JPH0416488A - Continuously variable shift driving device for elevator - Google Patents

Continuously variable shift driving device for elevator

Info

Publication number
JPH0416488A
JPH0416488A JP11827590A JP11827590A JPH0416488A JP H0416488 A JPH0416488 A JP H0416488A JP 11827590 A JP11827590 A JP 11827590A JP 11827590 A JP11827590 A JP 11827590A JP H0416488 A JPH0416488 A JP H0416488A
Authority
JP
Japan
Prior art keywords
transmission wheel
point
elevator
input shaft
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11827590A
Other languages
Japanese (ja)
Inventor
Seiichi Saito
斎藤 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11827590A priority Critical patent/JPH0416488A/en
Publication of JPH0416488A publication Critical patent/JPH0416488A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cage And Drive Apparatuses For Elevators (AREA)
  • Friction Gearing (AREA)

Abstract

PURPOSE:To perform continuously variable acceleration and deceleration of rotation of a reduction gear input shaft by locating a transmission wheel such that it makes contact with a drive disc and a driven disc at a proper pressure and reciprocatively moving it on a line for intercoupling the center of the drive disc and the center of the driven disc during running of an electric motor. CONSTITUTION:Since, during movement of a transmission wheel 6 from a point A to a point B, a ratio of L1:L2 is changed, a driven disc 12 and an input shaft 13 of a reduction gear are gradually decelerated, and at a point of time when the transmission wheel is moved to the point B, high speed operation is entered. When an elevator approaches a destination floor and a deceleration signal is received, a flow rate regulating solenoid valve 17 is opened and a pressure in an oil chamber 11 is reduced, whereby the transmission wheel 6 is pushed through the force of a transmission wheel return spring 9 and started to move from the point B to the point A. Thus, the driven disc 12 and the reduction gear input shaft 13 are gradually decelerated as it follows a reverse progress to that during acceleration. After a lapse of a slight seating speed period in which return to the point A is effected, the transmission wheel 6 receives a stop signal and an electromagnetic brake 24 is operated to completely stop an elevator.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、昇降機のかご形誘導電動機を動力源とする
駆動装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a drive device for an elevator using a squirrel cage induction motor as a power source.

(従来の技術) 昇降機の昇降方式として、主に低階床に使用される油圧
式、巻き上げ式等の特殊な方式を除き、一般には建物の
高低、及び昇降速度に左右されない所謂つるべ式(綱車
に掛けられた数本のワイヤーローブの一端にかごを吊り
、他端に平衡おもりを吊り、綱車の回転によりかごを昇
降させる方式、)が採用されている。その駆動動力源と
して使わに電動機という。その他の電動機についてはそ
の都度、用途または形式別に名称を付する。)を使用し
たものが主流である。その有利な点は直fL電動機と比
較して、安価、小型軽量、堅牢な構造、回転音が静か、
高効率、保守点検が容易、等が挙げられるが、欠点とし
て速度制御が困難である。その欠点の昇降機に与える影
響は、始動及び停止時の衝撃が大きいため乗り心地が悪
い、かごに乗る荷重の軽重により停止時に乗場床面とか
ご床面に段差がつき易くなるという不具合いが生じる。
(Prior art) Excluding special methods such as the hydraulic type and hoist type used mainly for low floors, the so-called crane type (rope type) is generally used as a lifting method for elevators, which is not affected by the height of the building or the speed of lifting. A method was adopted in which the basket was suspended from one end of several wire lobes hung on a car, a counterweight was suspended from the other end, and the basket was raised and lowered by the rotation of the sheave. The motor used as the driving power source is called an electric motor. Other electric motors shall be named according to their purpose or type. ) is the mainstream. Its advantages are that it is cheaper, smaller and lighter, has a more robust structure, and has quieter rotation noise than a direct-fL electric motor.
It has high efficiency, easy maintenance and inspection, etc., but its drawback is that speed control is difficult. The disadvantages of this are that the impact on the elevator is large when starting and stopping, which makes the ride uncomfortable, and because of the light weight of the load on the car, there is a problem in that when the car stops, there is a tendency for a step to form between the landing floor and the car floor. .

その欠点を補うために従来、種々の方式が考えられてい
るが、その代表的な方式が実用化された年代順にその始
動、減速、停止方法の原理及び長所または欠点等を各方
式別に次に述べる。
To date, various methods have been considered to compensate for these shortcomings, but the principles and advantages or disadvantages of the starting, decelerating, and stopping methods are explained below for each method in the chronological order in which the representative methods were put into practical use. state

(1) 2段速度方式 この方式の駆動部は、第6図に示すように、電動6! 
(])の電動機軸(3)に固定された電動機側カップリ
ング(25)と減速機(14)の減速機入力軸(13)
にに入る。昇降機の減速区間に入り減速信号を受けると
、リレーS、が開き同時にリレーS、が入り、多極数巻
AI(低速用巻ta>に切り換える。減速を滑らかにす
るために、減速期間中にリレーs6、s7により抵抗R
2、R1を順次短絡して着床速度に到達し停止信号によ
り電磁ブレーキ(24)が作動して昇降機は停止する。
(1) Two-speed system The drive unit of this system is an electric 6! speed system, as shown in Figure 6.
The motor-side coupling (25) fixed to the motor shaft (3) of (]) and the reducer input shaft (13) of the reducer (14)
Enter into. When the elevator enters the deceleration section and receives a deceleration signal, relay S opens and at the same time relay S turns on, switching to multi-pole, several-turn AI (low-speed winding ta).In order to smooth the deceleration, during the deceleration period Resistance R by relays s6 and s7
2. Short-circuit R1 one after another to reach the landing speed, and the stop signal activates the electromagnetic brake (24) to stop the elevator.

この方式の長所としては、駆動部の構造が簡単であるの
で駆動部は安価に製作できるが、欠点として次の諸点が
あげられる。
The advantage of this method is that the structure of the drive section is simple and the drive section can be manufactured at low cost, but the disadvantages are as follows.

電動機の極数に反比例するという特性の、極数を変換す
る方法を採用しているため電動機(1)は、極数の異な
る巻線を2層に施しである1次にこの方式の運転時の動
作を説明すると、まず第6図に示す昇降選択の電磁開閉
器(以下リレーという、)S、あるいはS2が閉じると
同時にリレーS、が閉じて、電動11!(1)は少極数
巻!!(高速用巻線)で始動する。始動電流の減少に応
じてリレーS4が閉じ、抵抗R1を短絡して高速運転(
定格速度運転)の衝撃が大きい、また着床速度が高速用
巻線と低速用巻線の比が大きくとれないなめ(低速用巻
線は昇降機の保守点検の際の低速運転用として使用され
るため通常の巻線比率は4:1程度である。)比較的着
床速度が速いので、停止信号から停止までの時間が短く
なるように電磁ブレーキ(24)を強く効くように調整
すると停止時の衝撃が大きくなり、弱く調整すると衝撃
は和らげられるが、積載荷重の軽重による乗場床面とが
ご床面の段差が大きくなる。
Since the method of converting the number of poles, which is inversely proportional to the number of poles of the motor, is used, the motor (1) has two layers of windings with different numbers of poles. To explain the operation, first, when the electromagnetic switch (hereinafter referred to as a relay) S or S2 for lifting/lowering selection shown in FIG. 6 closes, the relay S closes, and the electric 11! (1) is a small number of turns! ! (high speed winding). Relay S4 closes as the starting current decreases, shorting resistor R1 and allowing high-speed operation (
rated speed operation) is large, and the ratio of the landing speed between the high speed winding and the low speed winding is not large (the low speed winding is used for low speed operation during maintenance and inspection of elevators) (For this reason, the normal winding ratio is about 4:1.) Since the landing speed is relatively fast, adjusting the electromagnetic brake (24) to be strong will shorten the time from the stop signal to the stop. The impact becomes large, and although the impact can be softened by making a weak adjustment, the level difference between the landing surface and the floor surface becomes large due to the light weight of the load.

(b)第12図のグラフに示すように、誘導電動機の始
動トルク(回転力)が大きくないため始動トルクを増す
ために同一出力の汎用電動機と比較して外形が大きく、
また巻線を2層に斃しているなめ電動機は高価である。
(b) As shown in the graph of Figure 12, the starting torque (rotational force) of an induction motor is not large, so in order to increase the starting torque, the external size is larger compared to a general-purpose motor with the same output.
Also, a flat motor with two layers of windings is expensive.

(C)始動時及び減速時に大型のリレーが連続して開閉
するので、騒音が大きい。
(C) A large relay opens and closes continuously during startup and deceleration, which creates a lot of noise.

(d)始動時及び減速時に大電流が流れるので消この方
式の駆動部は、第8図に示すように、基本的には2段速
度方式と同様であるが、速度発電IN(27)が電動機
(1)の軸に直結されているのが特徴である0次にこの
方式の運転時の作動及び速度制御方法について述べる。
(d) Because a large current flows during starting and deceleration, the drive unit of this type is basically the same as the two-speed type, as shown in Figure 8, but the speed generator IN (27) is The operation and speed control method during operation of this zero-order system, which is characterized by being directly connected to the shaft of the electric motor (1), will be described.

第8図に示すように、昇降選択のリレーS、あるいはリ
レー82が閉じると同時にリレーs3が閉じて電動a!
(1)が始動し、始動電流の減少に応じてリレーs4が
閉じて抵抗R1を短絡して高速運転に入る。減速信号を
受けると、リレーS、が開くと同時にリレーs8が閉じ
る。この時、電動機(1)は交流電源がち切り離されて
、慣性により空転を開始すると同時にリレーS8を通し
てDB制御回路装置(28)内で整流された直流制動電
流(ダイナミック ブレーキ以下DBという肋τ低迷用
巻線に流れ空転を阻止するように鋤く、このDB電流は
、速度発電機(27)の発生電圧に比例して制御される
。即ち電動機(1)の回転が速い時には大きなりB電流
が流れて制動力を増す、回転が落ちてくるに従ってDB
電流が少なくなり着床位置では回転が0になるように調
整し停止信号により電磁ブレーキ(24)が働いて昇降
機は停止する。この方式の長所は、第9図のグラフに示
すように減速から停止まで速度変化が非常に滑らかで、
衝撃のない理想的な減速、停止が得られる。また積載荷
重の軽重による乗場床面と、がご球面の段差が殆ど生じ
ないが、欠点として次の諸点が挙げられる。
As shown in FIG. 8, at the same time as the lift selection relay S or the relay 82 closes, the relay s3 closes and the electric a!
(1) is started, and as the starting current decreases, relay s4 closes to short-circuit resistor R1 and enters high-speed operation. Upon receiving the deceleration signal, relay S opens and at the same time relay s8 closes. At this time, the electric motor (1) is disconnected from the AC power supply and starts idling due to inertia. At the same time, the DC braking current (for sluggish braking, called DB below the dynamic brake) is rectified in the DB control circuit device (28) through relay S8. This DB current, which flows through the windings to prevent idling, is controlled in proportion to the voltage generated by the speed generator (27).That is, when the motor (1) rotates quickly, the B current increases. DB flows and increases braking force, as the rotation decreases
Adjustment is made so that the current decreases and the rotation becomes 0 at the landing position, and the stop signal activates the electromagnetic brake (24) to stop the elevator. The advantage of this method is that the speed change is very smooth from deceleration to stop, as shown in the graph in Figure 9.
Ideal deceleration and stopping without impact can be achieved. Furthermore, there is almost no difference in level between the landing floor and the spherical surface due to the light weight of the carrying load, but the following drawbacks can be cited.

(a)2段速度方式と同様な始動方式であるので始動時
の衝撃が大きい。
(a) Since the starting method is similar to the two-speed method, the shock at starting is large.

(b)速度発電機(27)を含むDB制御回路装置が高
価である。
(b) The DB control circuit device including the speed generator (27) is expensive.

(c)前述の(11の(b)の理由により電動機が大形
になり高価である。
(c) Due to the reason (b) in (11) above, the electric motor is large and expensive.

(d)[1)の(d)の理由により消費電力が大きい。(d) Power consumption is large due to the reason in (d) of [1].

(e)調整が繁雑である。(e) Adjustment is complicated.

(1)VVVF方式 VVVFは可変電圧可変周波数の略で、通称インバータ
一方式という(以下文中インバータ一方3相の近似正弦
波が得られる。電動機(1)に供給される3相の交流電
圧及び周波数は、パワートランジスターT1〜T、の単
位時間当りの断続回数の増減及び通電時間と非通電時間
の比を変化させることにより、出力の周波数及び電圧を
自在に制御できる1次にこの方式の運転時の動作を説明
すると、第10図に示すように昇降選択のリレーS、あ
るいはリレーS、が閉じると、電動機(1)は低電圧低
周波数で始動する。(以下第11図参照、)周波数心地
、着床時の床面の段差、消費電力の低減等の改善を目的
として、近年主流となりつつある方式である。この方式
は、誘導電動機の回転数は供給電源の周波数に正比例す
る特性を利用して速度制御を行なうものである0次にそ
の原理を説明するまずインバーター装置内の働きを説明
すると、第13図に示すように、交流電源をコンバータ
一部に於て直流に変換し、インバータ一部に供給された
直流電流をパワートランジスターT1〜T6で順次高速
で断続することにより、第14図に示すような減速区間
に入り減速信号を受けると、周波数及び電圧が無段附に
減少し着床速度に到達し若干時間後、停止信号を受ける
と電磁ブレーキ(20が働いて停止する。この方式の駆
動部の楕或は、前述の帰還制御方式とほぼ同様であるが
、始動時に低電圧、低周波数で始動するため始動電流の
少ない割りに始動トルクが大きく取れ、また保守点検時
の速度はインバーター装置により自在に設定できるので
、2層巻線の必要がないので電動機(1)は小形にでき
る。この方式の長所は、第11図のグラフに示すように
始動から停止まで滑らかな加速及び減速が得られるので
前述の2方式に較べて非常に乗り心地がよい、始動及び
減速時に大電流が流れないので消費電力が少ない0着床
速度を低速に絞っであるので着床時の衝撃及び床面段差
が少ない、電動機が小形にできるので安価である0等の
利点があるが欠点として次の諸点があげられる。
(1) VVVF method VVVF is an abbreviation for variable voltage variable frequency, and is commonly referred to as an inverter one-way system (hereinafter, an inverter one-side three-phase approximate sine wave is obtained. Three-phase AC voltage and frequency supplied to the motor (1). This is a primary mode of operation in which the output frequency and voltage can be freely controlled by increasing or decreasing the number of intermittent cycles per unit time of the power transistors T1 to T, and by changing the ratio of energized time to non-energized time. To explain the operation, as shown in Fig. 10, when the lift selection relay S or relay S closes, the motor (1) starts at low voltage and low frequency.(See Fig. 11 below) This is a method that has become mainstream in recent years with the aim of improving the level difference in the floor surface when landing and reducing power consumption.This method uses the characteristic that the rotation speed of the induction motor is directly proportional to the frequency of the power supply. Next, we will explain its principle. First, we will explain the workings inside the inverter. As shown in Figure 13, AC power is converted to DC in a part of the converter, and the inverter By sequentially cutting off the DC current supplied to a portion at high speed using the power transistors T1 to T6, the frequency and voltage decrease steplessly when the deceleration section shown in Fig. 14 is entered and a deceleration signal is received. Some time after reaching the landing speed, when a stop signal is received, the electromagnetic brake (20) is activated to stop the vehicle. Because the starting voltage and frequency are low, a large starting torque can be obtained despite the small starting current.Also, the speed during maintenance and inspection can be freely set using an inverter device, so there is no need for two-layer windings, so the motor (1) The advantage of this method is that, as shown in the graph in Figure 11, smooth acceleration and deceleration can be obtained from start to stop, resulting in a much more comfortable ride than the two methods mentioned above. There are advantages such as low power consumption because no large current flows, low landing speed so there is less shock and unevenness on the floor when landing, and low cost because the electric motor can be made smaller.However, there are disadvantages. The following points can be raised.

(a>昇降機に使用されるインバーター装置は、器が測
定個所に応じて、指定された形式のものを使用しなけれ
ばならない。
(a> The inverter device used in the elevator must be of the specified type depending on the measurement location.

(c)高周波の影響により、電動機が運転中に異音を発
生する。
(c) Due to the influence of high frequencies, the electric motor generates abnormal noise during operation.

(実施例) 本発明を第1図及び第2図の実施例に基づいてその構成
を説明する。第1図及び第2図に示すように、(1)は
電動機、(2)の駆動板は、はずみ卓効(b)第14図
に示すように出力電圧の波形は非常高周波(通常10K
oz〜IMH2)で構成されているため他の音響機器等
への影響をなくするために電動機への配線、配管アース
等に留意し場合によっては防止回路を設けなければなら
ない。
(Embodiment) The structure of the present invention will be explained based on the embodiment shown in FIGS. 1 and 2. As shown in Figures 1 and 2, (1) is an electric motor, (2) is a drive plate that has a momentum effect (b), and as shown in Figure 14, the output voltage waveform is very high frequency (usually 10K).
oz to IMH2), so in order to eliminate the influence on other audio equipment, etc., it is necessary to pay attention to wiring to the motor, grounding of piping, etc., and to provide a prevention circuit in some cases.

(c)複雑な装置を使用しているために、調整が繁雑で
あり、また故障発生時に対応でさる技術者が限定される
。。
(c) Since complex equipment is used, adjustments are complicated, and the number of engineers who can respond when a failure occurs is limited. .

(d)調整、検査、点検の際に使用される各測定動する
が回転方向には電動機軸(3)と同期回転するように取
り付ける。押圧ばね受(4)は電動機軸(3)に固定し
、押圧ばね(5)受動板(12)と駆動板(2)の間に
設けられた伝動車(6)を受動板(12)と駆動板(2
)の各面に伝動効率の良い圧力で押圧されるようなばね
圧を設定して取り付ける。受動板(12)は駆動板(2
)に平行に対向して減速機入力軸(13)に固定し、且
つ、電動機軸(3)の中心より減速機入力軸(13)の
中心をり、十L2の距離を設けて取り付ける。伝動車(
6)はゴム又はウレタン等の摩擦材で作られ、伝動車軸
(7)に高速回転に耐え得るベアリング等を介して固定
される。油圧ポンプ(18)、流量調整電磁弁(]7)
の働きにより油室(11)の圧力が上昇するとピストン
(10)を押し上げ、従ってピストン(]O)に固定さ
れた伝動車軸(7)と伝動車(6)をA点よりB点に移
動させ、油室(11)の圧力が減少すると伝動車復帰ば
ね(9)の働きによりB点からA点に戻る。シリンダー
(8)は、電動機停止時の衝撃〜に耐え得るようにベー
ス(22)に強固に取り付ける。尚、本実施例に於ては
電磁ブレーキ(24)は電動機(1)に内蔵される0次
に本発明の動作を第2図〜第5図に基づいて説明する。
(d) Each measurement used during adjustment, inspection, and inspection is moved, but installed so that it rotates synchronously with the motor shaft (3) in the rotational direction. The pressure spring receiver (4) is fixed to the motor shaft (3), and the transmission wheel (6) provided between the pressure spring (5), the passive plate (12), and the drive plate (2) is connected to the passive plate (12). Drive plate (2
) is installed by setting the spring pressure on each side of the spring to provide good transmission efficiency. The passive plate (12) is the driving plate (2
) and are fixed to the reducer input shaft (13) so as to face parallel to each other, and at a distance of 10 L2 from the center of the motor shaft (3) to the center of the reducer input shaft (13). Transmission wheel (
6) is made of a friction material such as rubber or urethane, and is fixed to the transmission axle (7) via a bearing or the like that can withstand high-speed rotation. Hydraulic pump (18), flow rate adjustment solenoid valve (]7)
When the pressure in the oil chamber (11) increases due to the action of When the pressure in the oil chamber (11) decreases, the transmission returns from point B to point A by the action of the transmission wheel return spring (9). The cylinder (8) is firmly attached to the base (22) so as to withstand the impact when the electric motor is stopped. In this embodiment, the electromagnetic brake (24) is built into the electric motor (1).The operation of the present invention will be explained based on FIGS. 2 to 5.

第4図の回路図に示すように、まず始動の指令を受ける
と昇降選択のリレーSI又はリレーS2が入り電動機(
1)は電磁ブレーキ(24)を開放して始動する、と同
時にリレーSP及びリレーSv、が閉じて油圧ポンプ電
動機(19)を始動し、流量調整電磁弁(17)を開く
(この時リレーSV2は交流電源の供給されている間は
常に閉じて電磁弁(20)を励磁し、電磁弁(20)を
閉じている。)電動機(1)の始動の時点では伝動車(
6)の位置は第2図に示すA点にあるため、受動板(1
2)及び減速機入力軸(13)の回転数は電動1!(1
)の回転数XLI/L2の回転数で緩やかに始動する。
As shown in the circuit diagram in Figure 4, when a start command is received, relay SI or relay S2 for elevating/lowering is activated and the motor (
1) is started by releasing the electromagnetic brake (24), and at the same time relay SP and relay Sv are closed to start the hydraulic pump motor (19) and open the flow rate adjustment solenoid valve (17) (at this time, relay SV2 is always closed while AC power is supplied, energizing the solenoid valve (20), and closing the solenoid valve (20).) At the time of starting the electric motor (1), the transmission wheel (
6) is at point A shown in Figure 2, so the passive plate (1
2) and the rotation speed of the reducer input shaft (13) is electric 1! (1
) The engine starts slowly at a rotation speed of XLI/L2.

油圧ポンプ(18)の作動により油室(11)の圧力が
徐々に高まり、伝動車(6)がA点よりB点に移動を開
始する。(伝動車(6)は駆動板(2〉と受動板(12
)に適当な力で押圧されているためノア靜よ状’m T
 g、を移動が困、17あ、が、。0ゎあ□ば移動は容
易である。)流量調整電磁弁(17)を第5図に示す加
速期間に合わせて、あらかじめ流量を調整しておけば加
速終了時には伝動車(6)はB点に到達し流量調整電磁
弁(17)が閉じ、油圧ポンプ電動機(]9)が停止す
る。伝動車(6)がA点よりB点に移動する際にLI:
L2の比が変化するため、受動板(12)及び減速゛機
入力軸(13)は徐々に加速されB点に到達した時点で
高速運転に入る8着床階に近づいて減速信号を受けると
流量調整電磁弁(17)が開いて油室(]l)の圧力が
減少するため、伝動車(6)は伝動車復帰ばね(9)に
押されてB点よりA点に移動を開始する。従って受動板
(12)及び減速機入力軸(13)は加速時と逆の経過
を辿って徐々に減速し、伝動車(6)はA点に復帰する
若干の着床速度期間を経た後、停止信号を受は電磁ブレ
ーキ(24)が働いて完全に昇降機は停止する。昇降機
の昇降中に停電又は故障等の異常が発生した場合、伝動
車(6)がB点に近い位置のまま停止すると再プレー′
!Ir(23)(クラッチブレーキは電磁方式、油圧方
式等各社より発表され、市販されている。)を設ければ
、始動時には減速機入力軸(13)にかかるブレーキを
開放すると同時に受動板軸(13′>を接続し始動する
。停止時は受動板軸(13’)を切り離すと同時に減速
機入力軸(13)にブレーキがかかり昇降機を停止させ
る。この場合は電動機(1)に内蔵される電磁プレー−
1r (24)はクラッチブレー−1r(23)に図に
示すリレーSv2を開くと電磁弁(20)の励磁が解除
され電磁弁(20)が開くために油室(11)内の油が
大量に電磁弁(20)を通って油タンク(21)に戻る
ので、油室(11)の圧力は短時間に減少する。従って
伝動車(6)は電動機(1)が完全に停止するまでに速
やかにA点に復帰するので再始動の際に支障が生じない
、昇降機用電動機は始動の際に減速、停止時に大きな電
力を消費するので、第3図に示す実施例のように減速機
入力軸(13)を減速機入力軸(13)と受動板軸(1
3)に分離し、その間にクラッチえば昇方向を希望する
各階の利用者を各々の希望階に乗降させた後、降方向の
呼びに応える方式を採用しているので、各階で乗降のた
めにかごが停止している間も次の昇降方向が同じ場合は
電動機(1)及び受動板(12)は慣性により空転を続
けているので再始動の際の電力が節約される。かごが最
上階または最下階に到達し昇降方向が変わる時または各
階の呼びがなくなった場合のみ電動機(1)の巻線に直
流電流を流して電気制動をかけて短時間に電動機(1)
を停止させる。またこのようにすると停電時の異常発生
時にもかごが急停止しても電動1! (])伝動車(6
)受動板(12)は空転を続けるので、伝動車(6)の
始動位置復帰の動作に無理を生じない0以上の本発明の
動作説明に於ては電動機(1)〜減速機入力軸(13)
に至る変速部に止どめたが、実際に昇降機のかごを昇降
させる減速機出力軸(15)に固定された綱車(16)
の回転数は次の式で表わされる。
The pressure in the oil chamber (11) gradually increases due to the operation of the hydraulic pump (18), and the transmission wheel (6) starts moving from point A to point B. (The transmission wheel (6) consists of a driving plate (2) and a passive plate (12).
) is pressed with an appropriate force, so Noah remains quiet.
I have trouble moving g, 17a, but. If it is 0ゎA□, it is easy to move. ) If the flow rate is adjusted in advance with the flow rate adjustment solenoid valve (17) according to the acceleration period shown in Fig. 5, the transmission wheel (6) will reach point B at the end of acceleration and the flow rate adjustment solenoid valve (17) will be activated. closed, and the hydraulic pump electric motor (]9) stops. When the transmission wheel (6) moves from point A to point B, LI:
As the ratio of L2 changes, the passive plate (12) and the reducer input shaft (13) are gradually accelerated, and when they reach point B, they enter high-speed operation. 8 When they approach the landing floor and receive a deceleration signal, The flow rate adjustment solenoid valve (17) opens and the pressure in the oil chamber (l) decreases, so the transmission wheel (6) is pushed by the transmission wheel return spring (9) and starts moving from point B to point A. . Therefore, the passive plate (12) and the reducer input shaft (13) gradually decelerate following the reverse course of acceleration, and the transmission wheel (6) returns to point A after a short landing speed period. When the stop signal is received, the electromagnetic brake (24) is activated to completely stop the elevator. If an abnormality such as a power outage or breakdown occurs while the elevator is going up and down, if the transmission wheel (6) stops at a position close to point B, it will not be possible to play again.
! Ir (23) (Clutch brakes are announced by various companies such as electromagnetic type and hydraulic type, and are commercially available.) When starting, the brake applied to the reducer input shaft (13) is released and the passive plate shaft (13) is released at the same time. 13'> and start.When stopped, the passive plate shaft (13') is disconnected and at the same time the brake is applied to the reducer input shaft (13) to stop the elevator.In this case, the elevator is built in the electric motor (1). Electromagnetic play
1r (24) is a clutch brake. When relay Sv2 shown in the figure is opened in 1r (23), the excitation of the solenoid valve (20) is canceled and the solenoid valve (20) opens, causing a large amount of oil in the oil chamber (11). Since the oil passes through the solenoid valve (20) and returns to the oil tank (21), the pressure in the oil chamber (11) decreases in a short time. Therefore, the transmission wheel (6) quickly returns to point A before the electric motor (1) completely stops, so there is no problem when restarting.The elevator electric motor decelerates when starting and generates a large amount of power when stopping. Therefore, as in the embodiment shown in FIG.
3), and in the meantime, if the clutch is used, the users on each floor who wish to go up will get on and off at their desired floor, and then the call for the direction down will be answered. Even while the car is stopped, if the next direction of elevation is the same, the electric motor (1) and passive plate (12) continue to idle due to inertia, so power is saved when restarting. Only when the car reaches the top or bottom floor and the direction of elevation changes, or when the calls for each floor are no longer available, direct current is applied to the windings of the motor (1) to apply electrical braking and the motor (1) is activated in a short time.
to stop. Also, if you do this, even if the car suddenly stops in the event of an abnormality during a power outage, it will still be powered by 1! (]) Transmission wheel (6
) Since the passive plate (12) continues to idle, the movement of the transmission wheel (6) to return to the starting position is not forced. 13)
The sheave (16) is fixed to the speed reducer output shaft (15) that actually raises and lowers the elevator car.
The rotation speed of is expressed by the following formula.

の方法について、既に述べた従来技術の電気的に変速す
る3方式の他に機械的に変速する無段変速機を使用する
方法が考えられるが、現在各産業分野で実用化されてい
る無段変速機は昇降機に使用する場合、大容量の動力の
伝動、伝動効率、変速比、変速miの簡素化、異常発生
時の速時始動位置へのf!帰、製造価格等に一長一短が
あり昇降機の変速装置として使用するには難点があった
0本N:綱車(16)の回転数、Mn:電動機(1)の
回転数、L、:電動機軸(3)の中心より伝動車(6)
の中心までの距離、L2:伝動車(6)の中心より減速
機入力軸(13)の中心までの距離、P、二減速機入力
軸(13)の回転数、P2=減速機出力軸(15)の回
転数0本発明の実施例に於て、伝動車(6)の移動方法
については説明の容易さから油圧方式を採用したが他の
電動方式でも可能である。
Concerning the method of When a transmission is used in an elevator, transmission of large capacity power, transmission efficiency, gear ratio, simplification of gear change mi, f! 0 N: Number of revolutions of sheave (16), Mn: Number of revolutions of electric motor (1), L: Motor shaft Transmission wheel (6) from the center of (3)
L2: Distance from the center of the transmission wheel (6) to the center of the reducer input shaft (13), P: Number of rotations of the second reducer input shaft (13), P2 = Reducer output shaft ( 15) Number of revolutions: 0 In the embodiment of the present invention, a hydraulic method was adopted for the method of moving the transmission wheel (6) for ease of explanation, but other electric methods are also possible.

(発明の効果) 誘導電動機の昇降機に使用された場合の速度制御なく調
整及び故障の発見、修理に容易なものを市場に提供する
ものである0次に本発明の効果を項目別に従来技術と比
較して述べる。
(Effects of the Invention) This invention provides the market with an induction motor that is easy to adjust, find failures, and repair without speed control when used in an elevator. I will compare and explain.

(a)2段速度方式や帰還制御方式のように減速機と電
動機が直結される場合と異なり、第2図に示すように始
動トルクは直結時のLl/L2になるので電動機の外部
が小形になり、また上記2方式のように保守運転用の2
層巻線を施す必要もなく通常の汎用電動機でよいので、
従来の3方式に比べて電動機は非常に安価である。
(a) Unlike when the reducer and motor are directly connected, such as in the two-speed speed system or feedback control system, the starting torque is Ll/L2 when directly connected, as shown in Figure 2, so the outside of the motor is small. , and like the above two methods, there is also a 2 for maintenance operation.
There is no need for layer winding, and a normal general-purpose motor can be used.
The electric motor is much cheaper than the three conventional methods.

(b)本発明の変速部は第2図に示すように伝動車(6
)を移動させるために油圧方式を採用しているが、移動
させるための油圧圧力はあJり必要としないので小出力
の電動機を使用した小形の油圧装置でよいのでさほど高
価にならない、電気的な制御部は、昇、降のリレーの他
に油圧ポンプ電動機及び電磁弁の開閉リレー程度の簡単
な回路ですむので制御盤も小形に製作できる6本発明に
較べて従来の帰還制御方式及びインバータ一方式は複シ
傑な電気回路を有し、特にインバータ一方式に於ては各
種の保設回路や外部機器への影響を防止する回路及び大
容量のサイリスタを使用しているためにその過熱防止フ
ァン等を使用しているので非常に高価である6以上述べ
たように変速部の比較に於ても本発明のほうが総合的に
みて安価に製作できる。
(b) The transmission section of the present invention has a transmission wheel (6
), but since hydraulic pressure is not required for movement, a small hydraulic system using a low-output electric motor is sufficient, so it is not very expensive. The control unit is as simple as a hydraulic pump motor and a solenoid valve open/close relay in addition to lift and fall relays, so the control panel can be made smaller.6 Compared to the present invention, the conventional feedback control system and inverter are required. The one-sided type has multiple electric circuits, and the inverter one-sided type in particular uses various maintenance circuits, circuits to prevent influence on external equipment, and large-capacity thyristors, which can cause overheating. Since it uses a prevention fan, etc., it is very expensive.6 As mentioned above, when comparing the transmission parts, the present invention can be produced at a lower cost overall.

(c)本発明は低負荷で始動し徐々に負荷を増加させる
構造なので始動電流は非常に短時間で減少し、電動機は
定格回転に達する。従って始動時の消費電力が少なく、
また効率のよい負荷のかけ方なので運転中の出力も若干
節約できる。従来方式の中ではインバータ一方式が一番
消費電力が少ないがそれに較べても周波数変換装置内で
消費される無駄な電力がないので有利である。
(c) Since the present invention starts with a low load and gradually increases the load, the starting current decreases in a very short time and the motor reaches its rated rotation. Therefore, power consumption during startup is low,
In addition, since the load is applied efficiently, the output during operation can be reduced to some extent. Among the conventional systems, the one-inverter type consumes the least amount of power, but even compared to that, it is advantageous because there is no wasted power consumed within the frequency converter.

(d)第2図に示す駆動板(2)及び受動板(12)の
直径を大きくし、A点〜B点までの伝動車(6)の移動
距離を長くすれば大きな変速比が得られる。
(d) A large gear ratio can be obtained by increasing the diameters of the driving plate (2) and passive plate (12) shown in Fig. 2 and by increasing the moving distance of the transmission wheel (6) from point A to point B. .

従って滑らかな加速、減速、停止ができるので、インバ
ータ一方式と較べても遜色のない乗り心地、及び正確な
着床精度が得られる。
Therefore, smooth acceleration, deceleration, and stopping are possible, so that a ride quality comparable to that of a single-inverter type and accurate landing accuracy can be obtained.

(e)従来の帰還制御方式やインバータ一方式に於ては
、非常に複雑な電気回路を有するため据付調整が繁雑で
あり、また故障発生時には高度な電気知識をもつ技術者
が必要であるが、本発明の電気回路は非常に簡単である
ので据付調整が容易であり、また故障発生時でも対応で
きる技術者の巾が広くなる。
(e) Conventional feedback control systems and one-way inverter systems have extremely complex electrical circuits, making installation and adjustment complicated, and in the event of a failure, an engineer with advanced electrical knowledge is required. Since the electrical circuit of the present invention is very simple, it is easy to install and adjust, and even when a failure occurs, a wider range of engineers can respond.

(f)昇降路内点検の際の保守運転速度は」第2図に示
す伝動車(6)の移動位置をA点〜B点間の適当な位置
に固定することにより、インバーター方式同様、自在な
速度に設定できる。
(f) Maintenance operation speed during hoistway inspection can be adjusted freely as in the case of the inverter system by fixing the moving position of the transmission wheel (6) shown in Figure 2 at an appropriate position between points A and B. speed can be set.

(g)従来の3方式のように電動機と減速機が直結され
る方式と異なり電動11(1)と減速機(14)の間の
伝動車(6)が衝撃を和らげる役目を果たすため、電動
機の振動が直接昇降機に伝わらないので運転中の騒音が
少ない。
(g) Unlike the conventional three systems in which the electric motor and reducer are directly connected, the transmission wheel (6) between the electric motor 11 (1) and the reducer (14) plays the role of cushioning the impact, so the electric motor The vibrations are not transmitted directly to the elevator, so there is less noise during operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の斜視図、第2図は本発の簡単
な回路図、第5図は本発明の運転時の状態を示すグラフ
、第6図は従来技術の2段速度方式の簡単な機構及び回
路図、第7図は2段速度方式の運転時の状態を示すグラ
フ、第8図は従来技術の帰還制御方式の簡単な機構及び
回路図、第9図は帰還制御方式の運転時の状態を示すグ
ラフ、第1RIは従来技術のインバータ一方式の簡単な
機構及び回路図、第11図はインバータ一方式の運転時
の状態を示すグラフ、第12図は誘導電動機の特性グラ
フ、第13図はインバータ一方式の周波数変換の原理図
、第14図はインバータ一方式の出力波形図、(1)は
電動機、(2)は駆動板、(3)は電動機軸、(4)は
押圧ばね受、(5)は押圧ばね、(6)は伝動車、(7
)は伝動車軸、(8)はシリンダー、(9)は伝動車復
帰ばね、(10)はピストン、(12)は受動板、(1
3)は減速機入力軸、(13’)は受動板軸、(14)
は減速機、(15)は減速機出力軸、(16)は綱車、
(17)は流量調整電磁弁、(18)は油圧ポンプ、(
19)は油圧ポンプ電動機、(20)は電磁弁、(21
)は油タンク、繭23)はクラッチブレーキ、(24)
は電磁ブレーキである。 1 電動機 2・駆動板 3電動砥軸 8シリンダー 18: m圧ポンプ 19油FEポンア電動機 20電磁冑 21 油タンク 2.1:?C!プレーキ 第3図 時間−一−ゝ− 第9図 時間−一島− 交流電源 第6図 1 電#l&Il 第7図 時開□2− 交流電源 第10 [J ] 電動機 3:C劫機軸 13減速社入力軸 14、減速機 第 電磁ブレーキ 電動l111力・yプリング 減速機四カップリング パルス発振器 11 図 時間−−j−
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a simple circuit diagram of the present invention, FIG. 5 is a graph showing the operating state of the present invention, and FIG. 6 is a two-stage speed diagram of the prior art. A simple mechanism and circuit diagram of the system, Figure 7 is a graph showing the operating state of the two-speed system, Figure 8 is a simple mechanism and circuit diagram of the conventional feedback control system, and Figure 9 is feedback control. The first RI is a simple mechanism and circuit diagram of the conventional one-way inverter type. Figure 11 is a graph showing the operating status of the one-way inverter type. Figure 12 is a diagram of the induction motor. Characteristics graph, Fig. 13 is a principle diagram of frequency conversion with one inverter type, Fig. 14 is an output waveform diagram of one inverter type, (1) is the electric motor, (2) is the drive plate, (3) is the motor shaft, ( 4) is a pressure spring holder, (5) is a pressure spring, (6) is a transmission wheel, (7
) is the transmission axle, (8) is the cylinder, (9) is the transmission car return spring, (10) is the piston, (12) is the passive plate, (1
3) is the reducer input shaft, (13') is the passive plate shaft, (14)
is the reducer, (15) is the reducer output shaft, (16) is the sheave,
(17) is a flow rate adjustment solenoid valve, (18) is a hydraulic pump, (
19) is a hydraulic pump electric motor, (20) is a solenoid valve, (21)
) is the oil tank, Cocoon 23) is the clutch brake, (24)
is an electromagnetic brake. 1 Electric motor 2/Drive plate 3 Electric whetstone 8 Cylinder 18: m pressure pump 19 Oil FE pump motor 20 Electromagnetic helmet 21 Oil tank 2.1:? C! Figure 3 Time-1-ゝ- Figure 9 Time-Ichishima- AC power supply Figure 6 1 Electric #l & Il Figure 7 Time open □2- AC power supply No. 10 [J] Motor 3: C-shaft 13 deceleration Input shaft 14, reducer 1st electromagnetic brake electric l111 force/y-pull reducer 4 coupling pulse oscillator 11 Figure time--j-

Claims (1)

【特許請求の範囲】[Claims] 電動機軸(3)に取付けられた駆動板(2)と、減速機
入力軸(13)に取付けられた受動板(12)を平行に
対向して取付け、克つ、駆動板(2)の中心と受動板(
12)の中心を適当な距離を設定して固定し、駆動板(
2)と受動板(12)の間に、ゴム等の摩擦材で作られ
た伝動車(6)を駆動板(2)と受動板(12)に適当
な圧力で接触するように設け、駆動板(2)の中心と受
動板(12)の中心を結ぶ線上を、電動機(1)の回転
中に往復移動させることにより、減速機入力軸(13)
の回転を無段階に加速及び減速を自在に変速できるよう
にした、昇降機の無段変速駆動装置。
The drive plate (2) attached to the electric motor shaft (3) and the passive plate (12) attached to the reducer input shaft (13) are attached parallel to each other, and the center of the drive plate (2) and Passive board (
Set the center of 12) at an appropriate distance and fix it, then attach the drive plate (
A transmission wheel (6) made of friction material such as rubber is provided between the driving plate (2) and the passive plate (12) so as to be in contact with the driving plate (2) and the passive plate (12) with appropriate pressure. By reciprocating the line connecting the center of the plate (2) and the center of the passive plate (12) while the electric motor (1) is rotating, the reducer input shaft (13)
A continuously variable speed drive device for elevators that can freely change the speed of acceleration and deceleration of the rotation of the elevator.
JP11827590A 1990-05-08 1990-05-08 Continuously variable shift driving device for elevator Pending JPH0416488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11827590A JPH0416488A (en) 1990-05-08 1990-05-08 Continuously variable shift driving device for elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11827590A JPH0416488A (en) 1990-05-08 1990-05-08 Continuously variable shift driving device for elevator

Publications (1)

Publication Number Publication Date
JPH0416488A true JPH0416488A (en) 1992-01-21

Family

ID=14732620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11827590A Pending JPH0416488A (en) 1990-05-08 1990-05-08 Continuously variable shift driving device for elevator

Country Status (1)

Country Link
JP (1) JPH0416488A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266058A (en) * 2009-05-15 2010-11-25 Makoto Yoshino Continuously variable transmission
CN106122405A (en) * 2016-08-31 2016-11-16 四川大学 The towed buncher in a kind of adaptive rate square position

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266058A (en) * 2009-05-15 2010-11-25 Makoto Yoshino Continuously variable transmission
CN106122405A (en) * 2016-08-31 2016-11-16 四川大学 The towed buncher in a kind of adaptive rate square position
CN106122405B (en) * 2016-08-31 2018-06-19 四川大学 A kind of towed contiuously variable transmission in adaptive rate square position

Similar Documents

Publication Publication Date Title
JP5543454B2 (en) Emergency mode operation method of elevator
US8205721B2 (en) Arrangement and method for controlling the brake of an elevator using different brake current references with different operation delays
CN108946369B (en) Method for performing manual driving in elevator after main power supply is turned off
US9067762B2 (en) Energy savings with optimized motion profiles
EP0794920B1 (en) Procedure for controlling an elevator
JPH07157211A (en) Brake device for elevator
WO2006095048A1 (en) Elevator group and method for controlling an elevator group
JPH0111659Y2 (en)
JP3207316U (en) Hoisting machine using permanent magnet motor and energy saving elevator equipped with the hoisting machine
JP4439074B2 (en) Elevator emergency stop device
US6199667B1 (en) Method and apparatus for operating an elevator drive in different performance modes
JPH0416488A (en) Continuously variable shift driving device for elevator
JPH072452A (en) Brake control device for linear motor-driven elevator
US4661757A (en) Controller for AC elevator
EP1721856B1 (en) Elevator controller
JPH03249075A (en) Method and device for elevator stoppage control
JPH072451A (en) Governor erroneous operation preventing device for elevator
JPH0664853A (en) Level control device for elevator
KR870001019Y1 (en) An elevator controller
JP2002234680A (en) Energy saving motor-driven elevator
JP3603697B2 (en) elevator
KR900003977B1 (en) Position and driving method machinery room of elevator
JPS63252885A (en) Controller for hydraulic elevator
JPS63235275A (en) Controller for hydraulic elevator
JPH04256673A (en) Method for improving elevator