JPS63235275A - Controller for hydraulic elevator - Google Patents

Controller for hydraulic elevator

Info

Publication number
JPS63235275A
JPS63235275A JP62069009A JP6900987A JPS63235275A JP S63235275 A JPS63235275 A JP S63235275A JP 62069009 A JP62069009 A JP 62069009A JP 6900987 A JP6900987 A JP 6900987A JP S63235275 A JPS63235275 A JP S63235275A
Authority
JP
Japan
Prior art keywords
hydraulic pump
oil
hydraulic
switching valve
car
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62069009A
Other languages
Japanese (ja)
Other versions
JPH07100573B2 (en
Inventor
安田 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62069009A priority Critical patent/JPH07100573B2/en
Publication of JPS63235275A publication Critical patent/JPS63235275A/en
Publication of JPH07100573B2 publication Critical patent/JPH07100573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Types And Forms Of Lifts (AREA)
  • Elevator Control (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、油圧エレベータの制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a control device for a hydraulic elevator.

(従来の技術) 一般に油圧エレベータは、流量制御弁を用いた流量制御
方式を採用している。この制御方式は。
(Prior Art) Hydraulic elevators generally employ a flow control method using a flow control valve. This control method.

上昇時は電動機を定回転で回転させ、油圧ポンプからの
定吐出量の油をタンクへ戻しておき、起動指令が出ると
タンクへ戻す量を流量制御弁で調整することによりかご
の速度を制御している。又、下降時は自重により、シリ
ンダ内の油がタンクへ環流する油量を流量制御弁で調整
し、かごの速度を制御するものである。しかし、この方
式は、上昇時余分な油を循環させることと、下降時には
位置エネルギを油の発熱に消費するのでエネルギ損失が
大きいばかりでなく、油温上昇が著しい。
When ascending, the electric motor rotates at a constant speed and a fixed amount of oil discharged from the hydraulic pump is returned to the tank.When a start command is issued, the speed of the car is controlled by adjusting the amount returned to the tank with a flow control valve. are doing. Furthermore, when descending, the car's weight is used to adjust the amount of oil in the cylinder that flows back into the tank using a flow control valve, thereby controlling the car's speed. However, in this method, excess oil is circulated during ascent, and potential energy is consumed to heat the oil when descending, resulting in not only a large energy loss but also a significant rise in oil temperature.

これに対し、近年半導体の技術進歩に伴ない、電圧1周
波数を変化させて誘導電動機を広い範囲にわたって回転
数制御するいわゆる電動機回転数制御方式が考え出され
てきている。これは、定吐出形油圧ポンプを用い、ポン
プの吐出量を電動機の回転数を変えることにより可変制
御するものである。
In contrast, in recent years, with advances in semiconductor technology, so-called motor rotation speed control systems have been devised in which the rotation speed of an induction motor is controlled over a wide range by varying the voltage and frequency. This uses a constant discharge type hydraulic pump and variably controls the discharge amount of the pump by changing the rotational speed of the electric motor.

第3図に上述の電動機回転数制御方式を採用した油圧エ
レベータの構成を示す、第3図において。
In FIG. 3, the configuration of a hydraulic elevator employing the above-mentioned motor rotation speed control method is shown in FIG.

1はエレベータの乗りかご、2はプランジャ3を内蔵す
る油圧ジヤツキ、4はプランジャ3上部に取付けられた
シーブ、5はシーブ4にかけられたロープで、このロー
プ5の一端は乗りかと1に、他端は基礎6にそれぞれ取
り付けられている。7は油圧ポンプ8に直結する交流誘
導電動機、9は。
1 is an elevator car, 2 is a hydraulic jack with a built-in plunger 3, 4 is a sheave attached to the top of the plunger 3, 5 is a rope that is hung over the sheave 4, and one end of this rope 5 is attached to the elevator car and the other. The ends are each attached to the foundation 6. 7 is an AC induction motor directly connected to the hydraulic pump 8, and 9 is an AC induction motor.

油圧ジヤツキ2と油圧ポンプ8の間に配置された電磁切
換弁、 1Gはタンク、11は電源、12は、電動機7
及び電源11に接続され、半導体により電圧及び周波数
を制御する電力変換装置、13は、電力変換装置12を
制御する速度制御装置である。
An electromagnetic switching valve is arranged between the hydraulic jack 2 and the hydraulic pump 8, 1G is a tank, 11 is a power supply, 12 is an electric motor 7
and a power converter 13 that is connected to the power source 11 and controls voltage and frequency using a semiconductor; 13 is a speed controller that controls the power converter 12;

次に油圧エレベータの運転について述べる。上昇運転時
については運転指令によって電動機7が回転する。この
ときに速度制御装置13によって電源11の周波数が制
御され、電動機7の回転速度が制御され、油圧ポンプ8
の回転数、従って、油圧ポンプ8の吐出量が制御され乗
りかと1は、所定速度パターンに従って上昇する。
Next, the operation of the hydraulic elevator will be described. During upward operation, the electric motor 7 rotates in accordance with the operation command. At this time, the frequency of the power source 11 is controlled by the speed control device 13, the rotational speed of the electric motor 7 is controlled, and the hydraulic pump 8 is controlled.
The rotational speed of the hydraulic pump 8 and therefore the discharge amount of the hydraulic pump 8 are controlled, and the ride and heel 1 are increased according to a predetermined speed pattern.

その速度特性であるが、速度制御装置!13によって第
4図に示される速度パターンに沿って走行する。すなわ
ち、起動指令により1乗りかと1は起動、加速され、定
格速度で上昇し減速スイッチ15の位置に達し、このス
イッチ15が作動すると乗りかと1は減速し始め、その
後一定の着床速度まで減速され、この速度で上昇して上
限位置に達すると停止スイッチ16を切り、停止する。
As for its speed characteristics, it is a speed control device! 13, the vehicle travels along the speed pattern shown in FIG. That is, in response to the start command, the 1st seat and 1 are started, accelerated, ascend at the rated speed, and reach the position of the deceleration switch 15, and when this switch 15 is activated, the 1st seat and 1 begin to decelerate, and then decelerate to a constant landing speed. When it ascends at this speed and reaches the upper limit position, the stop switch 16 is turned off and it stops.

また、下降運転時については運転指令によって、ソレノ
イド14が励磁され、油圧回路が開き1乗りかと1自重
により油圧ジヤツキ2からの圧油の排出によって油圧ポ
ンプ8を回転させて、電動機7の発電制動を利用して1
乗りかと1の下降速度を制御するとともに動力を回生ず
る。このときも速度制御装置13によって電動機7を所
要の回転速度に制御する。
In addition, during descending operation, the solenoid 14 is energized by the operation command, the hydraulic circuit is opened, and the hydraulic pump 8 is rotated by discharging pressure oil from the hydraulic jack 2 due to the weight of one passenger and one, and the dynamic braking of the electric motor 7 is performed. 1 using
It controls the descending speed of the car and 1 and regenerates power. At this time as well, the speed control device 13 controls the electric motor 7 to a required rotational speed.

しかし、このような制御方式の油圧エレベータには次の
ような問題があった。すなわち。
However, hydraulic elevators using this type of control system have the following problems. Namely.

■ 下降走行中、停電等によって電動機7が無制御状態
になると、制動が利かなくなり、電動機7及び油圧ポン
プ8は油圧ジヤツキ2からの圧油により回転を続け、徐
々に回路を閉じていく電磁切換弁9の開度による流量よ
りも電動機7及び油圧ポンプ8の慣性での排出量が多く
なると、油圧ポンプ8と電磁切換弁9間が負圧となり、
異常音が発生するとともに、機器の破損を生じ、安全上
問題となる場合がある。又、停止等によって電磁切換弁
9のソレノイド14が消磁されても弁9の特性上閉じ始
めるまでに0.3〜1秒程度の遅れ時間があるため、負
荷等の条件によっては過速し、乗り心地が悪くなるとと
もに安全上問題となる場合が生じる。
■ If the electric motor 7 goes into an uncontrolled state due to a power outage, etc. while descending, the braking will no longer work, and the electric motor 7 and hydraulic pump 8 will continue to rotate due to pressure oil from the hydraulic jack 2, and the electromagnetic circuit will gradually close the circuit. When the amount of discharge due to the inertia of the electric motor 7 and the hydraulic pump 8 becomes larger than the flow rate due to the opening degree of the switching valve 9, a negative pressure is created between the hydraulic pump 8 and the electromagnetic switching valve 9.
Abnormal noise may be generated and equipment may be damaged, which may pose a safety problem. Furthermore, even if the solenoid 14 of the electromagnetic switching valve 9 is demagnetized due to a stop, etc., there is a delay time of about 0.3 to 1 second before it starts closing due to the characteristics of the valve 9, so it may overspeed depending on the load and other conditions. This may make the ride uncomfortable and may pose a safety problem.

■ かと停止中に、電磁切換弁9と油圧ポンプ8の間に
油漏れにより空間が生じ、下降運転時、電磁切換弁9が
開くと、これによって油圧ジヤツキ2からの圧油が電磁
切換弁9と油圧ポンプ8間の空間に急激に流れ込むので
、スタート時、急激に下降し、その後油圧ポンプ8の回
転数の増大に伴なって速度を増し、やがて一定速度とな
る。このように下降走行のスタート時、急激に下降する
ので9乗客に不安感を与える。
■ During stoppage, a space is created between the electromagnetic switching valve 9 and the hydraulic pump 8 due to oil leakage, and when the electromagnetic switching valve 9 opens during descending operation, pressure oil from the hydraulic jack 2 flows into the electromagnetic switching valve 9. Since it rapidly flows into the space between the hydraulic pump 8 and the hydraulic pump 8, it rapidly descends at the start, then increases in speed as the rotational speed of the hydraulic pump 8 increases, and eventually reaches a constant speed. In this way, at the start of the descent, the vehicle descends rapidly, giving the nine passengers a sense of anxiety.

従来、上述のωについては、第3図に示すように、電動
機7と油圧ポンプ8との連結装置17とブレーキ装置1
8を備J、下降走行中、停電等によって電動機7への正
規の給電が断たれた場合に、電動機7及び油圧ポンプ8
に連結装置f17とブレーキ装置!18との摩擦力によ
り制動力を与え、管路の負圧発生及び過速を防ぐ、又、
上述の■については、下降運転のスタート時油圧ポンプ
8を微速回転させ、油漏れ量を補った後、正規の下降運
転に入る。
Conventionally, regarding the above-mentioned ω, as shown in FIG.
8, the electric motor 7 and the hydraulic pump 8 are equipped with a
Connecting device f17 and brake device! Provides braking force by frictional force with 18 to prevent generation of negative pressure in the pipeline and overspeed, and
Regarding (2) above, the hydraulic pump 8 is rotated at a slow speed at the start of the descending operation to compensate for the amount of oil leakage, and then the regular descending operation begins.

等の対策をとっている。We are taking measures such as:

(発明が解決しようとする問題点) しかし、上述の構成による油圧エレベータにおいては、
次のような欠点があった。
(Problems to be solved by the invention) However, in the hydraulic elevator with the above configuration,
It had the following drawbacks.

■ ブレーキ装置18が複雑であるとともに、大きな取
付はスペースが必要となる。又、連結装置17は、所定
の制動力を出すために9通常用いされている連結装置を
使うことができず、特別なものとなるので、高価になる
とともに、制動力の調整が難かしく1条件によっては、
電磁切換弁9が完全に閉じてからもなおかつ油圧ポンプ
8が慣性で回転し、油圧ポンプ8の焼き付くことがある
- The brake device 18 is complicated, and its large installation requires space. In addition, the coupling device 17 cannot use a commonly used coupling device 9 to produce a predetermined braking force, and is a special device, which makes it expensive and difficult to adjust the braking force. Depending on the conditions,
Even after the electromagnetic switching valve 9 is completely closed, the hydraulic pump 8 continues to rotate due to inertia, and the hydraulic pump 8 may seize.

■ スタート前に油圧ポンプ8を微速回転させるので、
運転指令を出してから、乗りかと1が走行開始するまで
に時間がかかり、乗客へのサービスが低下する。
■ The hydraulic pump 8 is rotated at a slow speed before starting, so
It takes a long time from when a driving command is issued until the car and the car start running, resulting in poor service to passengers.

本発明の目的は円滑な起動を行うことができるとともに
、油圧ポンプの焼き付きをなくシ、装置の簡素化、取り
付はスペースを小さくすることのできる油圧エレベータ
の制御装置を供提するものである。
An object of the present invention is to provide a control device for a hydraulic elevator that can perform smooth startup, eliminate seizing of the hydraulic pump, simplify the device, and reduce installation space. .

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明はかごに接続するプランジャを上昇、下降させる
油圧シリンダと、かごが上昇する際には油タンクの油を
油圧シリンダに供給し、かごが下降する際には油圧シリ
ンダの油を油タンクに帰還させる油圧ポンプと、油圧シ
リンダと油圧ポンプとの間に設けられ、かごが上昇する
際には油圧ポンプから油圧シリンダの方向に油が流れ、
かごが下降する際には油圧シリンダから油圧ポンプへ油
圧シリンダの油が流れる第1の切換弁と、油圧ポンプと
油タンクとの間に設けられ、かごが上昇する際には油タ
ンクの油が油圧ポンプに流れ、かごが下降する際には油
圧ポンプから、油タンクに油が流れる第2の切換弁と、
エレベータの停止時には油圧ポンプから第2の切換弁を
介して油圧ポンプと第1の切換弁との接続部に油を流す
バイパス管とを設けたものである。
(Means for Solving Problems) The present invention includes a hydraulic cylinder that raises and lowers a plunger connected to a car, and a hydraulic cylinder that supplies oil from an oil tank to the hydraulic cylinder when the car goes up, and when the car goes down. A hydraulic pump is installed between the hydraulic cylinder and the hydraulic pump to return the oil from the hydraulic cylinder to the oil tank, and when the car is raised, the oil flows from the hydraulic pump to the hydraulic cylinder.
A first switching valve is provided between the hydraulic pump and the oil tank and a first switching valve that allows the oil in the hydraulic cylinder to flow from the hydraulic cylinder to the hydraulic pump when the car is lowered, and the oil in the oil tank to flow when the car moves up. a second switching valve that allows oil to flow to the hydraulic pump, and from the hydraulic pump to the oil tank when the car is lowered;
A bypass pipe is provided that allows oil to flow from the hydraulic pump to the connecting portion between the hydraulic pump and the first switching valve via the second switching valve when the elevator is stopped.

(作 用) かごが上昇する際は油圧ポンプは第2の切換弁を介して
得た油タンクの油を第1の切換弁を介して油圧シリンダ
に供給する。またかごが下降する際には油シリンダの油
は第1の切換弁、油圧ポンプ及び第2の切換弁を介して
油タンクへ帰還される。バイパス管はエレベータの停止
時に油圧ポンプからの第2の切換弁を介して油圧ポンプ
と第1の切換弁との接続部へ油を流す。
(Function) When the car is raised, the hydraulic pump supplies oil from the oil tank obtained through the second switching valve to the hydraulic cylinder through the first switching valve. Furthermore, when the car is lowered, the oil in the oil cylinder is returned to the oil tank via the first switching valve, the hydraulic pump, and the second switching valve. The bypass pipe allows oil to flow from the hydraulic pump through the second switching valve to the connection between the hydraulic pump and the first switching valve when the elevator is stopped.

(実施例) 本発明に基づく一実施例を図面を用いて説明する。第1
図は本発明に基づく一実施例の油圧エレベータの制御装
置の構成図を示す、第1図中、第3図に示されるものと
同一のものには同一符号を付する。
(Example) An example based on the present invention will be described using the drawings. 1st
The figure shows a configuration diagram of a control device for a hydraulic elevator according to an embodiment of the present invention. In FIG. 1, the same components as those shown in FIG. 3 are given the same reference numerals.

本実施例においては、油圧ポンプ8とタンク10の間に
電磁切換弁19を設け、この電磁切換弁19と。
In this embodiment, an electromagnetic switching valve 19 is provided between the hydraulic pump 8 and the tank 10.

油圧ポンプ8.電磁切換弁9との間の配管20とをバイ
パス管路21で連結し、バイパス管路21途上に逆止弁
22を設け、下降走行し1乗りかと1が停止するとき、
油圧ジヤツキ2からタンク10へ環流する油を油圧ポン
プ8の油圧ジヤツキ2側に循環できるようにしたもので
ある。 19は油圧ポンプ8とタンク10の間に設けら
れた電磁切換弁、旦は、油圧ポンプ8と電磁切換弁9と
の間の配管20とタンク10側に設けた電磁切換弁19
とを連結したバイパス管路で、そのバイパス管路21の
途上には、逆止弁22が設けられている。また1本実施
例においては、ブレーキ装置18は不要である。
Hydraulic pump8. The piping 20 between the electromagnetic switching valve 9 and the piping 20 is connected by a bypass piping 21, and a check valve 22 is provided in the middle of the bypass piping 21, and when the vehicle travels downward and the first vehicle stops when the first vehicle is on board,
The oil circulating from the hydraulic jack 2 to the tank 10 can be circulated to the hydraulic jack 2 side of the hydraulic pump 8. 19 is an electromagnetic switching valve provided between the hydraulic pump 8 and the tank 10; 19 is an electromagnetic switching valve 19 provided on the side of the tank 10 and the piping 20 between the hydraulic pump 8 and the electromagnetic switching valve 9;
A check valve 22 is provided in the middle of the bypass pipe 21. Further, in this embodiment, the brake device 18 is not necessary.

第2は電磁切換弁19のソレノイド23の励磁回路の一
例を示す。
The second example shows an excitation circuit for the solenoid 23 of the electromagnetic switching valve 19.

XU、XDはそれぞれ上昇、下降指令で励磁される継電
器(図示せず、)の常開接点、MRは接触器及びMHI
はその常開接点、23は、ソレノイドである0次に上述
の構成に基づく本実施例の作用について説明する。まず
、電磁切換弁19のソレノイド23について説明する。
XU and XD are normally open contacts of relays (not shown) that are excited by the ascending and descending commands, respectively, and MR is the contactor and MHI.
23 is a normally open contact, and 23 is a solenoid.The operation of this embodiment based on the above-described configuration will be explained below. First, the solenoid 23 of the electromagnetic switching valve 19 will be explained.

上昇、下降指令で励磁される継電器(図示しない)の常
開接点XU、XDは、運転指令とともに、XUあるいは
XDの接点が閉じて接触器MRのコイルを励磁する。接
触器MRが励磁されるとソレノイド23に直列に付加さ
れた常開接点MHIが閉じてソレノイド23が励磁され
る。
Normally open contacts XU and XD of a relay (not shown) are energized by a rise and fall command, and the contacts XU or XD close together with the operation command to energize the coil of the contactor MR. When the contactor MR is energized, the normally open contact MHI added in series to the solenoid 23 is closed, and the solenoid 23 is energized.

乗りかと1が停止しているときは、電磁切換弁9.19
は図示の状態である。すなわち電磁切換弁9は閉の状態
、電磁切換弁19は、油圧ポンプ苧のタンク10側の管
路が、バイパス管路21に連結された状態になっている
。このとき、上昇の運転指令が出ると、電磁切換弁19
のソレノイド23が励磁され、油圧ポンプ8とタンク1
0間の回路が開の方向に動き出すと同時に電動機7及び
油圧ポンプ8が回転しはじめ、圧油は、電磁切換弁9を
通って。
When the carriage and 1 are stopped, the solenoid switching valve 9.19
is the state shown. That is, the electromagnetic switching valve 9 is in a closed state, and the electromagnetic switching valve 19 is in a state in which the pipe line on the side of the tank 10 of the hydraulic pump is connected to the bypass pipe line 21. At this time, when an upward operation command is issued, the electromagnetic switching valve 19
Solenoid 23 is energized, and hydraulic pump 8 and tank 1
At the same time as the circuit between 0 and 0 begins to move in the open direction, the electric motor 7 and hydraulic pump 8 begin to rotate, and pressure oil passes through the electromagnetic switching valve 9.

油圧ジヤツキ2に送り込まれる。このときに、速度制御
装置13によって電源11の電圧及び周波数が制御され
、電動機7の回転速度が制御され、油圧ポンプ8の回転
数、従って油圧ポンプ8の吐出量が制御され、乗りかと
1は、第4図の所定速度パターンに従って上昇する0乗
りかと1が、減速スイッチ15の位置に達し、スイッチ
15が動作すると乗りかと1は減速をし始める。さらに
上昇し、上限位置に達し、停止スイッチ16が動作する
と、上昇の運転指令がなくなり油圧ポンプ8が停止し。
It is fed into the hydraulic jack 2. At this time, the speed control device 13 controls the voltage and frequency of the power source 11, the rotational speed of the electric motor 7, the rotational speed of the hydraulic pump 8, and therefore the discharge amount of the hydraulic pump 8, and the , 0 and 1, which are rising according to the predetermined speed pattern shown in FIG. 4, reach the position of the deceleration switch 15, and when the switch 15 is operated, the 0 and 1 cars begin to decelerate. When the hydraulic pump 8 further rises and reaches the upper limit position, and the stop switch 16 is operated, the hydraulic pump 8 is stopped due to the lack of the rising operation command.

同時に電磁切換弁19のソレノイド23が消磁され、油
圧ポンプ8のタンク10側の回路はバイパス管路21に
連結され乗りかと1が停止する。又、下降の運転指令が
出た場合には、電磁切換弁9,19のソレノイド14.
23が励磁され、油圧ジヤツキ2.タンク10間の回路
は開となり、乗りかと1自重により、油圧ジヤツキ2か
らの圧油の排出によって油圧ポンプ8を回転させて、電
動機7の発電制動を利用して、乗りかと1の下降速度を
制御するとともに動力を回生ずる1乗りかと1が減速ス
イッチを切ると減速をし始める。さらに、下限位置に達
すると停止スイッチを切り、油圧ポンプ8が停止するの
と同時に、下降の運転指令がなくなり電磁切換弁9,1
9のソレノイド14.23が消磁され油圧ポンプ8.油
圧ジヤツキ2間の回路は、閉になる。
At the same time, the solenoid 23 of the electromagnetic switching valve 19 is demagnetized, the circuit on the tank 10 side of the hydraulic pump 8 is connected to the bypass pipe 21, and the ride and heel 1 are stopped. In addition, when a descending operation command is issued, the solenoid 14 of the electromagnetic switching valve 9, 19 is activated.
23 is energized, and the hydraulic jack 2. The circuit between the tank 10 is opened, and the hydraulic pump 8 is rotated by the discharge of pressure oil from the hydraulic jack 2 due to the weight of the rider and the rider 1, and the descending speed of the rider and the rider 1 is controlled using the dynamic braking of the electric motor 7. When the first driver, which controls and regenerates power, turns off the deceleration switch, it begins to decelerate. Furthermore, when the lower limit position is reached, the stop switch is turned off, and at the same time the hydraulic pump 8 stops, the lowering operation command disappears and the electromagnetic switching valves 9, 1
9 solenoid 14.23 is demagnetized and hydraulic pump 8. The circuit between the hydraulic jacks 2 is closed.

さらに、油圧ポンプ8のタンク10間はバイパス管路2
1に連結され、乗りかと1は停止する。
Furthermore, a bypass pipe 2 is connected between the tank 10 of the hydraulic pump 8.
1, and the ride and 1 stop.

さて次に、下降走行中に停電等によって、電動機7が無
制御状態になった場合について説明する。
Next, a case will be described in which the electric motor 7 becomes uncontrolled due to a power outage or the like during descending travel.

下降走行中、停電等によって電動機7が無制御状態にな
ると制動が利かなくなり、電動機7及び油圧ポンプ8は
、油圧ジヤツキ2からの圧油により回転を続けるが、停
電と同時に、電磁切換弁9゜19のソレノイド14.2
3は消磁され、電磁切換弁9は回路を徐々に閉じ始め、
電磁切換弁19は油圧ポンプ8からタンク10へ流れて
いた圧油を徐々にバイパス管路21の方へ流れ始める。
During descending travel, if the electric motor 7 becomes uncontrolled due to a power outage, etc., braking will no longer work, and the electric motor 7 and hydraulic pump 8 will continue to rotate due to pressure oil from the hydraulic jack 2, but at the same time as the power outage, the electromagnetic switching valve 9 °19 solenoid 14.2
3 is demagnetized, the electromagnetic switching valve 9 begins to gradually close the circuit,
The electromagnetic switching valve 19 causes the pressure oil that was flowing from the hydraulic pump 8 to the tank 10 to gradually start flowing toward the bypass pipe line 21.

従って、電磁切換弁9の開度に−よる流量よりも電動機
7及び油圧ポンプ8の慣性での排出量が多くなり、油圧
ポンプ8と電磁切換弁9との間が負圧になろうとするが
、その不足分がバイパス管路21を通って、補給される
ので、結果として負圧にならなくなる。従って、油圧ポ
ンプ8と電磁切換弁9との間が負圧にならないので、異
常音の発生、機器の破損、過速になることが全てなくな
る。又、電磁切換弁9が完全に閉じると乗りかと1は停
止する。そのとき、電磁切換弁19も完全に切り換わっ
ているので。
Therefore, the amount of discharge due to the inertia of the electric motor 7 and hydraulic pump 8 becomes larger than the flow rate due to the opening degree of the electromagnetic switching valve 9, and the pressure between the hydraulic pump 8 and the electromagnetic switching valve 9 tends to become negative. , the shortage is replenished through the bypass pipe line 21, and as a result, the pressure does not become negative. Therefore, since there is no negative pressure between the hydraulic pump 8 and the electromagnetic switching valve 9, abnormal noises, equipment damage, and overspeeding are all eliminated. Further, when the electromagnetic switching valve 9 is completely closed, the ride heel 1 stops. At that time, the electromagnetic switching valve 19 has also been completely switched.

まだ、油圧ポンプ8が慣性で回転していたとしても吐出
量の全量がバイパス管路21を通って供給されるので、
負圧になることも、油圧ポンプ8の焼きつくこともなく
なる。
Even if the hydraulic pump 8 is still rotating due to inertia, the entire discharge amount is supplied through the bypass pipe 21, so
Negative pressure will not occur and the hydraulic pump 8 will not burn out.

又、電磁切換弁19によって、油圧ポンプ、タンク10
間が完全に遮断されるので、油圧ポンプ8からの油漏れ
もなくなる。
In addition, the hydraulic pump and tank 10 are controlled by the electromagnetic switching valve 19.
Since the gap is completely blocked, oil leakage from the hydraulic pump 8 is also eliminated.

〔発明の効果〕〔Effect of the invention〕

以上により、下降走行中、停電等によって電動機が無制
御状態になっても、異常音の発生1機器の破損、過速を
防止し、又、油圧ポンプ等からの油モレに起因する下降
走行のスタート時の急激な下降を防止できるとともに以
下に示す効果がある。
As described above, even if the electric motor becomes uncontrolled due to a power outage, etc. during descending travel, damage to equipment that generates abnormal noises and overspeeding can be prevented, and it is also possible to prevent descending travel caused by oil leakage from hydraulic pumps, etc. In addition to being able to prevent a sudden drop at the start, there are the following effects.

■ 装置が単純になり、取り付はスペースも小さくてす
むとともに安価になる。
■ The device is simpler, requires less space to install, and is cheaper.

■ 油圧ポンプの焼き付きを防止できる。■ Prevents seizing of the hydraulic pump.

■ 運転指令が出ると同時に下降走行を始めるので1円
滑な起動を行うことができ1乗客に対するサービスが向
上することができる。
- Since the vehicle starts descending as soon as a driving command is issued, smooth start-up can be achieved and service to passengers can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づく一実施例の油圧エレベータの制
御装置の構成図、第2図は、第1図に示される一実施例
の電磁切換弁のソレノイドの励磁回路図、第3図は、従
来の油圧エレベータの制御装置の構成図、第4図は、油
圧エレベータにおける走行パターン図を示す。 2・・・油圧ジヤツキ      7・・・交流誘導電
動機8・・・油圧ポンプ       9,19・・・
電磁切換弁11・・・電源          12・
・・周波数制御装置13・・・速度制御装!!17・・
・連結装置18・・・ブレーキ装置      21・
・・バイパス管路22・・・逆止弁         
14,23・・・ソレノイド代理人 弁理士 則 近 
憲 佑 同  三俣弘文 第  l 図 第  2  図 □暗闇 第  4 図 第  3 図
FIG. 1 is a configuration diagram of a control device for a hydraulic elevator according to an embodiment of the present invention, FIG. 2 is an excitation circuit diagram of a solenoid of an electromagnetic switching valve according to an embodiment shown in FIG. FIG. 4 is a block diagram of a conventional hydraulic elevator control device. FIG. 4 shows a running pattern diagram of a hydraulic elevator. 2...Hydraulic jack 7...AC induction motor 8...Hydraulic pump 9,19...
Solenoid switching valve 11...Power supply 12.
...Frequency control device 13...Speed control device! ! 17...
・Connection device 18...Brake device 21・
... Bypass pipe line 22 ... Check valve
14,23... Solenoid agent Patent attorney Nori Chika
Ken Yudo Hirofumi Mitsumata No. 1 Figure 2 Figure □Darkness Figure 4 Figure 3

Claims (1)

【特許請求の範囲】 かごに接続するプランジャを上昇、下降させる油圧シリ
ンダと、 かごが上昇する際には油タンクの油を前記油圧シリンダ
に供給し、かごが下降する際には前記油圧シリンダの油
を油タンクに帰還させる油圧ポンプと、 前記油圧シリンダと前記油圧ポンプとの間に設けられ、
かごが上昇する際には前記油圧ポンプから前記油圧シリ
ンダの方向に油が流れ、かごが下降する際には前記油圧
シリンダから前記油圧ポンプへ前記油圧シリンダの油が
流れる第1の切換弁と、 前記油圧ポンプと油タンクとの間に設けられ、かごが上
昇する際には前記油タンクの油が前記油圧ポンプに流れ
、かごが下降する際には前記油圧ポンプから前記油タン
クに油が流れる第2の切換弁と、 エレベータの停止時には前記油圧ポンプから前記第2の
切換弁を介して前記油圧ポンプと前記第1の切換弁との
接続部に油を流すバイパス管とを有する油圧エレベータ
の制御装置。
[Scope of Claims] A hydraulic cylinder that raises and lowers a plunger connected to the car; when the car is raised, oil from an oil tank is supplied to the hydraulic cylinder; when the car is lowered, oil from the oil tank is supplied to the hydraulic cylinder; when the car is lowered, the hydraulic cylinder is supplied with oil from an oil tank; a hydraulic pump that returns oil to the oil tank; and a hydraulic pump provided between the hydraulic cylinder and the hydraulic pump,
a first switching valve that allows oil to flow from the hydraulic pump toward the hydraulic cylinder when the car is raised, and from the hydraulic cylinder to the hydraulic pump when the car is lowered; Provided between the hydraulic pump and the oil tank, when the car is raised, oil in the oil tank flows to the hydraulic pump, and when the car is lowered, oil flows from the hydraulic pump to the oil tank. A hydraulic elevator comprising: a second switching valve; and a bypass pipe that allows oil to flow from the hydraulic pump to the connection between the hydraulic pump and the first switching valve via the second switching valve when the elevator is stopped. Control device.
JP62069009A 1987-03-25 1987-03-25 Control device for hydraulic elevator Expired - Lifetime JPH07100573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62069009A JPH07100573B2 (en) 1987-03-25 1987-03-25 Control device for hydraulic elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62069009A JPH07100573B2 (en) 1987-03-25 1987-03-25 Control device for hydraulic elevator

Publications (2)

Publication Number Publication Date
JPS63235275A true JPS63235275A (en) 1988-09-30
JPH07100573B2 JPH07100573B2 (en) 1995-11-01

Family

ID=13390167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62069009A Expired - Lifetime JPH07100573B2 (en) 1987-03-25 1987-03-25 Control device for hydraulic elevator

Country Status (1)

Country Link
JP (1) JPH07100573B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183006A (en) * 2015-03-25 2016-10-20 株式会社日立製作所 Hydraulic elevator and method for diagnosing hydraulic elevator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326378A (en) * 1976-08-25 1978-03-11 Naokazu Ishii Noodle making machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326378A (en) * 1976-08-25 1978-03-11 Naokazu Ishii Noodle making machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183006A (en) * 2015-03-25 2016-10-20 株式会社日立製作所 Hydraulic elevator and method for diagnosing hydraulic elevator

Also Published As

Publication number Publication date
JPH07100573B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
JP2505644B2 (en) Hydraulic elevator drive controller
JP3447994B2 (en) Hydraulic elevator equipment
JPH047276A (en) Speed controlling method for hydraulic elevator using inverter power supply
JPH0780644B2 (en) Hydraulic elevator
JPS63235275A (en) Controller for hydraulic elevator
JPS6242831B2 (en)
JPS6118510B2 (en)
JP3399251B2 (en) Hydraulic elevator equipment
JPH0742057B2 (en) Hydraulic elevator controller
JP2539648Y2 (en) Hydraulic motor controller for fork elevating
JPH0367876A (en) Control device of hydraulic elevator
JPS63252885A (en) Controller for hydraulic elevator
JP3148396B2 (en) Hydraulic elevator equipment
JPH01256473A (en) Controller for hydraulic elevator
JP3371705B2 (en) Hydraulic elevator equipment
JP2581385B2 (en) Hydraulic elevator equipment
JPH03111385A (en) Hydraulic elevator control method
JP3036646U (en) Hydraulic elevator equipment
JP3175418B2 (en) Hydraulic elevator controller
JPH01256474A (en) Controller for hydraulic elevator
JPS60112573A (en) Controller for hydraulic elevator
JPH0416488A (en) Continuously variable shift driving device for elevator
JPH04217569A (en) Controller for hydraulic elevator
JPH05155551A (en) Controller of hydraulic elevator
JPH0218053Y2 (en)