KR100796561B1 - Deionized water system with membrabe separation technology for power plant - Google Patents
Deionized water system with membrabe separation technology for power plant Download PDFInfo
- Publication number
- KR100796561B1 KR100796561B1 KR1020060076969A KR20060076969A KR100796561B1 KR 100796561 B1 KR100796561 B1 KR 100796561B1 KR 1020060076969 A KR1020060076969 A KR 1020060076969A KR 20060076969 A KR20060076969 A KR 20060076969A KR 100796561 B1 KR100796561 B1 KR 100796561B1
- Authority
- KR
- South Korea
- Prior art keywords
- water
- membrane
- backwash
- raw water
- membrane separation
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 219
- 238000000926 separation method Methods 0.000 title claims description 55
- 239000008367 deionised water Substances 0.000 title abstract description 4
- 238000005516 engineering process Methods 0.000 title description 6
- 239000012528 membrane Substances 0.000 claims abstract description 150
- 239000000126 substance Substances 0.000 claims abstract description 27
- 238000000108 ultra-filtration Methods 0.000 claims abstract description 24
- 238000001471 micro-filtration Methods 0.000 claims abstract description 20
- 239000002351 wastewater Substances 0.000 claims abstract description 19
- 239000011148 porous material Substances 0.000 claims abstract description 10
- 238000007664 blowing Methods 0.000 claims abstract description 3
- 238000001223 reverse osmosis Methods 0.000 claims description 47
- 239000003456 ion exchange resin Substances 0.000 claims description 24
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 24
- 238000001728 nano-filtration Methods 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 239000007787 solid Substances 0.000 claims description 17
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 238000005429 turbidity Methods 0.000 claims description 15
- 238000011033 desalting Methods 0.000 claims description 8
- 239000010935 stainless steel Substances 0.000 claims description 8
- 229910001220 stainless steel Inorganic materials 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 8
- 238000011001 backwashing Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 239000003513 alkali Substances 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 239000003014 ion exchange membrane Substances 0.000 claims description 5
- 238000011010 flushing procedure Methods 0.000 claims description 4
- 238000004064 recycling Methods 0.000 claims description 4
- DIZPMCHEQGEION-UHFFFAOYSA-H Aluminium sulfate Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 3
- 230000001112 coagulant Effects 0.000 claims description 3
- 239000000701 coagulant Substances 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 229940037003 alum Drugs 0.000 claims 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims 1
- 229910052804 chromium Inorganic materials 0.000 claims 1
- 239000011651 chromium Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 3
- 229910010272 inorganic material Inorganic materials 0.000 abstract description 2
- 239000011147 inorganic material Substances 0.000 abstract description 2
- 238000007654 immersion Methods 0.000 abstract 1
- 239000011368 organic material Substances 0.000 abstract 1
- 239000012466 permeate Substances 0.000 description 22
- 150000002500 ions Chemical class 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 238000001914 filtration Methods 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 239000002585 base Substances 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 6
- 238000005342 ion exchange Methods 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 238000007872 degassing Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000003957 anion exchange resin Substances 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000003673 groundwater Substances 0.000 description 4
- 239000008239 natural water Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- 241000195493 Cryptophyta Species 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000010612 desalination reaction Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000000909 electrodialysis Methods 0.000 description 3
- -1 hydrogencarbonate ions Chemical class 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 230000000813 microbial Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- KEAYESYHFKHZAL-UHFFFAOYSA-N sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241000501667 Etroplus Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N HCl Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000002378 acidificating Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005115 demineralization Methods 0.000 description 2
- 230000002328 demineralizing Effects 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000005374 membrane filtration Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 229940006477 nitrate ion Drugs 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N water-d2 Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- LKALLEFLBKHPTQ-UHFFFAOYSA-N 2,6-bis[(3-tert-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound OC=1C(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=CC(C)=CC=1CC1=CC(C)=CC(C(C)(C)C)=C1O LKALLEFLBKHPTQ-UHFFFAOYSA-N 0.000 description 1
- FCYKAQOGGFGCMD-UHFFFAOYSA-N 3,7,8-trihydroxy-3-methyl-10-oxo-1,4-dihydropyrano[4,3-b]chromene-9-carboxylic acid Chemical compound O1C2=CC(O)=C(O)C(C(O)=O)=C2C(=O)C2=C1CC(C)(O)OC2 FCYKAQOGGFGCMD-UHFFFAOYSA-N 0.000 description 1
- 241000206761 Bacillariophyta Species 0.000 description 1
- 241000195628 Chlorophyta Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000243127 Geodia Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 229940055023 Pseudomonas aeruginosa Drugs 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 206010039447 Salmonellosis Diseases 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 206010040550 Shigella infection Diseases 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- 230000003078 antioxidant Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000005591 charge neutralization Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000000249 desinfective Effects 0.000 description 1
- 230000002542 deteriorative Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000002550 fecal Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000002509 fulvic acid Substances 0.000 description 1
- 229940095100 fulvic acid Drugs 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000004021 humic acid Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 230000002458 infectious Effects 0.000 description 1
- 230000001264 neutralization Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229940085991 phosphate ion Drugs 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000011528 polyamide (building material) Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003638 reducing agent Substances 0.000 description 1
- 239000002455 scale inhibitor Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229940001607 sodium bisulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/145—Ultrafiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/147—Microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/02—Non-contaminated water, e.g. for industrial water supply
- C02F2103/04—Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
Abstract
Description
도 1은 본 발명에 따른 순수제조시스템을 보여주는 구성도,1 is a block diagram showing a pure manufacturing system according to the present invention,
도 2(a),(b)는 본 발명에 따른 자동세척여과기를 동작상태를 보여주는 개략도.Figure 2 (a), (b) is a schematic diagram showing an operating state of the automatic filter according to the present invention.
* 도면의 주요 부분에 대한 부호 설명 *Explanation of symbols on the main parts of the drawings
10 : 원수 집수조 15 : 원수펌프10: raw water collection tank 15: raw water pump
20 : 자동세척여과기20: automatic washing filter
30 : 역세가압형 정밀 또는 한외 여과막30: backwashing type precision or ultrafiltration membrane
40 : 역세침지형 정밀 또는 한외 여과막40: backwash fine type or ultrafiltration membrane
50 : 전처리 집수조 51 : 미생물 억제제50: pretreatment sump 51: microbial inhibitor
52 : 역세펌프 60 : 이송펌프52: backwash pump 60: transfer pump
70 : 산화방지제 80 : 스케일방지제70: antioxidant 80: scale inhibitor
90 : pH조정제 100 : 정밀여과기90: pH adjuster 100: precision filter
110 : 열교환기 120 : 고압펌프110: heat exchanger 120: high pressure pump
125 : 에너지 회수장치 130 : 나노여과막분리장치125: energy recovery device 130: nano filtration membrane separation device
140 : 1차 역삼투막분리장치 150 : 1차 투과수 집수조140: primary reverse osmosis membrane separation device 150: primary permeate collection tank
155 : 알카리 주입장치 160 : 승압펌프155: alkali injection device 160: boost pump
170 : 2차 역삼투막분리장치 180 : 2차 투과수 집수조170: secondary reverse osmosis membrane separation unit 180: secondary permeate collection tank
190 : 투과수 이송펌프 200 : 막접촉기190: permeate feed pump 200: membrane contactor
210 : 전기적 연속순수화장치 220 : 순수집수조210: electrical continuous pure water purification device 220: pure water collection tank
230 : 순수 이송펌프230: pure water transfer pump
본 발명은 막분리를 이용한 발전소용 순수제조방법에 관한 것으로, 보다 상세하게는 화공약품을 사용하지 않고 물속의 무기물질 및 유기물질을 제거할 수 있으며 여과막 역세시 역세폐수를 재이용하도록 하여 막분리를 이용한 발전소용 순수제조방법에 관한 것이다.The present invention relates to a pure water manufacturing method for a power plant using membrane separation, and more particularly, it is possible to remove inorganic substances and organic substances in water without using chemicals, and to reuse membrane backwashing water when backwashing filtration membranes. It relates to a pure water manufacturing method for power plants used.
물은 생명의 근원이며 절대 없어서는 안 될 귀중한 자원중의 하나이다. 그러나 이와 같은 물이 인구의 증가 및 급속한 산업화로 인해 부족해지면서 전 세계적으로 물 부족 사태는 매년 심각해지고 있으며, 현재 전 세계 인구중 40%가 식수난을 겪고 있는 실정이다. Water is the source of life and one of the indispensable resources. However, due to the shortage of water due to the increase in population and rapid industrialization, the global water shortage is getting worse every year, and 40% of the world's population is suffering from drinking water shortage.
최근 세계은행(IBRD)은 20세기의 국제간 분쟁원인이 석유에 있었다면, 21세기의 분쟁원인은 물이 될 것이라고 경고한 바 있으며, 이러한 대규모 물 분쟁과 재난이 예상되는 것은 인구증가에 따른 물 사용량의 급증과 물 자원의 지역적 편재 때문이다. Recently, the World Bank (IBRD) warned that if the cause of international conflict in the 20th century was in oil, the cause of the 21st century would be water. This is due to a surge in local and regional ubiquity of water resources.
즉, 1940년도에 23억명이던 세계인구가 1990년도에는 53억명으로 2배이상 증가하였으며, 2025년에는 인구가 83억에 이를 것으로 추산하고 있다. 현재, 우리나라의 수자원은, 연간 강수량이 1,283㎜로 세계 평균(973㎜)의 1.3배나 크지만 좁은 국토면적과 높은 인구밀도로 인해 1인당 수자원 강수량은 2,705㎥/년로 세계평균(22,096㎥/년)의 12%에 지나지 않아 국제적으로 물 부족국가로 분류되고 있다. In other words, the world's population, which was 2.3 billion in 1940, more than doubled to 5.3 billion in 1990, and the population is expected to reach 8.3 billion by 2025. At present, Korea's water resources are 1,283mm with annual average 1.3 times larger than the global average (973mm), but due to the narrow land area and high population density, the per capita water resource precipitation is 2,705㎥ / year, the world average (22,096㎥ / year) Only 12% of the country is internationally classified as a water shortage country.
연 강수의 부존 총량 중 증발로 인한 손실 등을 빼면 이용 가능량은 26%에 불과하고, 특히 지하수 이용 가능량은 연간 133억㎥로 추정되지만, 1999년 현재 이용량은 연간 40억㎥에 지나지 않는다. 더구나 연도별, 지역별, 계절별 강수량의 차이가 크고, 변화의 폭이 커 수자원 관리에 매우 불리한 특성을 갖고 있다. Excluding the loss due to evaporation from the total amount of annual precipitation, only 26% of the available water is available. In particular, the amount of groundwater available is estimated at 13.3 billion cubic meters per year, but as of 1999, its use is only 4 billion cubic meters per year. In addition, the difference in precipitation by year, region, and season is large and the change is large, which is very disadvantageous for water resource management.
우리나라 수자원의 전체 이용량 333억톤 중 자연하천수 취수가 50%나 되어 조금만 가물어도 취수장애가 발생하므로 이수안전도를 높이기 위한 댐 건설과 하천정비 및 대체수자원의 개발이 시급하다. Since the intake of natural river water is 50% out of the total use of water resources of 33.3 billion tons, it is urgent to develop a dam, improve the river safety and develop alternative water resources.
아울러, 날로 악화되고 있는 수자원 환경을 고려할 때 수질사고나 엘리뇨에 의한 이상기후 등 비상시에 대비하여 용수원 다변화가 추진되어야 하며, 이러한 수자원 개발에는 용수의 재이용측면의 중수도, 지하수 개발, 해수담수화, 인공강우, 빗물이용 등도 있지만 기존의 수처리 방식의 혁신적인 기술개발도 필요하다In addition, considering the deteriorating water resources environment, diversification of water sources should be promoted in case of emergencies such as water quality accidents or abnormal weather caused by El Niño.In such water resources development, water re-use aspects such as heavy water, groundwater development, seawater desalination, artificial rainfall It also uses rainwater, but it is also necessary to develop innovative technologies of existing water treatment methods.
본 발명은 물 사용이 많은 우리나라 중추적 산업인 발전소와 반도체 산업등에서 사용되는 정수(순수: Deionized Water or Pure Water)처리기술이 이온교환수지공법에 의하여 수십년간이나 지나오면서도 과거와 크게 다르지 않게 적용이 됨으로 인해 과도한 시설비 증가, 넓은 설치면적 소요, 다량의 화공약품 사용에 따른 환경오염(폐수 및 유해가스 발생), 요구되는 처리수질 관리를 위한 운전 및 유지관리비용 증가 뿐만 아니라 고가의 수자원을 단지 담수로만 이용을 함으로써 안정된 수자원 확보문제와 이에 따른 인접 주민들과의 민원등도 야기되고 있는 실정이다. The present invention is applied to the purified water (pure: Deionized Water or Pure Water) treatment technology used in the power plant and semiconductor industry, which is a pivotal industry in Korea, which has a lot of water use. This results in excessive facility costs, a large installation area, environmental pollution (wastewater and harmful gas generation) due to the use of a large amount of chemicals, and increased operation and maintenance costs for managing the required water quality. By using it, there is a problem of securing stable water resources and the complaints from neighboring residents.
다음은 종래의 발전소에 설치된 순수처리설비에 대하여 설명한다. 순수(純水)를 사용하는 곳은 크게 원자력발전, (복합)화력발전 및 열병합발전등이 있다. 상기 발전소의 순수처리설비구성은 다음과 같다.Next, a pure water treatment facility installed in a conventional power plant will be described. The places where pure water is used include nuclear power generation, combined cycle power generation and cogeneration. The pure water treatment plant configuration of the power plant is as follows.
□ 전처리공정(Pretreatment)□ Pretreatment
처리하고자 하는 원수(강물, 댐, 지하수, 저수지 및 하천수등)을 취수하여 스크린을 거친후 화학적처리(중화, 응집, 침전)을 거치거나 곧바로 압력식여과장치를 통과 처리하는 공정으로 원수속에 함유된 탁도, 색도, 부유물질등을 제거하는 공정이다.The raw water (river, dam, groundwater, reservoir and river water) to be treated is collected and subjected to chemical treatment (neutralization, flocculation, sedimentation) or immediately through a pressure filtration system. It is a process to remove turbidity, color, and suspended solids.
□ 탈염공정(Demineralization or Make-up process)□ Demineralization or Make-up process
전처리한 원수를 이온교환(Ion Exchange)에 의한 공법을 이용하는 방법으로 이온교환수지를 압력용기에 충진을 하여 처리하고자 하는 원수(강물, 댐, 지하수, 저수지 및 하천수등)를 통수시켜 수중에 용해되어 있는 이온성 물질을 제거하는 방법이다.The pre-treated raw water is filled with pressure vessels by using ion exchange method, and the raw water (river, dam, ground water, reservoir and river water) to be treated is dissolved in water. It is a method of removing ionic substances.
발전소 용수로 사용하는 이온교환수지방식은 주로 강산성양이온교환수지탑 - 탈기탑 - 강염기성음이온교환수지탑(2B3T)으로 알카리도가 높은 물을 처리하고 잔류실리카가 낮은 물을 얻고자 하는 경우에 사용되며, 이 장치는 강산성양이온교환수지탑 - 강염기성음이온교환수지탑(2B2T) 방법보다는 시설비가 다소 높으나, 운전 비는 적게 들며 탈기방식도 특별히 필요할 경우에는 블로워 방식이 아닌 진공탈기장치를 사용하기도 한다.The ion exchange resin system used for power plant is mainly used to treat high alkalinity water and obtain low residual silica with strong acid cationic exchange resin tower-degassing tower-strong basic anion exchange resin tower (2B3T). This device is somewhat higher in facility cost than strong acid positive ion exchange resin tower-strong base anion exchange resin tower (2B2T) method, but it requires less operating cost and degassing method is not blower type but vacuum degassing device is used.
강산성양이온교환수지탑 - 탈기탑 - 강염기성음이온교환수지탑(2B3T) 방식으로 처리된 물의 순도를 향상시키기 위하여 이어서 혼상식 이온교환수지탑을 설치하고 있다.Strong acid positive ion exchange resin tower-Degassing column-In order to improve the purity of water treated with strong basic anion exchange resin tower (2B3T) method, a mixed-phase ion exchange resin tower was then installed.
이온교환 공법의 적용은 병류식, 향류식 그리고 병.향류식을 병용하여 사용하기도 한다. 이온교환수지를 이용한 배열방법이 원수에 함유된 이온성 물질과 시설비 및 운전비를 고려하여 여러 가지가 있으며 배열방법 일부를 열거하면 아래와 같다.The application of the ion exchange method may be used in combination of cocurrent, countercurrent and bottle countercurrent. There are several methods for arranging ion exchange resins in consideration of the ionic substances contained in raw water, facility costs, and operation costs.
1) 알카리도가 높고 실리카 제거율을 높이기 위해서는 강산성 이온교환수지-블로워식탈기탑-강염기성 이온수지탑으로 구성한다.1) In order to increase alkalinity and increase silica removal rate, it is composed of strong acid ion exchange resin, blower type degassing tower, and strong base ion resin tower.
2) 높은 염화물이 함유되거나 알카리도가 낮은 물을 처리하기 위해서는 강산성 이온교환수지-약염기성 이온교환수지-강염기성 이온교환수지로 구성한다.2) In order to treat water containing high chloride or low alkalinity, it is composed of strong acidic ion exchange resin-weakly basic ion exchange resin-strong base ion exchange resin.
3) 높은 염화물이 함유되거나 알카리도가 높은 물을 처리하기 위해서는 강산성 이온교환수지-탈기탑-약염기성 이온교환수지-강염기성 이온교환수지로 구성한다.3) It is composed of strong acidic ion exchange resin-deaeration tower-weakly basic ion exchange resin-strong base ion exchange resin to treat high chloride or high alkalinity water.
4) 알카리도, 경도, 염화물 및 황산염의 농도가 높은 물을 처리하기 위해서는 약산성 이온교환수지-강산성 이온교환수지-탈기탑-약염기성 이온교환수지-강염기성 이온교환수지로 구성한다.4) To treat water with high concentration of alkalinity, hardness, chloride and sulfate, it is composed of weak acid ion exchange resin, strong acid ion exchange resin, degassing column, weak base ion exchange resin, and strong base ion exchange resin.
□ 후처리 공정(Posttreatment)□ Posttreatment
이온교환수지탑을 이용한 탈염공정에서 용해성 이온 물질을 제거한 처리수질의 비저항(Resistivity)치가 수온이 25℃에서 200,000 ~ 1,000,000Ω-㎝(전도도로 5~1 Micromhos-㎝)정도로 그 이상의 비저항치를 올리고 함유된 용해성 실리카를 제거하기 위한 공정으로 양이온과 음이온교환수지가 혼합한 혼상식 이온교환수지탑을 구성한다.In the desalination process using an ion exchange resin tower, the resistivity value of the treated water without soluble ions is raised to 200,000 to 1,000,000 m-cm (conductivity of 5 to 1 micromhos-cm) at 25 ° C. In order to remove the soluble silica, a mixed-phase ion exchange resin tower comprising a cation and an anion exchange resin is constituted.
상기 종래의 순수처리설비에서 전처리 공정에서는 급속 또는 완속여과장치에서 여지(Media)를 정기적으로 교환하여야 하며, 여과장치를 사용하면서 역세폐수가 발생하는 문제점이 있다.In the conventional pure water treatment facility, the pretreatment process requires regular exchange of media in a rapid or slow filtration device, and there is a problem in that backwash waste water is generated while using a filtration device.
또한 최근의 고도산업 발전과 함께 원수에 함유된 물질들이 복잡 다양화되면서 이온교환수지 공법에 의한 제거에 한계가 있고, 이온교환수지장치는 염산 또는 수산화나트륨을 사용하여 이온교환수지장치를 재생하여야 하므로 2차적인 재생(오염)폐수가 발생하는 문제가 있다.In addition, with the recent high industrial development, as the materials contained in raw water are diversified in complexity, there is a limit to the removal by ion exchange resin method, and the ion exchange resin device must be regenerated using hydrochloric acid or sodium hydroxide. There is a problem that secondary regeneration (pollution) waste water occurs.
본 발명은 상술한 제반 문제점을 해결하고자 안출된 것으로, 역세형여과장치에서 발생되는 역세폐수를 재활용할 수 있는 막분리를 이용한 발전소용 순수제조방법을 제공하고자 함에 그 목적이 있다.The present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a pure water production method for power plants using membrane separation that can recycle backwash wastewater generated in a backwash filter.
본 발명의 다른 목적은 전기적 연속순수화장치를 이용함으로써 화공약품을 사용하지 않고도 원수의 무기물질을 제거할 수 있는 막분리를 이용한 발전소용 순수제조방법을 제공하고자 함에 있다.Another object of the present invention is to provide a pure water production method for power plants using membrane separation that can remove the inorganic substances of raw water without using chemicals by using an electrical continuous pure water purification device.
상술한 바와 같은 목적을 구현하기 위한 본 발명의 막분리를 이용한 발전소용 순수제조방법은, 원수속에 함유된 탁도, 색도, 부유물질을 제거하기 위한 전처리단계와 전처리한 원수에 용해되어 있는 이온성 물질을 제거하기 위한 탈염단계 및 상기 탈염단계에서 용해성 이온물질을 제거한 처리수질의 비저항치를 올리기 위한 후처리단계로 이루어진 발전소에 사용되는 순수제조방법에 있어서, 상기 전처리단계에서는 원수집수조로부터 공급된 원수를 자동세척여과기를 거친 후 역세형 정밀여과막 또는 역세형 한외여과막을 통과시켜 전처리집수조로 이송시키고; 상기 역세형 정밀여과막 또는 역세형 한외여과막의 표면에서 이물질들로 인하여 압력이 상승하게 되면 자동으로 원수의 유입이 차단되고 처리흐름의 반대로 물과 압축공기을 불어넣어서 막의 표면에 퇴적된 이물질들을 탈리시키는 역세펌프를 가동하게 되며;상기 역세형 정밀여과막 또는 역세형 한외여과막을 역세하는 과정에서 발생되는 역세폐수를 공극제어형 섬유상 여과기 또는 가압형 필타프레스를 통과시켜 통과된 물은 재활용하기 위해 원수집수조로 이송하는 것;으로 이루어진다.The pure water manufacturing method for a power plant using the membrane separation of the present invention for achieving the above object, the pre-treatment step for removing turbidity, color, suspended matter contained in the raw water and the ionic substance dissolved in the pretreated raw water In the pure water production method used in the power plant consisting of a desalting step for removing the water and a post-treatment step for raising the specific resistance of the treated water from which the soluble ions are removed in the desalting step, in the pretreatment step, the raw water supplied from the raw water collection tank is After passing through an automatic washing filter, and passed through a backwash type microfiltration membrane or a backwash type ultrafiltration membrane to transfer to a pretreatment collection tank; When the pressure rises due to foreign matters on the surface of the backwash type microfiltration membrane or the backwash type ultrafiltration membrane, the inflow of raw water is automatically blocked, and the backwash that desorbs the foreign substances deposited on the surface of the membrane by blowing water and compressed air in the reverse of the processing flow The pump is operated; The backwash wastewater generated during the backwashing of the backwash type microfiltration membrane or the backwash type ultrafiltration membrane is passed through a pore-controlled fibrous filter or a pressurized filter press to transfer the water to the raw water collection tank for recycling. It consists of;
이 경우 상기 전처리단계에서 원수집수조로부터 공급된 원수는, 플라스틱 또는 스텐레스스틸로 제작된 압력용기 내부에 스텐레스망의 바스켓이 설치되고 상기 바스켓의 내부로 실린더가 왕복되며 상기 실린더의 왕복운동시 0.1~40mm의 이물질이 플러싱밸브를 통해 배출되는 자동세척여과기를 통과한 후, 역세형 정밀여과막 또는 역세형 한외여과막을 통과하는 것이 바람직하다.In this case, the raw water supplied from the raw water collection tank in the pretreatment step, a stainless steel basket is installed in the pressure vessel made of plastic or stainless steel, the cylinder is reciprocated into the basket and 0.1 ~ during the reciprocating motion of the cylinder After 40 mm of foreign matter passes through the automatic washing filter discharged through the flushing valve, it is preferable to pass through the backwash type microfiltration membrane or the backwash type ultrafiltration membrane.
또한 상기 공극제어형 섬유상 여과기 또는 가압형 필타프레스에 유입되는 역세 폐수에 탁도와 부유성 물질의 응집성을 향상시키기 위하여 무기응집제인 황산알루미늄(Alum) 또는 폴리알루미늄크로라이드(PAC)를 0.1~10 ppm 주입하거나 응집성을 높이고 함수율을 좋게 하기 위하여 유기성 고분자 응집제를 순차적으로 주입하는 것이 바람직하다.In addition, 0.1 to 10 ppm of inorganic coagulant aluminum sulfate or polyaluminum chromide (PAC) is injected to improve turbidity and cohesion of suspended solids in the backwash wastewater flowing into the pore-controlled fibrous filter or pressurized filter press. In order to increase the cohesiveness and improve the water content, it is preferable to sequentially inject the organic polymer flocculant.
또한 상기 탈염단계는, 원수의 종류에 따라 나노여과막분리장치 또는 1차 역삼투막분리장치를 통과시키고; 상기 나노여과막분리장치 또는 1차 역삼투막분리장치를 통과한 투과수에 알카리 주입장치에서 수산화나트륨을 주입하여 투과수의 pH가 7이상으로 되어 2차 역삼투막분리장치를 통과시키는 것;이 바람직하다.In addition, the desalting step, according to the type of raw water through the nanofiltration membrane separation apparatus or the first reverse osmosis membrane separation apparatus; Injecting sodium hydroxide from the alkali injection device to the permeated water passed through the nanofiltration membrane separation device or the first reverse osmosis membrane separation device to pass through the secondary reverse osmosis membrane separation device so that the pH of the permeate water is 7 or more.
또한 상기 후처리단계에서는, 직류전원을 공급하는 2개의 전극체(Anode와 Cathode)사이에 양/음 이온교환막이 교차하여 층층이 배열되어 있고 그 사이에 이온교환수지가 채워져 있어 기전력을 이용하여 투과수속에 미량 함유된 이온들을 탈염화시키는 전기적 연속순수화장치를 통과시키는 단계;를 포함하는 것이 바람직하다.In the post-treatment step, the positive and negative ion exchange membranes intersect between the two electrode bodies (Anode and Cathode) for supplying the DC power, and the layer layers are arranged, and the ion exchange resin is filled therebetween. It is preferable to include; passing through an electric continuous pure water purification device for desalting the ions contained in the trace amount.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.Hereinafter, the configuration and operation of the preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 순수제조시스템을 보여주는 구성도이고, 도 2(a),(b)는 본 발명에 따른 자동세척여과기를 동작상태를 보여주는 개략도이다.1 is a block diagram showing a pure water production system according to the present invention, Figure 2 (a), (b) is a schematic diagram showing the operating state of the automatic filter according to the present invention.
본 발명에서는 처리하고자 하는 원수(原水)중에 함유된 물질들로는 아래와 같다.In the present invention, the substances contained in the raw water to be treated are as follows.
1) 무기염류(Inorganic matters)1) Inorganic matters
양이온류: 나트륨(Na+), 마그네슘(Mg+2), 칼륨(K+), 칼슘(Ca+2), 철(Fe+2), 아 연(Zn+2), 구리(Cu+2), 알루미늄(Al+3), 망간(Mn+2).Cations: sodium (Na + ), magnesium (Mg +2 ), potassium (K + ), calcium (Ca +2 ), iron (Fe +2 ), zinc (Zn +2 ), copper (Cu +2 ) , Aluminum (Al +3 ), manganese (Mn +2 ).
음이온류: 염소이온(Cl-), 황산이온(SO4 2 -), 중탄산이온(HCO3 -), 질산이온(NO3 -), 인산이온(PO4 -3), 실리카, 할로겐 화합물등.Negative ion current: chlorine ion (Cl -), sulfate ion (SO 4 2 -), hydrogencarbonate ions (HCO 3 -), nitrate ion (NO 3 -), phosphate ion (PO 4 -3), silica, such as a halogen compound.
2) 유기물질(Organic matters)2) Organic matters
후민산, 펄빅산, 페놀,농약류, 트리할로메탄, 기타 유기용매류.Humic acid, fulvic acid, phenol, pesticides, trihalomethane and other organic solvents.
3) 미생물(Microorganism)3) Microorganism
분원성 연쇄상구균, 녹농균, 살모넬라, 쉬겔라, 대장균. 수인성전염균, 바이러스, 곰팡이류, 조류(녹조류, 규조류, 와편모류등), 원생동물(지오디아, 크립토스포로디윰등)Fecal Streptococcus, Pseudomonas aeruginosa, Salmonella, Shigella, E. coli. Waterborne infectious bacteria, viruses, fungi, algae (green algae, diatoms, coccyx), protozoa (Geodia, Cryptosporodilop, etc.)
4) 기체류(Gases)4) Gases
산소(O2), 질소(N2), 이산화탄소(CO2), 암모니아(NH3)등Oxygen (O 2 ), Nitrogen (N 2 ), Carbon Dioxide (CO 2 ), Ammonia (NH 3 )
5) 기타(Others)5) Others
부유물질(SS), 탁도(Turbidity), 총용해성고형물질(TDS), 수소이온농도(pH), 화학적 산소요구량(COD), 생물학적 산소요구량(BOD), 유류(Oil and Grease)등.Suspended solids (SS), turbidity, total soluble solids (TDS), hydrogen ion concentration (pH), chemical oxygen demand (COD), biological oxygen demand (BOD), oil (Oil and Grease), etc.
원수 내에 함유된 이러한 물질들은 원수의 종류에 따라 다르며 특히 바닷물을 원수로 할 경우는 염분농도가 매우 높으며 자연수(계곡, 저수지,호소, 하천, 강, 댐등)는 계절에 따라 수질 변화가 심함을 알 수 있다.These substances contained in the raw water vary depending on the type of raw water, especially when the seawater is used as raw water, the salt concentration is very high, and the natural waters (gorges, reservoirs, lakes, rivers, rivers, dams, etc.) change seasonally in water quality. Can be.
한편 막분리기술은 1960년경부터 미국에서 공업용수의 탈염을 위한 역삼투막 법(Reverse Osmosis; R O)을 중심으로 개발되어 많은 분야에서 발전되어 왔다. 우리나라도 1980년초 반도체 산업체에서 초순수제조 설비를 도입하면서 수처리 및 폐수처리 분야에서 큰 역할을 담당하면서 보편적인 기술로 발전을 하여오고 있다. Membrane separation technology has been developed in many fields since 1960, focusing on reverse osmosis (RO) for desalting industrial water in the United States. In the early 1980s, Korea introduced ultrapure water production facilities in the semiconductor industry, and has developed into a universal technology, playing a big role in water treatment and wastewater treatment.
이러한 막분리 기술은 반투과성 경계막을 이용하여 여과 및 확산에 의하여 수중에 함유된 오염물질을 제거한다. 수처리나 폐수처리 분야에 적용할 수 있는 막분리는 정밀여과(Microfiltration: MF), 한외여과(Ultrafiltration: UF), 나노여과(Nanofiltration: NF), 역삼투(Reverse Osmosis: RO) 그리고 전기투석(Electro Dialysis: ED)등이 있다.This membrane separation technique uses a semipermeable boundary membrane to remove contaminants contained in water by filtration and diffusion. Membrane separations applicable to water treatment or wastewater treatment are Microfiltration (MF), Ultrafiltration (UF), Nanofiltration (NF), Reverse Osmosis (RO) and Electrodialysis (Electro). Dialysis: ED).
또한 이러한 막분리의 형태(Configuration)은 나권형(Spiral Wound), 중공사형(Hollow Fiber), 관형(Tubular) 그리고 평판형(Plate and Frame)으로 대별할 수 있으며, 물속에 막모듈을 담구어서 하는 침지형(Immersible)과 가압형으로 분류된다.In addition, the membrane separation configuration can be roughly divided into spiral wound, hollow fiber, tubular, and plate and frame, and the membrane module is immersed in water. It is classified into Immersible and Pressurized.
본 발명은 상기와 같은 원수를 막분리기술을 이용하여 순수를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing pure water using the membrane separation technology as described above.
먼저, 원수속에 함유된 탁도, 색도, 부유물질을 제거하기 위한 전처리단계에 대해 설명한다.First, a pretreatment step for removing turbidity, color, and suspended solids contained in raw water will be described.
상기 원수에 함유된 부유성 물질, 탁도, 미생물(대장균, 일반세균,조류 및 원생동물등), 콜로이드물질, 색도, 이취등을 제거하기 위하여 원수 집수조(10)로부터 원수펌프(15)를 통하여 원수를 자동세척여과기(20)를 통과시킨 후 역세가 가능한 가압형 정밀여과막 또는 한외여과막분리장치(30), 역세가 가능한 침지형 정밀여 과막 또는 한외여과막분리장치(40)를 통과시켜 전처리집수조(50)로 보낸다.Raw water through the raw water pump 15 from the raw water collecting tank 10 to remove the suspended solids, turbidity, microorganisms (E. coli, general bacteria, algae and protozoa), colloidal substances, color, odor and the like contained in the raw water After passing through the automatic washing filter (20), back pressure is possible to pass through the pressurized microfiltration membrane or ultrafiltration membrane separator 30, the backwashable submerged microfiltration membrane or ultrafiltration membrane separator (40) to pretreatment collection tank (50) Send to.
상기 전처리집수조(50)에 장기간 물을 저장시는 미생물 번식등이 우려되므로염소등의 미생물억제제(51)를 주입하는 것이 바람직하다.When storing water in the pretreatment collection tank 50 for a long time, it is preferable to inject microbial inhibitors 51, such as chlorine, since microbial propagation is concerned.
이와 같이 원수를 자연수나 바닷물을 사용하여 역세형 정밀여과막 또는 역세형 한외여과막을 사용하여 원수에 함유된 탁도와 부유물질등을 제거하게 되는데 이러한 물질들은 장기간 가동시에 막표면에 축적(Deposit)되어 막의 투과성을 저해하여 유량을 감소시키게 된다.In this way, raw water is removed using turbid water or natural water using backwash type microfiltration membrane or backwash type ultrafiltration membrane to remove turbidity and suspended solids contained in raw water. The permeability of the membrane is impeded to reduce the flow rate.
따라서 정기적으로 원수의 성상에 따라 이물질들이 자동세척여과기(20)나 막표면에 퇴적이 될 때에 압력상승이 일어나게 되는데, 원수 유입수측에 압력조절스위치를 부착하고 이물질들로 인하여 압력이 상승하게 되면 이를 제거하여 주어야 한다.Therefore, when the foreign matters are deposited on the automatic filter 20 or the membrane surface regularly according to the nature of the raw water, the pressure rise occurs. It must be removed.
이를 위해 첫번째로 자동세척여과기(20)에서 0.1~40mm의 이물질을 걸러내어 주게된다. 도 2를 참조하면, 자동세척여과기(20)는 원수가 유입되는 유입구(21), 원수가 유출되는 유출구(22), 플라스틱 또는 스텐레스스틸로 제작된 압력용기 내부에 설치된 스텐레스망의 바스켓(23), 압축공기(Compressed Air)로 상하 왕복운동되는 실린더(25), 상기 실린더(25)의 상하왕복운동시 바스켓(23) 내부의 이물질이 배출되는 플러싱밸브(24)로 구성된다.To this end, the first to filter out foreign matter of 0.1 ~ 40mm from the automatic filter 20. 2, the automatic washing filter 20 is a stainless steel basket 23 installed inside a pressure vessel made of inlet port 21, raw material outlet 22, and plastic or stainless steel. The cylinder 25 is configured to reciprocate up and down by compressed air, and the flushing valve 24 is configured to discharge foreign substances inside the basket 23 during the up and down movement of the cylinder 25.
원수가 유입구(21)를 통해 유출구(22)로 통과되면서 스텐레스망의 바스켓(23) 내부에는 이물질이 걸리게 되어 내부 압력이 상승하게 된다. 이와 같이 압력이 상승하게 되면 실린더(25)가 하강하게 되고 실린더(25)의 하강에 따라 바스 켓(23) 내부의 유속은 빨라지게 되면서 진공세척이 진행되어 바스켓(23)에 부착된 이물질은 플러싱밸브(24)를 통해 배출되게 된다. 이 경우 상기 플러싱밸브(24)는 유입구(21)와 유출구(22)보다 직경이 작게 되어 있고, 피스톤(25)이 작동하여 하부로 내려왔다 올라갈 때 소요되는 10~30초간만 열렸다가 닫히게 되는데 이때 바스켓(23)에 부착된 이물질이 탈리되어 제거된다.As the raw water passes through the inlet 21 to the outlet 22, foreign substances are caught in the basket 23 of the stainless steel net, thereby increasing the internal pressure. When the pressure rises as described above, the cylinder 25 is lowered, and the flow rate inside the basket 23 is increased according to the lowering of the cylinder 25, while vacuum washing is performed, and the foreign matter attached to the basket 23 is flushed. It is to be discharged through the valve (24). In this case, the flushing valve 24 has a smaller diameter than the inlet 21 and the outlet 22, and opens and closes only for 10 to 30 seconds required when the piston 25 is operated to descend to the bottom. The foreign matter attached to the basket 23 is detached and removed.
상기 자동세척여과기(20)는 다운타임(downtime)없이 연속적으로 운전이 가능하고 원수에 흙탕물이나 조류(Algae)등의 물질등이 함유된 물에 매우 효과적이다.The automatic washing filter 20 can be continuously operated without downtime and is very effective for water containing muddy water, algae, and the like in raw water.
다음으로 막표면에서 이물질들로 인하여 압력이 상승하게 되면 자동으로 자연수의 유입을 차단하고 처리흐름의 반대로 물과 압축공기(Air)을 불어넣어서 막의 표면에 퇴적된 이물질들을 탈리시키는 역세를 하게 된다.Next, when the pressure rises due to foreign substances on the surface of the membrane, it automatically blocks the inflow of natural water and blows water and compressed air on the contrary to the processing flow to desorb the foreign substances deposited on the surface of the membrane.
이와 같이 상기 역세형 정밀여과막분리장치 또는 한외여과막분리장치(30,40)는 역세펌프(52)를 이용하여 역세하게 되는데, 이 경우 발생되는 역세폐수를 재활용하는 것이 바람직하다.As such, the backwash type microfiltration membrane separator or the ultrafiltration membrane separators 30 and 40 are backwashed using a backwash pump 52. In this case, it is preferable to recycle the backwash wastewater generated.
이를 위하여, 상기 역세형 정밀여과막분리장치 또는 한외여과막분리장치(30,40)를 역세하고 난 후 발생되는 역세폐수를 공극제어형 섬유상 여과기 또는 가압형 필타프레스(Filter Press)에 통과시킴으로써 탁도(Turbidity, NTU)를 향상시키고 부유물질을 제거한 후 통과된 물은 재활용하기 위해 원수집수조(1)로 이송하게 되고, 통과되지 못하고 섬유상 여과재 표면에 부착된 물질은 역으로 역세를 하여 최종적으로 폐수처리하게 된다.To this end, the backwash waste water generated after backwashing the backwash type microfiltration membrane separator or the ultrafiltration membrane separator 30 and 40 is passed through a pore-controlled fibrous filter or a pressurized filter press. After improving the NTU and removing the suspended solids, the passed water is transferred to the raw water collection tank (1) for recycling, and the material that is not passed through and adhered to the surface of the fibrous filter medium is reversely backwashed to finally treat the wastewater. .
상기 공극제어형 섬유상 여과기는 실모양의 섬유상으로 되어 있는 다발을 공 극을 작게하기 위하여 압착하여 설치한 후 섬유다발의 외부에 역세된 물을 통과시키는 것으로 구성된다.The pore-controlled fibrous filter consists of passing the backwashed water to the outside of the fiber bundle after compressing and installing the bundle having a fiber-like shape in order to reduce the voids.
이 경우 상기 공극제어형 섬유상 여과기 또는 가압형 필타프레스에 유입되는 역세폐수에 탁도와 부유성 물질의 응집성을 향상시키기 위하여 황산알루미늄(Alum) 또는 폴리알루미늄크로라이드(PAC)와 같은 무기성 응집제 단독으로 0.1~10 ppm 주입하거나 유기성 고분자 응집제를 순차적으로 주입하는 것이 바람직하다.In this case, inorganic coagulant such as aluminum sulfate or polyaluminum chromide (PAC) alone may be used to improve the cohesion of turbidity and suspended solids in the backwashed water flowing into the pore-controlled fibrous filter or pressurized filter press. It is preferable to inject ˜10 ppm or to sequentially inject an organic polymer flocculant.
다음으로 전처리한 원수에 용해되어 있는 이온성 물질을 제거하기 위한 탈염(Deminerlization)단계에 대해 설명한다.Next, the demineralization step for removing ionic substances dissolved in pretreated raw water will be described.
이송펌프(60)에 의하여 이송되는 물은, 전처리된 물의 수소이온농도(pH)에 따라 염제거율의 영향을 최소화하기 위하여 pH조정제(90)로서 산이나 알카리를 주입하고, 경도성분에 의해 막의 스케일을 예방하기 위하여 스케일방지제(80)로서 육인산나트륨을 주입하며, 전처리 집수조(50)의 염소소독제는 나노여과막분리(130)나 1,2차 역삼투막분리장치(140,170)의 폴리아마이드막 손상을 가져오게 되므로 이를 제거하기 위하여 산화방지제(70)인 중아황산 나트륨등의 환원제를 주입한다. Water transferred by the transfer pump 60 is injected with acid or alkali as the pH adjuster 90 in order to minimize the effect of the salt removal rate according to the hydrogen ion concentration (pH) of the pretreated water, and scale of the membrane by the hardness component. Sodium phosphate is injected as an anti-scaling agent (80), and the chlorine disinfectant of the pretreatment sump (50) has a polyamide membrane damage of the nanofiltration membrane separation (130) or the first and second reverse osmosis membrane separation apparatus (140, 170). In order to remove this it is injected with a reducing agent such as sodium bisulfite, which is an antioxidant (70).
또한 전처리된 물의 저장에 따른 이물질 증가를 제거하기 위하여 1∼5㎛ 크기의 입자를 제거하는 안전용 정밀여과기(100)를 순차적으로 통과하도록 하고, 전처리된 물을 2차공정인 탈염화공정으로 보내기 위해서는 수온관리가 나노여과막분리장치(130)나 1,2차 역삼투막분리장치(140,170)의 성능에도 영향을 주게 되므로 열교환기(110)를 설치하여 수온을 보정한다.In addition, in order to remove the increase in foreign matters due to the storage of the pre-treated water to pass through the safety precision filter 100 for removing the particles of 1 ~ 5㎛ size in sequence, and send the pre-treated water to the desalination process as a secondary process In order to control the water temperature, since the water treatment affects the performance of the nanofiltration membrane separator 130 or the first and second reverse osmosis membrane separators 140 and 170, the heat exchanger 110 is installed to correct the water temperature.
상기 열교환기(110)를 통과한 원수는 고압펌프(120)를 통해 나노여과막분리장치(130) 또는 1차 역삼투막분리장치(140)로 이송된다.The raw water passing through the heat exchanger 110 is transferred to the nanofiltration membrane separator 130 or the first reverse osmosis membrane separator 140 through the high pressure pump 120.
상기 고압펌프(120)는 무소음, 무진동으로 수중에 수직(흡입구 하부, 토출구 상부)으로 설치하거나 지상에 설치하여 압력 하우징 내에 펌프와 모터를 수평으로 조립하여 물에 모터와 펌프를 순차적으로 통과하여 발생 열을 회수하여 막의 투과 효율을 증가시키도록 하였다.The high-pressure pump 120 is installed in a vertical (intake inlet bottom, discharge outlet) in the water in the noise-free, vibration-free or on the ground to assemble the pump and the motor horizontally in the pressure housing to generate the water through the motor and the pump sequentially The heat was recovered to increase the permeation efficiency of the membrane.
원수 중에 염농도가 500mg/ℓ이하이거나 경도성분이 50ppm이상일 경우 이를 제거하기 위한 나노여과막분리장치(130)를 통과시킨 후 투과수를 직접 음용수로 사용할 수 있게 하거나, 원수를 대상으로 1차 역삼투막분리장치(140)를 통과한 투과수를 1차투과수 집수조(150)로 보내고 이어 막을 통과한 투과수를 승압펌프(160)로 가압하여 2차 역삼투막분리장치(170)로 처리된 양질의 투과수를 2차 투과수 집수조(180)로 보내며 2차 역삼투막분리장치에서 막을 통과치 못한 농축수는 원수집수조(10)로 보내어 재활용한다.If the salt concentration in raw water is less than 500mg / ℓ or the hardness component is more than 50ppm pass through the nanofiltration membrane separation device 130 to remove it, the permeated water can be used directly as drinking water, or the first reverse osmosis membrane separation device for raw water Sending the permeated water passed through the 140 to the primary permeate collection tank 150 and then pressurized the permeated water passed through the membrane with a boost pump 160 to the high-quality permeated water treated by the secondary reverse osmosis membrane separation device 170. The concentrated water not sent to the secondary permeate collection tank 180 and not passed through the membrane in the secondary reverse osmosis membrane separator is sent to the raw water collection tank 10 for recycling.
또한 원수가 바닷물이거나 총용해성고형물질(TDS)의 농도가 높은 자연수는 1차 역삼투막분리장치(140)를 통과한 투과수를 1차 투과수 집수조(150)를 통하거나 1차 역삼투막분리장치(140)의 투과수를 직접 승압펌프(160)로 가압하여 2차 역삼투막분리장치(170)로 보내어 처리된 투과수를 2차투과수 집수조(180)로 보낸다.In addition, natural water having high concentration of raw water or total dissolved solids (TDS) is the permeated water that has passed through the primary reverse osmosis membrane separator 140 through the primary permeate collection tank 150 or the primary reverse osmosis membrane separator 140 ) And pressurized by the booster pump 160 directly to the secondary reverse osmosis membrane separator 170 to send the treated permeate to the secondary permeate collection tank (180).
원수의 종류에 따라 나노여과막분리장치(130)나 1차 역삼투막분리장치(140)만을 통과한 투과수를 직접 투과수 이송펌프(190)를 통하여 다음공정인 전기적 연속 순수화장치(210)로 보내어 처리를 할 수 있으며, 나노여과막분리장치(130)나 1 차 역삼투막분리장치(140)만을 통과한 투과수를 1차 투과수 집수조(150)가 필요없이 직접 승압펌프(160)를 경유하여 2차역삼투막분리장치(170)로 보낼 수 있다.Depending on the type of raw water, permeate water passing only through the nanofiltration membrane separation device 130 or the first reverse osmosis membrane separation device 140 is directly sent to the electrical continuous purifying device 210 which is the next process through the permeate transfer pump 190. It can be treated, the secondary permeate through the nanofiltration membrane separation unit 130 or the first reverse osmosis membrane separation unit 140 directly through the boost pump 160 without the need for the primary permeate collection tank 150 Reverse osmosis membrane separation device 170 can be sent.
여기서 나노여과막분리장치(130)나 1차 역삼투막분리장치(140)의 막배열(Membrane array)을 막의 지름이 4∼40인치이고 길이가 1∼2m인 막을 재질이 스텐레스스틸 또는 FRP인 압력용기에 1개에서 최고 7개까지 삽입한 상태를 1단 배열(Array)로 하고, 이러한 상태를 1∼3단까지 구성한 막모듈을 원수가 통과 1차투과수를 다시 2차역삼투막분리(170)도 1∼3단으로 배열을 구성하여 양질의 투과수 얻을 수 있다.Here, the membrane array of the nanofiltration membrane separation device 130 or the first reverse osmosis membrane separation device 140 is a membrane having a diameter of 4 to 40 inches and a length of 1 to 2 m in a pressure vessel of stainless steel or FRP. One to a maximum of seven inserted state in the first stage (Array), the first through the membrane module consisting of the first to third stages (assembly) and the second reverse osmosis membrane separation (170) 1 The permeation water of good quality can be obtained by constructing an arrangement of -3 steps.
한편, 상기 전처리된 물의 pH를 5.5∼ 6.5로 관리를 하면 막의 스케일이나 염제거율을 높게 할 수 있으나 이산화탄소와 같은 기체류는 나노여과막이나 역삼투막에서 걸러지지 않고 통과하게 된다. 즉, 이산화탄소와 같은 기체는 pH가 7이하에서는 투과된 물속에서 중탄산이온(HCO3 -)으로 존재하고, pH를 7이상에서는 탄산이온(CO3 2 -)으로 존재하게 되는데, 중탄산이온(HCO3 -)은 가스상태이므로 막을 투과하게 된다.On the other hand, if the pH of the pre-treated water is controlled to 5.5 to 6.5, the membrane scale or salt removal rate can be increased, but gas flows such as carbon dioxide do not pass through the nanofiltration membrane or the reverse osmosis membrane. That is, a gas such as carbon dioxide has a pH of bicarbonate ion (HCO 3 -) in the permeate water in the 7 or less in the present in and, pH of 7 or more carbonate ions (CO 3 2 -) there is the presence, the bicarbonate ion (HCO 3 - ) Is gaseous, so it permeates the membrane.
이와 같이 나노여과막분리장치(130)나 1차 역삼투막분리장치(140)를 투과한 투과수에는 이산화탄소와 같은 기체류가 포함되어 있어 pH가 7이하인 산성을 띠게 되므로, 2차 역삼투막분리장치(170) 이전에 알카리 주입장치(155)를 설치하여 수산화나트륨을 주입함으로써 2차 역삼투막분리장치(170)에 유입되는 유입수의 pH를 7 이상이 되게 한다.As such, the permeated water that has passed through the nanofiltration membrane separation device 130 or the first reverse osmosis membrane separation device 140 contains a gas stream such as carbon dioxide, and thus has an acid pH of 7 or less, and thus, the secondary reverse osmosis membrane separation device 170. Prior to the installation of the alkali injection device 155 to inject sodium hydroxide so that the pH of the influent water flowing into the secondary reverse osmosis membrane separator 170 to 7 or more.
수산화나트륨의 주입으로 유입수의 pH가 7이상이 되면 물 속에 포함되어 있던 이산화탄소는 탄산이온(CO3 2-)의 상태로 존재하여 2차 역삼투막분리장치(170)의 막을 투과하지 못하고 제거된다.When the pH of the influent water reaches 7 or more by the injection of sodium hydroxide, the carbon dioxide contained in the water is present in the state of carbonate ions (CO 3 2- ), and thus cannot be penetrated by the membrane of the secondary reverse osmosis membrane separation unit 170.
만일 알카리 주입장치(155)를 사용하지 않을 경우에는 투과된 물에 용존 산소와 이산화탄소와 같은 기체류가 함유되어 있고, 이러한 기체류는 최종처리수인 순수(Pure Water)의 품질에도 영향을 주게 된다. 따라서 이 경우에는 투과수 이송펌프(190)로 투과수를 막접촉기(Membrane Contactor, 200)를 통과하여 이산화탄소와 같은 기체류를 제거한 다음 전기적 연속순수화장치(210)로 보내어 처리하게 된다.If the alkali injector 155 is not used, gas streams such as dissolved oxygen and carbon dioxide are contained in the permeated water, and these gas streams also affect the quality of pure water, which is the final treatment water. . Therefore, in this case, the permeated water is passed through the membrane contactor (Membrane Contactor, 200) to remove the gas flow, such as carbon dioxide, and then sent to the electrical continuous filtration apparatus 210 for processing.
또한 에너지회수장치(125)를 설치하여, 나노여과막분리장치(130) 또는 1차 역삼투막분리장치(140), 2차 역삼투막분리장치(170)에서 발생되는 농축수의 압력을 회수하여 나노여과막분리장치(130) 또는 1차 역삼투막분리장치(140), 2차 역삼투막분리장치(170)의 인입수의 압력을 상승시켜 에너지를 저감시키도록 하였다. 상기 에너지회수장치는 막분리에서 나오는 농축수의 압력을 막분리측으로 공급되는 물과 교환을 시켜서 농축수가 가지고 있는 압력을 공급되는 원수에 전달을 하여 에너지 비용을 절감하도록 한 것이다.In addition, by installing the energy recovery device 125, the nanofiltration membrane separation device by recovering the pressure of the concentrated water generated in the nanofiltration membrane separation device 130 or the first reverse osmosis membrane separation device 140, the second reverse osmosis membrane separation device 170 130 or the first reverse osmosis membrane separation unit 140, the second reverse osmosis membrane separation unit 170 to increase the pressure of the incoming water to reduce the energy. The energy recovery device is to exchange the pressure of the concentrated water from the membrane separation with the water supplied to the membrane separation side to transfer the pressure of the concentrated water to the raw water supplied to reduce the energy cost.
상기 2차 역삼투막분리장치(170)를 통과하지 못한 농축수는 원수 집수조(10)로 이송하여 재이용하게 된다.The concentrated water that has not passed through the secondary reverse osmosis membrane separator 170 is transferred to the raw water collection tank 10 for reuse.
다음으로 용해성 이온물질을 제거한 처리수질의 비저항치를 올리기 위한 후처리단계에서 사용되는 전기적 연속 순수화장치(210)에 대해 설명한다.Next, the electrical continuous purification apparatus 210 used in the post-treatment step for raising the specific resistance of the treated water quality from which the soluble ionic material is removed will be described.
종래에는 혼상식 이온교환수지 방식을 채택하여 화공약품을 사용하였으나, 본 발명에서는 화공약품을 사용하지 않고도 비저항치를 올릴 수 있는 전기적 연속 순수화장치(Electrodeionization: EDI)(210)를 사용한 것이다.Conventionally, chemical chemicals are used by adopting a mixed phase ion exchange resin method, but in the present invention, an electrical continuous purifying device (EDI) 210 capable of raising a specific resistance without using chemicals is used.
전기적 연속 순수화장치(210)는 전기투석막 내에 이온교환수지가 충진되어 기전력을 이용하여 투과수속에 미량 함유된 이온들을 탈염화하는 장치를 말한다.The electrically continuous purifying apparatus 210 refers to a device for desalting ions contained in a small amount in the permeate water using electromotive force by filling an ion exchange resin in the electrodialysis membrane.
즉, 전기적 연속 순수화장치(210)는 전기투석막에 이온교환수지 기술을 조합한 기술로서, 직류전원을 공급하는 2개의 전극체(Anode와 Cathode)사이에 양/음 이온교환막이 교차하여 층층이 배열되어 있고 그 사이에 이온교환수지가 채워져 있으며 입구와 출구 노즐을 가진 물이 흐르는 부분(희석실/농축실)으로 구성되어 있다.That is, the electric continuous purifier 210 is a combination of ion exchange resin technology and an electrodialysis membrane. The positive and negative ion exchange membranes intersect between two electrode bodies (Anode and Cathode) for supplying a DC power supply, and a layer layer is arranged. It consists of a portion (dilution / concentration chamber) in which water flows with inlet and outlet nozzles filled with ion exchange resin.
이온교환막과 희석실/농축실로 구성된 조합체의 양쪽 끝에 배치된 전극체에서 직류전류를 외부전원으로 하여 공급한다. 그러면 물이 흐르는 부분이 전기의 영향 하에 놓이게 되며 물속의 이온들은 반대극성의 전극체에 이끌리게 된다.DC current is supplied as an external power supply from an electrode body disposed at both ends of the combination consisting of an ion exchange membrane and a dilution chamber / concentration chamber. Then, the flowing part of the water is placed under the influence of electricity, and the ions in the water are attracted to the electrode body having the opposite polarity.
즉 + 전극체에 인접한 음이온막과 - 전극체에 인접한 양이온막으로 경계가 되는 부분은 이온인자를 빼앗겨서 그 부분은 희석실로 된다. 반면에 - 전극체에 인접한 음이온막과 +전극체에 인접한 양이온막으로 경계가 되는 부분은 희석실로부터 이동되는 이온을 끌어 당기게 되는데 이곳의 이온농도는 유입수의 이온농도보다 증가되어 이곳은 농축실이 된다. 농축실을 거쳐서 흐르는 물의 흐름을 농축수 흐름 (Reject Stream)이라 한다 .In other words, the portion bounded by the anion membrane adjacent to the + electrode body and the cation membrane adjacent to the + electrode body is deprived of the ion factor, and the portion becomes a dilution chamber. On the other hand, the part bounded by the negative electrode membrane adjacent to the electrode body and the positive electrode membrane adjacent to the electrode body attracts ions moving from the dilution chamber, where the ion concentration is increased than the ion concentration of the influent, where the concentration chamber is do. The flow of water through the concentration chamber is called the Reject Stream.
이온 교환막은 이온교환수지와 같은 원리와 재료로 동작하여 특정이온을 반대극성의 이온으로부터 격리하여 이동시킨다. 즉 음이온 교환막은 음이온만을, 양이온 교환막은 양이온만을 투과시키며 다른 극성의 이온들은 투과를 억제하는 기능을 한다. 이 막들은 물을 투과시키지 못한다.Ion-exchange membranes operate on the same principles and materials as ion-exchange resins to move specific ions away from opposite polar ions. That is, the anion exchange membrane transmits only anions, the cation exchange membrane transmits only cations, and ions of different polarities inhibit permeation. These membranes do not penetrate water.
전기적 연속 순수화장치(210)의 공급인입수의 수질조건은 전기전도도가 20㎲/㎝이하, pH 5.0∼9.5, 수온 5∼35℃, 경도성분 1 ppm이하, 총유기성 탄소(TOC) 0.5 ppm, 철 및 망간 각 0.01 ppm 그리고 실리카 0.5ppm이하이어서 역삼투막 분리나 이온교환수지공법등을 이용하여 요구원수의 품질을 관리하여야 한다.The water quality conditions of the feed-in water of the electric continuous purifier 210 are as follows: electrical conductivity is 20 ㎲ / cm or less, pH 5.0 to 9.5, water temperature 5 to 35 ° C, hardness component 1 ppm or less, total organic carbon (TOC) 0.5 ppm The quality of raw water should be controlled by reverse osmosis membrane separation or ion exchange resin method, since it is less than 0.01 ppm of iron and manganese and 0.5 ppm of silica.
전기적 연속 순수화 장치(210)를 통과한 물은 비저항이 10,000,000 Ω-㎝ (전도도로 0.1 Micromhos-㎝이하)이상의 순수(Pure water 또는 DeIonized Water)가 되므로 발전소의 용수등으로 사용이 가능하다.Water passing through the electrical continuous purifying device 210 is a pure water (Pure water or DeIonized Water) of more than 10,000,000 Ω-cm (conductivity of 0.1 Micromhos-cm or less) can be used as water for power plants.
전기적 연속 순수화 장치(210)를 통과한 물 중 순수는 순수 집수조(220) 및 순수 이송펌프(230)를 거쳐 발전용수로 사용된다. 미설명부호 215는 전기적 연속 순수화 장치(210)에서 발생된 농축수를 의미하며 원수집수조(10)로 보내어 재이용한다.The pure water in the water passed through the electric continuous purifying device 210 is used as power generation water through the pure water tank 220 and the pure water transfer pump 230. Reference numeral 215 denotes the concentrated water generated in the electrical continuous purification device 210 and sent to the raw water collection tank 10 for reuse.
실험결과 1Experiment Result 1
아래 표는 역세폐수를 공극제어형 섬유상 여과기와 가압형 필타프레스를 이용하여 여과한 결과이다.The table below shows the results of filtration of backwash wastewater using a pore-controlled fibrous filter and a pressurized filter press.
상기 역세폐수는 동일한 원수를 사용하여 유입수측과 유출수측의 압력차가 1.5㎏/㎠일때 막표면에 축척된 이물질에 대하여 역세를 실시한 것이다. Ⅰ은 역세형 정밀여과막의 역세폐수로 탁도가 35 NTU, 부유물질은 1,890㎎/ℓ이고, Ⅱ는 역세형 한외여과막분리를 전량여과(Dead End filtration)방식으로 처리후 발생된 역세폐수로 탁도가 53 NTU, 부유물질은 4,232 ㎎/ℓ 이며, Ⅲ은 역세형 한외여과막분리를 십자형 흐름(Cross Flow)방식으로 처리후 발생된 역세폐수로 탁도가 64 NTU, 부유물질은 4,282 ㎎/ℓ 로 측정되었다.The backwash waste water is backwashed with foreign matter accumulated on the membrane surface when the pressure difference between the inflow side and the outflow side is 1.5 kg / cm 2 using the same raw water. Ⅰ is the backwash wastewater of backwash type microfiltration membrane with turbidity of 35 NTU, suspended solids is 1,890mg / ℓ, and Ⅱ is the backwash wastewater generated after the treatment of backwash type ultrafiltration membrane by Dead End filtration. 53 NTU, suspended solids was 4232 mg / l, and Ⅲ was the reverse wash water generated after cross-flow ultrafiltration membrane separation using cross flow method. The turbidity was 64 NTU and suspended solids was measured at 4,282 mg / l. .
Ⅰ,Ⅱ,Ⅲ의 막의 재질은 다같이 폴리비닐디플루오라이드(PVDF)이고 역세시 3가지 방법 모두 물과 공기를 혼합하여 주입하였다.The materials of the I, II, and III membranes were polyvinyl difluoride (PVDF), and all three methods were mixed with water and air at the time of backwashing.
실험결과 2Experiment Result 2
아래 표는 원수를 자연수로 하여 막(Membrane ; 膜)만을 이용하여 발전용수를 생산키 위한 장치에서 시험한 결과이다.The table below shows the results of testing the apparatus for producing power generation water using only membrane (Membrane) with raw water as natural water.
- 상기에서 BMF는 역세 가압형 역세정밀여과막, BUF은 역세가압형 한외여과막 , NF는 나노여과막, RO는 역삼투막 그리고 EDI는 전기적 연속 순수화 장치임(이하 동일).-BMF is the backwash pressurized reverse filtration membrane, BUF is the backwash pressurized ultrafiltration membrane, NF is the nanofiltration membrane, RO is the reverse osmosis membrane, and EDI is the electric continuous purification device (hereinafter the same).
- 실험대상 원수는 지표수-Raw water for the experiment is surface water
- 단위는 ㎎/ℓ-Unit is mg / l
- 2차역삼투막분리 유입수의 pH를 7.0∼7.8로 조정-Adjust the pH of the second reverse osmosis membrane separation influent to 7.0-7.8
- 나노여과막분리 투과수는 2차역삼투막분리장치로 처리하지 않음-Nanofiltration membrane separation permeate is not treated with secondary reverse osmosis membrane separation device
- 1차 및 2차 역삼투막분리장치의 막은 담수용(Brackish Water)을 사용-The membranes of the first and second reverse osmosis membrane separators are made of brackish water.
실험결과 3Experiment Result 3
아래 표는 원수를 바닷물을 사용하여 실험한 결과이다.The table below shows the results of experimenting with raw water using seawater.
- 단위는 ㎎/ℓ-Unit is mg / l
- 2차역삼투막분리 유입수의 pH를 7.0∼7.8로 조정-Adjust the pH of the second reverse osmosis membrane separation influent to 7.0-7.8
- 1차 및 2차 역삼투막분리장치의 막은 해수용(Sea Water)을 사용-Sea water is used for the membranes of the first and second reverse osmosis membrane separators.
상기 실험결과 2와 실험결과 3에서는 2차 역삼투막분리장치를 통과한 투과수가 전기적 연속 순수화 장치(210)에 인입되는 인입수의 수질조건을 모두 충족시키고 있음을 알 수 있다.In Experimental Results 2 and 3, it can be seen that the permeated water passing through the secondary reverse osmosis membrane separation device satisfies all the water quality conditions of the incoming water introduced into the electrical continuous purification device 210.
이상에서 상세히 설명한 바와 같이, 본 발명에 따른 발전소에 사용되는 순수제조방법에 의하면, 역세형여과장치에서 발생되는 역세폐수를 공극제어형 섬유상 여과기 또는 가압형 필타프레스를 통과시켜 통과된 물을 재활용할 수 있고, 전기적 연속순수화장치를 이용함으로써 재생을 위한 화공약품을 사용하지 않고도 원수의 무기물질을 제거할 수 있는 장점이 있다.As described in detail above, according to the pure water manufacturing method used in the power plant according to the present invention, the water passed through the backwash wastewater generated in the backwash filtration device through a pore-controlled fibrous filter or a pressurized filter press can be recycled. In addition, there is an advantage that by using the electrical continuous pure apparatus can remove the inorganic material of the raw water without using chemicals for regeneration.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060076969A KR100796561B1 (en) | 2006-08-16 | 2006-08-16 | Deionized water system with membrabe separation technology for power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060076969A KR100796561B1 (en) | 2006-08-16 | 2006-08-16 | Deionized water system with membrabe separation technology for power plant |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100796561B1 true KR100796561B1 (en) | 2008-01-23 |
Family
ID=39218737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060076969A KR100796561B1 (en) | 2006-08-16 | 2006-08-16 | Deionized water system with membrabe separation technology for power plant |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100796561B1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110009777A (en) * | 2009-07-23 | 2011-01-31 | 웅진코웨이주식회사 | Test solution for evaluating membrane performance and performance evaluation method using it |
KR101075885B1 (en) | 2009-04-28 | 2011-10-25 | (주)대우건설 | Water purification apparatus and method for using pressure filter and pore control fiber filter |
KR101193902B1 (en) * | 2011-08-24 | 2012-10-29 | 웅진코웨이주식회사 | Water-purifying system and method using membrane filtration for manufacturing purified water |
KR101256132B1 (en) * | 2011-03-31 | 2013-04-23 | 현대중공업 주식회사 | Apparatus for desalinating seawater in container |
CN103086543A (en) * | 2013-02-01 | 2013-05-08 | 太平洋水处理工程有限公司 | Mobile container water plant and water production process thereof |
CN104211203A (en) * | 2014-09-28 | 2014-12-17 | 天津膜天膜科技股份有限公司 | Bittern or seawater ultrafiltration pre-treatment process and system |
KR101550702B1 (en) | 2012-09-26 | 2015-09-07 | 코웨이 주식회사 | Water-purifying System with high recovery rate and Method Using Membrane Filtration for Manufacturing Purified Water |
WO2020017909A1 (en) * | 2018-07-18 | 2020-01-23 | 주식회사 포스코 | Method and apparatus for reusing wastewater by using reverse osmosis |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0699197A (en) * | 1991-05-17 | 1994-04-12 | Ebara Res Co Ltd | Method and equipment for purifying pure water or ultrapure water |
JPH0929251A (en) * | 1995-07-17 | 1997-02-04 | Kurita Water Ind Ltd | Ultrapure water preparing apparatus |
KR20000000456A (en) * | 1999-10-25 | 2000-01-15 | 지은상 | System of treated for industrial wastewater |
KR20000000457A (en) * | 1999-10-25 | 2000-01-15 | 지은상 | System of manufactured for ultra pure water |
KR20030020052A (en) * | 2001-08-29 | 2003-03-08 | 지은상 | Water treatment method for using membrane separation device |
KR20050001895A (en) * | 2003-06-26 | 2005-01-07 | 아주환경 주식회사 | Leachate and Sewage Recycling Method and System Therefor |
-
2006
- 2006-08-16 KR KR1020060076969A patent/KR100796561B1/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0699197A (en) * | 1991-05-17 | 1994-04-12 | Ebara Res Co Ltd | Method and equipment for purifying pure water or ultrapure water |
JPH0929251A (en) * | 1995-07-17 | 1997-02-04 | Kurita Water Ind Ltd | Ultrapure water preparing apparatus |
KR20000000456A (en) * | 1999-10-25 | 2000-01-15 | 지은상 | System of treated for industrial wastewater |
KR20000000457A (en) * | 1999-10-25 | 2000-01-15 | 지은상 | System of manufactured for ultra pure water |
KR20030020052A (en) * | 2001-08-29 | 2003-03-08 | 지은상 | Water treatment method for using membrane separation device |
KR20050001895A (en) * | 2003-06-26 | 2005-01-07 | 아주환경 주식회사 | Leachate and Sewage Recycling Method and System Therefor |
Non-Patent Citations (1)
Title |
---|
하수도시설기준, pp.410~417, 616, 환경부, 한국수도협회 (2004.12. 발행) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101075885B1 (en) | 2009-04-28 | 2011-10-25 | (주)대우건설 | Water purification apparatus and method for using pressure filter and pore control fiber filter |
KR20110009777A (en) * | 2009-07-23 | 2011-01-31 | 웅진코웨이주식회사 | Test solution for evaluating membrane performance and performance evaluation method using it |
KR101635511B1 (en) | 2009-07-23 | 2016-07-04 | 코웨이 주식회사 | Test solution for evaluating membrane performance and performance evaluation method using it |
KR101256132B1 (en) * | 2011-03-31 | 2013-04-23 | 현대중공업 주식회사 | Apparatus for desalinating seawater in container |
KR101193902B1 (en) * | 2011-08-24 | 2012-10-29 | 웅진코웨이주식회사 | Water-purifying system and method using membrane filtration for manufacturing purified water |
KR101550702B1 (en) | 2012-09-26 | 2015-09-07 | 코웨이 주식회사 | Water-purifying System with high recovery rate and Method Using Membrane Filtration for Manufacturing Purified Water |
CN103086543A (en) * | 2013-02-01 | 2013-05-08 | 太平洋水处理工程有限公司 | Mobile container water plant and water production process thereof |
CN104211203A (en) * | 2014-09-28 | 2014-12-17 | 天津膜天膜科技股份有限公司 | Bittern or seawater ultrafiltration pre-treatment process and system |
WO2020017909A1 (en) * | 2018-07-18 | 2020-01-23 | 주식회사 포스코 | Method and apparatus for reusing wastewater by using reverse osmosis |
KR20200009285A (en) * | 2018-07-18 | 2020-01-30 | 주식회사 포스코 | Method and apparatus of reusing waste water using reverse osmosis |
KR102119504B1 (en) * | 2018-07-18 | 2020-06-05 | 주식회사 포스코 | Method and apparatus of reusing waste water using reverse osmosis |
CN112437755A (en) * | 2018-07-18 | 2021-03-02 | 株式会社Posco | Method and apparatus for recycling wastewater by reverse osmosis |
JP2021530349A (en) * | 2018-07-18 | 2021-11-11 | ポスコPosco | Wastewater reuse method and equipment using reverse osmosis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pramanik et al. | A review of the management and treatment of brine solutions | |
Kavitha et al. | Pretreatment processes for seawater reverse osmosis desalination systems—A review | |
KR100796561B1 (en) | Deionized water system with membrabe separation technology for power plant | |
US8679347B2 (en) | Multi-use high water recovery process | |
CN104370405B (en) | A kind for the treatment of process of high rigidity height salinity wastewater zero discharge | |
Fritzmann et al. | State-of-the-art of reverse osmosis desalination | |
CN108383315B (en) | Multistage electrically driven ionic membrane's waste water recovery device | |
CN105000755A (en) | Wastewater zero-emission industrial sewage treatment system and treatment method | |
CN105000737B (en) | A kind of Industrial sewage treatment system and sewage water treatment method | |
KR100874269B1 (en) | High efficiency seawater electrolysis apparatus and electrolysis method including pretreatment process | |
KR100521628B1 (en) | Water purifier having electrodeionization system | |
WO2013023282A1 (en) | High recovery drinking water process | |
EP2119675A1 (en) | Method for the treatment with reverse osmosis membrane | |
KR101815298B1 (en) | Reusing system of power plant wastewater using ultrasonic edr | |
CN102897944A (en) | System for deeply processing difficultly degradable organic waste water | |
Singh | Analysis of energy usage at membrane water treatment plants | |
CN100357202C (en) | Liquid flow type capacitance pretreatment method for sea water desalination | |
CN113045059A (en) | Treatment system and treatment process for realizing zero discharge of wastewater by full-membrane method | |
KR20050001895A (en) | Leachate and Sewage Recycling Method and System Therefor | |
CN102408165A (en) | Deep reusing method for municipal sewage reaching sewage discharge standards | |
Wittmann et al. | Water treatment | |
Bujakowski et al. | Geothermal water treatment—preliminary experiences from Poland with a global overview of membrane and hybrid desalination technologies.[W:] Renewable Energy Applications for Freshwater Production (Sustainable Energy Developments)(red.: Jochen Bundschuh, Jan Hoinkis) | |
KR20020040690A (en) | Sewage and wastewater recycling metacarpus-treatment system using reverse osmosis membrane | |
CN206437968U (en) | A kind of system of high-salt wastewater treatment for reuse | |
KR100314714B1 (en) | System of manufactured for ultra pure water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
N231 | Notification of change of applicant | ||
FPAY | Annual fee payment |
Payment date: 20130215 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140214 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20141110 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |