JP4019633B2 - Hydraulic elevator - Google Patents

Hydraulic elevator Download PDF

Info

Publication number
JP4019633B2
JP4019633B2 JP2001000136A JP2001000136A JP4019633B2 JP 4019633 B2 JP4019633 B2 JP 4019633B2 JP 2001000136 A JP2001000136 A JP 2001000136A JP 2001000136 A JP2001000136 A JP 2001000136A JP 4019633 B2 JP4019633 B2 JP 4019633B2
Authority
JP
Japan
Prior art keywords
hydraulic
main control
control valve
valve
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001000136A
Other languages
Japanese (ja)
Other versions
JP2002205883A (en
Inventor
陽 井崎
英二 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitec Co Ltd
Original Assignee
Fujitec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitec Co Ltd filed Critical Fujitec Co Ltd
Priority to JP2001000136A priority Critical patent/JP4019633B2/en
Publication of JP2002205883A publication Critical patent/JP2002205883A/en
Application granted granted Critical
Publication of JP4019633B2 publication Critical patent/JP4019633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)
  • Types And Forms Of Lifts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は油圧エレベータに係り、特にインバータ制御等によって電動機を制御することにより、この電動機によって駆動される油圧ポンプの吐出油量を制御する油圧エレベータに関するものである。
【0002】
【従来の技術】
油圧エレベータでは、エレベータ乗かごの走行中に停電が発生すると乗かごがフリーランを起こす場合がある。これは乗かごの下降運転時に、主制御弁を全開して油圧ポンプを制御することにより作動油の流量を制御するタイプのエレベータにおいて、乗かごの下降運転時でその速度が小さいときに起こる。
その理由は、低速下降運転時に停電が発生すると、油圧ポンプが停止する一方、主制御弁は全開になっているため、作動油の流量が急増して乗かごがフリーラン状態になり、その後主制御弁が閉じるに従って乗かごが減速し、主制御弁が閉じきると乗かごが停止する。
【0003】
このフリーランを防止する技術として特開平9―315733号がある、これについて図3により説明する。
図において、1は乗かご2を昇降させる油圧ジャッキ、3は電動機4等を制御することにより油圧ポンプ5を駆動する制御部、6はタンクである。7は主制御弁であり、ポペット7a、油圧配管によって油圧ジャッキ1に連結されたジャッキ側油室7b、油圧ポンプ5に連結されたポンプ側油室7c、ポペット7aの背面側に配置した背面側油室7d、及び圧縮ばね7eを有している。
【0004】
8はジャッキ側油室7bと背面側油室7dとの間に配置した第1の電磁パイロット弁で、8a,8bはソレノイドコイルである。9は一方はチェック弁10を介してポンプ側油室7cに、他方は背面側油室7dに連結した第2の電磁パイロット弁で、9aはソレノイドコイルである。11は第1の電磁パイロット弁8と並列に配置した絞りである。また各ソレノイドコイル8a,8b,9aは制御部3により作動する。
【0005】
この動作を説明すると、上昇運転の場合、油圧ポンプ5は上昇運転方向に駆動し、ソレノイドコイル8a,9aは消磁、8bは励磁して、油室7bと油室7d内の圧力を等しくする。そして油室7b,7cの圧力による開弁力が、油室7dとばね7eによる閉弁力を上回るとポペット7aは開き乗かご2は上昇する。
更に、油圧ポンプ5の吐出油量の増加に伴って、主制御弁7内を流れる作動油の流量が増加し、これによって主制御弁7の開度(ポペット7aの移動量)が大きくなり乗かご2は加速する。乗かご2が減速するときには、油圧ポンプ5の吐出油量が減少していくため、主制御弁7内の作動油の流量が減少し、主制御弁7の開度は小さくなる。そして、乗かご2が目的階床に停止するときには主制御弁7内の作動油の流量は0になって主制御弁7は閉じる。
【0006】
上記のように、上昇運転時には、主制御弁7の開度は作動油の流量に応じて増減しているため、主制御弁7の開度は必要最小限になっている。そのため上昇運転中に停電が発生しても主制御弁7中の作動油の流量が減少するにしたがって主制御弁7は速やかに閉じるため、作動油が逆流して乗かご2がフリーランを起こすことはない。
【0007】
次に下降運転の場合について説明すると、まず油圧ポンプ5が上昇運転方向に駆動して油室7c内の圧力を所定圧まで高める。そしてソレノイドコイル8a,9aを励磁するとともに、油圧ポンプ5を下降運転方向に駆動する。これにより油室7c,7d内の圧力が下がり、ポペット7aが開いて乗かご2は下降を始める。ポペット7aが開くと、油圧ジャッキ1内の作動油が乗かご2の重量によって押し出され、主制御弁7を通って油圧ポンプ5からタンク6へ排出される。またこの主制御弁7内の作動油の流量の増加に伴って主制御弁7の開度も大きくなり、乗かご2の下降は加速される。
【0008】
乗かご2が減速するときには、油圧ポンプ5の吐出油量が制御されて主制御弁7を通過する作動油の流量が減少し、主制御弁7の開度は小さくなっていく。そして、乗かご2が目的階床に停止するときには主制御弁7内の作動油の流量は0になって主制御弁7は閉じる。更にソレノイドコイル8a,9aは消磁する。このように下降運転時においても、主制御弁7の開度は作動油の流量に応じて増減しており、必要最小限の開度になっている。
【0009】
下降運転中に停電が発生すると、油圧ポンプ5が停止して油室7c内の圧力が急減し、また電磁パイロット弁9が閉じて油室7b内の作動油は絞り11を通って油室7dに供給されるため、ポペット7aは閉方向に移動して主制御弁7は閉じる。このため下降運転時においてもフリーランを起こすことはない。
【0010】
【発明が解決しようとする課題】
前記従来技術では、下降運転中に停電が発生すると、油室7b内の作動油が絞り11を通って油室7dに供給されてポペット7aが閉じるため、絞り11の開度が大きいと主制御弁7の閉じる速度が速すぎて乗かご2の停止時にショックを生じ、逆に絞り11の開度が小さいと乗かご2の停止が遅れることになり、最適な開度の絞り11を選ぶのが難しいという問題があった。
【0011】
【課題を解決するための手段】
本発明は、油圧ジャッキと主制御弁の背面油室との間に、両者間を流れる作動油の流量を変更する切換弁を設け、この切換弁は油圧ジャッキと背面油室との間の作動油の流量によってその開度が切り換えられる構成にしたものである。更に前記切換弁を調整可能な絞りを備えた構成にして、現場で調整できるようにしたものである。
また本発明は、主制御弁としてパイロット操作逆止弁を使用したものにおいても、主制御弁と電磁パイロット弁との間に、両者間を流れる作動油の流量を変更する切換弁を設け、この切換弁は主制御弁と電磁パイロット弁との間の作動油の流量によってその開度が切り換えられる構成にしたものである。
【0012】
【発明の実施の形態】
本発明の実施の形態を図1により説明する。図1は図3の絞り11に代えて切換弁を設けたものである。
図において、20は従来の絞り11に代えて設置した切換弁であり、比較的抵抗の大きい絞り20a側と導通側20bが切り換えられる構成で通常は導通側20bになっている。更にばね20c,比較的抵抗の小さい絞り20dを備えている。図3と同一符号は同一のものを示している。
【0013】
下降運転中に停電が発生すると油圧ポンプ5が停止して油室7c内の圧力が急減し、またソレノイドコイル9aが消磁されて電磁パイロット弁9は閉じる。これにより油室7bの作動油は絞り20d,切換弁の導通側20bを通って油室7dに供給されるためポペット7aは速度を上げながら閉じはじめ、絞り20dを通過する作動油も増加する。すると絞り20dの前後の管路(油室7b側と7d側)の圧力差が増大する。この圧力差が切換弁20の設定値を超えると切換弁20は絞り20a側に切り換わって、作動油の通過量が制限される。これにより油室7dに供給される作動油量が制限され、ポペット7aの閉速度も遅くなり、乗かご2はゆっくりと止まる。
【0014】
上記のように本実施形態によれば、乗かご2の下降運転中に停電が発生すると、乗かご2の下降速度が速い間は主制御弁7は速く閉じ、ポペット7aがある程度閉じて乗かご2の速度が遅くなる頃に主制御弁7はゆっくり閉じるため、短い停止距離・時間で、しかも少ない停止ショックで乗かご2を停止させることができる。
【0015】
また本実施形態の他の例として、絞り20dを調整可能にすることができる。本実施形態では、下降運転時油室7d内の圧力は絞り20dの開度によって変ってくる。即ち主制御弁7の開度は絞り20dの開度によって変ってくるが、油圧エレベータは機械室の位置や配管の長さ等により、下降運転時の主制御弁7の最適開度にはばらつきがあるため、主制御弁7が最適な開度を得るように予め製作しておくことは困難である。そこで絞り20dを調整可能にすることにより、据付現場で主制御弁7の開度が最適になるように調整することができる。
更にまた、ばね20cの強さを可変にすることにより、切換弁20の設定値の変更即ち切換のタイミングを変更することができる。
【0016】
次に、図2により本発明の他の実施形態について説明する。この実施形態は主制御弁としてパイロット操作逆止弁を使用したものである。
図において30は主制御弁であり、ポペット30a、油圧配管によって油圧ジャッキ1に連結されたジャッキ側油室30b、油圧ポンプ5に連結されたポンプ側油室30c、圧縮ばね30dを有しており、更にパイロットピストン31、油圧ジャッキ側油室31a、タンク側油室31b、圧縮ばね31cを備えている。40は電磁パイロット弁、40aはソレノイドコイル、図1と同一符号は同一のものを示している。
【0017】
本実施形態において、下降運転を行うときは、ソレノイドコイル40aを励磁してパイロット電磁弁40を開き、油圧ジャッキ1からの作動油を油室31aへ供給する。これによりパイロットピストン31がポペット30aを押し開き、油室30bから30cへ作動油が流れ乗かご2が下降する。目的階へ近づいてくると油圧ポンプ5の回転を制御して乗かご2を減速し、目的階に到着するとソレノイドコイル40aを消磁してパイロット電磁弁40を閉じ、油室31aの作動油をタンクに開放する。
【0018】
下降運転中に停電が発生するとソレノイドコイル40aが消磁されて電磁パイロット弁40は閉じる。これにより油室31aの作動油は切換弁の導通側20b,絞り20d,電磁パイロット弁40を通ってタンクに排出されるためポペット30aは速度を上げながら閉じはじめ、絞り20dを通過する作動油も増加する。すると絞り20dの前後の管路(油室31a側と電磁パイロット弁40側)の圧力差が増大する。この圧力差が切換弁20の設定値を超えると切換弁20は絞り20a側に切り換わって、作動油の通過量が制限される。これにより油室31aから排出される作動油量が制限され、ポペット30aの閉速度も遅くなり、乗かご2はゆっくりと止まる。
上記のように本実施形態おいても図1の実施形態と同様の効果がある。
【0019】
【発明の効果】
以上説明したように、本発明によれば、下降運転時に停電が発生しても、速やかにスムーズに乗かご2を停止させることのできる油圧エレベータを実現できる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す図である。
【図2】本発明の他の実施の形態を示す図である。
【図3】従来の油圧エレベータの全体構成を示す概略図である。
【符号の説明】
1 油圧ジャッキ
2 乗かご
5 油圧ポンプ
7,30 主制御弁
8,9,40 電磁パイロット弁
20 切換弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydraulic elevator, and more particularly to a hydraulic elevator that controls the amount of oil discharged from a hydraulic pump driven by the electric motor by controlling the electric motor by inverter control or the like.
[0002]
[Prior art]
In a hydraulic elevator, if a power failure occurs while the elevator car is running, the car may cause a free run. This occurs when the speed of the elevator is low during the descending operation of the car in an elevator that controls the flow rate of hydraulic oil by fully opening the main control valve and controlling the hydraulic pump during the descending operation of the car.
The reason for this is that when a power failure occurs during low-speed descending operation, the hydraulic pump stops, while the main control valve is fully open, so the hydraulic oil flow rate increases rapidly and the car enters a free-run state. The car slows down as the control valve closes, and the car stops when the main control valve is fully closed.
[0003]
As a technique for preventing this free run, there is JP-A-9-315733, which will be described with reference to FIG.
In the figure, 1 is a hydraulic jack that raises and lowers the car 2, 3 is a control unit that drives the hydraulic pump 5 by controlling the electric motor 4, and 6 is a tank. 7 is a main control valve, a poppet 7a, a jack side oil chamber 7b connected to the hydraulic jack 1 by hydraulic piping, a pump side oil chamber 7c connected to the hydraulic pump 5, and a back side disposed on the back side of the poppet 7a. An oil chamber 7d and a compression spring 7e are provided.
[0004]
Reference numeral 8 denotes a first electromagnetic pilot valve disposed between the jack-side oil chamber 7b and the back-side oil chamber 7d, and 8a and 8b are solenoid coils. 9 is a second electromagnetic pilot valve connected to the pump side oil chamber 7c via the check valve 10, and the other is connected to the back side oil chamber 7d, and 9a is a solenoid coil. A throttle 11 is arranged in parallel with the first electromagnetic pilot valve 8. Each solenoid coil 8a, 8b, 9a is operated by the control unit 3.
[0005]
Explaining this operation, in the ascending operation, the hydraulic pump 5 is driven in the ascending operation direction, the solenoid coils 8a and 9a are demagnetized, and the 8b is energized to equalize the pressure in the oil chamber 7b and the oil chamber 7d. When the valve opening force due to the pressure of the oil chambers 7b and 7c exceeds the valve closing force of the oil chamber 7d and the spring 7e, the poppet 7a is opened and the car 2 is raised.
Further, as the amount of oil discharged from the hydraulic pump 5 increases, the flow rate of the hydraulic oil flowing through the main control valve 7 increases, thereby increasing the opening of the main control valve 7 (the amount of movement of the poppet 7a). The car 2 accelerates. When the car 2 decelerates, the amount of oil discharged from the hydraulic pump 5 decreases, so the flow rate of hydraulic oil in the main control valve 7 decreases and the opening of the main control valve 7 decreases. When the car 2 stops at the target floor, the flow rate of the hydraulic oil in the main control valve 7 becomes zero and the main control valve 7 is closed.
[0006]
As described above, during the ascending operation, the opening degree of the main control valve 7 increases or decreases according to the flow rate of the hydraulic oil, so that the opening degree of the main control valve 7 is the minimum necessary. Therefore, even if a power failure occurs during the ascending operation, the main control valve 7 is quickly closed as the flow rate of the hydraulic oil in the main control valve 7 decreases, so that the hydraulic oil flows backward and the car 2 causes a free run. There is nothing.
[0007]
Next, the case of the descending operation will be described. First, the hydraulic pump 5 is driven in the ascending operation direction to increase the pressure in the oil chamber 7c to a predetermined pressure. Then, the solenoid coils 8a and 9a are excited and the hydraulic pump 5 is driven in the descending operation direction. As a result, the pressure in the oil chambers 7c and 7d is lowered, the poppet 7a is opened, and the car 2 starts to descend. When the poppet 7 a is opened, the hydraulic oil in the hydraulic jack 1 is pushed out by the weight of the car 2 and is discharged from the hydraulic pump 5 to the tank 6 through the main control valve 7. Further, as the flow rate of the hydraulic oil in the main control valve 7 increases, the opening degree of the main control valve 7 increases, and the lowering of the car 2 is accelerated.
[0008]
When the car 2 decelerates, the amount of hydraulic oil discharged from the hydraulic pump 5 is controlled, the flow rate of hydraulic oil passing through the main control valve 7 decreases, and the opening degree of the main control valve 7 decreases. When the car 2 stops at the target floor, the flow rate of the hydraulic oil in the main control valve 7 becomes zero and the main control valve 7 is closed. Further, the solenoid coils 8a and 9a are demagnetized. As described above, even during the descending operation, the opening degree of the main control valve 7 increases or decreases according to the flow rate of the hydraulic oil, and is the minimum necessary opening degree.
[0009]
When a power failure occurs during the descending operation, the hydraulic pump 5 is stopped and the pressure in the oil chamber 7c is suddenly reduced, and the electromagnetic pilot valve 9 is closed so that the hydraulic oil in the oil chamber 7b passes through the throttle 11 and the oil chamber 7d. Therefore, the poppet 7a moves in the closing direction and the main control valve 7 is closed. For this reason, free run does not occur even in the descent operation.
[0010]
[Problems to be solved by the invention]
In the prior art, when a power failure occurs during the descending operation, the hydraulic oil in the oil chamber 7b is supplied to the oil chamber 7d through the throttle 11 and the poppet 7a is closed. The closing speed of the valve 7 is too fast and a shock is generated when the car 2 is stopped. Conversely, if the opening of the throttle 11 is small, the stop of the car 2 is delayed, and the throttle 11 having the optimum opening is selected. There was a problem that was difficult.
[0011]
[Means for Solving the Problems]
In the present invention, a switching valve is provided between the hydraulic jack and the back oil chamber of the main control valve to change the flow rate of hydraulic oil flowing between the two, and this switching valve operates between the hydraulic jack and the back oil chamber. The opening degree is switched according to the flow rate of oil. Further, the switching valve is configured to have an adjustable throttle so that it can be adjusted on site.
The present invention also provides a switching valve for changing the flow rate of hydraulic fluid flowing between the main control valve and the electromagnetic pilot valve even in the case where a pilot operated check valve is used as the main control valve. The switching valve is configured such that its opening degree is switched by the flow rate of hydraulic oil between the main control valve and the electromagnetic pilot valve.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. FIG. 1 is provided with a switching valve in place of the throttle 11 of FIG.
In the figure, reference numeral 20 denotes a switching valve installed in place of the conventional throttle 11, which is configured to be switched between the throttle 20a side and the conduction side 20b having a relatively large resistance, and is normally the conduction side 20b. Further, a spring 20c and a diaphragm 20d having a relatively small resistance are provided. The same reference numerals as those in FIG. 3 denote the same components.
[0013]
When a power failure occurs during the descending operation, the hydraulic pump 5 is stopped, the pressure in the oil chamber 7c is suddenly reduced, the solenoid coil 9a is demagnetized, and the electromagnetic pilot valve 9 is closed. Accordingly, the hydraulic oil in the oil chamber 7b is supplied to the oil chamber 7d through the throttle 20d and the conduction side 20b of the switching valve, so that the poppet 7a starts to close while increasing the speed, and the hydraulic oil that passes through the throttle 20d also increases. Then, the pressure difference between the pipe lines before and after the throttle 20d (the oil chamber 7b side and the 7d side) increases. When this pressure difference exceeds the set value of the switching valve 20, the switching valve 20 is switched to the throttle 20a side, and the amount of hydraulic oil passing is limited. As a result, the amount of hydraulic oil supplied to the oil chamber 7d is limited, the closing speed of the poppet 7a is also slowed, and the car 2 is slowly stopped.
[0014]
As described above, according to the present embodiment, when a power failure occurs during the lowering operation of the car 2, the main control valve 7 is quickly closed and the poppet 7a is closed to some extent while the lowering speed of the car 2 is fast. Since the main control valve 7 closes slowly as the speed of 2 slows down, the car 2 can be stopped with a short stop distance and time and with a small stop shock.
[0015]
As another example of the present embodiment, the diaphragm 20d can be adjusted. In the present embodiment, the pressure in the oil chamber 7d during the descending operation varies depending on the opening degree of the throttle 20d. That is, the opening degree of the main control valve 7 varies depending on the opening degree of the throttle 20d, but the hydraulic elevator varies in the optimum opening degree of the main control valve 7 during the descent operation depending on the position of the machine room and the length of the piping. Therefore, it is difficult to make the main control valve 7 in advance so as to obtain an optimum opening degree. Therefore, by making the throttle 20d adjustable, the opening of the main control valve 7 can be adjusted to be optimum at the installation site.
Furthermore, by changing the strength of the spring 20c, the setting value of the switching valve 20, that is, the switching timing can be changed.
[0016]
Next, another embodiment of the present invention will be described with reference to FIG. In this embodiment, a pilot operated check valve is used as a main control valve.
In the figure, 30 is a main control valve, which has a poppet 30a, a jack side oil chamber 30b connected to the hydraulic jack 1 by hydraulic piping, a pump side oil chamber 30c connected to the hydraulic pump 5, and a compression spring 30d. Further, a pilot piston 31, a hydraulic jack side oil chamber 31a, a tank side oil chamber 31b, and a compression spring 31c are provided. 40 is an electromagnetic pilot valve, 40a is a solenoid coil, and the same reference numerals as those in FIG.
[0017]
In this embodiment, when performing the descending operation, the solenoid coil 40a is excited to open the pilot solenoid valve 40, and the hydraulic oil from the hydraulic jack 1 is supplied to the oil chamber 31a. As a result, the pilot piston 31 pushes and opens the poppet 30a, the hydraulic oil flows from the oil chamber 30b to 30c, and the car 2 descends. When approaching the destination floor, the rotation of the hydraulic pump 5 is controlled to decelerate the car 2, and when reaching the destination floor, the solenoid coil 40a is demagnetized, the pilot solenoid valve 40 is closed, and the hydraulic oil in the oil chamber 31a is tanked. To open.
[0018]
When a power failure occurs during the descending operation, the solenoid coil 40a is demagnetized and the electromagnetic pilot valve 40 is closed. As a result, the hydraulic oil in the oil chamber 31a is discharged to the tank through the conduction side 20b of the switching valve, the throttle 20d, and the electromagnetic pilot valve 40, so that the poppet 30a begins to close while increasing the speed, and the hydraulic oil passing through the throttle 20d also To increase. Then, the pressure difference between the pipe lines before and after the throttle 20d (the oil chamber 31a side and the electromagnetic pilot valve 40 side) increases. When this pressure difference exceeds the set value of the switching valve 20, the switching valve 20 is switched to the throttle 20a side, and the amount of hydraulic oil passing is limited. As a result, the amount of hydraulic oil discharged from the oil chamber 31a is limited, the closing speed of the poppet 30a is also slowed, and the car 2 is slowly stopped.
As described above, this embodiment has the same effect as the embodiment of FIG.
[0019]
【The invention's effect】
As described above, according to the present invention, it is possible to realize a hydraulic elevator capable of quickly and smoothly stopping the car 2 even if a power failure occurs during the descending operation.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 2 is a diagram showing another embodiment of the present invention.
FIG. 3 is a schematic diagram showing the overall configuration of a conventional hydraulic elevator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hydraulic jack 2 Car 5 Hydraulic pump 7, 30 Main control valve 8, 9, 40 Electromagnetic pilot valve 20 Switching valve

Claims (4)

乗かごを昇降させる油圧ジャッキと、この油圧ジャッキに主制御弁を介して作動油を供給及び排出する油圧ポンプと、この油圧ポンプを駆動する電動機とを備え、前記主制御弁内を流れる作動油の流量に応じて前記主制御弁の開度を変化させる構成の油圧エレベータにおいて、
前記油圧ジャッキと前記主制御弁の背面油室との間に、両者間を流れる作動油の流量を変更する切換弁を設け、この切換弁は前記油圧ジャッキと背面油室との間の作動油の流量によってその開度が切り換えられる構成であることを特徴とする油圧エレベータ。
A hydraulic jack that raises and lowers the car, a hydraulic pump that supplies and discharges hydraulic oil to and from the hydraulic jack via a main control valve, and an electric motor that drives the hydraulic pump, and the hydraulic oil that flows in the main control valve In the hydraulic elevator configured to change the opening of the main control valve according to the flow rate of
A switching valve is provided between the hydraulic jack and the back oil chamber of the main control valve to change the flow rate of the working oil flowing between the hydraulic jack and the hydraulic oil between the hydraulic jack and the back oil chamber. The hydraulic elevator is characterized in that its opening degree is switched by the flow rate of.
前記切換弁は調整可能な絞りを備えていることを特徴とする請求項1記載の油圧エレベータ。The hydraulic elevator according to claim 1, wherein the switching valve includes an adjustable throttle. 乗かごを昇降させる油圧ジャッキと、この油圧ジャッキに主制御弁を介して作動油を供給及び排出する油圧ポンプと、この油圧ポンプを駆動する電動機とを備え、前記主制御弁として電磁パイロット弁により制御されるパイロット操作逆止弁を使用した油圧エレベータにおいて、
前記主制御弁と電磁パイロット弁との間に、両者間を流れる作動油の流量を変更する切換弁を設け、この切換弁は前記主制御弁と電磁パイロット弁との間の作動油の流量によってその開度が切り換えられる構成であることを特徴とする油圧エレベータ。
A hydraulic jack that raises and lowers the car, a hydraulic pump that supplies and discharges hydraulic oil to and from the hydraulic jack via a main control valve, and an electric motor that drives the hydraulic pump. In hydraulic elevators using controlled pilot operated check valves,
A switching valve is provided between the main control valve and the electromagnetic pilot valve to change the flow rate of hydraulic fluid flowing between the two. The switching valve depends on the flow rate of hydraulic fluid between the main control valve and the electromagnetic pilot valve. A hydraulic elevator characterized in that its opening degree can be switched.
前記切換弁はばね力が可変のばねを有しており、このばね力を変えることにより、切り換えのタイミングを変えられることを特徴とする請求項1乃至3の何れかに記載の油圧エレベータ。4. The hydraulic elevator according to claim 1, wherein the switching valve includes a spring having a variable spring force, and the switching timing can be changed by changing the spring force. 5.
JP2001000136A 2001-01-04 2001-01-04 Hydraulic elevator Expired - Fee Related JP4019633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001000136A JP4019633B2 (en) 2001-01-04 2001-01-04 Hydraulic elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001000136A JP4019633B2 (en) 2001-01-04 2001-01-04 Hydraulic elevator

Publications (2)

Publication Number Publication Date
JP2002205883A JP2002205883A (en) 2002-07-23
JP4019633B2 true JP4019633B2 (en) 2007-12-12

Family

ID=18869005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001000136A Expired - Fee Related JP4019633B2 (en) 2001-01-04 2001-01-04 Hydraulic elevator

Country Status (1)

Country Link
JP (1) JP4019633B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4767193B2 (en) * 2007-02-09 2011-09-07 株式会社Taiyo Safety valve device for hydraulic elevator

Also Published As

Publication number Publication date
JP2002205883A (en) 2002-07-23

Similar Documents

Publication Publication Date Title
CA1173724A (en) Electromechanical control for hydraulic elevators
KR100303012B1 (en) Hydraulic elevator system
AU2001281635B2 (en) Hydraulic lift with an accumulator
CN109371920A (en) Gate Rapid door closer hydraulic damping speed-regulating system
JP4019633B2 (en) Hydraulic elevator
US4412600A (en) Hydraulic elevator
JPH066246Y2 (en) Flow control device for hydraulic jack for hydraulic elevator
JP3399251B2 (en) Hydraulic elevator equipment
JP3371705B2 (en) Hydraulic elevator equipment
JP3368554B2 (en) Hydraulic elevator equipment
JP3188628B2 (en) Hydraulic elevator control device
KR0146621B1 (en) Control system for oil power elevator
JP3240436B2 (en) Hydraulic elevator equipment
CN102733634A (en) Hydraulic speed regulating mechanism used for stereo garage, and acceleration and deceleration method
JPS6357494A (en) Hydraulic controller for lifting smelting ladle
JP3149635B2 (en) Hydraulic elevator equipment
JP3395528B2 (en) Hydraulic elevator equipment
JPH1036041A (en) Hydraulic elevator device
JP3173198B2 (en) Hydraulic elevator equipment
JP3435934B2 (en) Hydraulic elevator equipment
JPS6157272B2 (en)
JP3449134B2 (en) Hydraulic elevator equipment
JPH11189379A (en) Hydraulic elevator
JPH08165065A (en) Control device for hydraulic elevator
JP2019218963A (en) Hydraulic drive device with counter balance valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees