JPH07100573B2 - Control device for hydraulic elevator - Google Patents

Control device for hydraulic elevator

Info

Publication number
JPH07100573B2
JPH07100573B2 JP62069009A JP6900987A JPH07100573B2 JP H07100573 B2 JPH07100573 B2 JP H07100573B2 JP 62069009 A JP62069009 A JP 62069009A JP 6900987 A JP6900987 A JP 6900987A JP H07100573 B2 JPH07100573 B2 JP H07100573B2
Authority
JP
Japan
Prior art keywords
hydraulic pump
switching valve
electromagnetic switching
car
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62069009A
Other languages
Japanese (ja)
Other versions
JPS63235275A (en
Inventor
邦夫 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62069009A priority Critical patent/JPH07100573B2/en
Publication of JPS63235275A publication Critical patent/JPS63235275A/en
Publication of JPH07100573B2 publication Critical patent/JPH07100573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、油圧エレベータの制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a control device for a hydraulic elevator.

(従来の技術) 一般に油圧エレベータは、流量制御弁を用いた流量制御
方式を採用している。この制御方式は、上昇時は電動機
を定回転で回転させ、油圧ポンプからの定吐出量の油を
タンクへ戻しておき、起動指令が出るとタンクへ戻す量
を流量制御弁で調整することによりかごの速度を制御し
ている。又、下降時は自重により、シリンダ内の油がタ
ンクへ環流する油量を流量制御弁で調整し、かごの速度
を制御するものである。しかし、この方式は、上昇時余
分な油を循環させることと、下降時には位置エネルギを
油の発熱に消費するのでエネルギ損失が大きいばかりで
なく、油温上昇が著しい。
(Prior Art) Generally, a hydraulic elevator adopts a flow rate control method using a flow rate control valve. In this control method, the motor is rotated at a constant speed when rising, the constant discharge amount of oil from the hydraulic pump is returned to the tank, and when the start command is issued, the amount returned to the tank is adjusted by the flow control valve. It controls the speed of the car. Further, when descending, the flow rate control valve adjusts the amount of oil that the oil in the cylinder circulates to the tank by its own weight to control the car speed. However, in this method, extra oil is circulated when rising, and potential energy is consumed for heat generation of oil when descending, so not only energy loss is large, but also the oil temperature rises significantly.

これに対し、近年半導体の技術進歩に伴ない、電圧、周
波数を変化させて誘導電動機を広い範囲にわたって回転
数制御するいわゆる電動機回転数制御方式が考え出され
てきている。これは、定吐出形油圧ポンプを用い、ポン
プの吐出量を電動機の回転数で変えることにより可変制
御するものである。
On the other hand, a so-called electric motor rotational speed control method has been devised in recent years, in which the voltage and frequency are changed to control the rotational speed of the induction motor over a wide range in accordance with the technological progress of semiconductors. In this system, a constant discharge hydraulic pump is used, and the discharge amount of the pump is variably controlled by changing the rotation speed of the electric motor.

第3図に上述の電動機回転数制御方式を採用した油圧エ
レベータの構成を示す。第3図において、1はエレベー
タの乗りかご、2はプランジャ3を内蔵する油圧ジャッ
キ、4はプランジャ3上部に取付けられたシーブ、5は
シーブ4にかけられたロープで、このロープ5の一端は
乗りかご1に、他端は基礎6にそれぞれ取り付けられて
いる。7は油圧ポンプ8に直結する交流誘導電動機、9
は、油圧ジャッキ2と油圧ポンプ8の間に配置された第
1の電磁切換弁、10はタンク、11は電源、12は、電動機
7及び電源11に接続され、半導体により電圧及び周波数
を制御する電力変換装置、13は、電力変換装置12を制御
する速度制御装置である。
FIG. 3 shows the configuration of a hydraulic elevator that employs the above-described electric motor speed control method. In FIG. 3, 1 is an elevator car, 2 is a hydraulic jack containing a plunger 3, 4 is a sheave attached to the upper part of the plunger 3, 5 is a rope hung on the sheave 4, and one end of this rope 5 is It is attached to the car 1 and the other end is attached to the foundation 6, respectively. 7 is an AC induction motor directly connected to the hydraulic pump 8;
Is a first electromagnetic switching valve arranged between the hydraulic jack 2 and the hydraulic pump 8, 10 is a tank, 11 is a power source, 12 is connected to the electric motor 7 and the power source 11, and the voltage and frequency are controlled by the semiconductor. The power conversion device 13 is a speed control device that controls the power conversion device 12.

次に油圧エレベータの運転について述べる。上昇運転時
については運転指令によって電動機7が回転する。この
ときに速度制御装置13によって電源11の周波数が制御さ
れ、電動機7の回転速度が制御され、油圧ポンプ8の回
転数、従って、油圧ポンプ8の吐出量が制御され乗りか
ご1は、所定速度パターンに従って上昇する。
Next, the operation of the hydraulic elevator will be described. During the ascending operation, the electric motor 7 rotates according to the operation command. At this time, the frequency of the power supply 11 is controlled by the speed control device 13, the rotation speed of the electric motor 7 is controlled, the rotation speed of the hydraulic pump 8, and thus the discharge amount of the hydraulic pump 8 is controlled, and the car 1 is driven at a predetermined speed. Rise according to the pattern.

その速度特性であるが、速度制御装置13によって第4図
に示される速度パターンに沿って走行する。すなわち、
起動指令により、乗りかご1は起動、加速され、定格速
度で上昇し減速スイッチ15の位置に達し、このスイッチ
15が作動すると乗りかご1は減速し始め、その後一定の
着床速度まで減速され、この速度で上昇して上限位置に
達すると停止スイッチ16を切り、停止する。また、下降
運転時については運転指令によって、ソレノイド14が励
磁され、油圧回路が開き、乗りかご1自重により油圧ジ
ャッキ2からの油圧の排出によって油圧ポンプ8を回転
させて、電動機7の発電制御を利用して、乗りかご1の
下降速度を制御するとともに動力を回生する。このとき
も速度制御装置13によって電動機7を所要の回転速度に
制御する。
With respect to its speed characteristic, the speed control device 13 travels along the speed pattern shown in FIG. That is,
In response to the start command, the car 1 is started and accelerated, rises at the rated speed, and reaches the position of the deceleration switch 15.
When the car 15 operates, the car 1 starts to decelerate, and then decelerates to a constant landing speed, and when it rises at this speed and reaches the upper limit position, the stop switch 16 is turned off to stop. When the vehicle is descending, the solenoid 14 is excited by the operation command, the hydraulic circuit opens, and the hydraulic pressure is discharged from the hydraulic jack 2 by the weight of the car 1 to rotate the hydraulic pump 8 to control the power generation of the electric motor 7. By utilizing this, the descent speed of the car 1 is controlled and the power is regenerated. Also at this time, the speed control device 13 controls the electric motor 7 to a required rotation speed.

しかし、このような制御方式の油圧エレベータには次の
ような問題があった。すなわち、 (1) 下降走行中、停電等によって電動機7が無制御
状態になると、制動が利かなくなり、電動機7及び油圧
ポンプ8は油圧ジャッキ2からの圧油により回転を続
け、徐々に回路を閉じていく電磁切換弁9の開度による
流量よりも電動機7及び油圧ポンプ8の慣性での排出量
が多くなると、油圧ポンプ8と電磁切換弁9間が負圧と
なり、異常音が発生するとともに、機器の破損を上し、
安全上問題となる場合がある。又、停止等によって電磁
切換弁9のソレノイド14が消磁されても弁9の特性上閉
じ始めるまでに0.3〜1秒程度の遅れ時間があるため、
負荷等の条件によっては過速し、乗り心地が悪くなると
ともに安全上問題となる場合が生じる。
However, the hydraulic elevator of such a control system has the following problems. That is, (1) When the electric motor 7 is in an uncontrolled state due to a power failure or the like during descending traveling, braking is no longer effective, and the electric motor 7 and the hydraulic pump 8 continue to rotate by the pressure oil from the hydraulic jack 2 and gradually move the circuit. When the discharge amount by the inertia of the electric motor 7 and the hydraulic pump 8 becomes larger than the flow rate due to the opening degree of the electromagnetic switching valve 9 which is closed, a negative pressure is generated between the hydraulic pump 8 and the electromagnetic switching valve 9, and an abnormal sound is generated. , Damage to the equipment,
There may be a safety issue. Further, even if the solenoid 14 of the solenoid operated directional control valve 9 is demagnetized due to a stop or the like, there is a delay time of about 0.3 to 1 second until the solenoid 9 is closed due to the characteristic of the valve 9.
Depending on the conditions such as the load, the vehicle may overspeed, the riding comfort may deteriorate, and a safety problem may occur.

(2) かご停止中に、電磁切換弁9と油圧ポンプ8の
間に油漏れにより空間が生じ、下降運転時、電磁切換弁
9が開くと、これによって油圧ジャッキ2からの油圧が
電磁切換弁9と油圧ポンプ8間の空間に急激に流れ込む
ので、スタート時、急激に下降し、その後油圧ポンプ8
の回転数の増大に伴なって速度を増し、やがて一定速度
となる。このように下降走行のスタート時、急激に下降
するので、乗客に不安感を与える。
(2) While the car is stopped, a space is created between the electromagnetic switching valve 9 and the hydraulic pump 8 due to oil leakage, and when the electromagnetic switching valve 9 opens during the descent operation, the hydraulic pressure from the hydraulic jack 2 is thereby released. 9 suddenly flows into the space between the hydraulic pump 8 and the hydraulic pump 8.
The speed increases as the number of revolutions increases, and eventually becomes constant. In this way, when the descent is started, the descent is suddenly lowered, which gives passengers anxiety.

従来、上述の(1)については、第3図に示すように、
電動機7と油圧ポンプ8との連結装置17とブレーキ装置
18を備え、下降走行中、停電等によって電動機7への正
規の給電が断たれた場合に、電動機7及び油圧ポンプ8
に連結装置17とブレーキ装置18との摩擦力により制動力
を与え、管路の負圧発生及び加速を防ぐ。又、上述の
(2)については、下降運転のスタート時油圧ポンプ8
を微速回転させ、油漏れ量を補った後、正規の下降運転
に入る。
Conventionally, as for the above (1), as shown in FIG.
Connecting device 17 between electric motor 7 and hydraulic pump 8 and braking device
Equipped with 18, the electric motor 7 and the hydraulic pump 8 are provided when the regular electric power supply to the electric motor 7 is cut off due to a power failure or the like while the vehicle is descending.
A braking force is applied to the pipe by a frictional force between the connecting device 17 and the braking device 18, and the generation and acceleration of negative pressure in the pipeline are prevented. Regarding (2) above, the hydraulic pump 8 at the start of the descending operation is used.
After rotating at a very low speed to compensate for the amount of oil leakage, normal descent operation is started.

等の対策をとっている。Etc. are being taken.

(発明が解決しようとする問題点) しかし、上述の構成による油圧エレベータにおいては、
次のような欠点があった。
(Problems to be Solved by the Invention) However, in the hydraulic elevator having the above configuration,
It had the following drawbacks.

(1) ブレーキ装置18が複雑であるとともに、大きな
取付けスペースが必要となる。又、連結装置17は、所定
の制動力を出すために、通常用いされている連結装置を
使うことができず、特別なものとなるので、高価になる
とともに、制動力の調整が難かしく、条件によっては、
電磁切換弁9が完全に閉じてからもなおかつ油圧ポンプ
8が慣性で回転し、油圧ポンプ8が焼き付くことがあ
る。
(1) The brake device 18 is complicated and requires a large installation space. Further, since the connecting device 17 cannot use the connecting device which is normally used in order to produce a predetermined braking force, and it is a special one, it becomes expensive and it is difficult to adjust the braking force. Depending on the conditions,
Even after the electromagnetic switching valve 9 is completely closed, the hydraulic pump 8 may rotate due to inertia, and the hydraulic pump 8 may seize.

(2) スタート前に油圧ポンプ8を微速回転させるの
で、運転指令を出してから、乗りかご1が走行開始する
までに時間がかかり、乗客へのサービスが低下する。
(2) Since the hydraulic pump 8 is rotated at a slight speed before the start, it takes time from the issuing of the operation command until the car 1 starts traveling, and the service to passengers is deteriorated.

本発明の目的は円滑な起動を行うことができるととも
に、油圧ポンプの焼き付けをなくし、装置の簡素化、取
り付けスペースを小さくすることのできる油圧エレベー
タの制御装置を提供するものである。
An object of the present invention is to provide a hydraulic elevator control device capable of performing smooth start-up, eliminating the seizure of the hydraulic pump, simplifying the device, and reducing the installation space.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 本発明はかごに接続するプランジャを上昇、下降させる
油圧ジャッキと、電動機によって制御され、かごが上昇
する際には前記油タンクの油を前記油圧ジャッキに供給
し、かごが下降する際には前記油圧ジャッキの油を前記
油タンクに帰還させる油圧ポンプと、前記油圧ジャッキ
と前記油圧ポンプとを結ぶ管路に設けられ、かごへの上
昇もしくは下降の運転指令が出ると励磁されて、前記油
圧ジャッキと前記油圧ポンプとを結ぶ管路を開き、かご
への停止指令により消磁する第1の電磁切換弁と、前記
油圧ポンプと前記油タンクとを結ぶ管路に設けられ、か
ごへの上昇もしくは下降の運転指令が出ると励磁され
て、前記油圧ポンプと前記油タンクとを結ぶ管路を開
き、かごへの停止指令により消磁する第2の電磁切換弁
と、前記第1の電磁切換弁と前記油圧ポンプとを結ぶ配
管と前記第2の電磁切換弁とを連通するためのバイパス
管と、このバイパス管に設けられ、前記第2の電磁切換
弁側への油の流入を阻止する逆止弁とを備え、前記第2
の電磁切換弁は、消磁されたときに前記油圧ポンプから
前記油タンク側へ流れる油を前記バイパス管へ流通させ
るようにしたものである。
(Means for Solving the Problems) The present invention provides a hydraulic jack that raises and lowers a plunger connected to a car, and an electric motor controls the supply of oil from the oil tank to the hydraulic jack when the car rises. However, when the car descends, a hydraulic pump for returning the oil of the hydraulic jack to the oil tank and a pipeline connecting the hydraulic jack and the hydraulic pump are provided, and an operation command for ascending or descending to the car is provided. Is excited to open a conduit connecting the hydraulic jack and the hydraulic pump, and a first electromagnetic switching valve that demagnetizes by a stop command to the car, and a conduit connecting the hydraulic pump and the oil tank. Is provided in the vehicle and is excited when an operation command for ascending or descending to the car is issued, opens a pipe line connecting the hydraulic pump and the oil tank, and demagnetizes by a stop command to the car. An electromagnetic switching valve, a pipe connecting the first electromagnetic switching valve and the hydraulic pump, and a bypass pipe for communicating the second electromagnetic switching valve, and a bypass pipe provided in the bypass pipe for connecting the second electromagnetic valve. A check valve for blocking the inflow of oil to the switching valve side;
The electromagnetic switching valve is configured to allow the oil flowing from the hydraulic pump to the oil tank side to flow to the bypass pipe when demagnetized.

(作 用) かごが上昇する際は、油圧ポンプは第2の電磁切換弁を
介して得た油タンクの油を第1の電磁切換弁を介して油
圧ジャッキに供給する。またかごが下降する際には油圧
ジャッキの油は第1の電気切換弁、油圧ポンプ及び第2
の電磁切換弁を介して油タンクへ帰還される。バイパス
管はエレベータの停止時に油圧ポンプからの油を第2の
電磁切換弁を介して油圧ポンプと第1の電磁切換弁とを
結ぶ配管へ還流させる。
(Operation) When the car rises, the hydraulic pump supplies the oil in the oil tank obtained through the second electromagnetic switching valve to the hydraulic jack through the first electromagnetic switching valve. When the car descends, the oil of the hydraulic jack is transferred to the first electric switching valve, the hydraulic pump and the second electric switching valve.
It is returned to the oil tank via the electromagnetic switching valve. The bypass pipe circulates the oil from the hydraulic pump to the pipe connecting the hydraulic pump and the first electromagnetic switching valve via the second electromagnetic switching valve when the elevator is stopped.

(実施例) 本発明に基づく一実施例を図面を用いて説明する。第1
図は本発明に基づく一実施例の油圧エレベータの制御装
置の構成図を示す。第1図中、第3図に示されるものと
同一のものには同一符号を付する。
(Example) An example of the present invention will be described with reference to the drawings. First
The figure shows a block diagram of a control device for a hydraulic elevator according to an embodiment of the present invention. In FIG. 1, those parts which are the same as those shown in FIG. 3 are designated by the same reference numerals.

本実施例においては、油圧ポンプ8とタンク10の間に第
2の電磁切換弁19を設け、この電磁切換弁19と、油圧ポ
ンプ8,電磁切換弁9との間の配管20とをバイパス管路21
で連結し、バイパス管路21途上に逆止弁22を設け、下降
走行し、乗りかご1が停止するとき、油圧ジャッキ2か
らタンク10へ環流する油を油圧ポンプ8の油圧ジャッキ
2側に循環できるようにしたものである。19は油圧ポン
プ8とタンク10の間に設けられた電磁切換弁、21は、油
圧ポンプ8の電磁切換弁9との間の配管20とタンク10側
に設けた電磁切換弁19とを連結したバイパス管路で、そ
のバイパス管路21の途上には、逆止弁22が設けられてい
る。また、本実施例においては、ブレーキ装置18は不要
である。
In this embodiment, a second electromagnetic switching valve 19 is provided between the hydraulic pump 8 and the tank 10, and the electromagnetic switching valve 19 and the pipe 20 between the hydraulic pump 8 and the electromagnetic switching valve 9 are bypass pipes. Road 21
, The check valve 22 is provided on the way of the bypass pipe 21, and when the car 1 stops while traveling downward, the oil circulating from the hydraulic jack 2 to the tank 10 is circulated to the hydraulic jack 2 side of the hydraulic pump 8. It was made possible. Reference numeral 19 is an electromagnetic switching valve provided between the hydraulic pump 8 and the tank 10, 21 is a pipe 20 between the electromagnetic switching valve 9 of the hydraulic pump 8 and the electromagnetic switching valve 19 provided on the tank 10 side. A check valve 22 is provided on the bypass line 21 along the bypass line 21. Further, in the present embodiment, the brake device 18 is unnecessary.

第2は電磁切換弁19のソレノイド23の励磁回路の一例を
示す。
The second shows an example of an exciting circuit of the solenoid 23 of the electromagnetic switching valve 19.

XU,XDはそれぞれ上昇、下降指令で励磁される継電器
(図示せず。)の常開接点、MRは接触器及びMR1はその
常開接点、23は、ソレノイドである。次に上述の構成に
基づく本実施例の作用について説明する。まず、電磁切
換弁19のソレノイド23について説明する。上昇、下降指
令で励磁される継電器(図示しない)の常開接点XU,XD
は、運転指令とともに、XUあるいはXDの接点が閉じて接
触器MRのコイルを励磁する。接触器MRが励磁されるとソ
レノイド23に直列に付加された常開接点MR1が閉じてソ
レノイド23が励磁される。
XU and XD are normally open contacts of a relay (not shown) that is excited by rising and falling commands, MR is a contactor and MR1 is its normally open contact, and 23 is a solenoid. Next, the operation of this embodiment based on the above configuration will be described. First, the solenoid 23 of the electromagnetic switching valve 19 will be described. Normally open contacts XU, XD of a relay (not shown) that is excited by up / down commands
Causes the coil of the contactor MR to be excited by closing the XU or XD contact with the operation command. When the contactor MR is excited, the normally open contact MR1 added in series to the solenoid 23 is closed and the solenoid 23 is excited.

乗りかご1が停止しているときは、電磁切換弁9,19は図
示の状態である。すなわち電磁切換弁9は閉の状態、電
磁切換弁19は、油圧ポンプ8のタンク10側の管路が、バ
イパス管路21に連結された状態になっている。このと
き、上昇の運転指令が出ると、電磁切換弁19のソレノイ
ド23が励磁され、油圧ポンプ8とタンク10間の回路が開
の方向に動き出すと同時に電動機7及び油圧ポンプ8が
回転しはじめ、油圧は、電磁切換弁9を通って、油圧ジ
ャッキ2に送り込まれる。このときに、速度制御装置13
によって電源11の電圧及び周波数が制御され、電動機7
の回転速度が制御され、油圧ポンプ8の回転数、従って
油圧ポンプ8の吐出量が制御され、乗りかご1は、第4
図の所定速度パターンに従って上昇する。乗りかご1
が、減速スイッチ15の位置に達し、スイッチ15が動作す
ると乗りかご1は減速をし始める。さらに上昇し、上限
位置に達し、停止スイッチ16が動作すると、上昇の運転
指令がなくなり油圧ポンプ8が停止し、同時に電磁切換
弁19のソレノイド23が消磁され、油圧ポンプ8のタンク
10側の回路はバイパス管路21に連結され乗りかご1が停
止する。又、下降の運転指令が出た場合には、電磁切換
弁9,19のソレノイド14,23が励磁され、油圧ジャッキ2,
タンク10間の回路は開となり、乗りかご1自重により、
油圧ジャッキ2からの油圧の排出によって油圧ポンプ8
を回転させて、電動機7の発電制動を利用して、乗りか
ご1の下降速度を制御するとともに動力を回生する。乗
りかご1が減速スイッチを切ると減速をし始める。さら
に、下限位置に達すると停止スイッチを切り、油圧ポン
プ8が停止するのと同時に、下降の運転指令がなくなり
電磁切換弁9,19のソレノイド14,23が消磁され油圧ポン
プ8,油圧ジャッキ2間の回路は、閉になる。さらに、油
圧ポンプ8のタンク10側はバイパス管路21に連結され、
乗りかご1は停止する。
When the car 1 is stopped, the electromagnetic switching valves 9 and 19 are in the illustrated state. That is, the electromagnetic switching valve 9 is in a closed state, and the electromagnetic switching valve 19 is in a state in which the pipeline of the hydraulic pump 8 on the tank 10 side is connected to the bypass pipeline 21. At this time, when a rising operation command is issued, the solenoid 23 of the electromagnetic switching valve 19 is excited and the circuit between the hydraulic pump 8 and the tank 10 starts to move in the opening direction, and at the same time, the electric motor 7 and the hydraulic pump 8 start to rotate. The hydraulic pressure is sent to the hydraulic jack 2 through the electromagnetic switching valve 9. At this time, the speed control device 13
The voltage and frequency of the power supply 11 are controlled by the electric motor 7
The rotation speed of the hydraulic pump 8 is controlled, the rotational speed of the hydraulic pump 8 and hence the discharge amount of the hydraulic pump 8 is controlled, and the car 1 is
It rises according to the predetermined speed pattern in the figure. Car 1
However, when the position of the deceleration switch 15 is reached and the switch 15 operates, the car 1 starts decelerating. When it further rises and reaches the upper limit position, and the stop switch 16 operates, the hydraulic pump 8 stops with no operating command for raising, and the solenoid 23 of the electromagnetic switching valve 19 is demagnetized at the same time, and the tank of the hydraulic pump 8 is demagnetized.
The circuit on the 10th side is connected to the bypass line 21 and the car 1 stops. Further, when a descending operation command is issued, the solenoids 14 and 23 of the electromagnetic switching valves 9 and 19 are excited, and the hydraulic jack 2 and
The circuit between the tanks 10 is open, and due to the weight of the car 1,
By discharging the hydraulic pressure from the hydraulic jack 2, the hydraulic pump 8
Is rotated to utilize the dynamic braking of the electric motor 7 to control the descending speed of the car 1 and regenerate power. When the car 1 turns off the deceleration switch, it starts decelerating. Further, when the lower limit position is reached, the stop switch is turned off, and the hydraulic pump 8 stops. At the same time, there is no lowering operation command and the solenoids 14 and 23 of the electromagnetic switching valves 9 and 19 are demagnetized, and the hydraulic pump 8 and the hydraulic jack 2 are connected. The circuit of is closed. Further, the tank 10 side of the hydraulic pump 8 is connected to the bypass pipe line 21,
Cage 1 stops.

さて次に、下降走行中に停電等によって、電動機7が無
制御状態になった場合について説明する。
Next, a case where the electric motor 7 is in an uncontrolled state due to a power failure or the like during the downward traveling will be described.

下降走行中、停電等によって電動機7が無制御状態にな
ると制動が利かなくなり、電動機7及び油圧ポンプ8
は、油圧ジャッキ2からの圧油により回転を続けるが、
停電と同時に、電磁切換弁9,19のソレノイド14,23は消
磁され、電磁切換弁9は回路を徐々に閉じ始め、電磁切
換弁19は油圧ポンプ8からタンク10へ流れていた圧油を
徐々にバイパス管路21の方へ流れ始める。従って、電磁
切換弁9の開度による流量よりも電動機7及び油圧ポン
プ8の慣性での排出量が多くなり、油圧ポンプ8と電磁
切換弁9との間が負圧になろうとするが、その不足分が
バイパス管路21を通って、補給されるので、結果として
負圧にならなくなる。従って、油圧ポンプ8の電磁切換
弁9との間が負圧にならないので、異常音の発生、機器
の破損、過速になることが全てなくなる。又、電磁切換
弁9が完全に閉じると乗りかご1は停止する。そのと
き、電磁切換弁19も完全に切り換わっているので、ま
だ、油圧ポンプ8が慣性で回転していたとしても吐出量
の全量がバイパス管路21を通って供給されるので、負圧
になることも、油圧ポンプ8の焼きつくこともなくな
る。
When the electric motor 7 is in an uncontrolled state due to a power outage or the like during descending traveling, braking is lost and the electric motor 7 and the hydraulic pump 8 are
Continues to rotate due to the pressure oil from the hydraulic jack 2,
Simultaneously with the power failure, the solenoids 14 and 23 of the electromagnetic switching valves 9 and 19 are demagnetized, the electromagnetic switching valve 9 starts to gradually close the circuit, and the electromagnetic switching valve 19 gradually releases the pressure oil flowing from the hydraulic pump 8 to the tank 10. Then, it starts flowing toward the bypass line 21. Therefore, the discharge amount due to the inertia of the electric motor 7 and the hydraulic pump 8 becomes larger than the flow rate depending on the opening degree of the electromagnetic switching valve 9, and the pressure between the hydraulic pump 8 and the electromagnetic switching valve 9 tends to become a negative pressure. Since the shortage is replenished through the bypass line 21, the negative pressure is not obtained as a result. Therefore, a negative pressure is not created between the hydraulic pump 8 and the electromagnetic switching valve 9, so that occurrence of abnormal noise, damage to equipment, and excessive speed are all eliminated. When the electromagnetic switching valve 9 is completely closed, the car 1 is stopped. At that time, since the electromagnetic switching valve 19 is also completely switched, even if the hydraulic pump 8 is still rotating due to inertia, the entire discharge amount is supplied through the bypass pipe line 21. It will not happen and the hydraulic pump 8 will not burn.

又、電磁切換弁19によって、油圧ポンプ,タンク10間が
完全に遮断されるので、油圧ポンプ8からの油漏れもな
くなる。
Further, since the electromagnetic switching valve 19 completely shuts off the connection between the hydraulic pump and the tank 10, there is no oil leakage from the hydraulic pump 8.

〔発明の効果〕〔The invention's effect〕

以上により、下降走行中、停電等によって電動機が無制
御状態になっても、異常音の発生、機器の破損、過速を
防止し、又、油圧ポンプ等からの油モレに起因する下降
走行のスタート時の急激な下降を防止できるとともに以
下に示す効果がある。
Due to the above, even if the electric motor goes into an uncontrolled state due to a power outage or the like while descending, it prevents abnormal noise, damage to the equipment, and overspeed, and also prevents descending due to oil leakage from the hydraulic pump. It is possible to prevent a sudden drop at the start and the following effects are provided.

(1) 装置が単純になり、取り付けスペースも小さく
てすむとともに安価になる。
(1) The device is simple, the installation space is small, and the cost is low.

(2) 油圧ポンプの焼き付けを防止できる。(2) The seizure of the hydraulic pump can be prevented.

(3) 運転指令が出ると同時に下降走行を始めるの
で、円滑な起動を行うことができ、乗客に対するサービ
スが向上することができる。
(3) Since the descending traveling is started at the same time when the driving command is issued, the smooth starting can be performed and the service for passengers can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に基づく一実施例の油圧エレベータの制
御装置の構成図、第2図は、第1図に示される一実施例
の電磁切換弁のソレノイドの励磁回路図、第3図は、従
来の油圧エレベータの制御装置の構成図、第4図は、油
圧エレベータにおける走行パターン図を示す。 2……油圧ジャッキ、7……交流誘導電動機 8……油圧ポンプ、9……第1の電磁切換弁,19……第
2の電磁切換弁 11……電源、12……周波数制御装置 13……速度制御装置、17……連結装置 18……ブレーキ装置、21……バイパス管路 22……逆止弁、14,23……ソレノイド
FIG. 1 is a configuration diagram of a control device for a hydraulic elevator according to an embodiment of the present invention, FIG. 2 is an excitation circuit diagram of a solenoid of an electromagnetic switching valve according to an embodiment shown in FIG. 1, and FIG. FIG. 4 is a configuration diagram of a conventional hydraulic elevator control device, and FIG. 4 is a travel pattern diagram in the hydraulic elevator. 2 ... hydraulic jack, 7 ... AC induction motor 8 ... hydraulic pump, 9 ... first electromagnetic switching valve, 19 ... second electromagnetic switching valve 11 ... power supply, 12 ... frequency control device 13 ... … Speed control device, 17 …… Coupling device 18 …… Brake device, 21 …… Bypass line 22 …… Check valve, 14,23 …… Solenoid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】かごに接続するプランジャを上昇、下降さ
せる油圧ジャッキと、 電動機によって制御され、かごが上昇する際には前記油
タンクの油を前記油圧ジャッキに供給し、かごが下降す
る際には前記油圧ジャッキの油を前記油タンクに帰還さ
せる油圧ポンプと、 前記油圧ジャッキと前記油圧ポンプとを結ぶ管路に設け
られ、かごへの上昇もしくは下降の運転指令が出ると励
磁されて、前記油圧ジャッキと前記油圧ポンプとを結ぶ
管路を開き、かごへの停止指令により消磁する第1の電
磁切換弁と、 前記油圧ポンプと前記油タンクとを結ぶ管路に設けら
れ、かごへの上昇もしくは下降の運転指令が出ると励磁
されて、前記油圧ポンプと前記油タンクとを結ぶ管路を
開き、かごへの停止指令により消磁する第2の電磁切換
弁と、 前記第1の電磁切換弁と前記油圧ポンプとを結ぶ配管と
前記第2の電磁切換弁とを連通するためのバイパス管
と、 このバイパス管に設けられ、前記第2の電磁切換弁側へ
の油の流入を阻止する逆止弁とを備え、 前記第2の電磁切換弁は、消磁されたときに前記油圧ポ
ンプから前記油タンク側へ流れる油を前記バイパス管へ
連通させることを特徴とする油圧エレベータの制御装
置。
Claims: 1. A hydraulic jack for raising and lowering a plunger connected to a car, and an electric motor that controls oil to supply oil from the oil tank to the hydraulic jack when the car rises, and when the car descends. Is provided in a hydraulic pump that returns the oil of the hydraulic jack to the oil tank, and a pipe line that connects the hydraulic jack and the hydraulic pump, and is excited when an ascending or descending operation command is issued to the car, and A first electromagnetic switching valve that opens a pipe line connecting the hydraulic jack and the hydraulic pump and demagnetizes by a stop command to the car, and a pipe line that connects the hydraulic pump and the oil tank to each other to raise the car. Alternatively, a second electromagnetic switching valve that is excited when a descending operation command is issued, opens a pipe line connecting the hydraulic pump and the oil tank, and demagnetizes by a stop command to the car; A bypass pipe for connecting the electromagnetic switching valve and the hydraulic pump to the second electromagnetic switching valve, and a bypass pipe provided in the bypass pipe to prevent the oil from flowing into the second electromagnetic switching valve. And a check valve for blocking, wherein the second electromagnetic switching valve allows the oil flowing from the hydraulic pump to the oil tank side to communicate with the bypass pipe when demagnetized. apparatus.
JP62069009A 1987-03-25 1987-03-25 Control device for hydraulic elevator Expired - Lifetime JPH07100573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62069009A JPH07100573B2 (en) 1987-03-25 1987-03-25 Control device for hydraulic elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62069009A JPH07100573B2 (en) 1987-03-25 1987-03-25 Control device for hydraulic elevator

Publications (2)

Publication Number Publication Date
JPS63235275A JPS63235275A (en) 1988-09-30
JPH07100573B2 true JPH07100573B2 (en) 1995-11-01

Family

ID=13390167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62069009A Expired - Lifetime JPH07100573B2 (en) 1987-03-25 1987-03-25 Control device for hydraulic elevator

Country Status (1)

Country Link
JP (1) JPH07100573B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6348080B2 (en) * 2015-03-25 2018-06-27 株式会社日立製作所 Hydraulic elevator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326378A (en) * 1976-08-25 1978-03-11 Naokazu Ishii Noodle making machine

Also Published As

Publication number Publication date
JPS63235275A (en) 1988-09-30

Similar Documents

Publication Publication Date Title
CN108946547B (en) Method for lifting and releasing descending mechanism through intelligent hoisting device
US5048644A (en) Method for improving the performance of a motor controlled hydraulic elevator
JP2505644B2 (en) Hydraulic elevator drive controller
JP3447994B2 (en) Hydraulic elevator equipment
JPH07100573B2 (en) Control device for hydraulic elevator
JPS6118510B2 (en)
JPS6242831B2 (en)
JP3399251B2 (en) Hydraulic elevator equipment
JP2539648Y2 (en) Hydraulic motor controller for fork elevating
JPH0742057B2 (en) Hydraulic elevator controller
JP3371705B2 (en) Hydraulic elevator equipment
JPH01256473A (en) Controller for hydraulic elevator
JPS63252885A (en) Controller for hydraulic elevator
JP2581385B2 (en) Hydraulic elevator equipment
JP2731510B2 (en) Hydraulic device for lifting and lifting suspended loads
JP4019633B2 (en) Hydraulic elevator
JPH05155551A (en) Controller of hydraulic elevator
JP3036646U (en) Hydraulic elevator equipment
JPH0367876A (en) Control device of hydraulic elevator
JP3395528B2 (en) Hydraulic elevator equipment
JPH0416488A (en) Continuously variable shift driving device for elevator
JPH01256474A (en) Controller for hydraulic elevator
JPS6317759B2 (en)
JPH09142744A (en) Device for fluid pressure elevator
JPH03106784A (en) Hydraulic elevator device