JP2004165381A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2004165381A
JP2004165381A JP2002328726A JP2002328726A JP2004165381A JP 2004165381 A JP2004165381 A JP 2004165381A JP 2002328726 A JP2002328726 A JP 2002328726A JP 2002328726 A JP2002328726 A JP 2002328726A JP 2004165381 A JP2004165381 A JP 2004165381A
Authority
JP
Japan
Prior art keywords
semiconductor element
inorganic filler
epoxy resin
carbon
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002328726A
Other languages
Japanese (ja)
Other versions
JP3822556B2 (en
Inventor
Shinya Akizuki
伸也 秋月
Kazuhiro Ikemura
和弘 池村
Hisataka Ito
久貴 伊藤
Takahiro Uchida
貴大 内田
Tsutomu Nishioka
務 西岡
Katsumi Shimada
克実 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002328726A priority Critical patent/JP3822556B2/en
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to SG200306808A priority patent/SG115586A1/en
Priority to EP03025681A priority patent/EP1420035B1/en
Priority to MYPI20034266A priority patent/MY135619A/en
Priority to DE60314218T priority patent/DE60314218T2/en
Priority to US10/703,494 priority patent/US7265167B2/en
Priority to TW092131483A priority patent/TWI259503B/en
Priority to CNB2003101142815A priority patent/CN1315184C/en
Priority to KR1020030079792A priority patent/KR100676002B1/en
Publication of JP2004165381A publication Critical patent/JP2004165381A/en
Application granted granted Critical
Publication of JP3822556B2 publication Critical patent/JP3822556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device of high reliability wherein generation of a short circuit (short) is restrained which is caused by narrow pitch between electrodes for connection or between conductor wirings in the semiconductor device. <P>SOLUTION: A semiconductor element 3 is mounted on an insulating substrate 1 via an electrode 2 for connection, and the insulating substrate 1 is electrically connected with the semiconductor element 3. A semiconductor element 3 mounting surface side of the insulating substrate 1 is sealed with resin by using sealing resin 4a which is curing somatic of epoxide resin composition for semiconductor sealing which contains the following (A)-(C) components. (A) is epoxide resin, and (B) is phenol resin. (C) is mineral filler wherein content ratio of the following mineral filler (c) whose particle size is greater than distance between the electrodes 2 for connection is set as at most 2.5 ppm of the whole mineral filler. In the mineral filler, a surface of the (c) particle is coated with carbon. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置内の接続用電極間あるいは導電体配線間の狭ピッチ化に伴う短絡(ショート)等の発生が抑制され信頼性の高い半導体装置に関するものである。
【0002】
【従来の技術】
トランジスタ、IC、LSI等の半導体素子は、通常、エポキシ樹脂組成物を用いてトランスファー成形により樹脂封止される。この種のパッケージとして、従来から各種形態のパッケージが開発されている。
【0003】
このようなパッケージの一例として、例えば、図1に示すようなタイプのパッケージがあげられる。1は絶縁基板であり、その絶縁基板1上に接続用電極部2を介して半導体素子3が搭載され、絶縁基板1と半導体素子3は電気的に接続されている。そして、絶縁基板1の半導体素子3搭載面側を封止材料であるエポキシ樹脂組成物の硬化体である封止樹脂4aにより樹脂封止されている。また、上記タイプ以外に図2に示すようなパッケージがあげられる。このパッケージは、絶縁基板5上に半導体素子3が搭載され、この絶縁基板5と半導体素子3がワイヤー6にて電気的に接続されている。そして、このワイヤー6を含む半導体素子3がエポキシ樹脂組成物硬化体である封止樹脂4bにより樹脂封止されている。さらに、図3に示すパッケージがあげられる。このパッケージは、金属製のリードフレーム7上に半導体素子3が搭載され、この半導体素子3とインナーリード8とがワイヤー6にて電気的に接続されている。そして、このワイヤー6を含む半導体素子3がエポキシ樹脂組成物硬化体である封止樹脂4cにより樹脂封止されている。また、上記パッケージタイプ以外に図4に示すパッケージがあげられる。このパッケージは、金属製のリードフレーム10上に半導体素子3が搭載され、この半導体素子3とリードフレーム10の周囲に設けられたインナーリード11とがワイヤー6にて電気的に接続されている。そして、このワイヤー6を含む半導体素子3がエポキシ樹脂組成物硬化体である封止樹脂4dにより樹脂封止されている。
【0004】
【発明が解決しようとする課題】
このような半導体装置において、近年、その性能向上に伴い半導体装置内の接続用電極部2間またはワイヤー6間の狭ピッチ化が要望されている。この狭ピッチ化に伴い、その封止作業工程において、短絡(ショート)の発生が頻繁になっていた。このような状況に対して、通常、カーボンの凝集物の低減等が種々検討されているが、抜本的な解決には至っていないのが実情である。そして、この半導体装置の短絡(ショート)による不良品の発生を抑制し信頼性の高い半導体装置を得ることが要望されている。
【0005】
本発明は、このような事情に鑑みなされたもので、半導体装置内の接続用電極間あるいは導電体配線間の狭ピッチ化に伴う短絡(ショート)の発生が抑制され信頼性の高い半導体装置の提供をその目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、本発明の半導体装置は、絶縁基板もしくはリードフレーム上に半導体素子が搭載され、上記絶縁基板もしくはリードフレームと半導体素子が接続用電極部あるいは導電体配線により導通され、半導体素子を包含するよう封止樹脂層によって樹脂封止されてなる半導体装置であって、上記封止樹脂層が、下記の(A)〜(C)成分を含有する半導体封止用エポキシ樹脂組成物硬化体により形成されているという構成をとる。
(A)エポキシ樹脂。
(B)フェノール樹脂。
(C)上記接続用電極部間距離または導電体配線間距離より大きな粒径を備えた下記の無機質充填剤(c)の含有割合が、無機質充填剤全体の2.5ppm以下に設定されている無機質充填剤。
(c)粒子表面がカーボンにて被覆された無機質充填剤。
【0007】
本発明者らは、まず、封止作業工程において、短絡(ショート)の発生原因となる物質を突き止めるべく鋭意検討を重ねた。そして、上記短絡原因となるものが、封止材料として通常配合されるカーボンブラックではなく無機質充填剤にあることを突き止めた。すなわち、従来から無機質充填剤として、例えば、溶融シリカ粉末が用いられているが、この溶融シリカ粉末を詳しく調べた結果、溶融シリカ粉末の一部に、粒子表面にカーボンが付着して粒子表面をカーボンが被覆した状態の溶融シリカ粉末が混入しているという事実を突き止めた。このカーボンが粒子表面を被覆した溶融シリカ粉末が半導体装置内の接続用電極間あるいは導電体配線間に存在して、この電極間あるいは配線間が導通し短絡(ショート)の発生を生起していることを突き止めたのである。このような知見に基づき、半導体装置内の接続用電極間あるいは導電体配線間より大きな粒径となる、粒子表面がカーボンにて表面が被覆された無機質充填剤の割合を無機質充填剤全体のどの程度にすれば、封止作業工程において短絡(ショート)発生が抑制可能となるかさらに研究を重ねた。その結果、半導体装置における接続用電極部間距離または導電体配線間距離より大きな粒径を備えた上記粒子表面がカーボンにて被覆された無機質充填剤を無機質充填剤全体の2.5ppm以下の含有割合に設定すると、封止作業工程時における短絡(ショート)の発生が抑制されることを見出し本発明に到達した。
【0008】
【発明の実施の形態】
つぎに、本発明の実施の形態について詳しく説明する。
【0009】
本発明の半導体装置の封止材料として用いられるエポキシ樹脂組成物は、エポキシ樹脂(A成分)と、フェノール樹脂(B成分)と、特定の無機質充填剤(C成分)を用いて得られ、通常、粉末状もしくはこれを打錠したタブレット状になっている。
【0010】
本発明に用いるエポキシ樹脂(A成分)は、特に限定されるものではなく通常用いられるエポキシ樹脂が用いられる。例えば、クレゾールノボラック型、フェノールノボラック型、ビスフェノールA型、ビフェニル型、トリフェニルメタン型やナフタレン型等の各種エポキシ樹脂等があげられる。これらは、単独で使用できるほか、2種以上を併用してもよい。
【0011】
上記エポキシ樹脂(A成分)とともに用いられるフェノール樹脂(B成分)は、上記エポキシ樹脂の硬化剤としての作用を奏するものであり、特に限定するものではなく従来公知のもの、例えば、フェノールノボラック、クレゾールノボラック、ビスフェノールA型ノボラック、ナフトールノボラック、フェノールアラルキル樹脂等があげられる。これらは単独でもしくは2種以上併せて用いられる。
【0012】
上記エポキシ樹脂(A成分)とフェノール樹脂(B成分)の配合割合は、エポキシ樹脂中のエポキシ基1当量あたり、硬化剤中の水酸基当量が0.5〜2.0当量となるように配合することが好ましい。より好ましくは0.8〜1.2当量である。
【0013】
上記A成分およびB成分とともに用いられる特定の無機質充填剤(C成分)は、先に述べたような形態の各種半導体装置内における接続用電極部間距離または導電体配線間距離より大きな粒径を備えた下記の無機質充填剤(c)が無機質充填剤全体の2.5ppm以下の割合で含有されている。
(c)粒子表面がカーボンにて被覆された無機質充填剤。
【0014】
すなわち、半導体装置内の接続用電極部間距離または導電体配線間距離より大きな粒径を備えた上記無機質充填剤(c)が無機質充填剤全体の2.5ppmを超えると、半導体装置内の接続用電極間あるいは導電体配線間に存在して電極間または配線間が導通してしまい短絡(ショート)の発生が多くみられるようになるからである。上記(c)の含有割合の下限は、少なければ少ないほど好ましいものであるが、一般に、0.02ppmである。なお、上記粒子表面がカーボンにて被覆された無機質充填剤(c)の、無機質充填剤全体中における含有割合の測定・算出は、例えば、つぎのようにして行われる。まず、5cm×4.8cmの大きさの四角形のケースに、所定の無機質充填剤を投入した後、摺り切り、その表面を光学顕微鏡にて所定の粒径の黒点(カーボンで被覆された無機質充填剤)の個数(A)を計測する。また、上記5cm×4.8cmの大きさの四角形のケースの一面に存在する所定の無機質充填剤の総数(B)を、その無機質充填剤の平均粒径(C)を用いて、下記の式(1)にて概算する。そして、無機質充填剤全体中における所定粒径の黒点の含有割合(D)を下記の式(2)により算出する。
【0015】
【数1】

Figure 2004165381
【0016】
上記無機質充填剤としては、特に限定するものではなく従来公知のもの、例えば、石英ガラス粉末,シリカ粉末,アルミナ,タルク等があげられる。特に好ましくは球状溶融シリカ粉末があげられる。
【0017】
上記無機質充填剤自身の平均粒径は、2〜40μmの範囲であることが好ましく、特に好ましくは5〜30μmである。上記平均粒径は、レーザー散乱式粒度分布測定装置により測定することができる。
【0018】
そして、このような特定の無機質充填剤(C成分)の含有割合は、エポキシ樹脂組成物全体の75重量%以上であることが好ましく、より好ましくは80〜91重量%の範囲である。すなわち、75重量%未満のように少なすぎると、耐半田特性等の半導体装置の信頼性に劣る傾向がみられるからである。
【0019】
本発明では、上記A〜C成分に加えて、必要に応じて硬化促進剤、ブロム化エポキシ樹脂等のハロゲン系難燃剤や三酸化アンチモン等の難燃助剤、カーボンブラック等の顔料、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランやγ−グリシドキシプロピルトリメトキシシラン等のシランカップリング剤、カーボンブラック等の顔料、カルナバワックス等の離型剤等他の添加剤が適宜に用いられる。
【0020】
上記硬化促進剤としては、アミン型,リン型等のものがあげられる。アミン型としては、2−メチルイミダゾール等のイミダゾール類、トリエタノールアミン,ジアザビシクロウンデセン等の三級アミン類等があげられる。また、リン型としては、トリフェニルホスフィン、テトラフェニルホスフィン等があげられる。これらは単独でもしくは併せて用いられる。そして、この硬化促進剤の配合割合は、エポキシ樹脂組成物全体の0.1〜1.0重量%の割合に設定することが好ましい。さらに、エポキシ樹脂組成物の流動性を考慮すると好ましくは0.15〜0.35重量%である。
【0021】
本発明の半導体封止用エポキシ樹脂組成物は、例えば、つぎのようにして製造することができる。すなわち、上記A〜C成分および必要に応じて他の添加剤を配合し混合した後、ミキシングロール機等の混練機にかけ加熱状態で溶融混合し、これを室温に冷却した後、公知の手段によって粉砕し、必要に応じて打錠するという一連の工程により製造することができる。あるいは、予め顔料であるカーボンブラックをエポキシ樹脂の一部と混合して予備混合物を作製する。ついで、この予備混合物と残りの配合成分を混合して溶融混合し、後は上記と同様の工程を経由することにより製造する。
【0022】
このようなエポキシ樹脂組成物を用いての半導体素子の封止は、特に制限するものではなく、通常のトランスファー成形等の公知のモールド方法により行うことができる。
【0023】
このようにして得られる半導体装置としては、具体的には、先に述べたように、図1〜図4に示す構造のパッケージ形態があげられる。すなわち、図1に示すパッケージは、絶縁基板1上に接続用電極部2を介して半導体素子3が搭載され、絶縁基板1と半導体素子3は電気的に接続されている。そして、絶縁基板1の半導体素子3搭載面側を封止樹脂4aにより樹脂封止されている。また、図2に示すパッケージは、絶縁基板5上に半導体素子3が搭載され、この絶縁基板5と半導体素子3がワイヤー6にて電気的に接続されている。そして、このワイヤー6を含む半導体素子3が封止樹脂4bにより樹脂封止されている。さらに、図3に示すパッケージは、金属製のリードフレーム7上に半導体素子3が搭載され、この半導体素子3とインナーリード8とがワイヤー6にて電気的に接続されている。そして、このワイヤー6を含む半導体素子3が封止樹脂4cにより樹脂封止されている。また、図4に示すパッケージは、金属製のリードフレーム10上に半導体素子3が搭載され、この半導体素子3とリードフレーム10の周囲に設けられたインナーリード11とがワイヤー6にて電気的に接続されている。そして、このワイヤー6を含む半導体素子3が封止樹脂4dにより樹脂封止されている。
【0024】
そして、本発明において、接続用電極部とは、例えば、図1に示すように、絶縁基板1と半導体素子3とを電気的に接続するものであって、周知の電極のみでもよいが、電極とジョイントボール等の電極に配備される導電体を含む概念である。また、本発明において、導電体配線とは、図2〜図4に示すように、半導体素子3と絶縁基板5、半導体素子3とインナーリード8、半導体素子3とインナーリード11とをそれぞれ電気的に接続する各ワイヤー6、さらにインナーリード8,11および絶縁基板5上の配線をも含む概念である。
【0025】
つぎに、実施例について比較例と併せて説明する。
【0026】
下記に示す各成分を準備した。
【0027】
〔エポキシ樹脂a〕
下記の一般式(a)で表されるビフェニル型エポキシ樹脂(エポキシ当量173、融点100℃)
【化1】
Figure 2004165381
【0028】
〔エポキシ樹脂b〕
下記の一般式(b)で表される繰り返し単位を有するエポキシ樹脂(エポキシ当量170、融点60℃)
【化2】
Figure 2004165381
【0029】
〔フェノール樹脂〕
フェノールノボラック樹脂(水酸基当量107、融点60℃)
【0030】
〔硬化促進剤〕
トリフェニルホスフィン
【0031】
〔難燃剤〕
ブロム化エポキシ樹脂
【0032】
〔難燃助剤〕
三酸化アンチモン
【0033】
〔離型剤〕
カルナバワックス
【0034】
〔顔料〕
カーボンブラック
【0035】
〔無機質充填剤a〕
球状溶融シリカ粉末(平均粒径20μm)であり、下記に示すカーボン被覆溶融シリカ粉末a1〜a3を含有するものである。
a1:粒径60μmを超えるカーボン被覆溶融シリカ粉末 10ppm
a2:粒径30μmを超えるカーボン被覆溶融シリカ粉末 20ppm
a3:粒径20μmを超えるカーボン被覆溶融シリカ粉末 40ppm
【0036】
〔無機質充填剤b〕
球状溶融シリカ粉末(平均粒径10μm)であり、下記に示すカーボン被覆溶融シリカ粉末b1〜b3を含有するものである。
b1:粒径60μmを超えるカーボン被覆溶融シリカ粉末 0ppm
b2:粒径30μmを超えるカーボン被覆溶融シリカ粉末 5ppm
b3:粒径20μmを超えるカーボン被覆溶融シリカ粉末 10ppm
【0037】
〔無機質充填剤c〕
球状溶融シリカ粉末(平均粒径2μm)であり、下記に示すカーボン被覆溶融シリカ粉末c1〜c3を含有するものである。
c1:粒径60μmを超えるカーボン被覆溶融シリカ粉末 0ppm
c2:粒径30μmを超えるカーボン被覆溶融シリカ粉末 0ppm
c3:粒径20μmを超えるカーボン被覆溶融シリカ粉末 0ppm
【0038】
〔無機質充填剤d〕
球状溶融シリカ粉末(平均粒径15μm)であり、下記に示すカーボン被覆溶融シリカ粉末d1〜d3を含有するものである。
d1:粒径60μmを超えるカーボン被覆溶融シリカ粉末 0ppm
d2:粒径30μmを超えるカーボン被覆溶融シリカ粉末 5ppm
d3:粒径20μmを超えるカーボン被覆溶融シリカ粉末 10ppm
【0039】
(1)半導体装置Aの封止
【実施例A1〜A8、比較例A1〜A6】
下記の表1〜表3に示す各原料を、同表に示す割合でヘンシェルミキサーに投入した後、30分間混合した。この際、顔料であるカーボンブラックは、予めエポキシ樹脂aと3本ロールにて混合(カーボンブラック/エポキシ樹脂aの混合重量比=1/10)して予備混合物を作製し、これを用いた。この後、上記混合物を混練押出機に供給し溶融混合した。つぎに、この溶融物を冷却した後粉砕し、さらにタブレット成形金型にて打錠することによりエポキシ樹脂組成物製タブレットを作製した。
【0040】
【表1】
Figure 2004165381
【0041】
【表2】
Figure 2004165381
【0042】
【表3】
Figure 2004165381
【0043】
このようにして得られた実施例および比較例の各エポキシ樹脂組成物製タブレットを用い、半導体素子(チップサイズ:10×10mm)をトランスファー成形(条件:175℃×120秒)し、175℃×5時間の後硬化することにより図3に示す半導体装置を得た。このパッケージは、208ピンQFP(クワッドフラットパッケージ)である。
【0044】
〔パッケージ形態〕
208ピンQFP(クワッドフラットパッケージ)タイプ:サイズ28mm×28mm×厚み2.8mm
半導体素子3サイズ:10mm×10mm×厚み370μm
金属リードフレーム7:銅製(サイズ:11mm×11mm×厚み100μm)
ワイヤー6:金製、直径25μm、ピッチ85μm、ワイヤー間距離60μm
【0045】
上記のようにして得られた各半導体装置について、短絡(ショート)発生状況を測定・評価した。すなわち、半導体素子上で導通がとられていない、隣接するインナーリード8間の電気抵抗値を測定し、1kΩ以下となったものを短絡(ショート)とした。そして、試料3000個のうちショートが発生したものをカウントした。その結果を下記の表4〜表6に示した。
【0046】
【表4】
Figure 2004165381
【0047】
【表5】
Figure 2004165381
【0048】
【表6】
Figure 2004165381
【0049】
上記表4〜表6から、実施例品は、全く短絡(ショート)が発生しなかった。これに対して、カーボンにて被覆された溶融シリカ粉末が溶融シリカ粉末全体の2.5ppmを超えて含有されている溶融シリカ粉末を用いた比較例品は、短絡(ショート)が発生した。
【0050】
(2)半導体装置Bの封止
【実施例B1〜B8、比較例B1〜B6】
下記の表7〜表9に示す各原料を、同表に示す割合でヘンシェルミキサーに投入した後、30分間混合した。この際、顔料であるカーボンブラックは、予めエポキシ樹脂aと3本ロールにて混合(カーボンブラック/エポキシ樹脂aの混合重量比=1/10)して予備混合物を作製し、これを用いた。この後、上記混合物を混練押出機に供給し溶融混合した。つぎに、この溶融物を冷却した後粉砕し、さらにタブレット成形金型にて打錠することによりエポキシ樹脂組成物製タブレットを作製した。
【0051】
【表7】
Figure 2004165381
【0052】
【表8】
Figure 2004165381
【0053】
【表9】
Figure 2004165381
【0054】
上記のようにして得られた各エポキシ樹脂組成物製タブレットを用い、絶縁基板上に搭載された半導体素子をトランスファー成形(条件:175℃×1分+175℃×5時間の後硬化)することにより図2に示す片面封止タイプの半導体装置を作製した。
【0055】
〔パッケージ形態〕
ボールグリッドアレイ(BGA)タイプ:サイズ35mm×35mm×厚み1.5mm
樹脂封止層4b(エポキシ樹脂組成物硬化体)サイズ:35mm×35mm×厚み1.2mm
半導体素子3サイズ:10mm×10mm×厚み370μm
絶縁基板5:ビスマレイミドトリアジン(BT)樹脂/ガラスクロス基板(サイズ:40mm×40mm×0.3mm)
ワイヤー6:金製、直径20μm、ピッチ50μm、ワイヤー間距離30μm
【0056】
上記のようにして得られた各半導体装置について、先に述べた方法と同様にして短絡(ショート)発生状況を測定・評価した。その結果を下記の表10〜表12に示した。
【0057】
【表10】
Figure 2004165381
【0058】
【表11】
Figure 2004165381
【0059】
【表12】
Figure 2004165381
【0060】
上記表10〜表12から、実施例品は、全く短絡(ショート)が発生しなかった。これに対して、カーボンにて被覆された溶融シリカ粉末が溶融シリカ粉末全体の2.5ppmを超えて含有されている溶融シリカ粉末を用いた比較例品は、短絡(ショート)が発生した。
【0061】
(3)半導体装置Cの封止
【実施例C1〜C8、比較例C1〜C6】
下記の表13〜表15に示す各原料を、同表に示す割合でヘンシェルミキサーに投入した後、30分間混合した。この際、顔料であるカーボンブラックは、予めエポキシ樹脂aと3本ロールにて混合(カーボンブラック/エポキシ樹脂aの混合重量比=1/10)して予備混合物を作製し、これを用いた。この後、上記混合物を混練押出機に供給し溶融混合した。つぎに、この溶融物を冷却した後粉砕し、さらにタブレット成形金型にて打錠することによりエポキシ樹脂組成物製タブレットを作製した。
【0062】
【表13】
Figure 2004165381
【0063】
【表14】
Figure 2004165381
【0064】
【表15】
Figure 2004165381
【0065】
上記のようにして得られた各エポキシ樹脂組成物製タブレットを用い、絶縁基板上に搭載された半導体素子をトランスファー成形(条件:175℃×1分+175℃×5時間の後硬化)することにより図1に示す片面封止タイプの半導体装置(FC−BGA)を作製した。
【0066】
〔パッケージ形態〕
フリップチップボールグリッドアレイ(FC−BGA)タイプ:サイズ12mm×12mm×厚み1mm
樹脂封止層4a(エポキシ樹脂組成物硬化体)サイズ:12mm×12mm×厚み600μm
半導体素子3サイズ:10mm×10mm×厚み370μm
絶縁基板1:ビスマレイミドトリアジン(BT)樹脂/ガラスクロス基板(サイズ:14mm×14mm×厚み300μm)
接続用電極部2:金バンプ、直径20μm、ピッチ50μm、金バンプ間距離30μm
【0067】
上記のようにして得られた各半導体装置について、先に述べた方法と同様に、導通がとられていない、隣接する金バンプ間の電気抵抗値を測定して、1kΩ以下となったものを短絡(ショート)とし、短絡(ショート)発生状況を測定・評価した。その結果を下記の表16〜表18に示した。
【0068】
【表16】
Figure 2004165381
【0069】
【表17】
Figure 2004165381
【0070】
【表18】
Figure 2004165381
【0071】
上記表16〜表18から、実施例品は、全く短絡(ショート)が発生しなかった。これに対して、カーボンにて被覆された溶融シリカ粉末が溶融シリカ粉末全体の2.5ppmを超えて含有されている溶融シリカ粉末を用いた比較例品は、短絡(ショート)が発生した。
【0072】
【発明の効果】
以上のように、本発明の半導体装置は、その封止樹脂層が、接続用電極部間距離または導電体配線間距離より大きな粒径を備えた、粒子表面がカーボンにて被覆された無機質充填剤(c)の含有割合が、無機質充填剤全体の2.5ppm以下に設定されている無機質充填剤(C)を含有する半導体封止用エポキシ樹脂組成物硬化体により形成されている。このため、上記接続用電極部間または導電体配線間での導通による短絡(ショート)発生の問題が抑制され信頼性に優れた半導体装置が得られる。
【図面の簡単な説明】
【図1】半導体装置の一パッケージ形態を示す断面図である。
【図2】半導体装置の他のパッケージ形態を示す断面図である。
【図3】半導体装置の他のパッケージ形態を示す断面図である。
【図4】半導体装置の他のパッケージ形態を示す断面図である。
【符号の説明】
1,5 絶縁基板
2 接続用電極部
3 半導体素子
4a,4b,4c,4d 封止樹脂
6 ワイヤー
7,10 リードフレーム[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a highly reliable semiconductor device in which the occurrence of a short circuit (short circuit) due to a narrow pitch between connection electrodes or between conductor wirings in a semiconductor device is suppressed.
[0002]
[Prior art]
Semiconductor elements such as transistors, ICs, and LSIs are usually resin-sealed by transfer molding using an epoxy resin composition. Various types of packages have been developed as this type of package.
[0003]
An example of such a package is, for example, a package of the type shown in FIG. Reference numeral 1 denotes an insulating substrate, on which a semiconductor element 3 is mounted via a connection electrode portion 2, and the insulating substrate 1 and the semiconductor element 3 are electrically connected. Then, the surface of the insulating substrate 1 on which the semiconductor element 3 is mounted is resin-sealed with a sealing resin 4a which is a cured body of an epoxy resin composition as a sealing material. In addition to the above types, there are packages as shown in FIG. In this package, a semiconductor element 3 is mounted on an insulating substrate 5, and the insulating substrate 5 and the semiconductor element 3 are electrically connected by wires 6. The semiconductor element 3 including the wire 6 is sealed with a sealing resin 4b which is a cured body of the epoxy resin composition. Further, there is a package shown in FIG. In this package, a semiconductor element 3 is mounted on a metal lead frame 7, and the semiconductor element 3 and inner leads 8 are electrically connected by wires 6. The semiconductor element 3 including the wire 6 is sealed with a sealing resin 4c which is a cured body of the epoxy resin composition. Further, other than the above-mentioned package type, a package shown in FIG. 4 can be mentioned. In this package, a semiconductor element 3 is mounted on a metal lead frame 10, and the semiconductor element 3 and inner leads 11 provided around the lead frame 10 are electrically connected by wires 6. The semiconductor element 3 including the wire 6 is sealed with a sealing resin 4d which is a cured body of the epoxy resin composition.
[0004]
[Problems to be solved by the invention]
In such a semiconductor device, in recent years, there has been a demand for narrowing the pitch between the connecting electrode portions 2 or between the wires 6 in the semiconductor device with the improvement in performance. With the narrowing of the pitch, short-circuiting (short-circuiting) has frequently occurred in the sealing operation process. In order to cope with such a situation, various studies have been made on reduction of carbon aggregates and the like, but in reality, it has not been drastically solved. Then, there is a demand for obtaining a highly reliable semiconductor device by suppressing the occurrence of defective products due to a short circuit of the semiconductor device.
[0005]
The present invention has been made in view of such circumstances, and the occurrence of a short circuit (short circuit) due to a narrow pitch between connection electrodes or between conductor wirings in a semiconductor device is suppressed. Its purpose is to provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a semiconductor device of the present invention has a semiconductor element mounted on an insulating substrate or a lead frame, and the insulating substrate or the lead frame is electrically connected to the semiconductor element by a connection electrode portion or a conductor wiring, What is claimed is: 1. A semiconductor device comprising a semiconductor element encapsulated with a sealing resin layer so as to include a semiconductor element, wherein the sealing resin layer contains the following components (A) to (C): It is configured to be formed of a cured product.
(A) Epoxy resin.
(B) a phenolic resin.
(C) The content ratio of the following inorganic filler (c) having a particle size larger than the distance between the connection electrode portions or the distance between the conductive wires is set to 2.5 ppm or less of the entire inorganic filler. Inorganic filler.
(C) An inorganic filler whose particle surface is coated with carbon.
[0007]
The present inventors first conducted intensive studies to find out a substance that causes a short circuit in a sealing operation process. Then, it was found that the cause of the short-circuit was not the carbon black usually blended as the sealing material but the inorganic filler. In other words, conventionally, for example, fused silica powder has been used as an inorganic filler, but as a result of a detailed examination of the fused silica powder, carbon adhered to a part of the fused silica powder on the particle surface and the particle surface was The fact that carbon-coated fused silica powder was mixed was ascertained. The fused silica powder having the carbon coated on the surface of the particles is present between the connecting electrodes or between the conductor wirings in the semiconductor device, and conduction between the electrodes or the wirings is caused to cause a short circuit. I figured it out. Based on such knowledge, the ratio of the inorganic filler having a particle size larger than that between the connection electrodes or between the conductor wirings in the semiconductor device and whose particle surface is coated with carbon is determined by the total amount of the inorganic filler. Further studies have been conducted on whether or not the occurrence of a short circuit (short circuit) can be suppressed in the encapsulation work process. As a result, the surface of the particle having a particle diameter larger than the distance between the connecting electrode portions or the distance between the conductor wirings in the semiconductor device contains 2.5 ppm or less of the inorganic filler whose surface is coated with carbon. When the ratio is set to the ratio, it has been found that the occurrence of a short circuit (short circuit) during the sealing operation process is suppressed, and the present invention has been reached.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail.
[0009]
The epoxy resin composition used as a sealing material of the semiconductor device of the present invention is obtained using an epoxy resin (A component), a phenol resin (B component), and a specific inorganic filler (C component). , In the form of a powder or a tablet obtained by compressing the powder.
[0010]
The epoxy resin (A component) used in the present invention is not particularly limited, and a commonly used epoxy resin is used. For example, various epoxy resins such as cresol novolak type, phenol novolak type, bisphenol A type, biphenyl type, triphenylmethane type and naphthalene type can be used. These can be used alone or in combination of two or more.
[0011]
The phenolic resin (component B) used together with the epoxy resin (component A) serves as a curing agent for the epoxy resin, and is not particularly limited, and is a conventionally known one such as phenol novolak and cresol. Novolak, bisphenol A type novolak, naphthol novolak, phenol aralkyl resin and the like can be mentioned. These may be used alone or in combination of two or more.
[0012]
The mixing ratio of the epoxy resin (component A) and the phenol resin (component B) is such that the hydroxyl group equivalent in the curing agent is 0.5 to 2.0 equivalent per equivalent of epoxy group in the epoxy resin. Is preferred. It is more preferably 0.8 to 1.2 equivalents.
[0013]
The specific inorganic filler (component C) used together with the component A and the component B has a particle diameter larger than the distance between the connection electrode portions or the distance between the conductor wirings in various semiconductor devices of the above-described embodiment. The following inorganic filler (c) provided was contained in a proportion of 2.5 ppm or less of the entire inorganic filler.
(C) An inorganic filler whose particle surface is coated with carbon.
[0014]
That is, when the inorganic filler (c) having a particle size larger than the distance between the connection electrode portions or the distance between the conductor wirings in the semiconductor device exceeds 2.5 ppm of the entire inorganic filler, the connection in the semiconductor device is stopped. This is because there exists between the electrodes for use or between the conductor wirings, and the conduction between the electrodes or the wirings is conducted, and short-circuiting (short-circuit) often occurs. The lower limit of the content ratio of (c) is preferably as small as possible, but is generally 0.02 ppm. In addition, the measurement and calculation of the content ratio of the inorganic filler (c) in which the particle surface is coated with carbon in the entire inorganic filler is performed, for example, as follows. First, after a predetermined inorganic filler is put into a square case of 5 cm × 4.8 cm, it is polished, and the surface thereof is blackened with a predetermined particle size using an optical microscope (inorganic filler coated with carbon). (A) is measured. Further, the total number (B) of the predetermined inorganic filler present on one surface of the rectangular case having a size of 5 cm × 4.8 cm is calculated by the following formula using the average particle size (C) of the inorganic filler. Estimate in (1). Then, the content ratio (D) of the black spot having a predetermined particle size in the entire inorganic filler is calculated by the following equation (2).
[0015]
(Equation 1)
Figure 2004165381
[0016]
The inorganic filler is not particularly limited, and includes conventionally known fillers such as quartz glass powder, silica powder, alumina, and talc. Particularly preferred is a spherical fused silica powder.
[0017]
The average particle size of the inorganic filler itself is preferably in the range of 2 to 40 μm, particularly preferably 5 to 30 μm. The average particle diameter can be measured by a laser scattering particle size distribution analyzer.
[0018]
And, the content ratio of such a specific inorganic filler (component C) is preferably at least 75% by weight of the entire epoxy resin composition, more preferably in the range of 80 to 91% by weight. That is, if the content is too small, such as less than 75% by weight, the reliability of the semiconductor device such as solder resistance tends to be poor.
[0019]
In the present invention, in addition to the components A to C, if necessary, a curing accelerator, a halogen-based flame retardant such as a brominated epoxy resin, a flame retardant auxiliary such as antimony trioxide, a pigment such as carbon black, β- Other additives such as a silane coupling agent such as (3,4-epoxycyclohexyl) ethyltrimethoxysilane and γ-glycidoxypropyltrimethoxysilane, a pigment such as carbon black, and a release agent such as carnauba wax are appropriately used. Used.
[0020]
Examples of the curing accelerator include amine-type and phosphorus-type curing accelerators. Examples of the amine type include imidazoles such as 2-methylimidazole, and tertiary amines such as triethanolamine and diazabicycloundecene. Examples of the phosphorus type include triphenylphosphine and tetraphenylphosphine. These are used alone or in combination. And, the compounding ratio of the curing accelerator is preferably set to a ratio of 0.1 to 1.0% by weight of the whole epoxy resin composition. Further, considering the fluidity of the epoxy resin composition, it is preferably 0.15 to 0.35% by weight.
[0021]
The epoxy resin composition for semiconductor encapsulation of the present invention can be produced, for example, as follows. That is, after blending and mixing the components A to C and other additives as necessary, the mixture is melted and mixed in a kneading machine such as a mixing roll machine in a heated state, cooled to room temperature, and then cooled by a known means. It can be manufactured by a series of steps of crushing and tableting as necessary. Alternatively, a preliminary mixture is prepared by previously mixing carbon black as a pigment with a part of the epoxy resin. Then, the pre-mixture and the remaining components are mixed and melt-mixed, and then the mixture is manufactured through the same steps as described above.
[0022]
The sealing of the semiconductor element using such an epoxy resin composition is not particularly limited, and can be performed by a known molding method such as ordinary transfer molding.
[0023]
As the semiconductor device obtained in this way, specifically, as described above, a package configuration having the structure shown in FIGS. That is, in the package shown in FIG. 1, the semiconductor element 3 is mounted on the insulating substrate 1 via the connection electrode portion 2, and the insulating substrate 1 and the semiconductor element 3 are electrically connected. The surface of the insulating substrate 1 on which the semiconductor element 3 is mounted is resin-sealed with a sealing resin 4a. In the package shown in FIG. 2, the semiconductor element 3 is mounted on an insulating substrate 5, and the insulating substrate 5 and the semiconductor element 3 are electrically connected by wires 6. The semiconductor element 3 including the wire 6 is resin-sealed with a sealing resin 4b. Further, in the package shown in FIG. 3, a semiconductor element 3 is mounted on a metal lead frame 7, and the semiconductor element 3 and inner leads 8 are electrically connected by wires 6. The semiconductor element 3 including the wire 6 is resin-sealed with a sealing resin 4c. In the package shown in FIG. 4, the semiconductor element 3 is mounted on a metal lead frame 10, and the semiconductor element 3 and inner leads 11 provided around the lead frame 10 are electrically connected by wires 6. It is connected. The semiconductor element 3 including the wire 6 is resin-sealed with a sealing resin 4d.
[0024]
In the present invention, the connection electrode section is, for example, as shown in FIG. 1, which electrically connects the insulating substrate 1 and the semiconductor element 3. And a conductor provided on an electrode such as a joint ball. In addition, in the present invention, as shown in FIG. 2 to FIG. This is a concept that also includes the wires 6 connected to the inner lead 8, the inner leads 8, 11 and the wiring on the insulating substrate 5.
[0025]
Next, examples will be described together with comparative examples.
[0026]
Each component shown below was prepared.
[0027]
[Epoxy resin a]
Biphenyl type epoxy resin represented by the following general formula (a) (epoxy equivalent: 173, melting point: 100 ° C.)
Embedded image
Figure 2004165381
[0028]
[Epoxy resin b]
Epoxy resin having a repeating unit represented by the following general formula (b) (epoxy equivalent 170, melting point 60 ° C.)
Embedded image
Figure 2004165381
[0029]
(Phenol resin)
Phenol novolak resin (hydroxyl equivalent 107, melting point 60 ° C)
[0030]
(Curing accelerator)
Triphenylphosphine [0031]
〔Flame retardants〕
Brominated epoxy resin
(Flame retardant aid)
Antimony trioxide [0033]
〔Release agent〕
Carnauba wax [0034]
(Pigment)
Carbon black [0035]
[Inorganic filler a]
It is a spherical fused silica powder (average particle size of 20 μm) and contains the following carbon-coated fused silica powders a1 to a3.
a1: 10 ppm of carbon-coated fused silica powder having a particle size exceeding 60 μm
a2: 20 ppm of carbon-coated fused silica powder having a particle size of more than 30 μm
a3: 40 ppm of carbon-coated fused silica powder having a particle size of more than 20 μm
[0036]
[Inorganic filler b]
It is a spherical fused silica powder (average particle size of 10 μm) and contains the following carbon-coated fused silica powders b1 to b3.
b1: Carbon-coated fused silica powder having a particle size of more than 60 μm 0 ppm
b2: 5 ppm of carbon-coated fused silica powder having a particle size of more than 30 μm
b3: 10 ppm of carbon-coated fused silica powder having a particle size of more than 20 μm
[0037]
[Inorganic filler c]
It is a spherical fused silica powder (average particle size of 2 μm) and contains carbon-coated fused silica powders c1 to c3 shown below.
c1: carbon-coated fused silica powder having a particle size of more than 60 μm 0 ppm
c2: 0 ppm of carbon-coated fused silica powder having a particle size of more than 30 μm
c3: carbon-coated fused silica powder having a particle size of more than 20 μm 0 ppm
[0038]
[Inorganic filler d]
It is a spherical fused silica powder (average particle size: 15 μm) and contains the following carbon-coated fused silica powders d1 to d3.
d1: carbon-coated fused silica powder having a particle size of more than 60 μm 0 ppm
d2: 5 ppm of carbon-coated fused silica powder having a particle size of more than 30 μm
d3: 10 ppm of carbon-coated fused silica powder having a particle size of more than 20 μm
[0039]
(1) Sealing of the semiconductor device A [Examples A1 to A8, Comparative Examples A1 to A6]
Each raw material shown in the following Tables 1 to 3 was charged into a Henschel mixer at a ratio shown in the same table, and then mixed for 30 minutes. At this time, carbon black as a pigment was previously mixed with the epoxy resin a using a three-roll mill (mixing weight ratio of carbon black / epoxy resin a = 1/10) to prepare a preliminary mixture, which was used. Thereafter, the mixture was supplied to a kneading extruder and melt-mixed. Next, the melt was cooled, pulverized, and then tableted with a tablet molding die to produce a tablet made of an epoxy resin composition.
[0040]
[Table 1]
Figure 2004165381
[0041]
[Table 2]
Figure 2004165381
[0042]
[Table 3]
Figure 2004165381
[0043]
A semiconductor element (chip size: 10 × 10 mm) was transfer-molded (conditions: 175 ° C. × 120 seconds) using the thus-obtained tablets made of the respective epoxy resin compositions of Examples and Comparative Examples, and 175 ° C. × The semiconductor device shown in FIG. 3 was obtained by post-curing for 5 hours. This package is a 208-pin QFP (quad flat package).
[0044]
[Package form]
208-pin QFP (quad flat package) type: size 28 mm x 28 mm x thickness 2.8 mm
Semiconductor element 3 size: 10mm × 10mm × thickness 370μm
Metal lead frame 7: made of copper (size: 11 mm x 11 mm x thickness 100 m)
Wire 6: made of gold, diameter 25 μm, pitch 85 μm, distance between wires 60 μm
[0045]
With respect to each of the semiconductor devices obtained as described above, the occurrence of short circuit (short) was measured and evaluated. That is, the electrical resistance value between the adjacent inner leads 8 that were not electrically connected on the semiconductor element was measured, and those having a resistance of 1 kΩ or less were short-circuited. Then, out of the 3,000 samples, those having a short circuit were counted. The results are shown in Tables 4 to 6 below.
[0046]
[Table 4]
Figure 2004165381
[0047]
[Table 5]
Figure 2004165381
[0048]
[Table 6]
Figure 2004165381
[0049]
From the above Tables 4 to 6, no short circuit occurred in the example product. On the other hand, in the comparative example using the fused silica powder containing more than 2.5 ppm of the fused silica powder coated with carbon, the short circuit occurred.
[0050]
(2) Sealing of the semiconductor device B [Examples B1 to B8, Comparative Examples B1 to B6]
Each raw material shown in the following Tables 7 to 9 was charged into a Henschel mixer at a ratio shown in the same table, and then mixed for 30 minutes. At this time, carbon black as a pigment was previously mixed with the epoxy resin a using a three-roll mill (mixing weight ratio of carbon black / epoxy resin a = 1/10) to prepare a preliminary mixture, which was used. Thereafter, the mixture was supplied to a kneading extruder and melt-mixed. Next, the melt was cooled, pulverized, and then tableted with a tablet molding die to produce a tablet made of an epoxy resin composition.
[0051]
[Table 7]
Figure 2004165381
[0052]
[Table 8]
Figure 2004165381
[0053]
[Table 9]
Figure 2004165381
[0054]
By using each of the epoxy resin composition tablets obtained as described above, the semiconductor element mounted on the insulating substrate is subjected to transfer molding (condition: 175 ° C. × 1 minute + 175 ° C. × 5 hours post-curing). The single-sided sealing type semiconductor device shown in FIG. 2 was manufactured.
[0055]
[Package form]
Ball grid array (BGA) type: size 35mm x 35mm x thickness 1.5mm
Resin sealing layer 4b (cured epoxy resin composition) size: 35 mm × 35 mm × 1.2 mm thick
Semiconductor element 3 size: 10mm × 10mm × thickness 370μm
Insulating substrate 5: Bismaleimide triazine (BT) resin / glass cloth substrate (size: 40 mm x 40 mm x 0.3 mm)
Wire 6: made of gold, diameter 20 μm, pitch 50 μm, distance between wires 30 μm
[0056]
With respect to each of the semiconductor devices obtained as described above, the occurrence of short circuits was measured and evaluated in the same manner as described above. The results are shown in Tables 10 to 12 below.
[0057]
[Table 10]
Figure 2004165381
[0058]
[Table 11]
Figure 2004165381
[0059]
[Table 12]
Figure 2004165381
[0060]
From the above Tables 10 to 12, no short circuit occurred in the example product. On the other hand, in the comparative example using the fused silica powder containing more than 2.5 ppm of the fused silica powder coated with carbon, the short circuit occurred.
[0061]
(3) Sealing of the semiconductor device C [Examples C1 to C8, Comparative Examples C1 to C6]
Each raw material shown in the following Tables 13 to 15 was charged into a Henschel mixer at a ratio shown in the same table, and then mixed for 30 minutes. At this time, carbon black as a pigment was previously mixed with the epoxy resin a using a three-roll mill (mixing weight ratio of carbon black / epoxy resin a = 1/10) to prepare a preliminary mixture, which was used. Thereafter, the mixture was supplied to a kneading extruder and melt-mixed. Next, the melt was cooled, pulverized, and then tableted with a tablet molding die to produce a tablet made of an epoxy resin composition.
[0062]
[Table 13]
Figure 2004165381
[0063]
[Table 14]
Figure 2004165381
[0064]
[Table 15]
Figure 2004165381
[0065]
By using each of the epoxy resin composition tablets obtained as described above, the semiconductor element mounted on the insulating substrate is subjected to transfer molding (condition: 175 ° C. × 1 minute + 175 ° C. × 5 hours post-curing). A single-sided sealing type semiconductor device (FC-BGA) shown in FIG. 1 was manufactured.
[0066]
[Package form]
Flip chip ball grid array (FC-BGA) type: size 12mm x 12mm x thickness 1mm
Resin sealing layer 4a (cured epoxy resin composition) size: 12 mm × 12 mm × 600 μm in thickness
Semiconductor element 3 size: 10mm × 10mm × thickness 370μm
Insulating substrate 1: Bismaleimide triazine (BT) resin / glass cloth substrate (size: 14 mm x 14 mm x thickness 300 m)
Connection electrode part 2: gold bump, diameter 20 μm, pitch 50 μm, distance between gold bumps 30 μm
[0067]
For each of the semiconductor devices obtained as described above, in the same manner as described above, the electrical resistance between adjacent gold bumps, which were not conducted, was measured and found to be 1 kΩ or less. A short circuit was determined, and the occurrence of the short circuit was measured and evaluated. The results are shown in Tables 16 to 18 below.
[0068]
[Table 16]
Figure 2004165381
[0069]
[Table 17]
Figure 2004165381
[0070]
[Table 18]
Figure 2004165381
[0071]
From the above Tables 16 to 18, no short circuit occurred in the example product. On the other hand, in the comparative example using the fused silica powder containing more than 2.5 ppm of the fused silica powder coated with carbon, the short circuit occurred.
[0072]
【The invention's effect】
As described above, in the semiconductor device of the present invention, the sealing resin layer has a particle diameter larger than the distance between the connection electrode portions or the distance between the conductor wirings, and the inorganic surface of the particle surface is coated with carbon. It is formed of a cured epoxy resin composition for semiconductor encapsulation containing an inorganic filler (C) in which the content ratio of the agent (c) is set to 2.5 ppm or less of the entire inorganic filler. For this reason, the problem of occurrence of a short circuit (short circuit) due to conduction between the connection electrode portions or between the conductor wires is suppressed, and a semiconductor device having excellent reliability can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one package configuration of a semiconductor device.
FIG. 2 is a cross-sectional view illustrating another package form of the semiconductor device.
FIG. 3 is a cross-sectional view showing another package form of the semiconductor device.
FIG. 4 is a cross-sectional view showing another package form of the semiconductor device.
[Explanation of symbols]
1,5 Insulating substrate 2 Connection electrode part 3 Semiconductor element 4a, 4b, 4c, 4d Sealing resin 6 Wire 7,10 Lead frame

Claims (1)

絶縁基板もしくはリードフレーム上に半導体素子が搭載され、上記絶縁基板もしくはリードフレームと半導体素子が接続用電極部あるいは導電体配線により導通され、半導体素子を包含するよう封止樹脂層によって樹脂封止されてなる半導体装置であって、上記封止樹脂層が、下記の(A)〜(C)成分を含有する半導体封止用エポキシ樹脂組成物硬化体により形成されていることを特徴とする半導体装置。
(A)エポキシ樹脂。
(B)フェノール樹脂。
(C)上記接続用電極部間距離または導電体配線間距離より大きな粒径を備えた下記の無機質充填剤(c)の含有割合が、無機質充填剤全体の2.5ppm以下に設定されている無機質充填剤。
(c)粒子表面がカーボンにて被覆された無機質充填剤。
A semiconductor element is mounted on an insulating substrate or a lead frame, the insulating element or the lead frame is electrically connected to the semiconductor element by a connection electrode portion or a conductor wiring, and is sealed with a sealing resin layer so as to include the semiconductor element. Wherein the encapsulating resin layer is formed of a cured epoxy resin composition for semiconductor encapsulation containing the following components (A) to (C): .
(A) Epoxy resin.
(B) a phenolic resin.
(C) The content ratio of the following inorganic filler (c) having a particle size larger than the distance between the connection electrode portions or the distance between the conductive wires is set to 2.5 ppm or less of the entire inorganic filler. Inorganic filler.
(C) An inorganic filler whose particle surface is coated with carbon.
JP2002328726A 2002-11-12 2002-11-12 Semiconductor device Expired - Fee Related JP3822556B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002328726A JP3822556B2 (en) 2002-11-12 2002-11-12 Semiconductor device
EP03025681A EP1420035B1 (en) 2002-11-12 2003-11-07 Filled epoxy resin composition for semiconductor encapsulation and semiconductor using same
MYPI20034266A MY135619A (en) 2002-11-12 2003-11-07 Epoxy resin composition for semiconductor encapsulation, and semiconductor device using the same
DE60314218T DE60314218T2 (en) 2002-11-12 2003-11-07 Filled epoxy resin composition for encapsulating semiconductors and a semiconductor device encapsulated therewith
SG200306808A SG115586A1 (en) 2002-11-12 2003-11-07 Epoxy resin composition for semiconductor encapsulation, and semiconductor device using the same
US10/703,494 US7265167B2 (en) 2002-11-12 2003-11-10 Epoxy resin composition for semiconductor encapsulation, and semiconductor device using the same
TW092131483A TWI259503B (en) 2002-11-12 2003-11-11 Epoxy resin composition for semiconductor encapsulation, and semiconductor device using the same
CNB2003101142815A CN1315184C (en) 2002-11-12 2003-11-12 Epoxy compsn. for semiconductor package and semiconductor device using same
KR1020030079792A KR100676002B1 (en) 2002-11-12 2003-11-12 Epoxy resin composition for semiconductor encapsulation, and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328726A JP3822556B2 (en) 2002-11-12 2002-11-12 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2004165381A true JP2004165381A (en) 2004-06-10
JP3822556B2 JP3822556B2 (en) 2006-09-20

Family

ID=32806951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328726A Expired - Fee Related JP3822556B2 (en) 2002-11-12 2002-11-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3822556B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074613A (en) * 2010-09-29 2012-04-12 Sumitomo Bakelite Co Ltd Semiconductor device and manufacturing method thereof
JP2014197503A (en) * 2013-03-29 2014-10-16 住友ベークライト株式会社 Composite particle, semiconductor sealing material, and electrode material for lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074613A (en) * 2010-09-29 2012-04-12 Sumitomo Bakelite Co Ltd Semiconductor device and manufacturing method thereof
JP2014197503A (en) * 2013-03-29 2014-10-16 住友ベークライト株式会社 Composite particle, semiconductor sealing material, and electrode material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP3822556B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
JP2001064522A (en) Semiconductor sealing resin composition
JP3822556B2 (en) Semiconductor device
JP2000332165A (en) Resin composition for sealing semiconductor and semiconductor device employing it
TW202225244A (en) Resin composition for encapsulating semiconductor and semiconductor device
JP3259968B2 (en) Semiconductor device manufacturing method
JP4222894B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation, epoxy resin composition for semiconductor encapsulation obtained by the production method, and semiconductor device using the same
JP3846854B2 (en) Epoxy resin composition and semiconductor device
JP2002194058A (en) Semiconductor device
JP2014141573A (en) Resin composition for semiconductor encapsulation and semiconductor encapsulation device
JP2922672B2 (en) Semiconductor device manufacturing method
JPH09143345A (en) Epoxy resin composition
JP5346463B2 (en) Semiconductor device using epoxy resin composition for sealing
JP3876216B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JP2002309067A (en) Epoxy resin composition for sealing and semiconductor device
JP4013049B2 (en) Epoxy resin composition for sealing and resin-sealed semiconductor device
JP2005112880A (en) Epoxy resin composition for sealing semiconductor, method for producing the same and semiconductor device using the same
JP4513836B2 (en) Resin-encapsulated semiconductor device for surface mounting
JP2000226497A (en) Epoxy resin composition and semiconductor device
JP4014307B2 (en) Resin composition for semiconductor encapsulation
JP3876217B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JPH11100491A (en) Epoxy resin composition and semiconductor device
JP3967205B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JPH11181237A (en) Epoxy resin composition and semiconductor device
JPH09129786A (en) Semiconductor device
JP2003155327A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3822556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150630

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees