B2 (en) 1997-12-02 1997-12-02 Resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH11166105A true JPH11166105A (en) 1999-06-22
JP3792870B2 JP3792870B2 (en) 2006-07-05

Family

ID=18251083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33209497A Expired - Lifetime JP3792870B2 (en) 1997-12-02 1997-12-02 Resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP3792870B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248004A (en) * 2007-03-29 2008-10-16 Admatechs Co Ltd Inorganic powder for addition to resin composition, and resin composition
JP2015096611A (en) * 2006-11-15 2015-05-21 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element using the resin composition, and optical semiconductor device
WO2015174141A1 (en) * 2014-05-16 2015-11-19 ナミックス株式会社 Liquid sealing material, and electronic component using same
JP2020066695A (en) * 2018-10-25 2020-04-30 日立化成株式会社 Liquid resin composition and electronic component device and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096611A (en) * 2006-11-15 2015-05-21 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element using the resin composition, and optical semiconductor device
US9387608B2 (en) 2006-11-15 2016-07-12 Hitachi Chemical Company, Ltd. Thermosetting resin composition for light reflection, method for manufacturing the resin composition and optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
US10381533B2 (en) 2006-11-15 2019-08-13 Hitachi Chemical Company, Ltd. Optical semiconductor element mounting substrate and optical semiconductor device using thermosetting resin composition for light reflection
JP2008248004A (en) * 2007-03-29 2008-10-16 Admatechs Co Ltd Inorganic powder for addition to resin composition, and resin composition
WO2015174141A1 (en) * 2014-05-16 2015-11-19 ナミックス株式会社 Liquid sealing material, and electronic component using same
JP2015218229A (en) * 2014-05-16 2015-12-07 ナミックス株式会社 Liquid encapsulant and electronic part
CN106232763A (en) * 2014-05-16 2016-12-14 纳美仕有限公司 Aqueous encapsulation material and use the electronic unit of this aqueous encapsulation material
CN106232763B (en) * 2014-05-16 2018-05-11 纳美仕有限公司 Liquid package material and the electronic unit using the liquid package material
US9994729B2 (en) 2014-05-16 2018-06-12 Namics Corporation Liquid sealing material, and electronic component using same
JP2020066695A (en) * 2018-10-25 2020-04-30 日立化成株式会社 Liquid resin composition and electronic component device and method for producing the same

Also Published As

Publication number Publication date
JP3792870B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
KR101748897B1 (en) Mold for measuring flow characteristics, method for measuring flow characteristics, resin composition for encapsulating semiconductor, and method for manufacturing semiconductor apparatus
JPS5922955A (en) Resin composition for sealing semiconductor
JP2005239892A (en) Resin composition for semiconductor encapsulation and semiconductor device using the same
JP3792870B2 (en) Resin composition for semiconductor encapsulation
JPH07206983A (en) Epoxy resin composition, its production and semiconductor apparatus obtained by using the composition
JPH107888A (en) Epoxy resin composition for sealing semiconductor
JP4105344B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JPH11240937A (en) Semiconductor device and epoxy resin composition for sealing semiconductor used in the same
JP4190080B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2593843B2 (en) Semiconductor device
JP2008184585A (en) Resin composition for sealing semiconductor and semiconductor device obtained using the same
JP2002194058A (en) Semiconductor device
JP2002309067A (en) Epoxy resin composition for sealing and semiconductor device
JP2008007562A (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained by using the same
JP2008187130A (en) Semiconductor-encapsulating resin composition and semiconductor device using it
JP4850599B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JPH09129786A (en) Semiconductor device
JP2003277475A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2001226565A (en) Semiconductor device
KR20230054855A (en) Amorphous silica powder and resin composition
JP2000212250A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JP2741254B2 (en) Epoxy resin composition
JP4013049B2 (en) Epoxy resin composition for sealing and resin-sealed semiconductor device
JP3967205B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2004165381A (en) Semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150414

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term