JPH07102368A - Formation of thin film - Google Patents
Formation of thin filmInfo
- Publication number
- JPH07102368A JPH07102368A JP24811893A JP24811893A JPH07102368A JP H07102368 A JPH07102368 A JP H07102368A JP 24811893 A JP24811893 A JP 24811893A JP 24811893 A JP24811893 A JP 24811893A JP H07102368 A JPH07102368 A JP H07102368A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- film
- substrate
- stress
- glass substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は薄膜の形成方法に関す
る。さらに詳しくは、液晶表示デバイス、エレクトロル
ミネセンス表示デバイスなどの大型の表示装置や密着型
イメージセンサなどの大型の光電変換デバイスの製造工
程において、薄膜の成膜後に生じる基板の反りを低減さ
せるための薄膜の形成方法に関する。FIELD OF THE INVENTION The present invention relates to a method for forming a thin film. More specifically, in a manufacturing process of a large-sized display device such as a liquid crystal display device and an electroluminescence display device, and a large-scale photoelectric conversion device such as a contact image sensor, it is possible to reduce a warp of a substrate that occurs after a thin film is formed. The present invention relates to a method for forming a thin film.
【0002】[0002]
【従来の技術】従来、液晶表示デバイス、エレクトロル
ミネセンス表示デバイスなどの大型の表示装置や密着型
イメージセンサなどの大型の光電変換デバイスの製造工
程においては、たとえば300mm角以上の大型のガラ
ス基板などが用いられており、このような大型の基板に
密着力などの応力以外の物性を維持しながら成膜しよう
とすると、応力が大きい薄膜を成膜せざるをえないばあ
いがある。図9および図10は、このような従来の薄膜
の形成方法によって薄膜が形成される前後の基板の状態
を示す概略説明図である。図9(a)および図10
(a)には、薄膜が形成される前の基板の状態、図9
(b)および図10(b)には、基板上に薄膜が形成さ
れたあとの基材の状態が示されている。このように薄膜
が形成されたあとには、図9(b)および図10(b)
に示されるように、基板が大きく反り、その反り幅(図
9(b)中のa、図10(b)中のb、以下同様)は、
通常200〜500μm程度となる。2. Description of the Related Art Conventionally, in the manufacturing process of large display devices such as liquid crystal display devices and electroluminescence display devices and large photoelectric conversion devices such as contact image sensors, large glass substrates of 300 mm square or larger are used. However, when attempting to form a film on such a large-sized substrate while maintaining physical properties other than stress, such as adhesion, it is sometimes necessary to form a thin film having large stress. 9 and 10 are schematic explanatory views showing the state of the substrate before and after the thin film is formed by such a conventional thin film forming method. 9 (a) and 10
FIG. 9A shows the state of the substrate before the thin film is formed.
FIG. 10B and FIG. 10B show the state of the base material after the thin film is formed on the substrate. After the thin film has been formed in this manner, FIG. 9B and FIG.
As shown in FIG. 9, the substrate is largely warped, and the warp width (a in FIG. 9B, b in FIG. 10B, and so on) is
Usually, it is about 200 to 500 μm.
【0003】基板がこのように大きく反っているばあい
には、その後のパターニング工程で基板を固定させるた
めに該基材の下面に設けられたステージから真空吸着を
行なったときに基材とステージのあいだに空隙が生じて
いるため、該基板を充分に真空吸着によって固定させる
ことができなかったり、写真製版時には、このような反
りによって生じる反り幅が200μmをこえるばあいに
は、露光の焦点が合わなくなるといった不都合を生じ、
デバイスの製造歩留がいちじるしく低下するという問題
点が発生する。When the substrate is thus largely warped, the substrate and the stage are subjected to vacuum suction from a stage provided on the lower surface of the substrate in order to fix the substrate in the subsequent patterning process. Since there is a gap between them, the substrate cannot be sufficiently fixed by vacuum suction, or when the warpage width caused by such warpage exceeds 200 μm at the time of photolithography, the exposure focus It causes inconvenience that
There is a problem that the manufacturing yield of the device is drastically reduced.
【0004】[0004]
【発明が解決しようとする課題】本発明は、前記従来技
術に鑑みてなされたものであり、薄膜の応力によって反
る基板の反り幅を200μm以内におさめることができ
る薄膜の形成方法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above prior art, and provides a method for forming a thin film capable of keeping the warp width of a substrate warped by the stress of the thin film within 200 μm. The purpose is to
【0005】[0005]
【課題を解決するための手段】本発明は、基板に薄膜
を形成し、該薄膜を加工してデバイスを製造する際に、
薄膜の応力が緩和されるように引張応力の膜および該引
張応力の膜と同一の材料からなる圧縮応力の膜を積層し
て薄膜を形成することを特徴とする薄膜の形成方法(以
下、第1の薄膜の形成方法という)、基板に薄膜を形
成し、該薄膜を加工してデバイスを製造する際に、成膜
前にあらかじめ成膜後の膜応力によって基板が反る方向
と反対の方向に薄膜の応力が緩和されるように基板を反
らせた状態で薄膜を形成することを特徴とする薄膜の形
成方法(以下、第2の薄膜の形成方法という)、基板
に薄膜を形成し、該薄膜を加工してデバイスを製造する
際に、薄膜の応力が緩和されるようにあらかじめ基板上
に応力を緩和する緩衝膜を成膜したのち薄膜を形成する
ことを特徴とする薄膜の形成方法(以下、第3の薄膜の
形成方法という)、および基板に薄膜を形成し、該薄
膜を加工してデバイスを製造する際に、薄膜の応力が緩
和されるように該薄膜上に緩衝膜を形成することを特徴
とする薄膜の形成方法(以下、第4の薄膜の形成方法と
いう)に関する。According to the present invention, when a thin film is formed on a substrate and the thin film is processed to manufacture a device,
A method for forming a thin film, characterized in that a thin film is formed by laminating a tensile stress film and a compressive stress film made of the same material as the tensile stress film so that the stress of the thin film is relaxed. 1) forming a thin film on a substrate, and processing the thin film to manufacture a device, a direction opposite to the direction in which the substrate warps due to a film stress after the film is formed before the film is formed. A thin film forming method (hereinafter referred to as a second thin film forming method), characterized in that the thin film is formed in a state in which the substrate is warped so that the stress of the thin film is relaxed. When manufacturing a device by processing a thin film, a buffer film for relaxing the stress is formed in advance on the substrate so that the stress of the thin film is relaxed, and then the thin film is formed ( Hereinafter, referred to as a third thin film forming method), A thin film is formed on a substrate and a substrate, and a buffer film is formed on the thin film so that stress of the thin film is relaxed when the thin film is processed to manufacture a device (hereinafter , Referred to as a fourth thin film forming method).
【0006】[0006]
【作用および実施例】まず、本発明の第1の薄膜の形成
方法によれば、基板に薄膜を形成し、該薄膜を加工して
デバイスを製造する際に、薄膜の応力が緩和されるよう
に、引張応力の膜および該引張応力の膜と同一の材料か
らなる圧縮応力の膜を積層することにより、薄膜が形成
される。First, according to the first thin film forming method of the present invention, when a thin film is formed on a substrate and the thin film is processed to manufacture a device, the stress of the thin film is relaxed. Then, a thin film is formed by laminating a tensile stress film and a compressive stress film made of the same material as the tensile stress film.
【0007】前記基板としては、通常用いられているも
のであればとくに限定がなく、たとえば一辺の長さが1
00〜1000mm程度、厚さが0.5〜1.5mm程
度の、ガラス基板、Siウエハー、セラミックス基板な
どがあげられる。The substrate is not particularly limited as long as it is a commonly used substrate. For example, one side has a length of 1
Examples thereof include a glass substrate, a Si wafer, and a ceramics substrate having a thickness of about 00 to 1000 mm and a thickness of about 0.5 to 1.5 mm.
【0008】前記引張応力の膜は、その膜を形成する物
質固有の密度よりも低い密度を有する膜であり、たとえ
ばCr、SiO2、SiNなどの材料を用いて、たとえ
ばスパッタリング法などによって形成させることができ
る。The tensile stress film is a film having a density lower than that of the substance forming the film, and is formed by using, for example, a material such as Cr, SiO 2 or SiN by, for example, a sputtering method. be able to.
【0009】前記圧縮応力の膜は、その膜を形成する物
質固有の密度よりも高い密度を有する膜であり、前記引
張応力の膜と同一の材料を用いて、たとえばプラズマC
VD(化学蒸着)法などによって形成させることができ
る。The film of compressive stress is a film having a density higher than that of the substance forming the film, and is made of the same material as the film of tensile stress, for example, plasma C
It can be formed by a VD (chemical vapor deposition) method or the like.
【0010】本発明においては、引張応力の膜および圧
縮応力の膜が同時に形成されているので、基板自体が反
りにくくなる。In the present invention, since the film of tensile stress and the film of compressive stress are formed at the same time, the substrate itself is less likely to warp.
【0011】前記引張応力の膜および圧縮応力の膜は、
いずれが先に形成されていてもよいが、基板との密着性
を考慮すれば、引張応力の膜が先に基板上に形成される
ことが好ましい。The tensile stress film and the compressive stress film are
Either of them may be formed first, but in consideration of the adhesion to the substrate, it is preferable that the film having tensile stress is formed on the substrate first.
【0012】前記引張応力の膜および圧縮応力の膜とを
積層するばあいには、かかる膜の積層数にはとくに限定
がなく、たとえばそれぞれ1層ずつだけであってもよ
く、また3〜10層程度であってもよいが、最表面層と
最下層との応力を同じにするばあいには、奇数層とす
る。When the tensile stress film and the compressive stress film are laminated, the number of laminated films is not particularly limited, and may be, for example, one layer each, or 3 to 10 layers. Although the number of layers may be approximately, if the stresses of the outermost surface layer and the lowermost layer are the same, they are odd layers.
【0013】前記薄膜の加工方法にはとくに限定がな
く、たとえばフォトエッチングなどの通常の方法をあげ
ることができる。The method for processing the thin film is not particularly limited, and a usual method such as photoetching can be used.
【0014】また、本発明の第2の薄膜の形成方法は、
引張応力の膜、圧縮応力の膜を形成したときに、かかる
膜の応力によって基材が反るばあいに好適に使用しうる
方法であり、成膜後の膜応力によって基板が反る方向と
反対の方向に、膜応力によって基板が反る分だけあらか
じめ基板を反らせた状態で薄膜を形成させる。The second thin film forming method of the present invention is
This is a method that can be suitably used when the base material warps due to the stress of the film when a film with tensile stress or a film with compressive stress is formed. In the opposite direction, a thin film is formed in a state where the substrate is warped in advance by the amount that the substrate is warped by the film stress.
【0015】前記基板を反らせる方法にはとくに限定が
なく、たとえば基板の取り付け治具に、該基板が反る方
向と反対の方向に反らせた形状を有する高さ調整治具を
取り付け、基板を該高さ調整治具にそわせるようにして
取り付ける方法などがあげられる。なお、基板は、通
常、成膜後に基板に反りが生じない程度に、かかる反り
とは反対の方向に反らせる。The method of bending the substrate is not particularly limited. For example, a height adjusting jig having a shape curved in a direction opposite to the warping direction of the substrate is attached to the mounting jig of the substrate, and the substrate is fixed. There is a method of attaching it so that it fits the height adjustment jig. Note that the substrate is generally warped in a direction opposite to the warp so that the substrate does not warp after film formation.
【0016】前記薄膜の形成方法としては、とくに限定
はなく、たとえば金属をスパッタリング法やプラズマC
VD法などの方法で形成させる方法などがあげられる。The method of forming the thin film is not particularly limited, and for example, a metal sputtering method or plasma C is used.
Examples thereof include a method of forming by a method such as VD method.
【0017】前記薄膜の層数は、とくに限定がないが、
あまりにも多いばあいには、煩雑となる傾向があるの
で、通常1〜15層程度であることが好ましい。The number of layers of the thin film is not particularly limited,
If it is too much, it tends to be complicated, so that it is usually preferable to have about 1 to 15 layers.
【0018】また、本発明の第3の薄膜の形成方法にお
いては、あらかじめ基板上に応力を緩和する緩衝膜を成
膜したのち薄膜が形成される。In the third method for forming a thin film of the present invention, a thin film is formed after forming a buffer film for relaxing stress on a substrate in advance.
【0019】前記応力を緩和する緩衝膜としては、前記
薄膜が引張応力を有するばあいには、圧縮応力の膜が用
いられ、前記薄膜が圧縮応力を有するばあいには、引張
応力の膜が用いられる。As the buffer film for relieving the stress, a compressive stress film is used when the thin film has a tensile stress, and a tensile stress film is used when the thin film has a compressive stress. Used.
【0020】前記緩衝膜の膜厚は、0.1〜1.0μm
であるのが好ましい。かかる緩衝膜の膜厚は、0.1μ
m未満であるばあいには、その膜厚を制御することが困
難となり、また1.0μmをこえるばあいには、成膜の
スループットが低下する傾向がある。The thickness of the buffer film is 0.1 to 1.0 μm.
Is preferred. The thickness of the buffer film is 0.1μ
If it is less than m, it is difficult to control the film thickness, and if it exceeds 1.0 μm, the throughput of film formation tends to decrease.
【0021】前記薄膜は1層であってもよく、複数の層
が積層されたものであってもよく、さらには加工が施さ
れたものであってもよい。The thin film may be a single layer, a laminate of a plurality of layers, or a processed film.
【0022】また、本発明の第4の薄膜の形成方法にお
いては、前記緩衝膜は、前記薄膜の下ではなく、該薄膜
の上に形成される。In the fourth method for forming a thin film of the present invention, the buffer film is formed not above the thin film but above the thin film.
【0023】本発明の薄膜の形成方法によれば、前記し
たように、薄膜の成膜後に生じる基板の反りを低減させ
ることができる。According to the thin film forming method of the present invention, as described above, it is possible to reduce the warp of the substrate that occurs after the thin film is formed.
【0024】つぎに本発明を実施例に基づいてさらに詳
細に説明するが、本発明はかかる実施例のみに限定され
るものではない。Next, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
【0025】[実施例1]図1は、本発明の実施例1の
薄膜の形成方法によって薄膜を形成する際のガラス基板
の状態を示す概略説明図である。[Embodiment 1] FIG. 1 is a schematic explanatory view showing a state of a glass substrate when a thin film is formed by the method for forming a thin film according to Embodiment 1 of the present invention.
【0026】まず、図1(a)に示された300mm
角、厚さ1.1mmのガラス基板1上に、Crからなる
膜厚0.25μmの引張応力の膜(引張応力:1.0×
109N/m2)21を、成膜速度の速い条件、すなわち
高い成膜パワーでスパッタリング法によって成膜した。
図1(b)にガラス基板1上にCrからなる引張応力の
膜21が形成された状態を示す。ついで、前記Crから
なる引張応力の膜21の上にCrからなる膜厚0.25
μmの圧縮応力の膜31を成膜速度の遅い条件、すなわ
ち低い成膜パワーでプラズマCVD法で成膜することに
より、膜厚0.5μmのCrの膜(圧縮応力:0.5×
109N/m2)を形成した。First, the 300 mm shown in FIG.
A film of 0.25 μm thick tensile stress film made of Cr (tensile stress: 1.0 ×) was formed on a glass substrate 1 having a corner and a thickness of 1.1 mm.
10 9 N / m 2 ) 21 was formed by the sputtering method under the condition that the film forming rate was high, that is, under the high film forming power.
FIG. 1B shows a state where a tensile stress film 21 made of Cr is formed on the glass substrate 1. Then, on the tensile stress film 21 made of Cr, a film thickness of 0.25 made of Cr is formed.
By forming the film 31 having a compressive stress of μm by the plasma CVD method under the condition that the film forming rate is slow, that is, the film forming power is low, a Cr film having a film thickness of 0.5 μm (compressive stress: 0.5 ×
10 9 N / m 2 ) was formed.
【0027】その結果、Crからなる引張応力の膜21
とCrからなる圧縮応力の膜31とは、応力を打ち消し
合って薄膜全体としては応力が非常に小さくなり、図1
(c)に示されるように、ガラス基板1の反り幅が20
0μm以下と非常に小さく、写真製版時に露光の焦点ぼ
けを回避することができた。As a result, the tensile stress film 21 made of Cr is formed.
And the compressive stress film 31 made of Cr cancel each other out, and the stress becomes very small in the whole thin film.
As shown in (c), the warp width of the glass substrate 1 is 20.
It was very small, 0 μm or less, and it was possible to avoid defocusing of exposure during photolithography.
【0028】[実施例2]図2は、本発明の実施例2の
薄膜の形成方法によって薄膜が形成された300mm
角、厚さ1.1mmのガラス基板の状態を示す概略説明
図である。図2に示されるように、スパッタリング法に
よって形成されたCrからなる引張応力の膜(引張応
力:1.0×109N/m2)21と、プラズマCVD法
によって形成されたCrからなる圧縮応力の膜(圧縮応
力:0.5×109N/m2)31とを0.125μmず
つ交互に4層積層したほかは実施例1と同様にしてCr
の薄膜を形成したところ、実施例1と同様に、ガラス基
板の反り幅が200μm以下と非常に小さく、写真製版
時に露光の焦点ぼけを回避することができた。[Embodiment 2] FIG. 2 shows a thin film having a thickness of 300 mm formed by the method for forming a thin film according to Embodiment 2 of the present invention.
It is a schematic explanatory view showing a state of a glass substrate having a corner and a thickness of 1.1 mm. As shown in FIG. 2, a tensile stress film (tensile stress: 1.0 × 10 9 N / m 2 ) 21 made of Cr formed by a sputtering method and a compression made of Cr formed by a plasma CVD method. Cr was formed in the same manner as in Example 1 except that a stress film (compressive stress: 0.5 × 10 9 N / m 2 ) 31 and 0.15 μm each were alternately laminated in four layers.
When the thin film of No. 2 was formed, the warp width of the glass substrate was as very small as 200 μm or less as in Example 1, and it was possible to avoid defocusing of exposure during photolithography.
【0029】[実施例3]図3は本発明の実施例3の薄
膜の形成方法によって薄膜を形成する際のガラス基板の
状態を示す概略説明図である。[Embodiment 3] FIG. 3 is a schematic explanatory view showing a state of a glass substrate when a thin film is formed by the method for forming a thin film according to Embodiment 3 of the present invention.
【0030】まず、ガラス基板1を取り付ける治具5
に、高さ調整治具4を取り付け、300mm角、厚さ
1.1mmのガラス基板1を治具4にそわせて取り付け
ることによって、図3(a)に示されるように成膜後に
膜応力によってガラス基板1が反る方向と反対の方向
(下に凸)にガラス基板1を反らせた。反り幅は500
μmであった。First, a jig 5 for mounting the glass substrate 1
Then, the height adjusting jig 4 is attached, and the glass substrate 1 having a 300 mm square and a thickness of 1.1 mm is attached along the jig 4, so that the film stress after film formation is increased as shown in FIG. The glass substrate 1 was bent in a direction (convex downward) opposite to the direction in which the glass substrate 1 was bent. Warp width is 500
was μm.
【0031】つぎに、ガラス基板1を反らせた状態で、
前記ガラス基板1上に、プラズマCVD法により膜厚が
0.5μmのSiNからなる圧縮応力の膜(圧縮応力:
0.5×109N/m2)32を形成した。図3(b)
に、ガラス基板1上にSiNからなる圧縮応力の膜32
が形成された状態を示す。Next, with the glass substrate 1 warped,
On the glass substrate 1, a film having a compressive stress (compressive stress:
0.5 × 10 9 N / m 2 ) 32 was formed. Figure 3 (b)
And a compressive stress film 32 made of SiN on the glass substrate 1.
Shows the state in which the is formed.
【0032】成膜後、高さ調整治具4からガラス基板1
を取り外したところ、SiNからなる圧縮応力の膜32
は、薄膜表面を上にして上に凸に反ろうとするが、成膜
前にガラス基板1を下に凸に反らせていたので、図3
(c)に示されるようにガラス基板1の反りは非常に小
さく、反り幅は100μm以下であった。After film formation, the height adjusting jig 4 to the glass substrate 1
When the film was removed, a compressive stress film 32 made of SiN was obtained.
Tries to warp upward with the thin film surface facing upward, but since the glass substrate 1 was warped downward convex before film formation,
As shown in (c), the warp of the glass substrate 1 was very small, and the warp width was 100 μm or less.
【0033】[実施例4]図4は、本発明の実施例4の
薄膜の形成方法によって薄膜を形成する際のガラス基板
の状態を示す概略説明図である。[Embodiment 4] FIG. 4 is a schematic explanatory view showing a state of a glass substrate when a thin film is formed by the method for forming a thin film of Embodiment 4 of the present invention.
【0034】ガラス基板1を成膜によって反る方向と反
対の方向(上に凸)に反らせ(図4(a)参照)、スパ
ッタリング法によりCrからなる膜厚が0.25μmの
引張応力の膜(引張応力:1.0×109N/m2)22
を形成したほかは、実施例3と同様にして薄膜を形成し
(図4(b)参照)、高さ調整治具4からガラス基板1
を取り外したところ、前記Crからなる引張応力の膜2
2が形成された。ガラス基板1の反りは図4(c)に示
されるように非常に小さく、反り幅は100μm以下で
あった。The glass substrate 1 is warped in a direction (convex upward) opposite to the warping direction by film formation (see FIG. 4 (a)), and a film made of Cr and having a tensile stress of 0.25 μm is formed by a sputtering method. (Tensile stress: 1.0 × 10 9 N / m 2 ) 22
A thin film was formed in the same manner as in Example 3 except that the above was formed (see FIG. 4B), and the height adjusting jig 4 was used to form the glass substrate 1.
After removing the film, the tensile stress film 2 made of Cr was formed.
2 was formed. The warp of the glass substrate 1 was very small as shown in FIG. 4C, and the warp width was 100 μm or less.
【0035】[実施例5]図5は、本発明の実施例5の
薄膜の形成方法によって薄膜を形成する際のガラス基板
の状態を示す概略説明図である。[Embodiment 5] FIG. 5 is a schematic explanatory view showing a state of a glass substrate when a thin film is formed by the method for forming a thin film of Embodiment 5 of the present invention.
【0036】図5(a)に示された300mm角、厚さ
1.1mmのガラス基板1上にプラズマCVD法により
膜厚が0.7μmのSiNからなる圧縮応力の膜33
(圧縮応力:0.7×109N/m2)を緩衝膜として形
成した。図5(b)に、ガラス基板1上に緩衝膜が形成
された状態を示す。A compressive stress film 33 made of SiN having a film thickness of 0.7 μm is formed on the glass substrate 1 of 300 mm square and 1.1 mm in thickness shown in FIG. 5A by the plasma CVD method.
(Compressive stress: 0.7 × 10 9 N / m 2 ) was formed as a buffer film. FIG. 5B shows a state in which the buffer film is formed on the glass substrate 1.
【0037】つぎに、スパッタリング法により膜厚が
0.5μmのCrからなる引張応力の膜(引張応力:
1.0×109N/m2)22を形成した。その結果、緩
衝膜の圧縮応力と、Crからなる引張応力の膜22の引
張応力とがたがいに緩衝しあって全体としての膜応力は
きわめて小さくなり、図5(c)に示されるようにガラ
ス基板1の反りはきわめて小さく、反り幅は100μm
以下であった。Next, a tensile stress film made of Cr having a film thickness of 0.5 μm (tensile stress:
1.0 × 10 9 N / m 2 ) 22 was formed. As a result, the compressive stress of the buffer film and the tensile stress of the tensile stress film 22 of Cr buffer each other, and the overall film stress becomes extremely small. As shown in FIG. The warp of the substrate 1 is extremely small and the warp width is 100 μm.
It was below.
【0038】また、ガラス基板1と薄膜との間に、薄膜
が全体として有する応力と反対の応力を有する緩衝膜を
設けて形成された電子デバイスのばあいでも同様の結果
がえられた。Similar results were obtained in the case of an electronic device formed by providing a buffer film having a stress opposite to the stress that the thin film has as a whole between the glass substrate 1 and the thin film.
【0039】[実施例6]図6は、本発明の実施例6の
薄膜の形成方法によって薄膜を形成する際のガラス基板
の状態を示す概略説明図である。[Sixth Embodiment] FIG. 6 is a schematic explanatory view showing a state of a glass substrate when a thin film is formed by a thin film forming method of a sixth embodiment of the present invention.
【0040】図6(a)に示された300mm角、厚さ
1.1mmのガラス基板1上にスパッタリング法により
膜厚が0.5μmのSiO2からなる引張応力の膜(引
張応力:1.0×109N/m2)23を緩衝膜として形
成した。図6(b)に、ガラス基板1上に緩衝膜が形成
された状態を示す。On the glass substrate 1 of 300 mm square and 1.1 mm in thickness shown in FIG. 6A, a film having a tensile stress of SiO 2 having a film thickness of 0.5 μm (tensile stress: 1. 0 × 10 9 N / m 2 ) 23 was formed as a buffer film. FIG. 6B shows a state in which the buffer film is formed on the glass substrate 1.
【0041】つぎに、プラズマCVD法により膜厚0.
5μmのSiNからなる圧縮応力の膜(圧縮応力:0.
7×109N/m2)32を形成した。その結果、引張応
力を有する緩衝膜と、SiNからなる圧縮応力の膜32
とがたがいに緩衝しあって全体としての膜応力がきわめ
て小さくなり、図6(c)に示されるように、ガラス基
板1の反りはきわめて小さく、反り幅は200μm以下
であった。Next, a film thickness of 0.
A film of compressive stress composed of 5 μm SiN (compressive stress: 0.
7 × 10 9 N / m 2 ) 32 was formed. As a result, the buffer film having tensile stress and the compressive stress film 32 made of SiN are formed.
As a result, the film stress as a whole became extremely small by buffering each other, and as shown in FIG. 6C, the warp of the glass substrate 1 was extremely small and the warp width was 200 μm or less.
【0042】[実施例7〜8]図7および図8は、それ
ぞれ本発明の実施例7および8の薄膜の形成方法によっ
て薄膜を形成する際のガラス基板の状態を示す概略説明
図である。[Embodiments 7 to 8] FIGS. 7 and 8 are schematic explanatory views showing a state of a glass substrate when a thin film is formed by the method for forming a thin film of Embodiments 7 and 8 of the present invention, respectively.
【0043】300mm角、厚さ1.1mmのガラス基
板1上に、2×109N/m2程度の圧縮応力を有する薄
膜トランジスタ34を形成した。図7(a)に、ガラス
基板1上に圧縮応力を有する薄膜トランジスタ34が形
成された状態を示す。ついでその上にスパッタリング法
により膜厚0.5μmのSiO2からなる引張応力の膜
(引張応力:1.0×109N/m2)23を緩衝膜とし
て形成した。図7(b)に、前記圧縮応力を有する薄膜
トランジスタ34の上に緩衝膜が形成された状態を示す
(実施例7)。A thin film transistor 34 having a compressive stress of about 2 × 10 9 N / m 2 was formed on a glass substrate 1 having a 300 mm square and a thickness of 1.1 mm. FIG. 7A shows a state in which the thin film transistor 34 having a compressive stress is formed on the glass substrate 1. Then, a tensile stress film (tensile stress: 1.0 × 10 9 N / m 2 ) 23 made of SiO 2 having a film thickness of 0.5 μm was formed thereon as a buffer film by a sputtering method. FIG. 7B shows a state in which a buffer film is formed on the thin film transistor 34 having the compressive stress (Example 7).
【0044】また、300mm角、厚さ1.1mmのガ
ラス基板1上に2×109N/m2程度の引張応力を有す
る薄膜トランジスタ24を形成した。図8(a)に、ガ
ラス基板1上に引張応力を有する薄膜トランジスタ24
が形成された状態を示す。Further, a thin film transistor 24 having a tensile stress of about 2 × 10 9 N / m 2 was formed on the glass substrate 1 having a 300 mm square and a thickness of 1.1 mm. FIG. 8A shows a thin film transistor 24 having tensile stress on the glass substrate 1.
Shows the state in which the is formed.
【0045】つぎに、その上にプラズマCVD法により
膜厚0.5μmのSiNからなる圧縮応力の膜(圧縮応
力:0.7×109N/m2)33を緩衝膜として形成し
た。図8(b)に、前記引張応力を有する薄膜トランジ
スタ24の上に緩衝膜が形成された状態を示す(実施例
8)。ガラス基板を観察したところ、薄膜トランジスタ
の応力が緩衝膜によって緩和され、図7(b)および図
8(b)に示されるように、ガラス基板1の反りはきわ
めて小さく、反り幅は200μm以下であった。Next, a 0.5 μm-thick film of SiN having a compressive stress (compressive stress: 0.7 × 10 9 N / m 2 ) 33 was formed thereon as a buffer film by the plasma CVD method. FIG. 8B shows a state in which a buffer film is formed on the thin film transistor 24 having the tensile stress (Example 8). When the glass substrate was observed, the stress of the thin film transistor was relieved by the buffer film, and as shown in FIGS. 7B and 8B, the warp of the glass substrate 1 was extremely small and the warp width was 200 μm or less. It was
【0046】[0046]
【発明の効果】本発明によれば、基板上に薄膜を形成す
る際、薄膜の内部応力が緩和されるので、応力による基
板の反りを防ぐことができ、たとえば反りによる真空吸
着不良などをなくすことができる。According to the present invention, when a thin film is formed on a substrate, the internal stress of the thin film is relaxed, so that the warp of the substrate due to the stress can be prevented and, for example, a vacuum suction defect due to the warp can be eliminated. be able to.
【図1】本発明の実施例1の薄膜の形成方法によって薄
膜を形成する際のガラス基板の状態を示す概略説明図で
ある。FIG. 1 is a schematic explanatory view showing a state of a glass substrate when a thin film is formed by a thin film forming method according to a first embodiment of the present invention.
【図2】本発明の実施例2の薄膜の形成方法によって薄
膜が形成されたガラス基板の状態を示す概略説明図であ
る。FIG. 2 is a schematic explanatory view showing a state of a glass substrate on which a thin film has been formed by the thin film forming method of Example 2 of the present invention.
【図3】本発明の実施例3の薄膜の形成方法によって薄
膜を形成する際のガラス基板の状態を示す概略説明図で
ある。FIG. 3 is a schematic explanatory view showing a state of a glass substrate when a thin film is formed by the thin film forming method of Example 3 of the present invention.
【図4】本発明の実施例4の薄膜の形成方法によって薄
膜を形成する際のガラス基板の状態を示す概略説明図で
ある。FIG. 4 is a schematic explanatory view showing a state of a glass substrate when a thin film is formed by the thin film forming method of Example 4 of the present invention.
【図5】本発明の実施例5の薄膜の形成方法によって薄
膜を形成する際のガラス基板の状態を示す概略説明図で
ある。FIG. 5 is a schematic explanatory view showing a state of a glass substrate when a thin film is formed by the thin film forming method of Example 5 of the present invention.
【図6】本発明の実施例6の薄膜の形成方法によって薄
膜を形成する際のガラス基板の状態を示す概略説明図で
ある。FIG. 6 is a schematic explanatory view showing a state of a glass substrate when a thin film is formed by the thin film forming method of Example 6 of the present invention.
【図7】本発明の実施例7の薄膜の形成方法によって薄
膜を形成する際のガラス基板の状態を示す概略説明図で
ある。FIG. 7 is a schematic explanatory view showing a state of a glass substrate when a thin film is formed by the thin film forming method of Example 7 of the present invention.
【図8】本発明の実施例8の薄膜の形成方法によって薄
膜を形成する際のガラス基板の状態を示す概略説明図で
ある。FIG. 8 is a schematic explanatory view showing a state of a glass substrate when a thin film is formed by the thin film forming method of Example 8 of the present invention.
【図9】従来の薄膜の形成方法によって薄膜が形成され
る前後の基板の状態を示す概略説明図である。FIG. 9 is a schematic explanatory view showing a state of a substrate before and after a thin film is formed by a conventional thin film forming method.
【図10】従来の薄膜の形成方法によって薄膜が形成さ
れる前後の基板の状態を示す概略説明図である。FIG. 10 is a schematic explanatory view showing a state of a substrate before and after a thin film is formed by a conventional thin film forming method.
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/205 (72)発明者 中堀 正樹 熊本県菊池郡西合志町御代志997番地 株 式会社アドバンスト・ディスプレイ内 (72)発明者 森田 浩正 熊本県菊池郡西合志町御代志997番地 株 式会社アドバンスト・ディスプレイ内 (72)発明者 山田 勝 熊本県菊池郡西合志町御代志997番地 株 式会社アドバンスト・ディスプレイ内Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location H01L 21/205 (72) Inventor Masaki Nakabori 997 Miyoshi, Nishigoshi-cho, Kikuchi-gun, Kumamoto Prefecture Advanced Display Co., Ltd. ( 72) Inventor Hiromasa Morita, 997 Miyoshi, Nishigoshi-cho, Kikuchi-gun, Kumamoto Prefecture, Advanced Display Co., Ltd. (72) Inventor, Masaru Yamada, 997 Miyoshi, Nishigoshi-cho, Kikuchi-gun, Kumamoto Prefecture, Advanced Display, Inc.
Claims (4)
デバイスを製造する際に、薄膜の応力が緩和されるよう
に引張応力の膜および該引張応力の膜と同一の材料から
なる圧縮応力の膜を積層して薄膜を形成することを特徴
とする薄膜の形成方法。1. A tensile stress film and the same material as the tensile stress film so that the stress of the thin film is relaxed when a thin film is formed on a substrate and the thin film is processed to manufacture a device. A method of forming a thin film, which comprises laminating a film of compressive stress to form a thin film.
デバイスを製造する際に、成膜前にあらかじめ成膜後の
膜応力によって基板が反る方向と反対の方向に薄膜の応
力が緩和されるように基板を反らせた状態で薄膜を形成
することを特徴とする薄膜の形成方法。2. When a thin film is formed on a substrate and a device is manufactured by processing the thin film, stress of the thin film is applied in a direction opposite to a direction in which the substrate warps due to a film stress after the film is formed before the film is formed. A method for forming a thin film, which comprises forming the thin film in a state in which the substrate is warped so as to alleviate the temperature.
デバイスを製造する際に、薄膜の応力が緩和されるよう
にあらかじめ基板上に応力を緩和する緩衝膜を成膜した
のち薄膜を形成することを特徴とする薄膜の形成方法。3. A thin film is formed on a substrate, and a buffer film for relaxing stress is formed on the substrate in advance so that the stress of the thin film is relaxed when the thin film is processed to manufacture a device. Forming a thin film.
デバイスを製造する際に、薄膜の応力が緩和されるよう
に該薄膜上に緩衝膜を形成することを特徴とする薄膜の
形成方法。4. A thin film is formed on a substrate, and a buffer film is formed on the thin film so that stress of the thin film is relaxed when the thin film is processed to manufacture a device. Forming method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24811893A JPH07102368A (en) | 1993-10-04 | 1993-10-04 | Formation of thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24811893A JPH07102368A (en) | 1993-10-04 | 1993-10-04 | Formation of thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07102368A true JPH07102368A (en) | 1995-04-18 |
Family
ID=17173502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24811893A Pending JPH07102368A (en) | 1993-10-04 | 1993-10-04 | Formation of thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07102368A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11158617A (en) * | 1997-11-28 | 1999-06-15 | Miyagi Oki Denki Kk | Sputtering method and sputtering device |
DE19808518C1 (en) * | 1998-02-27 | 1999-08-05 | Rockwool Mineralwolle | Coating and impregnation of mineral wool for the production of insulation boards |
JP2008103481A (en) * | 2006-10-18 | 2008-05-01 | Hoya Corp | Reflective mask blank and mask for exposure, substrate with multilayer reflection film, and process for fabricating semiconductor device |
JP2008109060A (en) * | 2005-11-10 | 2008-05-08 | Asahi Glass Co Ltd | Method for depositing reflective multilayer film of reflective mask blank for euv lithography and method for producing reflecting mask blank for euv lithography |
JP2010102356A (en) * | 2002-03-29 | 2010-05-06 | Hoya Corp | Method of producing mask blank and method of producing transfer mask |
JP2010210782A (en) * | 2009-03-09 | 2010-09-24 | Ricoh Co Ltd | Micromirror apparatus |
JP2011049432A (en) * | 2009-08-28 | 2011-03-10 | Tokyo Electron Ltd | Method for using dummy substrate |
JP5086086B2 (en) * | 2005-09-30 | 2012-11-28 | Hoya株式会社 | Photomask blank and manufacturing method thereof, photomask manufacturing method, and semiconductor device manufacturing method |
DE102015200326A1 (en) * | 2015-01-13 | 2016-02-11 | Carl Zeiss Smt Gmbh | Method for applying an optically active coating to a substrate, optical element and coating system for carrying out the method |
CN105702564A (en) * | 2016-03-29 | 2016-06-22 | 上海华力微电子有限公司 | Wafer warpage improvement method |
KR20170104508A (en) * | 2015-01-14 | 2017-09-15 | 코닝 인코포레이티드 | Glass substrate and display device including the same |
JP2019099403A (en) * | 2017-11-29 | 2019-06-24 | 日本電気硝子株式会社 | Manufacturing method of glass substrate with film and manufacturing apparatus of glass substrate with film |
JP2019523448A (en) * | 2016-07-21 | 2019-08-22 | コーニング インコーポレイテッド | Optical element with stress balancing coating |
CN113035688A (en) * | 2019-12-09 | 2021-06-25 | 华润微电子(重庆)有限公司 | Semiconductor structure and manufacturing method thereof |
-
1993
- 1993-10-04 JP JP24811893A patent/JPH07102368A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11158617A (en) * | 1997-11-28 | 1999-06-15 | Miyagi Oki Denki Kk | Sputtering method and sputtering device |
DE19808518C1 (en) * | 1998-02-27 | 1999-08-05 | Rockwool Mineralwolle | Coating and impregnation of mineral wool for the production of insulation boards |
JP2010102356A (en) * | 2002-03-29 | 2010-05-06 | Hoya Corp | Method of producing mask blank and method of producing transfer mask |
JP2011215634A (en) * | 2002-03-29 | 2011-10-27 | Hoya Corp | Method of producing mask blank and method of producing transfer mask |
JP5086086B2 (en) * | 2005-09-30 | 2012-11-28 | Hoya株式会社 | Photomask blank and manufacturing method thereof, photomask manufacturing method, and semiconductor device manufacturing method |
JP2008109060A (en) * | 2005-11-10 | 2008-05-08 | Asahi Glass Co Ltd | Method for depositing reflective multilayer film of reflective mask blank for euv lithography and method for producing reflecting mask blank for euv lithography |
JP2008103481A (en) * | 2006-10-18 | 2008-05-01 | Hoya Corp | Reflective mask blank and mask for exposure, substrate with multilayer reflection film, and process for fabricating semiconductor device |
JP2010210782A (en) * | 2009-03-09 | 2010-09-24 | Ricoh Co Ltd | Micromirror apparatus |
JP2011049432A (en) * | 2009-08-28 | 2011-03-10 | Tokyo Electron Ltd | Method for using dummy substrate |
DE102015200326A1 (en) * | 2015-01-13 | 2016-02-11 | Carl Zeiss Smt Gmbh | Method for applying an optically active coating to a substrate, optical element and coating system for carrying out the method |
KR20170104508A (en) * | 2015-01-14 | 2017-09-15 | 코닝 인코포레이티드 | Glass substrate and display device including the same |
US20180005960A1 (en) * | 2015-01-14 | 2018-01-04 | Corning Incorporated | Glass substrate and display device comprising the same |
JP2018506497A (en) * | 2015-01-14 | 2018-03-08 | コーニング インコーポレイテッド | Glass substrate and display device having the same |
US20200411450A1 (en) * | 2015-01-14 | 2020-12-31 | Corning Incorporated | Glass substrate and display device comprising the same |
CN105702564A (en) * | 2016-03-29 | 2016-06-22 | 上海华力微电子有限公司 | Wafer warpage improvement method |
JP2019523448A (en) * | 2016-07-21 | 2019-08-22 | コーニング インコーポレイテッド | Optical element with stress balancing coating |
JP2019099403A (en) * | 2017-11-29 | 2019-06-24 | 日本電気硝子株式会社 | Manufacturing method of glass substrate with film and manufacturing apparatus of glass substrate with film |
CN113035688A (en) * | 2019-12-09 | 2021-06-25 | 华润微电子(重庆)有限公司 | Semiconductor structure and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07102368A (en) | Formation of thin film | |
CN101065827A (en) | Multiple shadow mask structure for deposition shadow mask protection and method of making and using same | |
JPH0360013A (en) | Thin film structure for x-ray lithography | |
JP3274190B2 (en) | Method for manufacturing semiconductor epitaxial substrate | |
JPH02183570A (en) | Ferroelectric substance integrated circuit device and its manufacture | |
JP4978114B2 (en) | Method for manufacturing piezoelectric vibrating piece | |
JPH02237021A (en) | Manufacture of semiconductor device | |
JPH04302432A (en) | Semiconductor wafer substrate | |
KR102716370B1 (en) | Mask-support assembly and producing method thereof | |
JPS62119924A (en) | Manufacture of transmitting mask | |
KR102716369B1 (en) | Mask-support assembly and producing method thereof | |
JPS61296726A (en) | Manufacture of semiconductor device | |
JPS6384114A (en) | X-ray mask | |
KR0179907B1 (en) | X-ray mask and its manufacturing method | |
JPS5875838A (en) | Machining method for silicon substrate | |
JPH0277571A (en) | Mask for forming thin film and production of image sensor with same | |
JPH07273028A (en) | Semiconductor substrate and manufacture thereof | |
JPS6386450A (en) | Manufacture of substrate for formation of semiconductor element | |
JP3089854B2 (en) | Method for manufacturing thin-film magnetic head | |
JPH02246117A (en) | Formation of thin film | |
KR20240123294A (en) | Mask-support assembly and producing method thereof | |
JPH04332131A (en) | Semiconductor device | |
JPS6292428A (en) | Substrate for epitaxial crystal growth | |
JP2979441B2 (en) | Zone plate mounting frame | |
JPS62281324A (en) | X-ray mask and manufacture thereof |