JPH07100809B2 - 溶融還元炉 - Google Patents

溶融還元炉

Info

Publication number
JPH07100809B2
JPH07100809B2 JP25976488A JP25976488A JPH07100809B2 JP H07100809 B2 JPH07100809 B2 JP H07100809B2 JP 25976488 A JP25976488 A JP 25976488A JP 25976488 A JP25976488 A JP 25976488A JP H07100809 B2 JPH07100809 B2 JP H07100809B2
Authority
JP
Japan
Prior art keywords
bath
gas
furnace
smelting reduction
reduction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25976488A
Other languages
English (en)
Other versions
JPH02107709A (ja
Inventor
充晴 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP25976488A priority Critical patent/JPH07100809B2/ja
Publication of JPH02107709A publication Critical patent/JPH02107709A/ja
Publication of JPH07100809B2 publication Critical patent/JPH07100809B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、鉄鉱石などを溶融状態を還元するための溶
融還元炉に関するものである。
[従来の技術] 溶融還元法は、鉄鉱石(酸化鉄)などの金属酸化物を含
有する鉱石を、溶融状態で還元して鉄やフェロアロイを
得る方法であり、高炉法などに代わる金属製造法として
近年、注目を集める技術である。
溶融還元法には種々のプロセスが提案されており、還元
炉の形式も多様であるが、代表的な形式としていわゆる
金属浴炉式の溶融還元炉があげられる。これは、たとえ
ば製鉄用のものでは、溶湯(スラグ浴を含む鉄浴)内に
石炭、石灰および酸素とともに鉄鉱石(または予備還元
鉄などの鉱石)を装入し、これを還元して溶融銑鉄を得
る還元炉であるが、反応が速く、設備形式がシンプルで
あるなどの理由で多くのプロセスに採用されている。
金属浴炉式の溶融還元炉は、溶融金属を保持する点で、
溶鋼の精錬炉であると転炉と共通することから、従来は
転炉と同様の炉体形状をもつものが大半であった。特開
昭60−2612号や同昭62−60805号に示される溶融還元炉
も例外ではなく、鉛直軸まわりにほぼ対称な有底の筒形
状に形成されている。そして炉体上方にはやはり転炉の
場合と同様、軸心位置に開口(炉口)部を有し、これに
フードやダクトが接続されて炉内の発生ガスを排出する
ようになっている。
溶融還元炉に装入する固体原料、つまり鉱石、石炭およ
び石灰などは、金属浴の上方から炉体に投入され重力落
下によって浴中に装入される。粘度のとくに細かい原料
に限っては、キャリアガスとともに直接に金属浴内へ吹
き込まれる場合もあるが、吹込み管の摩耗や目詰まりな
どの問題があるのでこの場合にもほとんどの原料は上記
のように浴面の上方から投入される。
[発明が解決しようとする課題] 上記した従来の溶融還元炉についてはつぎのような課題
が存在する。すなわち、 浴内の反応にともなって金属浴からはCO(一酸化炭
素)を含む高温のガスが多量に発生するが、このガスが
上方の炉口部へ向けて上昇するので、浴面の上方から投
入される固体原料の一部はこのガスによって飛散し、浴
中に入ることなくガスとともに前記フードやダクトへ押
し流される。すなわち原料の一部が無駄になってしま
う。
金属浴炉式の溶融還元炉はエネルギー利用率が低いと
いう側面があるので、エネルギーをできるだけ逃散させ
ないことが望ましいが、上記した高温ガスは浴面上に発
生するとすぐに炉口部へ向けて上昇するので、ガスが保
有するエネルギー(顕熱)のほとんどがガスとともに排
出されてしまう。またエネルギー利用率を高めるため
に、上記ガス中に酸素を吹き込んでガスの一部を燃焼
(二次燃焼)させ、その燃焼熱を金属浴中に回収しよう
という方法が適用されることもあるが、この場合にも従
来の炉体形状をもつ溶融還元炉では、輻射熱を受ける浴
面の面積が小さく、また燃焼炎から遠ざかるために有効
な方法とはなり得ない。
[発明の目的] この発明は上述の課題を解消するためになされたもの
で、金属浴へ投入する固体原料が飛散せず確実に金属浴
中に入り、また炉内で発生するガスがもつエネルギーの
多くを金属浴中に回収できる溶融還元炉を提供しようと
するものである。
[課題を解決するための手段] 上記の目的を達成するためのこの発明の溶融還元炉は、
金属浴炉式の溶融還元炉であって、炉体を水平に長い袋
状に形成し、長手方向にその一側から順に (a)浴面の上方に固体原料の投入口を備えるととも
に、スラグ浴を強制循環させるガスの吹込み口を浴面下
に備える原料投入域、 (b)浴中および浴面上方の少なくとも一方に酸素吹込
み口を備える反応域、 (c)浴面上を広く天板が覆うとともに、ガス排出口を
備える熱吸収域、 を設けたものである。
また上記構成において、原料投入域の底面を、反応域お
よび熱吸収域の底面よりも高くしたものである。
[作用] この発明の溶融還元炉では、浴内反応にともなうガスは
主として、浴中および浴面上方の少なくとも一方に酸素
を吹き込む反応域にて発生し、熱吸収域を経てガス排出
口へ流れる。したがって、原料投入域における浴面の上
方を流れるガス量は非常に少ないため、投入口から投入
される固体原料は重力落下し、ほとんどガス流に流され
ることなく浴中に装入される。投入域で浴中に装入され
た固体原料は、ここで前記吹込み口より吹き込まれる浴
循環用のガスによりスラグ浴とともに循環させられて反
応域に至る。反応域では、上記のように多量のガスを発
生しながら還元反応が進行する。このガスは高温度なう
えCOを多量に含むため、反応域で吹き込まれる酸素と反
応して一部が二次燃焼する。これによってガスは輝炎と
なりさらに熱吸収域の浴面上を通るが、この間に輝炎か
らは輻射熱および伝導熱が、直接または天板を介して浴
中に伝播される。
なお、原料投入域の底面を反応域および熱吸収域の底面
よりも高くすると、原料投入域にはスラグ浴のみが存在
してここでのガス発生量がほぼ完全に抑えられた状態に
保てるので、投入される原料がより確実に浴中に装入さ
れる。
[実施例] 第1図はこの発明の実施例に関する製鉄用溶融還元炉の
側断面図、第2図はその平面図である。溶融還元炉1
は、内部に溶湯(溶融金属浴)として銑鉄mおよびスラ
グnを保持し、この中に石炭、石灰などとともに鉄鉱石
を装入したうえ酸素を吹き込むことにより、鉄鉱石を溶
融状態で還元して銑鉄mに変えるというプロセスをな
す。銑鉄m、スラグnおよび発生ガスがいずれも高温で
あるために、還元炉1は鉄皮の内側全面に耐火物が内張
りされている。
図のようにこの溶融還元炉1は、溶湯を保持する部分
(炉底1a、1bおよび側壁1c)の上方に一体的に天板1dを
設けたもので、その形状は、深さ(高さ)に比べて水平
方向、とくに図の左右の寸法が大きい袋状としている。
この還元炉1は、それぞれ異なる機能を果たす〈A〉、
〈B〉、〈C〉の3つの部分から構成したものである。
第1図に基づいてこれらを構造的に説明すると、まず左
側の〈A〉は、上方の天板1dの左端付近に固体原料(鉄
鉱石、石炭および石灰など)の投入口11を設けるととも
に、左端の側壁1cを炉底1aとの間に浴循環ガス(窒素、
アルゴンなど)の吹込みノズル12を設けた部分である。
中央の〈B〉は、炉底1bに酸素吹込みノズル13および銑
鉄mの攪拌用ガス(窒素、アルゴンなど)の吹込みノズ
ル15、16を設け、天板1dおよび側壁1c(いずれも溶湯面
上)に酸素吹込みノズル14を設けた部分である。そして
右側の〈C〉は、天板1dが広く溶湯面を覆うともに、右
端に排ガスの排出口17をもつ部分である。図示を省略し
たが、ガス排出口17に続く排ガス管17aの先にはガス処
理(冷却、除塵および未燃焼成分の回収)用の設備など
を接続している。また、外気圧以上のガス圧となる還元
炉1内に原料を投入するので、投入口11の上方には、ガ
ス圧を遮断しながら原料を供給する切り出し弁(図示せ
ず。たとえばロータリバルブ)など、公知の手段を配備
している。
本プロセスの反応は主として、酸素を吹き込む〈B〉の
部分で起こるため、〈B〉を反応域と呼び、固体原料を
投入する〈A〉の部分を原料投入域と呼ぶ。
還元炉1内で発生するガスのかなりの部分は上記のよう
に反応域〈B〉で発生し、排出口17の方へ流れるため、
原料投入域〈A〉で反応域〈B〉と離れた箇所にある投
入口11から投入される固体原料は、このガスによって飛
ばされることなく重力落下して溶湯内に装入される。た
だし、鉱石中の酸素量が多く、かつ鉱石の粒度が大きい
場合は、スラグnおよび投入原料と銑鉄mとの反応によ
っても浴中からガスが発生することがあるので、この実
施例では、原料投入域〈A〉の炉底1aを浅くして溶湯の
うちスラグnのみがこの部分に存在するようにした。こ
うすることにより、投入域〈A〉におけるガスの発生は
ほぼ完全に抑えられ、投入原料の全量が投入口11の真下
のスラグn中に確実に落下する。前記した浴循環ガスの
吹込みノズル12は、第2図のように炉体軸線に対しやや
斜めに向けており、これより吹き込まれる浴循環ガスが
スラグnを水平に強制循環させるので、上記のように投
入された原料はスラグnとともに反応域〈B〉に運ばれ
る。
反応域〈B〉では、鉱石の溶融還元とともに、ノズル13
から銑鉄m中に吹き込まれた酸素による石炭のガス化
(部分酸化)などの反応が進行する。このとき、上記の
原料は吹き込まれる酸素によって銑鉄m内で攪拌される
が、攪拌の強さは、ノズル15および16から吹き込まれる
攪拌用ガスによっても調節される。なおここでの反応に
おいて、石炭は熱の発生源および還元剤、酸素は石炭の
ガス化(部分酸化)剤となり石灰はスラグnを作って銑
鉄mの塩基度を整える役目を果たす。
反応域〈B〉ではさらに、溶湯面の上方(またはスラグ
n中)にノズル14から酸素が吹き込まれるが、この酸素
は溶湯から発生するガスを二次燃焼させるためのもので
ある。溶湯から上記の還元反応にともなって発生するガ
スは高温度(1400℃以上)なうえCOを多量に含むため、
ガス中に酸素を吹き込むだけで燃焼し、COの一部がCO2
に転化する。この二次燃焼によって、ガスは輝炎を放
ち、さらにその温度が上昇する。
輝炎を放って燃焼するガスは、反応域〈B〉から〈C〉
の部分を通ってガス排出口17へ向かう。〈C〉の部分
は、反応域〈B〉から排出口17までの間にかなりの水平
距離をもち天板1dの面積も大きいので、上記の排ガスは
反応域〈B〉から燃焼を始め排出口17より排出されるま
でに、相当の時間をかけて天板1bと溶湯面との空間を水
平に移動することになる。この間に、排ガスがもつ顕熱
エネルギーは、ガス・溶湯間の接触による伝導熱および
輝炎からの輻射熱として多くが溶湯中に伝播される。天
板1dを水冷管壁で形成した場合はガスからの熱量の一部
がその冷却水に吸収されるが、この実施例のように
〈C〉の部分の天板1dにも耐火物を施せば、天板1dに伝
わる熱量も、多くはこの耐火物で反射されて溶湯中に回
収される。ガスのエネルギーがこうして溶湯中に吸収さ
れることから、〈C〉の部分を熱吸収域と呼ぶ。この実
施例では、排出口17をこの熱吸収域〈C〉の右端でしか
も側壁1cの上部に開設し第1図のように排ガス管17aの
基端部をも水平にしたので、熱吸収域〈C〉の全域にお
いて上記の熱吸収がなされる。なお、還元炉1の容量が
大きく、原料投入域〈A〉や反応域〈B〉へ吹き込むガ
スだけでは浴の攪拌が不十分な場合は、図示したように
ノズル20および21を熱吸収域〈C〉に設け、それらを通
じて攪拌用ガスの吹き込むとよい。
溶融還元して得られる銑鉄mは、比重差のためスラグn
の下で炉底1bに溜まるが、前記したノズル13、16より吹
き込まれる酸素および攪拌用ガスなどによって上下に攪
拌されるとともに、炉底1bの一側に水平近い向きに設け
た吹込みノズル15から吹き込まれる攪拌用ガスによって
水平方向にも循環させられる。こうして均一な銑鉄mが
適当量だけ作られた時点で、排滓口19よりスラグnを、
出銑口18より銑鉄mをそれぞれ出湯する。排滓口19およ
び出銑口18は、旧来の高炉出銑口と同様に閉塞材(マッ
ド)にて閉塞したもので、エアドリルなどで開口するこ
とにより出湯できる。なお、ひき続き溶融還元を行うた
めに銑鉄mおよびスラグnは適当量を残しておくことが
必要であるが、原料装入量および反応速度を出湯量に対
して平衡させれば、常時出湯しながら連続操業すること
も可能である。
以上、第1図および第2図に従い本発明の溶融還元炉に
関する一実施例を紹介したが、この発明に基づいてつぎ
のように実施することもできる。
イ)還元炉を一体的に形成せずに、天板を含む浴面上の
部分を、炉本体とは分離・密着が可能なフードとして構
成してもよい。この場合にも本発明に沿って炉内形状を
形成し、フードに原料投入口(原料投入域)、酸素吹込
み口(反応域)、天板およびガス排出口(熱吸収域)を
設ければ、上記と同じ作用を期待できる。なおこうした
場合、フードを分離した状態で炉本体を傾動できるよう
にすれば、本体上方の一側よりバッチ式の出湯を行うこ
ともできる。
ロ)反応域における浴面上方の酸素吹込み口は必ずしも
設けなくてもよい。この場合は炉内発生ガスが二次燃焼
しないので、輻射熱によるエネルギー回収量は少なくな
るが、熱吸収域でのガスからの伝導熱により相当のエネ
ルギーが浴中に回収される。したがって溶融還元炉自体
でのエネルギー利用率は上記実施例より低くなるが、他
にガスの用途があるときには有効である。
ハ)溶融還元炉の排出ガスはなおもCOを含有して還元力
を有するので、これを利用して鉄鉱石を固体状態で予備
還元したうえ、この予備還元鉄を原料として溶融還元炉
に装入することもできる。つまり、排出口17の先に予備
還元炉を接続するのである。この場合は、ガスのエネル
ギーを鉄鉱石の予備還元にも用いるので、還元プロセス
全体のエネルギー利用率がさらに向上する。
ニ)製鉄用の溶融還元に限らず、クロム鉱石からフェロ
クロムを得るなど、他の金属の溶融還元にも同様の溶融
還元炉を使用できる。
ホ)反応域への酸素の吹き込みは、上部より吹込みラン
スを挿入し、これを通じて行うことも可能である。
[発明の効果] この発明の溶融還元炉によれば以下の効果がもたらされ
る。
(1)装入する固体原料が飛散せず確実に金属浴中に入
るので、原料の利用率(歩留り)が向上する。なお、請
求項2にしたがえば、この効果はさらに顕著になる。
(2)炉内発生ガスがもつエネルギーの多くを金属浴中
に回収できるので、エネルギー利用率が向上する。
(3)従来の溶融還元炉において発生ガスを二次燃焼さ
せることによりエネルギー利用率を高める場合に比較す
ると、同じエネルギー利用率を保つための二次燃焼率を
低くできる。このため、酸素使用量が減少してランニン
グコストが下がり、また、酸素吹込み口付近の耐火物寿
命が延びる。
(4)上記(3)のように二次燃焼率が低下することに
伴い、排出ガス中のCOなど還元成分の含有率が上がるの
で、このガスを用いて効率的な予備還元を行うことが可
能である。このとき、予備還元用ガス中にCOを増やすた
めの、溶融還元炉への石炭の過剰装入は必要がなくなる
ので、石炭の使用量も減少する。
(5)同じく二次燃焼率の低下に伴い、予備還元炉の有
無にかかわらず、排ガスの燃料用ガスとしての価値が高
まる。
【図面の簡単な説明】
第1図はこの発明の実施例に関する製鉄用溶融還元炉の
側断面図、第2図はその平面図である。 1……溶融還元炉、11……原料投入口、12,15,16,20,21
……吸込みノズル、13,14……酸素吹込みノズル、17…
…ガス排出口、〈A〉……原料投入域、〈B〉……反応
域、〈C〉……熱吸収域、m……銑鉄、n……スラグ。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】炉内の金属浴およびスラグ浴中に鉱石、石
    炭、石灰および酸素などを装入して、その金属を溶融状
    態で還元する溶融還元炉であって、 炉体を水平に長い袋状に形成し、長手方向にその一側か
    ら順に (a)浴面の上方に固体原料の投入口を備えるととも
    に、スラグ浴を強制循環させるガスの吹込み口を浴面下
    に備える原料投入域、 (b)浴中および浴面上方の少なくとも一方に酸素吹込
    み口を備える反応域、 (c)浴面上を広く天板が覆うとともに、ガス排出口を
    備える熱吸収域、 を設けたことを特徴とする溶融還元炉。
  2. 【請求項2】前記原料投入域の底面を、前記反応域およ
    び熱吸収域の底面よりも高くした請求項1に記載の溶融
    還元炉。
JP25976488A 1988-10-15 1988-10-15 溶融還元炉 Expired - Fee Related JPH07100809B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25976488A JPH07100809B2 (ja) 1988-10-15 1988-10-15 溶融還元炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25976488A JPH07100809B2 (ja) 1988-10-15 1988-10-15 溶融還元炉

Publications (2)

Publication Number Publication Date
JPH02107709A JPH02107709A (ja) 1990-04-19
JPH07100809B2 true JPH07100809B2 (ja) 1995-11-01

Family

ID=17338638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25976488A Expired - Fee Related JPH07100809B2 (ja) 1988-10-15 1988-10-15 溶融還元炉

Country Status (1)

Country Link
JP (1) JPH07100809B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4042176C2 (de) * 1990-12-29 1993-12-09 Tech Resources Pty Ltd Verfahren zur Reduktion von Metalloxiden im schmelzflüssigen Zustand
NL9101083A (nl) * 1991-06-24 1993-01-18 Procornea Holding Bv Houder voor het opbergen van een contactlens.

Also Published As

Publication number Publication date
JPH02107709A (ja) 1990-04-19

Similar Documents

Publication Publication Date Title
US5000784A (en) Method for smelting reduction of iron ore
EP1067201B1 (en) Start-up procedure for direct smelting process
JP4837856B2 (ja) 直接製錬法
US6379424B1 (en) Direct smelting apparatus and process
JP4745731B2 (ja) キュポラによる溶銑の溶製方法
US4988079A (en) Apparatus for smelting and reducing iron ores
JPH0137449B2 (ja)
JPH07216426A (ja) 転炉製鉄法
JPS62227023A (ja) 鋼製造装置
KR20010074750A (ko) 직접 용융 공정
AU2014360665B2 (en) Smelting process and apparatus
JP4342104B2 (ja) 直接製錬法
US4515352A (en) Rotary furnace used for the production of ferrochromium
KR100187693B1 (ko) 고철 용해 방법
JP2918646B2 (ja) 溶融還元炉
JPH07100809B2 (ja) 溶融還元炉
JPS61221322A (ja) 金属原料溶解精錬方法
JPH08506858A (ja) 鉄を製造する方法と装置
JP2018003075A (ja) 酸化鉄含有鉄原料の還元・溶解方法
JPS6040488B2 (ja) 固体鉄原料から鋼を製造する際の熱利用効率を改善する方法
JP2725466B2 (ja) 溶融還元製鉄法
JPH0723495B2 (ja) 溶融還元炉の操業方法
JPS62116712A (ja) スプラツシユランスを有する溶解・製錬容器
JPS624810A (ja) 溶融還元製鉄用精錬炉
JPH079017B2 (ja) 溶融還元法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees