JPH07101737A - Forming die for optical element - Google Patents

Forming die for optical element

Info

Publication number
JPH07101737A
JPH07101737A JP26997793A JP26997793A JPH07101737A JP H07101737 A JPH07101737 A JP H07101737A JP 26997793 A JP26997793 A JP 26997793A JP 26997793 A JP26997793 A JP 26997793A JP H07101737 A JPH07101737 A JP H07101737A
Authority
JP
Japan
Prior art keywords
optical element
aln
molding
sintered
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26997793A
Other languages
Japanese (ja)
Inventor
Toshiaki Hayashi
俊明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP26997793A priority Critical patent/JPH07101737A/en
Publication of JPH07101737A publication Critical patent/JPH07101737A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/38Mixed or graded material layers or zones

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a forming die for an optical element with which generation of cracks or irregular colors can be prevented and a formed surface having a uniform grain diameter can be obtd. CONSTITUTION:The forming die 1 for an optical element consists of a forming plane 2 of a sintered body essentially comprising AlN joined with a base body 3 by diffusion 4. The base body 3 consists of a nonoxide material having 3.5X10<-6> to 5.5X10<-6>/C deg.C coefft. of linear expansion and sintered at 1500-2000 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に非球面レンズのプ
レス成形に用いるのに好適な光学素子成形用型に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element molding die particularly suitable for use in press molding of aspherical lenses.

【0002】[0002]

【従来の技術】非球面レンズのプレス成形においては、
加熱軟化されたガラスにプレスのみで光学面を成形す
る。従って、これに用いる成形型は、高温のガラスと反
応せず、しかもガラスに対する濡れ性の悪いことが要求
される。
2. Description of the Related Art In press molding an aspherical lens,
The optical surface is formed only by pressing on the heat-softened glass. Therefore, it is required that the mold used for this does not react with high temperature glass and has poor wettability to glass.

【0003】かかる特性を備えた光学素子成形用型とし
て、本出願人は特開平3−83825号公報において、
AlN(窒化アルミニウム)を主成分とする化合物によ
り成形面を形成することを提案している。すなわち、同
公報の実施例1ではスパッタリングを施して成形型の成
形面にAlN膜を形成している。また、実施例2では成
形用型全体をAlN粉末と助剤を原料とする焼結体を加
工して製作している。
As a mold for molding an optical element having such characteristics, the applicant of the present invention discloses in Japanese Patent Laid-Open No. 3-83825.
It has been proposed to form the molding surface with a compound containing AlN (aluminum nitride) as a main component. That is, in Example 1 of the publication, sputtering is performed to form an AlN film on the molding surface of the molding die. Further, in Example 2, the entire molding die is manufactured by processing a sintered body using AlN powder and an auxiliary material as raw materials.

【0004】[0004]

【発明が解決しようとする課題】ところが、上述の先願
の光学素子成形用型では、次のような問題点があった。 (1)実施例1の成形用型については、スパッタリング
により母材表面にイオン化したAlNを衝突させてAl
N膜を形成していたため、AlN膜と母材との界面では
化合物が出来にくいという問題点があった。また、Al
N膜と母材との界面に応力が生じているため、高温のガ
ラスが高圧で密着すると、その外力により膜剥離が生じ
ることがあるという問題点があった。
However, the above-mentioned prior art optical element molding die has the following problems. (1) With respect to the molding die of Example 1, AlN ionized AlN was collided with the surface of the base material by sputtering.
Since the N film is formed, there is a problem that it is difficult to form a compound at the interface between the AlN film and the base material. Also, Al
Since stress is generated at the interface between the N film and the base material, when high-temperature glass adheres at a high pressure, there is a problem that film peeling may occur due to the external force.

【0005】(2)実施例2の成形用型については、成
形用型のような厚肉の部材を焼結するのは困難なため、
内部の酸素およびカーボンが反応せずに残留し、焼結む
らを生じたり、焼結後にクラックを生じたりするという
問題点があった。特に、焼結むら部分では粒子径が異な
るため、研磨加工しても表面粗さPV0.1μm以下に
はならないという問題点があった。更に、焼結むらの発
生は表面からはわからないため、成形用型に加工した後
になって初めて不良が判明するという問題点があった。
(2) With respect to the molding die of Example 2, it is difficult to sinter a thick member such as the molding die.
There is a problem in that oxygen and carbon inside remain without reacting, resulting in uneven sintering or cracking after sintering. In particular, there is a problem that the surface roughness PV does not become 0.1 μm or less even after polishing, because the particle diameter is different in the uneven sintering portion. Further, since the occurrence of sintering unevenness cannot be seen from the surface, there is a problem that defects are not revealed until after processing into a molding die.

【0006】本発明は上記問題点に鑑みてなされたもの
で、クラックや色むらの発生を防止できるとともに、均
一な粒子径の成形面が得られる光学素子成形用型を提供
することを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide an optical element molding die capable of preventing the occurrence of cracks and color unevenness and obtaining a molding surface having a uniform particle diameter. To do.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明の光学素子成形用型は、線膨張率が3.5×1
-6〜5.5×10-6/℃で焼結温度が1500〜20
00℃の非酸化物系の材料よりなる母材に、AlNを主
成分とした焼結体からなる成形面を拡散接合して構成す
ることとした。
In order to achieve the above object, the optical element molding die of the present invention has a linear expansion coefficient of 3.5 × 1.
Sintering temperature of 1500 to 20 at 0 -6 to 5.5 x 10 -6 / ° C
The base material made of a non-oxide material at 00 ° C. was diffusion-bonded to a molding surface made of a sintered body containing AlN as a main component.

【0008】[0008]

【作用】上記構成からなる本発明の光学素子成形用型で
は、製造の容易な薄板状のAlN焼結体で成形面を構成
する。この成形面と母材とをそれぞれ別個に仮焼結し、
形状加工した後、型内で圧力を加えつつ本焼結する。こ
れにより異種の両部材が拡散接合される。ここで拡散接
合を適確に行うために以下の条件が必要となる。
In the optical element molding die of the present invention having the above-mentioned structure, the molding surface is composed of a thin plate-shaped AlN sintered body which is easy to manufacture. This forming surface and the base material are separately pre-sintered,
After shape processing, main sintering is performed while applying pressure in the mold. As a result, the dissimilar members are diffusion-bonded. Here, the following conditions are required to perform the diffusion bonding properly.

【0009】(1)AlN焼結体の線膨張率が4.5×
10-6/℃であるため、母材の線膨張率は3.5×10
-6〜5.5×10-6/℃でなければならない。線膨張率
の大きく異なる材料同士を接合すると、焼結後に界面応
力でクラックが発生するからである。発明者の実験によ
れば、上記範囲内ではクラックが発生しなかった。
(1) The linear expansion coefficient of the AlN sintered body is 4.5 ×
Since it is 10 -6 / ° C, the linear expansion coefficient of the base material is 3.5 x 10
Must be -6 to 5.5 x 10 -6 / ° C. This is because when materials having greatly different linear expansion coefficients are joined together, cracks occur due to interfacial stress after sintering. According to an experiment by the inventor, no crack was generated within the above range.

【0010】(2)母材の焼結温度は、AlNの焼結温
度(1500〜2000℃)と同範囲でなければならな
い。両者の本焼結は同時に行われるからである。本焼結
の温度が1500℃以下になるとAlNの焼結が不完全
になり気孔や色むらが発生する。他方、本焼結の温度が
2000℃を越えるとAlNが分解して焼結できなくな
る。
(2) The sintering temperature of the base material must be in the same range as the sintering temperature of AlN (1500 to 2000 ° C.). This is because the main sintering of both is performed at the same time. If the temperature of the main sintering is 1500 ° C. or lower, the sintering of AlN becomes incomplete and pores and color unevenness occur. On the other hand, when the main sintering temperature exceeds 2000 ° C., AlN decomposes and cannot be sintered.

【0011】(3)母材は非酸化物系の材料でなければ
ならない。AlNの焼結は非酸化性雰囲気にて行わなけ
ればならず、ここで母材が酸化物だと、母材中の酸素が
AlNと反応してAl2 3 が生成してしまうからであ
る。
(3) The base material must be a non-oxide type material. This is because the sintering of AlN must be performed in a non-oxidizing atmosphere, and if the base material is an oxide here, oxygen in the base material reacts with AlN to generate Al 2 O 3. .

【0012】[0012]

【実施例1】以下、添付図面を参照して本発明に係る光
学素子成形用型の実施例を説明する。まず、本発明の実
施例1を説明する。図1は光学素子成形用型を示す断面
図である。図示の通りこの光学素子成形用型1は、Al
Nを主成分とした焼結体からなる成形面2を母材3に拡
散接合4して構成される。以下、この光学素子成形用型
1の製造方法を説明する。
Embodiment 1 An embodiment of an optical element molding die according to the present invention will be described below with reference to the accompanying drawings. First, a first embodiment of the present invention will be described. FIG. 1 is a sectional view showing a mold for molding an optical element. As shown, this optical element molding die 1 is made of Al
A molding surface 2 made of a sintered body containing N as a main component is diffusion-bonded 4 to a base material 3. Hereinafter, a method for manufacturing the optical element molding die 1 will be described.

【0013】まず、成形面をなすAlNの焼結体を仮焼
結する。平均粒子径1.3μmの高純度AlN粉末(純
度99.9%以上)とY2 3 とを97:3の重量比で
混合し、分散媒としてエタノールを加え、15時間混練
する。これを、外径φ16mm,厚さ7mmの円板状の型に
鋳込み、250℃で3時間乾燥させる。乾燥後、窒素雰
囲気中で650〜700℃に加熱して脱脂した後、窒素
雰囲気1300℃で2時間、仮焼結する(図2a参
照)。
First, the AlN sintered body forming the molding surface is pre-sintered. High-purity AlN powder (purity 99.9% or more) having an average particle diameter of 1.3 μm and Y 2 O 3 are mixed at a weight ratio of 97: 3, ethanol is added as a dispersion medium, and the mixture is kneaded for 15 hours. This is cast into a disc-shaped mold having an outer diameter of 16 mm and a thickness of 7 mm, and dried at 250 ° C. for 3 hours. After drying, the mixture is heated to 650 to 700 ° C. in a nitrogen atmosphere to degrease, and then temporarily sintered in a nitrogen atmosphere at 1300 ° C. for 2 hours (see FIG. 2a).

【0014】次に、母材をなす焼結体を仮焼結する。平
均粒子径1.0μmの高純度サイアロン粉末(純度9
9.9%以上)とY2 3 ,Al2 3 ,及びMgOを
95:2:2:1の重量比で混合し、分散媒としてエタ
ノールを加え、10時間混練する。これを母材の形状の
型に鋳込み、250℃で3時間乾燥させる。乾燥後、窒
素雰囲気中で650〜700℃に加熱して脱脂した後、
窒素雰囲気1300℃で2時間、仮焼結する(図2b参
照)。
Next, the sintered body forming the base material is pre-sintered. High-purity sialon powder with an average particle size of 1.0 μm (purity 9
9.9% or more), Y 2 O 3 , Al 2 O 3 , and MgO are mixed at a weight ratio of 95: 2: 2: 1, ethanol is added as a dispersion medium, and the mixture is kneaded for 10 hours. This is cast into a mold having the shape of a base material and dried at 250 ° C. for 3 hours. After drying, after heating to 650 to 700 ° C. in a nitrogen atmosphere to degrease,
Pre-sintering is performed in a nitrogen atmosphere at 1300 ° C. for 2 hours (see FIG. 2b).

【0015】次に、前記AlN及びサイアロンの仮焼結
体をHIP用の型に設置し、HIP成形機にて窒素雰囲
気1800℃,圧力150kgf/cm2 ,1時間で本
焼結および拡散接合し、加熱後2時間かけて徐冷した
(図2c参照)。
Next, the temporary sintered body of AlN and sialon was placed in a HIP mold, and main sintering and diffusion bonding were carried out by a HIP molding machine in a nitrogen atmosphere of 1800 ° C. and a pressure of 150 kgf / cm 2 for 1 hour. After heating, it was gradually cooled over 2 hours (see FIG. 2c).

【0016】このように焼結されたブランクを、ダイヤ
モンド砥石で研削して外径を仕上げる。そして、レンズ
成形面2aはダイヤモンドパウダーにて研磨して表面粗
さRmax=0.08μm以下に仕上げた(図2d参
照)。
The blank thus sintered is ground with a diamond grindstone to finish the outer diameter. Then, the lens molding surface 2a was polished with diamond powder to finish the surface roughness Rmax = 0.08 μm or less (see FIG. 2d).

【0017】以上のように構成された光学素子成形用型
を用いてレンズ成形を行って耐久性をテストした。テス
トした光学素子成形用型は、成形面が外径φ15mm,
有効系14.5mmの凹面形状で、成形面たるAlN焼
結体の厚さは6mmである。SK8の硝材で、外径φ1
5mm,中心厚さ4mmの両凸レンズを成形した。装置
の概略を図3に示す。ヒータ5によりルツボ7内のガラ
スを粘度102 〜103 ポアズになるように加熱溶融
し、プランジャー8を上昇させ、ノズルより溶融ガラス
6を定量排出し、シャー9にて切断して下型11上に落
下させる。ここで、下型11は図示しないヒータにより
ガラス粘度が1012〜1014ポアズになる温度に加熱さ
れている。また、上型12も下型と同じ材質で形成され
同様の温度に加熱されている。溶融ガラスゴブ10供給
後、下型11は上型12の同軸上に移動して、プレス時
間5秒、プレス圧5kgf/cm2 にて成形し、プレス
開始3秒後に型外周部にガラス粘度で107 〜109
アズに相当する温度の不活性ガスを5秒間吹き付けて型
外周部を加熱した後、さらにプレス圧80kgf/cm
2 に加圧してプレス時間20秒で成形し光学素子を得
た。
Using the optical element molding die having the above-described structure, lens molding was performed to test the durability. The optical element molding die tested has a molding surface with an outer diameter of 15 mm,
The AlN sintered body, which is a concave surface of an effective system of 14.5 mm and is a molding surface, has a thickness of 6 mm. Glass material of SK8, outer diameter φ1
A biconvex lens having a size of 5 mm and a center thickness of 4 mm was molded. The outline of the apparatus is shown in FIG. The glass in the crucible 7 is heated and melted by the heater 5 so that the viscosity becomes 10 2 to 10 3 poise, the plunger 8 is raised, the molten glass 6 is discharged quantitatively from the nozzle, and cut by the shear 9 to cut the lower mold. Drop it on 11. Here, the lower mold 11 is heated by a heater (not shown) to a temperature at which the glass viscosity becomes 10 12 to 10 14 poises. The upper mold 12 is also made of the same material as the lower mold and is heated to the same temperature. After the molten glass gob 10 was supplied, the lower mold 11 was moved coaxially with the upper mold 12, and was molded under a pressing time of 5 seconds and a pressing pressure of 5 kgf / cm 2 , and 3 seconds after the pressing was started, the outer peripheral portion of the mold had a glass viscosity of 10%. After heating the outer peripheral portion of the mold by blowing an inert gas at a temperature corresponding to 7 to 10 9 poise for 5 seconds, the pressing pressure is further 80 kgf / cm.
An optical element was obtained by pressurizing to 2 and molding with a pressing time of 20 seconds.

【0018】本実施例の光学素子成形用型では、成形面
たるAlN焼結体にはクラックや色むらが発生すること
なく、粒子径も均一であり、拡散接合面でのクラック等
の異常もみられなかった。そして、15000ショット
の成形後でも問題は発生せず、十分に使用できる状態で
あった。
In the optical element molding die of this example, the AlN sintered body, which is the molding surface, had no cracks or color irregularities, the particle size was uniform, and abnormalities such as cracks on the diffusion bonding surface were observed. I couldn't do it. After the molding of 15,000 shots, no problem occurred and it was in a state in which it could be used sufficiently.

【0019】これに対し、本実施例との比較のため前記
と同様な成分量で全体がAlN単体からなる光学素子成
形用型を製造したところ、クラックの発生が極めて多か
った。さらに、クラックが発生しない場合であっても研
磨された成形面には色むらが見られた。そして、色むら
部分では粒子径が異なっており、成形初期には光学素子
の成形が可能であるが、6000ショット成形後からは
大粒の粒子が脱落するようになっていた。
On the other hand, for comparison with this example, when an optical element molding die entirely made of AlN alone was manufactured with the same component amounts as described above, cracks were extremely generated. Further, even when no cracks were generated, color unevenness was observed on the polished molding surface. The particle diameter is different in the uneven color portion, and the optical element can be molded at the initial stage of molding, but large particles are likely to fall off after 6000 shot molding.

【0020】なお、本実施例では、低線膨張率のサイア
ロンを母材として使用したが、線膨張率が同程度のSi
3 4 (線膨張率3.5×10-6/℃),SiCのHI
P焼結体(線膨張率4.2×10-6/℃),B4 C(線
膨張率4.5×10-6/℃)でも同様な効果が得られ
た。しかし、線膨張率が3.5×10-6/℃未満の材料
で焼結したところ、接合面からクラックが発生した。
In this embodiment, sialon having a low coefficient of linear expansion was used as the base material, but Si having the same coefficient of linear expansion was used.
3 N 4 (coefficient of linear expansion 3.5 × 10 -6 / ° C), HI of SiC
Similar effects were obtained with P sintered bodies (coefficient of linear expansion 4.2 × 10 −6 / ° C.) and B 4 C (coefficient of linear expansion 4.5 × 10 −6 / ° C.). However, when sintered with a material having a coefficient of linear expansion of less than 3.5 × 10 −6 / ° C., cracks were generated from the joint surface.

【0021】また、母材として本焼結温度が1500℃
未満の材料を使用したところ、AlNが未焼結となって
レンズ成形面に気孔が生じた。他方、2000℃を越え
る常圧焼結品のSiCではAlNが分解して焼結できな
かった。
The main sintering temperature is 1500 ° C.
When the materials of less than 1 were used, AlN was not sintered and pores were formed on the lens molding surface. On the other hand, AlC was not decomposed and could not be sintered in the normal pressure sintered SiC having a temperature higher than 2000 ° C.

【0022】さらに、本実施例では窒化物系の母材を使
用したが、酸化物(Al2 3 )にて焼結したところ、
AlNが反応して酸化物を生成したため型として使用で
きなかった。
Further, although a nitride base material was used in the present embodiment, when sintered with an oxide (Al 2 O 3 ),
It could not be used as a mold because AlN reacted to form an oxide.

【0023】[0023]

【実施例2】次に、本発明の実施例2を説明する。図4
は光学素子成形用型を示す断面図である。この実施例の
光学素子成形用型1は凸形状であって、成形面2および
母材3の材料が前記実施例1とは異なっている。以下、
この光学素子成形用型1の製造方法を説明する。
Second Embodiment Next, a second embodiment of the present invention will be described. Figure 4
FIG. 3 is a cross-sectional view showing an optical element molding die. The optical element molding die 1 of this embodiment has a convex shape, and the molding surface 2 and the base material 3 are different from those of the first embodiment. Less than,
A method of manufacturing the optical element molding die 1 will be described.

【0024】まず、成形面をなすAlNの焼結体を仮焼
結する。平均粒子径1.3μmの高純度AlN粉末(純
度99.9%以上)とCaOとを97:3の重量比で混
合し、分散媒としてエタノールを加え、10時間混練す
る。これを、外径φ24mm,厚さ6mmの円板状の型に鋳
込み、250℃で3時間乾燥させる。乾燥後、窒素雰囲
気中で650〜700℃に加熱して脱脂した後、窒素雰
囲気1300℃で2時間、仮焼結する(図2a参照)。
First, the AlN sintered body forming the molding surface is pre-sintered. High-purity AlN powder (purity 99.9% or more) having an average particle diameter of 1.3 μm and CaO are mixed at a weight ratio of 97: 3, ethanol is added as a dispersion medium, and the mixture is kneaded for 10 hours. This is cast into a disc-shaped mold having an outer diameter of 24 mm and a thickness of 6 mm, and dried at 250 ° C. for 3 hours. After drying, the mixture is heated to 650 to 700 ° C. in a nitrogen atmosphere to degrease, and then temporarily sintered in a nitrogen atmosphere at 1300 ° C. for 2 hours (see FIG. 2a).

【0025】次に、母材をなす焼結体を仮焼結する。平
均粒子径1.3μmの高純度AlN粉末(純度99.9
%以上),BN粉末,および助剤Y2 3 を94:5:
1の重量比で混合し、分散媒としてエタノールを加え、
10時間混練する。これを母材の形状の型に鋳込み、2
00℃で3時間乾燥させる。乾燥後、窒素雰囲気中で6
50〜700℃に加熱して脱脂した後、窒素雰囲気13
00℃で2時間、仮焼結する(図2b参照)。
Next, the sintered body forming the base material is pre-sintered. High-purity AlN powder with an average particle diameter of 1.3 μm (purity 99.9
%), BN powder, and auxiliary agent Y 2 O 3 at 94: 5:
Mix in a weight ratio of 1 and add ethanol as the dispersion medium,
Knead for 10 hours. This is cast into a mold in the shape of the base material, 2
Dry at 00 ° C. for 3 hours. After drying, 6 in a nitrogen atmosphere
After heating to 50 to 700 ° C. and degreasing, nitrogen atmosphere 13
Pre-sinter at 00 ° C. for 2 hours (see FIG. 2b).

【0026】次に、前記AlN及びAlN−BN複合材
の仮焼結体をHIP用の型に設置し、HIP成形機にて
窒素雰囲気1750℃,圧力200kgf/cm2
1.5時間で本焼結および拡散接合し、加熱後3時間か
けて徐冷した(図2c参照)。
Next, the pre-sintered body of AlN and AlN-BN composite material was placed in a HIP mold, and a HIP molding machine was used to carry out a nitrogen atmosphere at 1750 ° C. and a pressure of 200 kgf / cm 2 ,
Main sintering and diffusion bonding were carried out for 1.5 hours, and after heating, they were gradually cooled over 3 hours (see FIG. 2c).

【0027】このように焼結されたブランクを、ダイヤ
モンド砥石で研削して外径を仕上げる。そして、レンズ
成形面2aはダイヤモンドパウダーにて研磨して表面粗
さRmax=0.08μm以下に仕上げた(図2d参
照)。
The blank thus sintered is ground with a diamond grindstone to finish the outer diameter. Then, the lens molding surface 2a was polished with diamond powder to finish the surface roughness Rmax = 0.08 μm or less (see FIG. 2d).

【0028】以上のように構成された光学素子成形用型
を用いてレンズ成形を行って耐久性をテストした。テス
トした光学素子成形用型は、成形面が外径φ23mm,
有効径22.5mmの凹面形状で、成形面たるAlN焼
結体の厚さは6mmである。外径φ23.4mm,中心
厚さ2mmの両凹レンズを成形した。この結果、実施例
1と同様の効果が確認された。
Using the optical element molding die configured as described above, lens molding was performed to test the durability. The optical element molding die tested has a molding surface with an outer diameter of 23 mm,
The AlN sintered body, which has a concave shape with an effective diameter of 22.5 mm and is a molding surface, has a thickness of 6 mm. A biconcave lens having an outer diameter of 23.4 mm and a center thickness of 2 mm was molded. As a result, the same effect as in Example 1 was confirmed.

【0029】なお、本実施例では、高線膨張率のAlN
−BNを母材として使用したが、線膨張率が同程度の他
の材料でもでも同様な効果が得られる。しかし、線膨張
率が5.5×10-6/℃を越える材料で焼結したとこ
ろ、接合面からクラックが発生した。
In this embodiment, AlN having a high linear expansion coefficient is used.
Although -BN was used as the base material, the same effect can be obtained with other materials having the same linear expansion coefficient. However, when sintered with a material having a coefficient of linear expansion exceeding 5.5 × 10 −6 / ° C., cracks were generated from the joint surface.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、A
lN焼結体からなる成形面を母材に接合して光学素子成
形用型を構成したので、AlN焼結体が薄板ですむよう
になり、この結果、クラックや色むらの発生を防止でき
るとともに、均一な粒子径の成形面が得られるようにな
った。また、AlNの熱伝導率は約150W/mKと高
いため、母材の熱伝導率を変化させれば型全体としての
熱伝導率が変化して、成形時のガラス冷却速度を任意に
設定することができるようになった。
As described above, according to the present invention, A
Since the molding surface made of 1N sintered body is bonded to the base material to form the optical element molding die, the AlN sintered body can be formed of a thin plate, and as a result, cracks and color unevenness can be prevented, and uniform A molding surface having a different particle diameter can be obtained. Also, since the thermal conductivity of AlN is as high as about 150 W / mK, if the thermal conductivity of the base material is changed, the thermal conductivity of the entire mold will change, and the glass cooling rate during molding can be set arbitrarily. I was able to do it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による光学素子成形用型を示
す断面図である。
FIG. 1 is a cross-sectional view showing an optical element molding die according to Example 1 of the present invention.

【図2】本発明の光学素子成形用型の製造工程を示す図
である。
FIG. 2 is a diagram showing a manufacturing process of the optical element molding die of the present invention.

【図3】本発明の光学素子成形用型を用いたレンズ成形
を説明する図である。
FIG. 3 is a diagram illustrating lens molding using the optical element molding die of the present invention.

【図4】本発明の実施例1による光学素子成形用型を示
す断面図である。
FIG. 4 is a sectional view showing an optical element molding die according to Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1 光学素子成形用型 2 成形面 2a レンズ成形面 3 母材 4 拡散接合面 1 Optical Element Mold 2 Molding Surface 2a Lens Molding Surface 3 Base Material 4 Diffusion Bonding Surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 線膨張率が3.5×10-6〜5.5×1
-6/℃で焼結温度が1500〜2000℃の非酸化物
系の材料よりなる母材に、AlNを主成分とした焼結体
からなる成形面を拡散接合してなる光学素子成形用型。
1. The coefficient of linear expansion is 3.5 × 10 −6 to 5.5 × 1.
For optical element molding, in which a molding surface made of a sintered body containing AlN as a main component is diffusion-bonded to a base material made of a non-oxide material having a sintering temperature of 0 -6 / ° C and a temperature of 1500 to 2000 ° C. Type.
JP26997793A 1993-10-01 1993-10-01 Forming die for optical element Withdrawn JPH07101737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26997793A JPH07101737A (en) 1993-10-01 1993-10-01 Forming die for optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26997793A JPH07101737A (en) 1993-10-01 1993-10-01 Forming die for optical element

Publications (1)

Publication Number Publication Date
JPH07101737A true JPH07101737A (en) 1995-04-18

Family

ID=17479863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26997793A Withdrawn JPH07101737A (en) 1993-10-01 1993-10-01 Forming die for optical element

Country Status (1)

Country Link
JP (1) JPH07101737A (en)

Similar Documents

Publication Publication Date Title
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP5928672B2 (en) Manufacturing method of alumina ceramic joined body
JPH07101737A (en) Forming die for optical element
JPH0247411B2 (en) KOGAKUGARASUSOSHINOPURESUSEIKEIYOKATA
JPH0421608B2 (en)
JP4854354B2 (en) Silicon nitride bonded body, method for manufacturing the same, and member for semiconductor manufacturing apparatus using the same
JP4373560B2 (en) Boron carbide joined body and method for producing the same
JP4062059B2 (en) Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP2001261458A (en) Silicon carbide joined body and method for producing the same
JP2007230825A (en) Member for glass conveyance, and its production method
JP2002293632A (en) Molding die
JPH08217466A (en) Method for forming glass optical element
JPH06305846A (en) Box-like member made of silicon nitride-based ceramic
JP2002167284A (en) Joint body and method of manufacturing it
JP3938359B2 (en) Lead glass softening jig
JPH06340434A (en) Mold for forming optical element
JPS63260831A (en) Forming mold for optical element
JPH06219754A (en) Mold for forming optical element
JP2002255570A (en) Die for forming glass lens and method for manufacturing the same
JPH06219755A (en) Mold for forming optical element
JPH0673134U (en) Mold for optical glass element molding
JPS627639A (en) Method for molding optical glass element
JP2002255571A (en) Die for forming glass lens and method for manufacturing the same
JPH06293526A (en) Molding die for optical element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226