JPH0699197A - Method and equipment for purifying pure water or ultrapure water - Google Patents

Method and equipment for purifying pure water or ultrapure water

Info

Publication number
JPH0699197A
JPH0699197A JP3140593A JP14059391A JPH0699197A JP H0699197 A JPH0699197 A JP H0699197A JP 3140593 A JP3140593 A JP 3140593A JP 14059391 A JP14059391 A JP 14059391A JP H0699197 A JPH0699197 A JP H0699197A
Authority
JP
Japan
Prior art keywords
water
ozone
exchange resin
ultrapure water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3140593A
Other languages
Japanese (ja)
Other versions
JPH0818040B2 (en
Inventor
Yoko Kubota
葉子 窪田
Takayuki Saito
孝行 斉藤
Takeshi Nakajima
健 中島
Hiroyuki Shima
弘之 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Corp
Priority to JP3140593A priority Critical patent/JPH0818040B2/en
Publication of JPH0699197A publication Critical patent/JPH0699197A/en
Publication of JPH0818040B2 publication Critical patent/JPH0818040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce ultrapure water minimized in organic substance, live bacteria and dissolved oxygen by dissolving ozone in untreated water, irradiating the untreated water with ultraviolet rays, passing the treated water through the liquid contact side of a specified gas permeation membrane, supplying hydrogen to the gas contact side, furthermore passing water through a specified ion exchange resin and performing ultrafiltration. CONSTITUTION:In a purification method for obtaining ultrapure water, ozone is dissolved in pure water supplied from a pure water feed line 1 in an ozone dissolving tower 3. The treated water is irradiated with ultraviolet rays in an ultraviolet irradiation tower 11. The water is passed through the liquid contact side of a gas permeation membrane 13 supporting palladium. Hydrogen is supplied from a feed line 16 of gaseous hydrogen to a gas contact side. The treated water is passed through an ion exchange resin layer wherein OH-type anion exchange resin is mixed with H-type strongly acidic cation exchange resin. Thus ultrafiltration treatment is performed for the treated water in an ultrafilter 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子工業、医薬品工業
等に用いられる超純水の製造に係わり、特に純水又は超
純水を再度処理してきわめて高純度の超純水を製造する
方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of ultrapure water used in the electronic industry, the pharmaceutical industry, etc., and particularly to the treatment of pure water or ultrapure water again to produce extremely pure ultrapure water. A method and apparatus.

【0002】[0002]

【従来の技術】電子工業、医薬品工業等においては、各
製造工程における洗浄にきわめて高純度の水、いわゆる
超純水を多量に必要とする。さらに、要求水質はますま
す厳しくなり、特にTOC、生菌、溶存酸素の低減が大
きな課題となっている。従来超純水の製造は、前処理装
置と、ついで該前処理水をイオン交換樹脂塔、脱炭酸
塔、逆浸透膜装置、真空脱気塔、混床式カートリッジデ
ミ塔を組み合わせた一次純水製造装置と、ついで該一次
純水を紫外線照射装置、混床式カートリッジデミ、限外
ろ過膜装置を組み合わせた二次純水製造装置(サブシス
テム)で処理して行われている。
2. Description of the Related Art In the electronic industry, pharmaceutical industry, etc., a large amount of extremely high-purity water, so-called ultrapure water, is required for cleaning in each manufacturing process. Furthermore, the required water quality is becoming more and more severe, and reduction of TOC, viable bacteria, and dissolved oxygen is a major issue. Conventionally, the production of ultrapure water is a primary pure water that combines a pretreatment device and then the pretreatment water with an ion exchange resin tower, a decarbonation tower, a reverse osmosis membrane equipment, a vacuum degassing tower, and a mixed bed cartridge demi tower. It is carried out by treating the primary pure water with a secondary pure water producing apparatus (subsystem) which is a combination of an ultraviolet irradiation apparatus, a mixed bed type cartridge demi, and an ultrafiltration membrane apparatus.

【0003】[0003]

【発明が解決しようとする課題】超純水は、停滞すると
その純度が低下することは公知であり、常時超純水を循
環処理して、純度の低下を防止することが行われてい
る。ここで、超純水製造装置は、イオン交換樹脂、限外
ろ過膜等、そのほとんどが有機物質で構成されている。
また処理工程の性質上、これらの設備は接液面積が大き
く、ユースポイント及び各機器を接続する配管類の数倍
ないし数十倍の表面積を有する。すなわち、超純水設備
はそれ自体からの有機物質溶出が避けられない。しか
し、超純水製造装置における有機物質除去は、通常、逆
浸透膜による分離除去、及び紫外線照射による分解のみ
で行われている。さらに逆浸透処理は高圧が必要なため
通常サブシステムでは用いられないことから、サブシス
テムでの有機物質除去は、通常紫外線分解のみ(イオン
交換樹脂による分解生成物質の除去を含む)になってい
る。
It is well known that the purity of ultrapure water decreases when it is stagnant, and the purity of ultrapure water is constantly circulated to prevent the purity from decreasing. Here, most of the ultrapure water producing apparatus, such as an ion exchange resin and an ultrafiltration membrane, is made of an organic substance.
In addition, due to the nature of the treatment process, these equipments have a large liquid contact area, and have a surface area several times to several tens of times larger than that of the point of use and the piping for connecting each device. That is, elution of organic substances from the ultrapure water equipment is unavoidable. However, removal of organic substances in an ultrapure water production apparatus is usually performed only by separation and removal by a reverse osmosis membrane and decomposition by ultraviolet irradiation. Furthermore, since reverse osmosis treatment requires high pressure and is not normally used in subsystems, the only organic substance removal in subsystems is usually UV decomposition (including removal of decomposition products by ion exchange resins). .

【0004】ところで、有機物質分解に効果がある紫外
線は、主に200nm以下の短波長の遠紫外線である。
しかし、この波長の照射量はかなり小さく、例えば、一
般的な紫外線照射源である低圧水銀ランプでは、185
nmは主波長である265nmの数分の1程度の照射量
であり、効果を上げるためには多数のランプが必要とな
る。また、純水又は超純水中には、紫外線のみでは分解
が困難な物質も存在する。すなわち、従来のサブシステ
ムにおける有機物質の除去は必ずしも十分でなく、サブ
システム等の循環処理によって有機物質が増加、蓄積す
る可能性もあった。また生菌については、従来は通常紫
外線照射のみであり、紫外線耐性菌等が発生する恐れが
あった。オゾンによる殺菌を併用する方法も行われてい
るが、溶存酸素濃度が増加し、溶存酸素の低下も求めら
れている超純水には使用困難であった。
By the way, the ultraviolet rays effective for decomposing organic substances are mainly far ultraviolet rays having a short wavelength of 200 nm or less.
However, the irradiation amount of this wavelength is quite small, and for example, in a low pressure mercury lamp which is a general ultraviolet irradiation source, 185
nm is an irradiation dose of a fraction of 265 nm, which is the main wavelength, and a large number of lamps are required to improve the effect. Further, in pure water or ultrapure water, there are substances that are difficult to decompose only by ultraviolet rays. That is, the removal of the organic substance in the conventional subsystem is not always sufficient, and there is a possibility that the organic substance is increased and accumulated by the circulation processing of the subsystem and the like. Conventionally, live bacteria were usually only irradiated with ultraviolet rays, and there was a risk that ultraviolet resistant bacteria and the like would occur. A method using sterilization with ozone is also used, but it is difficult to use for ultrapure water in which the dissolved oxygen concentration is increased and the lowered dissolved oxygen is also required.

【0005】さらに溶存酸素については、従来脱気等に
よる真空脱気、膜を介した真空脱気、窒素ガスによる曝
気、還元剤の添加などによって除去されている。しかし
これらの方法は、溶存酸素濃度が十分に低くならない、
装置が大規模になる、還元剤及び反応生成物の残留等の
問題があり、通常サブシステムでは用いられていない。
従って通常は一次純水システムのみに除去処理設備があ
り、サブシステム以降で溶存酸素が増加した場合には、
対応できなかった。また、水素添加後、パラジウム触媒
樹脂に通水する方法もあり、この方法はサブシステムで
も用いられているが、水素の溶解効率が低く、多量の水
素が必要であった。そこで本発明は、上記のような問題
点を解決し、有機物質、生菌及び溶存酸素についても、
循環処理による高純度化、及び純度の低下を容易に防止
できる超純水の精製方法とその装置を提供することを目
的とする。
Further, dissolved oxygen is conventionally removed by vacuum deaeration such as deaeration, vacuum deaeration through a film, aeration with nitrogen gas, addition of a reducing agent, and the like. However, in these methods, the dissolved oxygen concentration does not become sufficiently low,
There are problems such as large-scale equipment, residual of reducing agent and reaction product, and they are not usually used in subsystems.
Therefore, usually there is a removal treatment facility only in the primary pure water system, and when the dissolved oxygen increases after the subsystem,
I couldn't handle it. There is also a method of passing water through a palladium catalyst resin after hydrogenation, and this method is also used in subsystems, but the dissolution efficiency of hydrogen was low and a large amount of hydrogen was required. Therefore, the present invention solves the above problems, and also for organic substances, viable bacteria and dissolved oxygen,
It is an object of the present invention to provide a method for purifying ultrapure water and a device therefor capable of easily preventing purification and reduction in purity due to circulation treatment.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、純水又は超純水からさらに高純度の超
純水を得る精製方法であって、前記精製方法が、(イ)
原水にオゾンを溶解する工程、(ロ)(イ)の処理水に
紫外線を照射する工程、(ハ)パラジウムを担持した気
体透過膜の接液側に(ロ)の処理水を通水し、接ガス側
に水素を供給する工程、(ニ)(ハ)の処理水をH型強
酸性カチオン交換樹脂とOH型アニオン交換樹脂とを混
合したイオン交換樹脂層に通水する工程、(ホ)(ニ)
の処理水を限外ろ過する工程、からなることを特徴とす
る純水又は超純水の精製方法としたものである。また、
本発明では、純水又は超純水からさらに高純度の超純水
を得る精製方法であって、前記精製方法が、(イ)原水
の一部にオゾンを溶解する工程、(ロ)(イ)のオゾン
溶解水と残部の原水とを混合する工程、(ハ)(ロ)の
処理水に紫外線を照射する工程、(ニ)パラジウムを担
持した気体透過膜の接液側に(ハ)の処理水を通水し、
接ガス側に水素を供給する工程、(ホ)(ニ)の処理水
をH型強酸性カチオン交換樹脂とOH型アニオン交換樹
脂とを混合したイオン交換樹脂層に通水する工程、
(ヘ)(ホ)の処理水を限外ろ過する工程、からなるこ
とを特徴とする純水又は超純水の精製方法としたのであ
る。
In order to achieve the above object, the present invention is a purification method for obtaining ultrapure water of higher purity from pure water or ultrapure water. )
A step of dissolving ozone in raw water, a step of irradiating the treated water of (b) and (a) with an ultraviolet ray, and (c) passing the treated water of (b) to the liquid contact side of the gas permeable membrane carrying palladium, A step of supplying hydrogen to the gas contact side, a step of passing the treated water of (d) and (c) through an ion exchange resin layer in which an H type strongly acidic cation exchange resin and an OH type anion exchange resin are mixed, (e) (D)
The method for purifying pure water or ultrapure water is characterized in that it comprises a step of ultrafiltering the treated water. Also,
In the present invention, there is provided a purification method for obtaining ultrapure water of higher purity from pure water or ultrapure water, wherein the purification method comprises: (a) dissolving ozone in a part of raw water; ) Mixing ozone-dissolved water with the rest of the raw water, (c) irradiating the treated water with ultraviolet light (b), (d) adding (d) to the liquid-contacting side of the gas permeable membrane carrying palladium. Through treated water,
A step of supplying hydrogen to the gas contact side, a step of passing the treated water of (e) and (d) through an ion exchange resin layer in which an H type strongly acidic cation exchange resin and an OH type anion exchange resin are mixed,
This is a method for purifying pure water or ultrapure water, comprising the steps of (f) and (e) ultrafiltration of the treated water.

【0007】さらに、本発明では、純水又は超純水から
さらに高純度の超純水を得る精製方法であって、前記精
製方法が、(イ)ユースポイントから戻ってくる精製さ
れた未使用の超純水の一部又は全部にオゾンを溶解する
工程、(ロ)原水と(イ)のオゾン溶解水とを混合する
工程、(ハ)(ロ)の処理水に紫外線を照射する工程、
(ニ)パラジウムを担持した気体透過膜の接液側に
(ハ)の処理水を通水し、接ガス側に水素を供給する工
程、(ホ)(ニ)の処理水をH型強酸性カチオン交換樹
脂とOH型アニオン交換樹脂とを混合したイオン交換樹
脂層に通水する工程、(ヘ)(ホ)の処理水を限外ろ過
する工程、からなることを特徴とする純水又は超純水の
精製方法としたものである。上記の本発明の精製方法に
おいて、オゾン溶解工程から排出されるオゾン含有排ガ
スと、前記水素供給工程から排出される水素含有排ガス
とを混合し、水素燃焼触媒を有する触媒層で処理するの
がよい。
Further, according to the present invention, there is provided a purification method for obtaining a higher purity ultrapure water from pure water or ultrapure water, wherein the purification method is (a) a purified virgin product returned from a point of use. A step of dissolving ozone in a part or all of the ultrapure water of (b), a step of mixing raw water (b) with an ozone-dissolved water of (b), and a step of irradiating the treated water of (c) (b) with ultraviolet rays,
(D) A step of passing the treated water of (c) to the liquid contact side of the gas permeable membrane supporting palladium and supplying hydrogen to the gas contact side, (e) the treated water of (d) is H-type strongly acidic Pure water or ultrapure water, which comprises a step of passing water through an ion exchange resin layer in which a cation exchange resin and an OH type anion exchange resin are mixed, and a step of ultrafiltering the treated water of (f) and (e) This is a method for purifying pure water. In the above-described purification method of the present invention, the ozone-containing exhaust gas discharged from the ozone dissolution step and the hydrogen-containing exhaust gas discharged from the hydrogen supply step are preferably mixed and treated with a catalyst layer having a hydrogen combustion catalyst. .

【0008】また、上記他の目的を達成するために、本
発明では、純水又は超純水からさらに高純度の超純水を
得る精製装置であって、前記精製装置が、(イ)原水に
オゾンを溶解するオゾン溶解装置と、(ロ)紫外線照射
装置と、(ハ)接液側に(ロ)の処理水を通水し、接ガ
ス側に水素を供給する手段を有するパラジウムを担持し
た気体透過膜装置と、(ニ)H型強酸性カチオン交換樹
脂とOH型アニオン交換樹脂とを混合したイオン交換樹
脂層を有するイオン交換装置と、(ホ)限外ろ過装置と
を備え、(ヘ)前記(イ)から(ホ)までの装置相互間
を順次配管で接続したことを特徴とする純水又は超純水
の精製装置としたものである。また、本発明では、純水
又は超純水からさらに高純度の超純水を得る精製装置で
あって、前記精製装置が、(イ)原水の一部にオゾンを
溶解するオゾン溶解装置と、(ロ)(イ)のオゾン溶解
水と残部の原水とを混合する装置と、(ハ)紫外線照射
装置と、(ニ)接液側に(ハ)の処理水を通水し、接ガ
ス側に水素を供給する手段を有するパラジウムを担持し
た気体透過膜装置と、(ホ)H型強酸性カチオン交換樹
脂とOH型アニオン交換樹脂とを混合したイオン交換樹
脂層を有するイオン交換装置と、(ヘ)限外ろ過装置と
を備え、(ト)前記(イ)から(ヘ)までの装置相互間
を順次配管で接続したことを特徴とする純水又は超純水
の精製装置としたものである。
In order to achieve the above-mentioned other object, in the present invention, there is provided a purification device for obtaining ultrapure water of higher purity from pure water or ultrapure water, wherein the purification device is (a) raw water. Ozone dissolving device that dissolves ozone in (2), (b) UV irradiation device, (c) Palladium having means for passing treated water of (b) to the liquid contact side and supplying hydrogen to the gas contact side A gas permeable membrane device, (d) an ion exchange device having an ion exchange resin layer in which an H-type strongly acidic cation exchange resin and an OH-type anion exchange resin are mixed, and (e) an ultrafiltration device, F) A pure water or ultrapure water purifying device characterized in that the devices (a) to (e) are sequentially connected by piping. Further, in the present invention, a purifying apparatus for obtaining ultrapure water of higher purity from pure water or ultrapure water, wherein the purifying apparatus is (a) an ozone dissolving apparatus for dissolving ozone in a part of raw water, (B) A device for mixing the ozone-dissolved water of (a) with the rest of the raw water, (c) an ultraviolet irradiation device, (d) the treated water of (c) is passed to the liquid contact side, and the gas contact side A gas permeable membrane device supporting palladium having a means for supplying hydrogen to (1), and (e) an ion exchange device having an ion exchange resin layer in which an H type strongly acidic cation exchange resin and an OH type anion exchange resin are mixed, F) An apparatus for purifying pure water or ultrapure water, characterized by comprising an ultrafiltration device, and (g) sequentially connecting the devices from (a) to (f) with piping. is there.

【0009】さらに、本発明では純水又は超純水からさ
らに高純度の超純水を得る精製装置であって、前記精製
装置が、(イ)ユースポイントから戻ってくる精製され
た未使用の超純水の一部又は全部にオゾンを溶解するオ
ゾン溶解装置と、(ロ)原水と(イ)のオゾン溶解水と
を混合する装置と、(ハ)紫外線照射装置と、(ニ)接
液側に(ハ)の処理水を通水し、接ガス側に水素を供給
する手段を有するパラジウムを担持した気体透過膜装置
と、(ホ)H型強酸性カチオン交換樹脂とOH型アニオ
ン交換樹脂とを混合したイオン交換樹脂層を有するイオ
ン交換装置と、(ヘ)限外ろ過装置とを備え、(ト)前
記(イ)から(ヘ)までの装置相互間を順次配管で接続
したことを特徴とする純水又は超純水の精製装置とした
ものである。前記本発明の精製装置に、電解方式のオゾ
ン発生装置を設け、発生するオゾンと水素とをそれぞれ
オゾン溶解装置と気体透過膜とに供給するための手段を
設けてもよい。
Further, according to the present invention, there is provided a refining apparatus for obtaining ultrapure water of higher purity from pure water or ultrapure water, wherein the refining apparatus is (a) a refined, unused and returned from the point of use. An ozone dissolving device that dissolves ozone in part or all of ultrapure water, a device that mixes (b) raw water and (a) ozone dissolved water, (c) ultraviolet irradiation device, and (d) wetted A gas permeable membrane device supporting palladium having a means for supplying treated water of (c) to the gas side and supplying hydrogen to the gas contact side, and (e) H-type strongly acidic cation exchange resin and OH-type anion exchange resin An ion exchange device having an ion exchange resin layer mixed with and (f) an ultrafiltration device is provided, and (g) the devices (a) to (f) are sequentially connected by piping. The apparatus is used as a characteristic pure water or ultrapure water purification apparatus. The refining device of the present invention may be provided with an electrolysis type ozone generator, and means for supplying the generated ozone and hydrogen to the ozone dissolving device and the gas permeable membrane, respectively.

【0010】以下に本発明を詳細に説明する。図1は、
本発明の実施態様の一例を示すフローの説明図である。
図1を用いて、本発明の精製装置をさらに詳しく説明す
る。純水供給ライン1から供給される純水又は超純水の
一部を、三方弁2で分流してオゾン溶解器3へ供給す
る。オゾン溶解器3からのオゾン溶解水は、混合器5で
原水の純水又は超純水に合流して混合させる。ここでオ
ゾン溶解器3には、オゾン発生器からの発生オゾンをオ
ゾン供給ライン7を介して供給し、オゾン水封管10か
らの排ガスは排ガス処理装置20へ導入して処理する。
なお原水は全量オゾン溶解器3へ導いてもよい。該オゾ
ン溶解水を含む純水を、紫外線照射塔11へ導入する。
ついで該紫外線処理水をパラジウムを担持した気体透過
膜13を有する気体透過膜モジュール12の接液側に導
入する。このとき該装置の接ガス側にはオゾン発生器8
から発生する水素ガスを供給し、水素水封管14からの
排ガスは、水素燃焼触媒を有する排ガス処理装置20へ
導入して処理する。ついで該処理水をポンプ17を介し
てイオン交換樹脂塔18へ導入し、ついで限外ろ過装置
19へ導入する。
The present invention will be described in detail below. Figure 1
It is explanatory drawing of the flow which shows an example of the embodiment of this invention.
The refining apparatus of the present invention will be described in more detail with reference to FIG. A part of pure water or ultrapure water supplied from the pure water supply line 1 is branched by the three-way valve 2 and supplied to the ozone dissolver 3. The ozone-dissolved water from the ozone dissolver 3 is mixed with the pure water or ultrapure water of the raw water by the mixer 5. Here, ozone generated from the ozone generator is supplied to the ozone dissolver 3 through the ozone supply line 7, and the exhaust gas from the ozone water sealing tube 10 is introduced into the exhaust gas processing device 20 to be processed.
The raw water may be entirely introduced into the ozone dissolver 3. Pure water containing the ozone-dissolved water is introduced into the ultraviolet irradiation tower 11.
Then, the ultraviolet-treated water is introduced to the liquid contact side of the gas permeable membrane module 12 having the gas permeable membrane 13 carrying palladium. At this time, the ozone generator 8 is provided on the gas contact side of the device.
The exhaust gas from the hydrogen water sealing tube 14 is supplied to the exhaust gas treatment device 20 having a hydrogen combustion catalyst and treated. Then, the treated water is introduced into the ion exchange resin tower 18 through the pump 17, and then into the ultrafiltration device 19.

【0011】図2は、本発明の実施態様の他の一例を示
すフローの説明図である。本装置では、ユースポイント
23から戻ってくる未使用の超純水の一部又は全部をオ
ゾン溶解器3へ供給する。オゾン溶解器3からのオゾン
溶解水や残部の未使用の超純水は、通常タンク21へ供
給し、ユースポイントで使用された超純水量又はそれ以
上の量の原水を純水供給ライン1より供給混合する。こ
こでオゾン溶解器3には、オゾン発生器8からの発生オ
ゾンをオゾン供給ライン7を介して供給し、オゾン水封
間10からの排ガスは排ガス処理装置20へ導入して処
理する。また、未使用の超純水でオゾン溶解器3へ供給
しない残部は、サブシステムに供給して別途使用しても
よい。該オゾン溶解水を含む純水を、紫外線照射塔11
へ導入する。ついで該紫外線処理水をパラジウムを担持
した気体透過膜13を有する気体透過膜モジュール12
の接液側に導入する。このとき該装置の接ガス側にはオ
ゾン発生器8から発生する水素ガスを供給し、水素水封
管14からの排ガスは、水素燃焼触媒を有する排ガス処
理装置20へ導入して処理する。ついで該処理水をポン
プ17を介してイオン交換樹脂塔18へ導入し、ついで
限外ろ過装置19へ導入する。次いで該処理水をユース
ポイント23へ供給し、ユースポイントで使用されなか
った超純水は熱交換器25を経て、リターンラインを通
ってタンク2へ循環される。また未使用の超純水を、オ
ゾン溶解器への供給水を除いて二次純水装置のリターン
ラインに戻すこともできる。この場合熱交換器25は必
要ではない。
FIG. 2 is an explanatory diagram of a flow showing another example of the embodiment of the present invention. In this device, a part or all of the unused ultrapure water returned from the use point 23 is supplied to the ozone dissolver 3. The ozone-dissolved water from the ozone dissolver 3 and the remaining unused ultrapure water are normally supplied to the tank 21, and the amount of ultrapure water used at the point of use or more raw water is supplied from the pure water supply line 1. Supply and mix. Here, the ozone generated from the ozone generator 8 is supplied to the ozone dissolver 3 through the ozone supply line 7, and the exhaust gas from the ozone water sealing space 10 is introduced into the exhaust gas processing device 20 to be processed. The remaining part of the ultrapure water that is not supplied to the ozone dissolver 3 may be supplied to the subsystem and used separately. The pure water containing the ozone-dissolved water is supplied to the ultraviolet irradiation tower 11
Introduce to. Next, a gas permeable membrane module 12 having a gas permeable membrane 13 carrying the ultraviolet-treated water with palladium.
Introduce into the wetted side of. At this time, hydrogen gas generated from the ozone generator 8 is supplied to the gas contact side of the apparatus, and the exhaust gas from the hydrogen water sealing tube 14 is introduced into the exhaust gas processing apparatus 20 having a hydrogen combustion catalyst for processing. Then, the treated water is introduced into the ion exchange resin tower 18 through the pump 17, and then into the ultrafiltration device 19. Next, the treated water is supplied to the use point 23, and the ultrapure water not used at the use point is circulated to the tank 2 through the heat exchanger 25 and the return line. In addition, unused ultrapure water can be returned to the return line of the secondary pure water device except for the water supplied to the ozone dissolver. In this case, the heat exchanger 25 is not necessary.

【0012】ここで、紫外線照射光源は、波長400n
m以下の紫外線を照射するものであれば良く、オゾンの
ラジカル化波長とされる200〜300nm、及び有機
物質の分解波長とされる200nm以下の波長を照射で
きるものが特に望ましい。ランプ及び保護管に人工石英
を用いた低圧水銀ランプを好ましく用いることが出来
る。気体透過膜モジュールは、パラジウムを担持した気
体透過膜を有したものである。該気体透過膜は、水素は
透過させ、液体は透過しない膜にパラジウムを担持させ
たものであれば良く、接ガス側には水素を供給する。気
体透過膜へのパラジウムの担持は、本発明者らが既に提
案しているが、プラスチックへのメッキ方法またはイオ
ン交換樹脂等への担持方法に準じて行うことができる。
接ガス側への水素供給は、該溶存オゾン酸素除去装置へ
の流入水中に溶解している酸素及びオゾンの等量から等
量の3倍を供給する。
The ultraviolet irradiation light source has a wavelength of 400n.
It is only necessary to irradiate ultraviolet rays of m or less, and it is particularly desirable to irradiate a wavelength of 200 to 300 nm which is a radicalization wavelength of ozone and a wavelength of 200 nm or less which is a decomposition wavelength of an organic substance. A low pressure mercury lamp using artificial quartz for the lamp and the protective tube can be preferably used. The gas permeable membrane module has a gas permeable membrane supporting palladium. The gas permeable film may be any film in which palladium is supported on a film that allows hydrogen to permeate and does not allow liquid to permeate, and hydrogen is supplied to the gas contact side. The support of palladium on the gas permeable membrane can be performed according to the method of plating on plastic or the method of supporting on ion exchange resin or the like, which has been already proposed by the present inventors.
The supply of hydrogen to the gas contacting side is 3 times as much as the equivalent amount of oxygen and ozone dissolved in the inflow water to the dissolved ozone oxygen removing device.

【0013】混床式イオン交換樹脂塔は、H型強酸性カ
チオン交換樹脂とOH型強塩基性アニオン交換樹脂との
混合樹脂であり、混合前に高度に再生し、十分に水洗し
ておくことが望ましい。ここで水洗は、40℃程度に加
温した超純水または純水を用いて行うことが望ましい。
限外ろ過装置としては、外圧型中空糸限外ろ過膜を用い
ることが望ましい。オゾン溶解器は、気体透過膜を介し
てオゾンを溶解させる装置であり、膜の一方に水を通
し、他方を気体で加圧することによって気体を溶解させ
ることができる。気体透過膜としてはポリ四弗化エチレ
ン系の膜を好ましく用いることができる。また散気管、
散気ノズル等によるオゾン溶解器を用いることもでき
る。
The mixed bed type ion-exchange resin tower is a mixed resin of H-type strongly acidic cation-exchange resin and OH-type strongly basic anion-exchange resin, and it should be highly regenerated and thoroughly washed with water before mixing. Is desirable. It is desirable that the washing with water is performed using ultrapure water or pure water heated to about 40 ° C.
As the ultrafiltration device, it is desirable to use an external pressure type hollow fiber ultrafiltration membrane. The ozone dissolver is a device that dissolves ozone through a gas permeable membrane, and can dissolve the gas by passing water through one side of the membrane and pressurizing the other side with the gas. As the gas permeable film, a polytetrafluoroethylene-based film can be preferably used. Also an air diffuser,
It is also possible to use an ozone dissolver with a diffuser nozzle or the like.

【0014】[0014]

【作用】本発明の作用を各処理工程に従って説明する。
オゾン溶解器では、被処理水の一部にオゾンを溶解す
る。一部のみに溶解させることによって、オゾン溶解に
伴う気体透過膜の接液面積を少なくでき、圧損等を少な
くすることもできる。オゾン発生器は、水電解型を用い
ることによって、副生する水素を溶存オゾン酸素除去装
置に供給できる利点がある。また、高濃度のオゾンを供
給できることから随伴する酸素の供給量を少なくするこ
とができる。オゾンが溶解している被処理水に210〜
300nmの紫外線を照射すると、紫外線によって分解
されるオゾンのラジカルによって被処理水中の有機物質
が分解される。またバクテリア等の殺菌も行われる。こ
こで殺菌及び有機物質分解効果は、紫外線またはオゾン
単独に比較して効果が大きいことが公知である。また、
有機物質分解に照射量の大きい低圧水銀ランプの波長2
54nmの紫外線を有効に活性できるため、遠紫外線の
波長185nmのみを用いるのに比較して効果が大き
い。従って、この処理工程では、有機物質はイオン性の
分解生成物に、また、バクテリアは微粒子(死菌)とな
る。しかしこの処理工程、及びこの前段のオゾン溶解工
程では、オゾン及び酸素の濃度が増加する。
The operation of the present invention will be described according to each processing step.
The ozone dissolver dissolves ozone in a part of the water to be treated. By dissolving only in a part, the liquid contact area of the gas permeable film due to ozone dissolution can be reduced, and pressure loss and the like can also be reduced. The ozone generator has an advantage that hydrogen produced as a by-product can be supplied to the dissolved ozone / oxygen removing device by using the water electrolysis type. Further, since a high concentration of ozone can be supplied, the amount of accompanying oxygen can be reduced. 210 to water to be treated in which ozone is dissolved
When irradiated with 300 nm ultraviolet rays, the organic substances in the water to be treated are decomposed by the radicals of ozone decomposed by the ultraviolet rays. In addition, bacteria etc. are sterilized. Here, it is known that the effects of sterilization and decomposition of organic substances are greater than those of ultraviolet rays or ozone alone. Also,
Wavelength of low-pressure mercury lamp with high irradiation dose for decomposition of organic substances 2
Since the ultraviolet ray of 54 nm can be effectively activated, the effect is large as compared with the case of using only the wavelength of 185 nm of far ultraviolet ray. Therefore, in this processing step, the organic substances become ionic decomposition products, and the bacteria become fine particles (dead bacteria). However, the concentration of ozone and oxygen increases in this treatment step and the ozone dissolution step in the preceding stage.

【0015】次に、接ガス側に水素を供給した、パラジ
ウムを担持した気体透過膜を有する溶存オゾン酸素除去
装置では、パラジウムの存在下で、 O3 + 3H2 → 3H2 O O2 + 2H2 → 2H2 O と模式的に表される反応が行われる。このとき水素は気
体透過膜を介しているため、水との接触効率が高く、さ
らに気体透過膜表面上のパラジウムと溶解した形で酸素
またはオゾンに接触する。従って、例えば水素を溶解し
た水をパラジウム触媒樹脂等に通水する方法に比較して
反応効率が高い。またこの反応は生成物が水であるた
め、不純物の増加がない。なお、この処理工程によって
残留する水素はわずかであるが、必要であれば膜脱気装
置等によって除去することも可能である。さらにイオン
交換樹脂塔では、被処理水中に含まれる無機イオン、シ
リカ等の他、紫外線分解によるイオン性の分解生成物、
及びパラジウムを担持した気体透過膜から極微量溶出す
るパラジウムを除去する。最後に限外ろ過装置によって
微粒子を除去する。この微粒子は被処理水中に含まれる
ものの他、バクテリアの死菌、ポンプの発塵、イオン交
換樹脂及び気体透過膜等からの漏出物を含む。排ガス処
理装置は、オゾンを含有する排ガスと水素を含有する排
ガスとを混合して、触媒燃焼させることによって、無害
化するものである。タンクは、ユースポイントでの超純
水使用量と装置へ供給される純水供給量とのバランスを
取り、ユースポイントへ供給する超純水の流量及び圧力
を定常化する。又オゾンとの接触時間を長くすることに
よって殺菌及び有機物質分解効果を高める。
Next, in the dissolved ozone oxygen removing apparatus having a gas permeable membrane supporting palladium, in which hydrogen is supplied to the gas contact side, in the presence of palladium, O 3 + 3H 2 → 3H 2 O 2 + 2H The reaction represented schematically as 2 → 2H 2 O is performed. At this time, since hydrogen passes through the gas permeable membrane, it has a high contact efficiency with water, and further comes into contact with oxygen or ozone in a dissolved form with palladium on the surface of the gas permeable membrane. Therefore, for example, the reaction efficiency is high as compared with the method in which water in which hydrogen is dissolved is passed through a palladium catalyst resin or the like. In addition, since the product of this reaction is water, there is no increase in impurities. Although a small amount of hydrogen remains in this treatment step, it can be removed by a membrane degassing device or the like if necessary. Furthermore, in the ion exchange resin tower, in addition to inorganic ions contained in the water to be treated, silica, etc., ionic decomposition products due to ultraviolet decomposition,
And a very small amount of palladium which is eluted from the gas permeable membrane supporting palladium is removed. Finally, fine particles are removed by an ultrafiltration device. The fine particles include not only those contained in the water to be treated but also bacteria killed by bacteria, dust generated by the pump, leaked substances from the ion exchange resin, the gas permeable membrane and the like. The exhaust gas treatment device is a device that detoxifies the exhaust gas containing ozone and the exhaust gas containing hydrogen by mixing them and catalytically burning them. The tank balances the amount of ultrapure water used at the point of use with the amount of pure water supplied to the device, and stabilizes the flow rate and pressure of the ultrapure water supplied to the point of use. In addition, the effect of sterilization and decomposition of organic substances is enhanced by prolonging the contact time with ozone.

【0016】[0016]

【実施例】以下に本発明を実施例及び比較例を上げて説
明するが、本発明はこれらの実施例に限定されるもので
はない。 実施例1 水道水を原水とし、逆浸透膜装置、真空脱気装置、イオ
ン交換装置、メンブレンフィルタ等で構成された1次純
水装置で処理して得られた1次純水を、図1に示す精製
装置に3m3 /hで供給した。三方弁2で被処理水を分
流し、オゾン溶解器3へ10リットル/hで供給した。
オゾン溶解器3は、ポリ四弗化エチレン系の中空糸気体
透過膜4を有する、膜面積0.4m2 のモジュールを用
いた。このガス透過膜の内側に被処理水を10リットル
/hで供給し、外側にオゾン化ガスを供給した。このオ
ゾン化ガスは、オゾン発生能力0.3g/hの固体高分
子電解質水電解方式のオゾン発生器8より供給した。紫
外線照射装置11の有効容積は約32リットルであり、
人工石英管を介して消費電力100Wの低圧水銀ランプ
7本を点灯させた。
The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples. Example 1 Primary pure water obtained by treating tap water as a raw water with a primary pure water device composed of a reverse osmosis membrane device, a vacuum degassing device, an ion exchange device, a membrane filter, etc. It was supplied at 3 m 3 / h to the purifying apparatus shown in FIG. The water to be treated was divided by the three-way valve 2 and supplied to the ozone dissolver 3 at 10 l / h.
As the ozone dissolver 3, a module having a membrane area of 0.4 m 2 having a polytetrafluoroethylene-based hollow fiber gas permeable membrane 4 was used. Water to be treated was supplied to the inside of this gas permeable membrane at a rate of 10 liters / hour, and ozonized gas was supplied to the outside. This ozonized gas was supplied from a solid polymer electrolyte water electrolysis type ozone generator 8 having an ozone generation capacity of 0.3 g / h. The effective volume of the ultraviolet irradiation device 11 is about 32 liters,
Seven low-pressure mercury lamps with power consumption of 100 W were lit through the artificial quartz tube.

【0017】次にパラジウム担持気体透過膜モジュール
12は、内側に無電解メッキ法に準じてパラジウムによ
る触媒化、活性化までを行ってパラジウムを担持したポ
リオレフィン−ポリウレタン系の中空糸複合膜を有する
モジュールである。膜面積6m2 のモジュールを4本用
いた。このガス透過膜の内側に被処理水を通水し、外側
にオゾン発生器8からの水素ガスを0.1kgf/cm
2 、25ml/minで供給した。水素水封管14から
の排ガス及びオゾン発生器8からの過剰水素ガスは、パ
ラジウム系の水素燃焼触媒を有する排ガス処理装置20
へ導入して処理した。次に、カートリッジ型イオン交換
樹脂塔18には、十分洗浄したH型強酸性カチオン交換
樹脂(ダウエックスモノスフィア650C)10リット
ルと、OH型強塩基性アニオン交換樹脂(ダウエックス
モノスフィア550A)20リットルとを混合してFR
P製容器に充填したもの2本を用いた。次に、限外ろ過
装置19は、外圧型中空糸膜モジュール(旭化成OLT
−3026)を用いた。この限外ろ過装置出口圧力が
2.5kgf/cm2 となるように調整した。本精製装
置で得られた処理水の水質を表1に示した。
Next, the palladium-supporting gas permeable membrane module 12 has a polyolefin-polyurethane-based hollow fiber composite membrane on which palladium is supported by catalyzing and activating with palladium according to an electroless plating method. Is. Four modules having a membrane area of 6 m 2 were used. Water to be treated is passed inside the gas permeable membrane, and hydrogen gas from the ozone generator 8 is passed through the outside at 0.1 kgf / cm 2.
2 , supplied at 25 ml / min. The exhaust gas from the hydrogen water sealing pipe 14 and the excess hydrogen gas from the ozone generator 8 are exhaust gas treating apparatus 20 having a palladium-based hydrogen combustion catalyst.
Was introduced and processed. Next, in the cartridge type ion exchange resin tower 18, 10 liters of the H-type strongly acidic cation exchange resin (Dowex Monosphere 650C) and the OH type strongly basic anion exchange resin (Dowex Monosphere 550A) 20 which have been thoroughly washed are placed. FR mixed with liter
Two pieces filled in a P container were used. Next, the ultrafiltration device 19 is an external pressure type hollow fiber membrane module (Asahi Kasei OLT
-3026) was used. The outlet pressure of this ultrafiltration device was adjusted to be 2.5 kgf / cm 2 . Table 1 shows the water quality of the treated water obtained by the present purifier.

【0018】比較例1 実施例1と同様の一次純水を、図3に示す従来のサブシ
ステムに3m3 /hで供給して処理した。図3中の紫外
線照射装置11、カートリッジ型イオン交換型樹脂塔1
8、及び限外ろ過装置19は実施例1に使用したものと
同様の仕様のものを用いた。処理水の水質を表1に合わ
せた示した。処理水中の有機物質(TOC)及び生菌の
除去効果が低いことが認められる。
Comparative Example 1 The same primary pure water as in Example 1 was supplied to the conventional subsystem shown in FIG. 3 at 3 m 3 / h for treatment. The ultraviolet irradiation device 11 and the cartridge type ion exchange type resin tower 1 in FIG.
8 and an ultrafiltration device 19 having the same specifications as those used in Example 1 were used. The water quality of the treated water is shown in Table 1. It is recognized that the effect of removing organic substances (TOC) and viable bacteria in the treated water is low.

【表1】 [Table 1]

【0019】実施例2 供給する純水として、一次純水を更に紫外線殺菌装置、
イオン交換カートリッジ、及び限外ろ過装置で構成され
た2次純水製造装置(サブシステム)で処理して得られ
たいわゆる超純水を用いた他は、実施例1と同様の装置
を用いて処理した。処理水の水質を表2に示した。
Example 2 As pure water to be supplied, primary pure water was further added to an ultraviolet sterilizer,
An apparatus similar to that of Example 1 was used except that so-called ultrapure water obtained by treatment with a secondary pure water producing apparatus (subsystem) composed of an ion exchange cartridge and an ultrafiltration apparatus was used. Processed. The water quality of the treated water is shown in Table 2.

【0020】比較例2 実施例2と同様のいわゆる超純水を、更に図3に示す従
来のサブシステムに3m3 /hで供給して処理した。図
3中の紫外線照射装置11、カートリッジ型イオン交換
型樹脂塔18、及び限外ろ過装置19は実施例1に使用
したものと同様の仕様のものを用いた。処理水の水質を
表2に合わせた示した。従来型のサブシステムで、2回
処理しても処理水中の有機物質(TOC)及び生菌の除
去効果はほとんど大きくならないことが認められる。
Comparative Example 2 The same so-called ultrapure water as in Example 2 was further supplied to the conventional subsystem shown in FIG. 3 at 3 m 3 / h for treatment. The ultraviolet irradiation device 11, the cartridge type ion exchange type resin tower 18 and the ultrafiltration device 19 shown in FIG. 3 have the same specifications as those used in Example 1. The water quality of the treated water is shown in Table 2. It is recognized that the effect of removing organic substances (TOC) and viable bacteria in the treated water by the conventional sub-system hardly increases even if the treatment is performed twice.

【0021】比較例3 実施例2と同様のいわゆる超純水を、図4に示すオゾン
殺菌装置付きサブシステムに3m3 /hで供給して処理
した。図4中の紫外線照射装置11、カートリッジ型イ
オン交換型樹脂塔18、及び限外ろ過装置19、及びオ
ゾン添加用の設備すなわちオゾン溶解器3、オゾン発生
器8等は実施例1に使用したものと同様の仕様のものを
用いた。処理水の水質を表2に合わせた示した。処理水
中の溶存酸素濃度が増加していることが認められる。
Comparative Example 3 The same so-called ultrapure water as in Example 2 was supplied to the subsystem with an ozone sterilizer shown in FIG. 4 at 3 m 3 / h for treatment. The ultraviolet irradiation device 11, the cartridge type ion exchange type resin tower 18, the ultrafiltration device 19 and the equipment for ozone addition, that is, the ozone dissolver 3 and the ozone generator 8 in FIG. The same specifications as above were used. The water quality of the treated water is shown in Table 2. It can be seen that the dissolved oxygen concentration in the treated water is increasing.

【表2】 [Table 2]

【0022】実施例3 実施例2と同様のいわゆる超純水を図2に示す精製装置
に供給して処理した。容量100リットルのタンク21
には、上記超純水、ユースポイントからの未使用の超純
水、及びオゾン溶解水を供給した。本装置は、ポンプ1
7によって3m3 /hで循環処理を行った。また、この
タンクには窒素シールをつけ、水位の変動に対処した。
その他、オゾン発生器及び溶解装置、パラジウム担持気
体透過膜、イオン交換樹脂塔、紫外線照射塔、限外ろ過
装置、排ガス処理装置等は、実施例1と同様の仕様のも
のを用いた。処理水の水質を表3に示した。
Example 3 The same so-called ultrapure water as in Example 2 was supplied to the purification apparatus shown in FIG. 2 for treatment. 100-liter tank 21
Was supplied with the above ultrapure water, unused ultrapure water from the point of use, and ozone-dissolved water. This device is a pump 1
According to No. 7, circulation treatment was carried out at 3 m 3 / h. In addition, a nitrogen seal was attached to this tank to cope with fluctuations in water level.
In addition, the ozone generator and the dissolving device, the palladium-supporting gas permeable membrane, the ion exchange resin tower, the ultraviolet irradiation tower, the ultrafiltration device, the exhaust gas treatment device, and the like had the same specifications as in Example 1. The water quality of the treated water is shown in Table 3.

【0023】比較例4 実施例1と同様のいわゆる超純水を、図5に示すオゾン
殺菌装置付きサブシステムに3m3 /hで供給して処理
した。紫外線照射装置、イオン交換樹脂塔、限外ろ過装
置、及びオゾン添加用の装置等は実施例3と同様の仕様
のものを用いた。処理水の水質を表3に合わせて示し
た。処理水中の溶存酸素濃度が増加していることが認め
られる。
Comparative Example 4 The same so-called ultrapure water as in Example 1 was supplied to the subsystem with an ozone sterilizer shown in FIG. 5 at 3 m 3 / h for treatment. The ultraviolet irradiation device, the ion-exchange resin tower, the ultrafiltration device, the ozone addition device, and the like had the same specifications as in Example 3. The water quality of the treated water is also shown in Table 3. It can be seen that the dissolved oxygen concentration in the treated water is increasing.

【表3】 [Table 3]

【0024】[0024]

【発明の効果】以上のように、純水あるいは超純水を精
製するに際し、本発明の装置は 1)超純水製造設備等から溶出した有機物質を、オゾン
と紫外線照射とを併用して分解すると同時に殺菌をも行
い、 2)被処理水に溶存していた溶存酸素(DO)、及びオ
ゾンの添加で増加したオゾン及び酸素を、パラジウムを
添加した気体透過膜モジュールの接ガス側に水素を、接
液側に水を供給することによって除去し、 3)イオン交換処理及び限外ろ過処理を行うことによ
り、純水あるいは超純水の純度を更に高くすることがで
きた。
As described above, in purifying pure water or ultrapure water, the apparatus of the present invention is: 1) The organic substance eluted from the ultrapure water production facility or the like is used in combination with ozone and ultraviolet irradiation. 2) Dissolved oxygen (DO) dissolved in the water to be treated and ozone and oxygen increased by the addition of ozone are added to the gas contacting side of the gas permeable membrane module containing palladium, and hydrogen is decomposed. Was removed by supplying water to the liquid contact side, and 3) by performing ion exchange treatment and ultrafiltration treatment, the purity of pure water or ultrapure water could be further increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施態様の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention.

【図2】本発明の実施態様の他の一例を示す模式図であ
る。
FIG. 2 is a schematic view showing another example of the embodiment of the present invention.

【図3】従来のサブシステムの模式図である。FIG. 3 is a schematic diagram of a conventional subsystem.

【図4】従来のオゾン殺菌併用サブシステムの模式図で
ある。
FIG. 4 is a schematic diagram of a conventional ozone sterilization combined use subsystem.

【図5】従来のオゾン殺菌併用サブシステムの他の一例
を示す模式図である。
FIG. 5 is a schematic view showing another example of a conventional ozone sterilization combined use subsystem.

【符号の説明】[Explanation of symbols]

1:純水供給ライン、2:三方弁、3:オゾン溶解器、
4:気体透過膜、5:混合器、6:オゾン水ライン、
7:オゾンガス供給ライン、8:オゾン発生器、9:オ
ゾン排ガスライン、10:オゾン水封管、11:紫外線
照射塔、12:パラジウム担持気体透過膜モジュール、
13:パラジウム担持気体透過膜、14:水素水封管、
15:水素排ガスライン、16:水素ガス供給ライン、
17:ポンプ、18:カートリッジ型イオン交換樹脂
塔、19:限外ろ過装置、20:排ガス処理装置、2
1:タンク、22:超純水供給ライン、23:ユースポ
イント、24:リターンライン、25:熱交換器、2
6:窒素シール
1: Pure water supply line, 2: Three-way valve, 3: Ozone dissolver,
4: Gas permeable membrane, 5: Mixer, 6: Ozone water line,
7: Ozone gas supply line, 8: Ozone generator, 9: Ozone exhaust gas line, 10: Ozone water sealing tube, 11: Ultraviolet irradiation tower, 12: Palladium-supported gas permeable membrane module,
13: Palladium-supported gas permeable membrane, 14: Hydrogen water sealed tube,
15: Hydrogen exhaust gas line, 16: Hydrogen gas supply line,
17: Pump, 18: Cartridge type ion exchange resin tower, 19: Ultrafiltration device, 20: Exhaust gas treatment device, 2
1: Tank, 22: Ultrapure water supply line, 23: Use point, 24: Return line, 25: Heat exchanger, 2
6: Nitrogen seal

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年9月25日[Submission date] September 25, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図3】 [Figure 3]

【図2】 [Fig. 2]

【図4】 [Figure 4]

【図5】 [Figure 5]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/70 Z 9045−4D 1/78 9045−4D (72)発明者 斉藤 孝行 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 中島 健 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 嶋 弘之 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location C02F 1/70 Z 9045-4D 1/78 9045-4D (72) Inventor Takayuki Saito Fujisawa City, Kanagawa Prefecture Hon Fujisawa 4-2-1 Ebara Research Institute Ltd. (72) Inventor Ken Nakajima Fujisawa, Kanagawa Prefecture 4-2-1 Hon Fujisawa Research Institute Ebara Research Institute (72) Inventor Hiroyuki Shima Shima 11-1 Haneda-Asahi-cho, Ota-ku Ebara Corporation

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 純水又は超純水からさらに高純度の超純
水を得る精製方法であって、前記精製方法が、(イ)原
水にオゾンを溶解する工程、(ロ)(イ)の処理水に紫
外線を照射する工程、(ハ)パラジウムを担持した気体
透過膜の接液側に(ロ)の処理水を通水し、接ガス側に
水素を供給する工程、(ニ)(ハ)の処理水をH型強酸
性カチオン交換樹脂とOH型アニオン交換樹脂とを混合
したイオン交換樹脂層に通水する工程、(ホ)(ニ)の
処理水を限外ろ過する工程、からなることを特徴とする
純水又は超純水の精製方法。
1. A purification method for obtaining even higher-purity ultrapure water from pure water or ultrapure water, the purification method comprising: (a) dissolving ozone in raw water; and (b) (a) A step of irradiating the treated water with ultraviolet rays, (c) a step of passing the treated water of (b) to the liquid contact side of the gas permeable membrane supporting palladium and supplying hydrogen to the gas contact side, (d) (iii) ), The step of passing the treated water through the ion exchange resin layer in which the H-type strongly acidic cation exchange resin and the OH type anion exchange resin are mixed, and the step (e) (d) of ultrafiltering the treated water. A method for purifying pure water or ultrapure water.
【請求項2】 純水又は超純水からさらに高純度の超純
水を得る精製方法であって、前記精製方法が、(イ)原
水の一部にオゾンを溶解する工程、(ロ)(イ)のオゾ
ン溶解水と残部の原水とを混合する工程、(ハ)(ロ)
の処理水に紫外線を照射する工程、(ニ)パラジウムを
担持した気体透過膜の接液側に(ハ)の処理水を通水
し、接ガス側に水素を供給する工程、(ホ)(ニ)の処
理水をH型強酸性カチオン交換樹脂とOH型アニオン交
換樹脂とを混合したイオン交換樹脂層に通水する工程、
(ヘ)(ホ)の処理水を限外ろ過する工程、からなるこ
とを特徴とする純水又は超純水の精製方法。
2. A purification method for obtaining even higher-purity ultrapure water from pure water or ultrapure water, the purification method comprising: (a) dissolving ozone in a part of raw water; (A) A step of mixing the ozone-dissolved water with the rest of the raw water, (c) (b)
Irradiating the treated water with ultraviolet light, (d) passing the treated water of (c) to the liquid contact side of the gas permeable membrane supporting palladium and supplying hydrogen to the gas contact side, (e) ( D) passing the treated water through an ion exchange resin layer in which an H-type strongly acidic cation exchange resin and an OH-type anion exchange resin are mixed,
(F) a step of ultrafiltering the treated water of (e), and a method for purifying pure water or ultrapure water.
【請求項3】 純水又は超純水からさらに高純度の超純
水を得る精製方法であって、前記精製方法が、(イ)ユ
ースポイントから戻ってくる精製された未使用の超純水
の一部又は全部にオゾンを溶解する工程、(ロ)原水と
(イ)のオゾン溶解水とを混合する工程、(ハ)(ロ)
の処理水に紫外線を照射する工程、(ニ)パラジウムを
担持した気体透過膜の接液側に(ハ)の処理水を通水
し、接ガス側に水素を供給する工程、(ホ)(ニ)の処
理水をH型強酸性カチオン交換樹脂とOH型アニオン交
換樹脂とを混合したイオン交換樹脂層に通水する工程、
(ヘ)(ホ)の処理水を限外ろ過する工程、からなるこ
とを特徴とする純水又は超純水の精製方法。
3. A purification method for obtaining ultrapure water of higher purity from pure water or ultrapure water, wherein the purification method is (a) purified unused ultrapure water returned from a point of use. Of (b) raw water and (a) ozone-dissolved water, (c) (b)
Irradiating the treated water with ultraviolet light, (d) passing the treated water of (c) to the liquid contact side of the gas permeable membrane supporting palladium and supplying hydrogen to the gas contact side, (e) ( D) passing the treated water through an ion exchange resin layer in which an H-type strongly acidic cation exchange resin and an OH-type anion exchange resin are mixed,
(F) a step of ultrafiltering the treated water of (e), and a method for purifying pure water or ultrapure water.
【請求項4】 前記オゾン溶解工程から排出されるオゾ
ン含有排ガスと、前記水素供給工程から排出される水素
含有排ガスとを混合し、水素燃焼触媒を有する触媒層で
処理することを特徴とする請求項1、2又は3記載の純
水又は超純水の精製方法。
4. The ozone-containing exhaust gas discharged from the ozone dissolution step and the hydrogen-containing exhaust gas discharged from the hydrogen supply step are mixed and treated with a catalyst layer having a hydrogen combustion catalyst. Item 4. A method for purifying pure water or ultrapure water according to item 1, 2 or 3.
【請求項5】 純水又は超純水からさらに高純度の超純
水を得る精製装置であって、前記精製装置が、(イ)原
水にオゾンを溶解するオゾン溶解装置と、(ロ)紫外線
照射装置と、(ハ)接液側に(ロ)の処理水を通水し、
接ガス側に水素を供給する手段を有するパラジウムを担
持した気体透過膜装置と、(ニ)H型強酸性カチオン交
換樹脂とOH型アニオン交換樹脂とを混合したイオン交
換樹脂層を有するイオン交換装置と、(ホ)限外ろ過装
置とを備え、(ヘ)前記(イ)から(ホ)までの装置相
互間を順次配管で接続したことを特徴とする純水又は超
純水の精製装置。
5. A refining apparatus for obtaining ultrapure water of higher purity from pure water or ultrapure water, wherein the refining apparatus comprises (a) an ozone dissolving device for dissolving ozone in raw water, and (b) ultraviolet rays. Pass the treated water of (b) to the irradiation device and (c) liquid contact side,
A gas permeable membrane device supporting palladium having a means for supplying hydrogen to the gas contact side, and (d) an ion exchange device having an ion exchange resin layer in which an H type strongly acidic cation exchange resin and an OH type anion exchange resin are mixed. And (e) an ultrafiltration device, and (f) a device for purifying pure water or ultrapure water, characterized in that the devices (a) to (e) are connected to each other in sequence by pipes.
【請求項6】 純水又は超純水からさらに高純度の超純
水を得る精製装置であって、前記精製装置が、(イ)原
水の一部にオゾンを溶解するオゾン溶解装置と、(ロ)
(イ)のオゾン溶解水と残部の原水とを混合する装置
と、(ハ)紫外線照射装置と、(ニ)接液側に(ハ)の
処理水を通水し、接ガス側に水素を供給する手段を有す
るパラジウムを担持した気体透過膜装置と、(ホ)H型
強酸性カチオン交換樹脂とOH型アニオン交換樹脂とを
混合したイオン交換樹脂層を有するイオン交換装置と、
(ヘ)限外ろ過装置とを備え、(ト)前記(イ)から
(ヘ)までの装置相互間を順次配管で接続したことを特
徴とする純水又は超純水の精製装置。
6. A refining device for obtaining even higher purity ultrapure water from pure water or ultrapure water, wherein the refining device comprises: (a) an ozone dissolving device for dissolving ozone in a part of raw water; B)
(A) A device for mixing the ozone-dissolved water with the rest of the raw water, (c) an ultraviolet irradiation device, (d) passing the treated water of (c) to the liquid contact side, and hydrogen to the gas contact side. A gas permeable membrane device supporting palladium having a supplying means, and (e) an ion exchange device having an ion exchange resin layer in which an H type strongly acidic cation exchange resin and an OH type anion exchange resin are mixed,
(F) An ultrafiltration device, and (g) a device for purifying pure water or ultrapure water, characterized in that the devices (a) to (f) are sequentially connected by piping.
【請求項7】 純水又は超純水からさらに高純度の超純
水を得る精製装置であって、前記精製装置が、(イ)ユ
ースポイントから戻ってくる精製された未使用の超純水
の一部又は全部にオゾンを溶解するオゾン溶解装置と、
(ロ)原水と(イ)のオゾン溶解水とを混合する装置
と、(ハ)紫外線照射装置と、(ニ)接液側に(ハ)の
処理水を通水し、接ガス側に水素を供給する手段を有す
るパラジウムを担持した気体透過膜装置と、(ホ)H型
強酸性カチオン交換樹脂とOH型アニオン交換樹脂とを
混合したイオン交換樹脂層を有するイオン交換装置と、
(ヘ)限外ろ過装置とを備え、(ト)前記(イ)から
(ヘ)までの装置相互間を順次配管で接続したことを特
徴とする純水又は超純水の精製装置。
7. A purification apparatus for obtaining ultrapure water of higher purity from pure water or ultrapure water, wherein the purification apparatus returns (a) purified, unused ultrapure water. An ozone dissolving device that dissolves ozone in part or all of
(B) A device that mixes raw water and (a) ozone-dissolved water, (c) an ultraviolet irradiation device, (d) water that passes through (c) the treated water to the wetted side, and hydrogen to the gas contacted side. A gas permeable membrane device supporting palladium having a means for supplying hydrogen, and (e) an ion exchange device having an ion exchange resin layer in which an H type strongly acidic cation exchange resin and an OH type anion exchange resin are mixed,
(F) An ultrafiltration device, and (g) a device for purifying pure water or ultrapure water, characterized in that the devices (a) to (f) are sequentially connected by piping.
【請求項8】 前記精製装置に、電解方式のオゾン発生
装置を設け、発生するオゾンと水素とをそれぞれオゾン
溶解装置と気体透過膜とに供給するための手段を設けた
ことを特徴とする請求項5、6又は7記載の純水又は超
純水の精製装置。
8. The refining apparatus is provided with an electrolysis type ozone generator, and means for supplying the generated ozone and hydrogen to the ozone dissolving device and the gas permeable membrane, respectively. Item 5. A device for purifying pure water or ultrapure water according to item 6 above.
JP3140593A 1991-05-17 1991-05-17 Purification method and device for pure water or ultrapure water Expired - Fee Related JPH0818040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3140593A JPH0818040B2 (en) 1991-05-17 1991-05-17 Purification method and device for pure water or ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3140593A JPH0818040B2 (en) 1991-05-17 1991-05-17 Purification method and device for pure water or ultrapure water

Publications (2)

Publication Number Publication Date
JPH0699197A true JPH0699197A (en) 1994-04-12
JPH0818040B2 JPH0818040B2 (en) 1996-02-28

Family

ID=15272304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3140593A Expired - Fee Related JPH0818040B2 (en) 1991-05-17 1991-05-17 Purification method and device for pure water or ultrapure water

Country Status (1)

Country Link
JP (1) JPH0818040B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038364A (en) * 1999-08-02 2001-02-13 Kurita Water Ind Ltd Sterilization method and device for ultrapure water production and feed device
JP2001330969A (en) * 2000-05-23 2001-11-30 Sekisui Chem Co Ltd Apparatus for removing photoresist
JP2002057136A (en) * 2000-08-09 2002-02-22 Sekisui Chem Co Ltd Wafer washing device
EP1188473A1 (en) * 1999-04-27 2002-03-20 Kurita Water Industries Ltd. Apparatus for producing water containing dissolved ozone
JP2004169746A (en) * 2002-11-18 2004-06-17 Japan Organo Co Ltd Fluid transfer piping, fluid transfer device, and assembling method
WO2005095280A1 (en) * 2004-03-31 2005-10-13 Kurita Water Industries Ltd. Apparatus for producing ultrapure water
KR100796561B1 (en) * 2006-08-16 2008-01-23 지은상 Deionized water system with membrabe separation technology for power plant
KR100823460B1 (en) * 2007-06-04 2008-05-08 주식회사 현진기업 An apparatus of virus and bacteria remove using sterilizer and oxygen supply
JP2009140632A (en) * 2007-12-04 2009-06-25 Toshiba Fuel Cell Power Systems Corp Fuel cell system
JP4552327B2 (en) * 2001-01-18 2010-09-29 栗田工業株式会社 Ultrapure water production equipment
JP2010240642A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing dissolved oxygen-removed water, apparatus for manufacturing dissolved oxygen-removed water, dissolved oxygen treatment tank, method of manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, and method of cleaning electronic components
KR20110053946A (en) * 2008-07-28 2011-05-24 쿠리타 고교 가부시키가이샤 Process and equipment for the treatment of water containing organic matter
JP2012525247A (en) * 2009-04-30 2012-10-22 ロワラ Purification method and apparatus for removing xenobiotics in water
CN105858967A (en) * 2016-05-27 2016-08-17 河南师范大学 Method for deeply treating municipal sewage and reusing treated sewage in circulating cooling water system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188473A1 (en) * 1999-04-27 2002-03-20 Kurita Water Industries Ltd. Apparatus for producing water containing dissolved ozone
EP1188473A4 (en) * 1999-04-27 2005-10-12 Kurita Water Ind Ltd Apparatus for producing water containing dissolved ozone
JP2001038364A (en) * 1999-08-02 2001-02-13 Kurita Water Ind Ltd Sterilization method and device for ultrapure water production and feed device
JP2001330969A (en) * 2000-05-23 2001-11-30 Sekisui Chem Co Ltd Apparatus for removing photoresist
JP2002057136A (en) * 2000-08-09 2002-02-22 Sekisui Chem Co Ltd Wafer washing device
JP4636659B2 (en) * 2000-08-09 2011-02-23 積水化学工業株式会社 Substrate cleaning device
JP4552327B2 (en) * 2001-01-18 2010-09-29 栗田工業株式会社 Ultrapure water production equipment
JP2004169746A (en) * 2002-11-18 2004-06-17 Japan Organo Co Ltd Fluid transfer piping, fluid transfer device, and assembling method
JPWO2005095280A1 (en) * 2004-03-31 2008-02-21 栗田工業株式会社 Ultrapure water production equipment
WO2005095280A1 (en) * 2004-03-31 2005-10-13 Kurita Water Industries Ltd. Apparatus for producing ultrapure water
JP5045099B2 (en) * 2004-03-31 2012-10-10 栗田工業株式会社 Ultrapure water production apparatus and operation method of ultrapure water production apparatus
KR100796561B1 (en) * 2006-08-16 2008-01-23 지은상 Deionized water system with membrabe separation technology for power plant
KR100823460B1 (en) * 2007-06-04 2008-05-08 주식회사 현진기업 An apparatus of virus and bacteria remove using sterilizer and oxygen supply
JP2009140632A (en) * 2007-12-04 2009-06-25 Toshiba Fuel Cell Power Systems Corp Fuel cell system
KR20110053946A (en) * 2008-07-28 2011-05-24 쿠리타 고교 가부시키가이샤 Process and equipment for the treatment of water containing organic matter
JP2010240642A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing dissolved oxygen-removed water, apparatus for manufacturing dissolved oxygen-removed water, dissolved oxygen treatment tank, method of manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, and method of cleaning electronic components
JP2012525247A (en) * 2009-04-30 2012-10-22 ロワラ Purification method and apparatus for removing xenobiotics in water
CN105858967A (en) * 2016-05-27 2016-08-17 河南师范大学 Method for deeply treating municipal sewage and reusing treated sewage in circulating cooling water system

Also Published As

Publication number Publication date
JPH0818040B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
JPH0647105B2 (en) Purification method and device for pure water or ultrapure water
JP2568617B2 (en) Method for decomposing organic substances and bacteria in water supply
US6464867B1 (en) Apparatus for producing water containing dissolved ozone
US6991733B2 (en) Process for removing organics from ultrapure water
JPH05305298A (en) Method and apparatus for water treatment
JPH0699197A (en) Method and equipment for purifying pure water or ultrapure water
JPH0790219B2 (en) Pure water production apparatus and production method
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
CN114920400A (en) Treatment process method and system for preparing ultrapure water from urban reclaimed water
JP4635827B2 (en) Ultrapure water production method and apparatus
JPH11226569A (en) Apparatus for removing organic substance in water and apparatus for producing ultrapure water
JPH10309588A (en) Water treatment, water treating device and pure water producing device
JPH07241598A (en) Water treatment apparatus
JPH10277572A (en) Removal of organic matter in water
JP2000308815A (en) Producing device of ozone dissolved water
JPH09192658A (en) Manufacturing device of ultrapure water
JPH0889976A (en) Method for removing organic matter in water
JP3645007B2 (en) Ultrapure water production equipment
JP3543435B2 (en) Ultrapure water production method
JPH01284385A (en) Process and apparatus for producing pure water and superpure water
JPH05305297A (en) Apparatus for treating acid drainage containing organic material
JP2018118253A (en) Ultrapure water production method and ultrapure water production system
JPH05138167A (en) Ultra pure water supplying equipment
JPH09220560A (en) Ultrapure water making apparatus
JP2968901B2 (en) Makeup water production equipment for power plants

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees