KR100314714B1 - System of manufactured for ultra pure water - Google Patents

System of manufactured for ultra pure water Download PDF

Info

Publication number
KR100314714B1
KR100314714B1 KR1019990046303A KR19990046303A KR100314714B1 KR 100314714 B1 KR100314714 B1 KR 100314714B1 KR 1019990046303 A KR1019990046303 A KR 1019990046303A KR 19990046303 A KR19990046303 A KR 19990046303A KR 100314714 B1 KR100314714 B1 KR 100314714B1
Authority
KR
South Korea
Prior art keywords
water
pretreatment
deionization
treatment
tank
Prior art date
Application number
KR1019990046303A
Other languages
Korean (ko)
Other versions
KR20000000457A (en
Inventor
지은상
Original Assignee
지은상
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지은상 filed Critical 지은상
Priority to KR1019990046303A priority Critical patent/KR100314714B1/en
Publication of KR20000000457A publication Critical patent/KR20000000457A/en
Application granted granted Critical
Publication of KR100314714B1 publication Critical patent/KR100314714B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)

Abstract

본 발명은 원수를 고순도의 초순수로 정화처리하기 위한 초순수제조방법에 관한 것으로, 수돗물 및 지하수는 지하수저장조(1)로 집수되어 전처리여과장치(2)를 통과하면서 전처리여과되는 한편, 하천, 호수, 댐, 강물과 같은 하천수는 하천수집수조(8)로 집수되어 가압부상조(9)와 화학처리조(10)를 통해 상등수로 1차 정화처리된 후에 상기 지하수저장조(1)의 원수와 같이 상기 전처리여과장치(2)를 통과하면서 2차 정화처리되어 전처리여과되는 전처리공정과; 상기 전처리공정을 통해 여과처리된 여과수는 전처리집수조(12)로 집수되어 열교환기(13)에 의해 온도보정되면서 마이크로필터(14)를 통해 정밀여과처리된 다음, 미생물 번식이 억제되도록 자외선살균기(15)를 거쳐 탈이온처리장치(32)를 통과하면서 양·음이온을 초함한 이물질이 제거되는 탈이온처리공정과; 상기 탈이온처리공정을 거친 처리수는 열교환기(22)를 통해 온도보정되면서 탈이온집수조(23)에 집수된 다음, 고순도화처리장치(24)를 통해 고순도화되면서 열교환기(33)에 의해 온도보정되어 초순수집수조 (34)로 집수되고, 한외여과막분리기(35) 또는 폴리싱역삼투막분리기(36)로 선택통과되면서 최종 사용지점의 배관 단부에 설치된 멤브레인콘택터(37)를 통해 초순도화되는 고순도화처리공정과; 아울러 상기 각 처리공정을 통해 처리투과되지 못하고 농축된 농축수가 상기 전처리공정으로 반송되는 재회수공정을 포함한다.The present invention relates to an ultrapure water production method for purifying raw water with ultrapure water of high purity, while tap water and groundwater are collected in an underground water storage tank (1) and passed through a pretreatment filtration device (2), while being treated with pretreatment, rivers, lakes, River water, such as dams and rivers, is collected in a stream collection tank (8), and is first purified by supernatant through a pressurized floatation tank (9) and a chemical treatment tank (10), and then pretreated as raw water of the groundwater storage tank (1). A pretreatment step of performing a second purification and pretreatment filtration while passing through the filtration device 2; The filtered water filtered through the pretreatment process is collected by the pretreatment collecting tank 12 and subjected to microfiltration through the microfilter 14 while temperature correction by the heat exchanger 13, followed by an ultraviolet sterilizer 15 to suppress the growth of microorganisms. A deionization process of removing foreign matters including positive and negative ions while passing through the deionization apparatus 32; The treated water that has undergone the deionization process is collected in a deionization tank 23 while temperature is corrected through the heat exchanger 22, and then purified by the heat exchanger 33 while being highly purified through the high purity treatment apparatus 24. The temperature correction is carried out to the ultrapure water collection tank (34), the ultra-pure treatment through ultrafiltration membrane separator (37) installed at the pipe end of the end point of use, while passing through the ultrafiltration membrane separator (35) or polishing reverse osmosis membrane separator (36). Process; In addition, it includes a re-recovery process that the concentrated water not passed through the treatment process and concentrated concentrated water is returned to the pretreatment process.

Description

초순수제조방법{System of manufactured for ultra pure water}Ultrapure water manufacturing method {System of manufactured for ultra pure water}

본 발명은 부유물질이 비교적 적은 수돗물 및 지하수와 부유물질이 상대적으로 많은 하천, 호수, 댐 및 강물을 분리 집수하여 초순수로 여과처리하는 초순수제조방법에 관한 것으로, 특히 수질농도에 따라 분리 집수되는 원수를 전처리시킨 후에 탈이온처리 및 고순도화처리를 통해 원수에 포함된 이물질 및 유해성분을 확실하게 제거하여 초순도가 요구되는 제약산업이나 반도체산업 및 원자력발전소 등에 사용될 수 있는 고품질의 초순수로 정화처리하는 초순수제조방법에 관한 것이다.The present invention relates to an ultrapure water production method for separating and collecting river water, lakes, dams, and river water having relatively few suspended substances and relatively high amounts of suspended solids, and filtering them with ultrapure water, in particular, raw water separated and collected according to water quality concentration. After pre-treatment, deionization and high-purity treatment remove the foreign substances and harmful components in raw water without any doubt to purify them with high quality ultra pure water that can be used in pharmaceutical industry, semiconductor industry, and nuclear power plant. It relates to an ultrapure water production method.

현대의 첨단기술산업은 반도체산업과 원자력산업 및 생명공학산업을 근간으로 하는 제약산업 등이라 할 수 있으며, 이러한 산업분야에 필수적으로 사용되는 초순수기술은 물 속에 용해성 실리카(Silica), 기체류, 총유기성 탄소화합물(TOC) 등을 ppb(parts per billion : 단위 ㎍/ℓ)이하로 관리하는 것으로, 이온성물질은 수온이 25℃에서 18,000,000 Ω-㎝(18MΩ-㎝) 이상이고 미생물이 완전 제거된 상태로 부유물질의 미립자크기가 0.01㎛ 이하까지 관리되어야 한다.The modern high technology industry is a pharmaceutical industry based on the semiconductor industry, the nuclear industry, and the biotechnology industry. The ultrapure water technology used in these industries is soluble silica, gas, and gun in water. The organic carbon compound (TOC) is managed at ppb (parts per billion) or less, and the ionic substance has a water temperature of 18,000,000 Ω-cm (18 MΩ-cm) or more at 25 ° C, and microorganisms are completely removed. In this state, the particle size of the suspended solids should be controlled to 0.01 μm or less.

국내의 경우에는 1980년대 초에 반도체산업이 본격적으로 생산체제에 진입하면서부터 대부분의 제조관련장비 및 시설을 외국에서 수입 설치하여 사용하였으며, 초순수 제조시설 또한 1980년대부터 지금까지 미국의 정수처리업체에서 국내시장을 독점하여 오고 있어, 그에 따른 막대한 기술료를 지불하면서 외국업체의 초순수제조시설을 의존하는 것이 지금까지의 국내 초순수기술의 현실이었다.In Korea, since the semiconductor industry entered the production system in the early 1980s, most manufacturing-related equipment and facilities were imported and installed in foreign countries. Ultrapure water manufacturing facilities have also been used by US water treatment companies since the 1980s. Since it has been monopolizing the domestic market, it has been the reality of ultra pure water technology so far to rely on foreign pure water manufacturing facilities while paying enormous technical fees.

또한, 1990년대 들어서면서 국내 정수업체들도 특정 핵심기술을 제외한 대부분의 기술을 개발 국산화시키고 있는 실정으로 대략 80% 이상의 독자적인 기술력을 보유하고 있으나, 특히 반도체산업의 경우에는 고집적도화 강화와 따른 초순수제조 기술수준이 다시 선진국과 크게 벌어지고 있는 현실이다.In addition, as the 1990s, domestic water purifiers have developed and localized most of the technologies except for specific core technologies, but they have more than 80% of their own technology, but especially in the semiconductor industry, ultrapure water production due to high integration The level of technology is again widening with developed countries.

따라서. 외국의 초순수기술 사용에 따른 막대한 외화낭비가 초래되고 있는 현시점에서 국내의 초순수 사용업체의 국제적 경쟁력 강화와 효과적인 초순수 제조시설의 개발에 대한 필요가 요구되고 있다.therefore. At present, the enormous foreign currency waste caused by the use of foreign ultrapure water technology is required to strengthen the international competitiveness of domestic ultrapure water users and to develop effective ultrapure water manufacturing facilities.

한편, 초순수의 기술발전은 1965-1975년에는 활성탄 등을 이용한 전처리와 이온교환수지를 거친 후에 0.2㎛ 크기의 정밀여과기를 통과시키는 정도의 처리기술이었으며, 1980년까지는 전처리 후에 역삼투막분리시키는 역삼투처리기술이 도입되고 반면에 이온교환수지기술이 소용량으로 시설되면서 자외선살균기가 추가사용되었다.On the other hand, the technology development of ultrapure water was a treatment technology that passed through 0.2μm sized microfilter after pretreatment with activated carbon and ion exchange resin in 1965-1975, and reverse osmosis treatment which separated reverse osmosis membrane after pretreatment until 1980. The technology was introduced, while the ion-exchange resin technology was installed in a small volume, and additional UV sterilizers were used.

그리고, 1990년까지는 다양한 막분리기술이 발달되면서 정밀여과막으로 여과처리하지 못하는 유기물질을 제거할 수 있는 한외여과막이 최종공정에 도입되었으며, 특히 1990년 중반부터 반도체산업의 집적도(Integration scale)의 고밀도화 추세에 따라 초순수의 고품질에 대한 필요가 더욱 요구되고 있어, 이에 따른 비저항, 미생물, 미립자, 나트륨과 염소이온과 같은 이온성물질 및 용존산소 등의 기체류 제거를 위한 초순수 제조기술의 개발이 계속되어 왔다.In addition, until 1990, various membrane separation technologies were developed, and ultrafiltration membranes were introduced in the final process to remove organic materials that could not be filtered by precision filtration membranes.In particular, from the mid 1990s, the integration scale of the semiconductor industry was increased. According to the trend, the need for high quality of ultrapure water is further demanded. Accordingly, development of ultrapure water manufacturing technology for removing specific resistance, microorganisms, fine particles, ionic substances such as sodium and chlorine ions and dissolved oxygen, etc. come.

최근에는 초순수를 사용하는 반도체산업 등에서 오염물질 관리기준을 매년 강화하지 않으면 무역제제 등이 따르므로 초순수 제조에 있어서도 그 동안 각종 화공약품이나 폐기물의 발생이 적지 않았을 뿐만 아니라, 특히 이온교환수지의 재생에 따른 염산과 수산화나트륨 등의 화공약품 사용과 폐이온교환수지 처분 등이 문제로 대두되었다.Recently, in the semiconductor industry, which uses ultrapure water, if the management standards for pollutants are not strengthened every year, trade restrictions are followed. The use of chemicals such as hydrochloric acid and sodium hydroxide and the disposal of waste ion exchange resins have emerged as problems.

이에 본 발명은 기존의 초순수처리과정의 화공약품 사용과 폐이온교환수지 처분 등에 따른 제반 문제점을 해결하고자 발명된 것으로, 수질농도에 따라 부유물질이 비교적 적은 수돗물 및 지하수와 부유물질이 상대적으로 많은 하천, 호수, 댐 및 강물을 분리 집수하여 전처리시킨 후에 탈이온처리 및 고순도화처리를 통해 원수에 포함된 이물질 및 유해성분을 확실하게 제거하여 초순도가 요구되는 반도체산업 등에 사용될 수 있는 고품질의 초순수로 정화처리할 수 있도록 하기 위한 초순수제조방법을 제공함에 그 목적이 있다.Therefore, the present invention was invented to solve various problems caused by the use of chemicals in the ultrapure water treatment process and the disposal of waste ion exchange resins, and the rivers with relatively low amounts of suspended solids and groundwater and suspended solids depending on the water quality. High quality ultra pure water that can be used for semiconductor industry that requires ultra-pure by reliably removing foreign substances and harmful components contained in raw water through deionization and high purity treatment after collecting and pretreating sewage, lake, dam and river water. It is an object of the present invention to provide an ultrapure water production method for the purification process.

도 1a와 도 1b는 본 발명의 따른 초순수제조방법의 처리과정을 보인 공정도.Figure 1a and 1b is a process chart showing the treatment of the ultrapure water production method according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 : 지하수저장조 2 : 전처리여과장치1: Groundwater storage tank 2: Pretreatment filtration device

3 : 다층여과기 4 : 활성탄여과기3: multilayer filter 4: activated carbon filter

5 : 양이온교환수지탑 6 ; 역세용정밀여과기5: cation exchange resin tower 6; Backwash Precision Filter

7 : 회전 또는 진동막분리기 8 : 하천수집수조7: rotating or vibrating membrane separator 8: river collecting tank

9 : 가압부상조 10 : 화학처리조9: pressurized flotation tank 10: chemical treatment tank

11 : 농축조 12 : 전처리집수조11: thickening tank 12: pretreatment collection tank

13,22,33 : 열교환기 14 : 마이크로필터13,22,33: heat exchanger 14: micro filter

15,31 : 자외선살균기 16 : 양이온교환수지탑15,31: UV sterilizer 16: cation exchange resin tower

17,21,25,30,37 : 멤브레인콘텍터 18 : 음이온교환수지탑17,21,25,30,37: membrane contactor 18: anion exchange resin tower

19,20 : 1,2차 역삼투막분리기 23 : 탈이온집수조19,20: 1st and 2nd reverse osmosis membrane separator 23: deion collection tank

24 : 고순도화처리장치 26 ; 전기적탈이온교환막분리기24: high purity treatment apparatus 26; Electrical Deionization Membrane Separator

27,28 : 혼상식이온교환수지기 29 : 순수저장조27,28: mixed bed ion exchange resin 29: pure water storage tank

34 : 초순수집수조 35 : 한외여과막분리기34: ultrapure water collecting tank 35: ultrafiltration membrane separator

36 : 폴리싱역삼투막분리기 38 : 탈수기36: polishing reverse osmosis membrane separator 38: dehydrator

상기의 목적을 달성하기 위한 본 발명은, 수돗물 및 지하수는 지하수저장조(1)로 집수되어 전처리여과장치(2)를 통과하면서 전처리여과되는 한편, 하천, 호수, 댐, 강물과 같은 하천수는 하천수집수조(8)로 집수되어 가압부상조(9)와 화학처리조(10)를 통해 상등수로 1차 정화처리된 후에 상기 지하수저장조(1)의 원수와 같이 상기 전처리여과장치(2)를 통과하면서 2차 정화처리되어 전처리여과되는 전처리공정과; 상기 전처리공정을 통해 여과처리된 여과수는 전처리집수조(12)로 집수되어 열교환기(13)에 의해 온도보정되면서 마이크로필터(14)를 통해 정밀여과처리된 다음, 미생물 번식이 억제되도록 자외선살균기(15)를 거쳐 탈이온처리장치(32)를 통과하면서 양·음이온을 포함한 이물질이 제거되는 탈이온처리공정과; 상기 탈이온처리공정을 거친 처리수는 열교환기(22)를 통해 온도보정되면서 탈이온집수조 (23)에 집수된 다음, 고순도화처리장치(24)를 통해 고순도화되면서 다시 열교환기 (33)에 의해 온도보정되어 초순수집수조(34)로 집수되고, 한외여과막분리기(35) 또는 폴리싱역삼투막분리기(36)로 선택통과되면서 최종 사용지점의 배관 단부에 설치된 멤브레인콘택터(37)를 통해 초순도화되는 고순도화처리공정과; 아울러 상기 각 처리공정을 통해 처리투과되지 못하고 농축된 농축수가 상기 전처리공정으로 반송되는 재회수공정을 포함하여 원수를 초순수로 정화처리할 수 있도록 된 것을 특징으로 한다.In order to achieve the above object, the present invention, while tap water and ground water is collected in the groundwater storage tank (1) and passed through the pretreatment filtration device (2), while the river water, such as rivers, lakes, dams, river water is a river collection tank Collected by (8) and first purified by supernatant through the pressurized flotation tank (9) and the chemical treatment tank (10), and then passed through the pretreatment filtration device (2) as raw water of the groundwater storage tank (1). A pretreatment step of purifying and preliminarily filtering the car; The filtered water filtered through the pretreatment process is collected by the pretreatment collecting tank 12 and subjected to microfiltration through the microfilter 14 while temperature correction by the heat exchanger 13, followed by an ultraviolet sterilizer 15 to suppress the growth of microorganisms. A deionization step of removing foreign substances including positive and negative ions while passing through the deionization unit 32 through; The treated water that has undergone the deionization process is collected in a deionization tank 23 while temperature is corrected through the heat exchanger 22, and then purified again through a high purity treatment device 24, and then returned to the heat exchanger 33. The temperature is corrected by the ultrapure water collection tank (34), the ultra-pure membrane through the membrane contactor (37) installed at the end of the end point of use, while passing through the ultrafiltration membrane separator (35) or polishing reverse osmosis membrane separator (36). Treatment process; In addition, it is possible to purify the raw water with ultrapure water, including a re-recovery process in which the concentrated water that has not been permeated through each treatment process and is returned to the pretreatment process.

상기 전처리공정의 전처리여과장치(2)는 원수가 다층여과기(3)와 활성탄여과기(4) 및 양이온교환수지탑(5)을 순차통과하는 전처리여과방법과, 역세용정밀여과기(4) 또는 역세용한외여과분리기를 순차통과하는 전처리여과방법과, 회전 또는 진동막분리기(7)를 통과하는 전처리여과방법 중 어느 하나의 전처리여과방법으로 선택통과되면서 원수의 이온물질을 포함하여 이물질이 제거되도록 된 것을 특징으로 한다.The pretreatment filtration device (2) of the pretreatment process includes a pretreatment filtration method in which raw water passes through the multilayer filter (3), the activated carbon filter (4), and the cation exchange resin tower (5) sequentially, and a backwash fine filter (4) or reverse. The foreign matter including ionic substances of the raw water is removed while being selectively passed through any one of the pretreatment filtration method of passing through the Seyong ultrafiltration separator and the pretreatment filtration method passing through the rotary or vibrating membrane separator (7). It is characterized by.

상기 가압부상조(9)와 상기 화학처리조(10)에는 유산반토와 같은 무기응집제와 고분자응집제가 사용된 것을 특징으로 한다.The pressure flotation tank (9) and the chemical treatment tank (10) are characterized in that inorganic coagulants such as lactic acid alumina and polymer coagulants are used.

상기 전처리여과장치(2)의 양이온교환수지탑(5)은 재생제로 염화나트륨이 사용된 것을 특징으로 한다.The cation exchange resin tower 5 of the pretreatment filtration device 2 is characterized in that sodium chloride is used as a regenerant.

상기 전처리여과장치(2)의 역세용정밀여과기(6)는 폴리슐폰, 폴리프로필렌, 폴리에틸렌, 폴리아크릴니트릴 및 폴리아마이드 등의 막재질로 중공사형이나 관형 또는 평판형으로 0.01-1㎛ 기공의 정밀여과막 또는 한외여과막으로 형성되면서, 각각의 막이 1-2㎜ 두께의 도너츠형 모양이나 꽃잎모양의 앞뒷면에 1-40㎛ 크기의 미로가 형성되어 서로 포기어 봉에 끼운 캔들형태로 구성된 특징으로 한다.The backwash precision filter 6 of the pretreatment filtration device 2 is a membrane material such as polysulfone, polypropylene, polyethylene, polyacrylonitrile and polyamide. While formed as a filtration membrane or an ultrafiltration membrane, each membrane is formed of a donut-shaped shape of 1-2 mm thickness or a maze of 1-40 μm formed on the front and back of a petal shape, and formed into a candle shape inserted into a rod. .

상기 탈이온처리공정의 탈이온처리장치(2)는 처리수가 양이온교환수지탑(16)과 멤브레인콘텍터(17) 및 음이온교환수지탑(18)을 순차통과하는 탈이온처리방법과, 1,2차 역삼투막분리기(19)(20) 및 멤브레인콘텍터(21)를 순차통과하는 탈이온처리방법중 어느 하나의 탈이온처리방법으로 선택통과되면서 처리수의 양·음이온을 포함한 이물질이 제거되도록 된 것을 특징으로 한다.The deionization apparatus (2) of the deionization process includes a deionization treatment method in which treated water passes sequentially through a cation exchange resin tower (16), a membrane contactor (17), and an anion exchange resin tower (18); As the deionization treatment method passes through the secondary reverse osmosis membrane separator (19) (20) and the membrane contactor (21) sequentially, any foreign substances including positive and negative ions of the treated water are removed. It is characterized by.

상기 탈이온처리장치(2)의 멤브레인콘텍터(17)(21)는 중공사형의 폴리에틸렌 또는 테프론재질로써 0,01㎛ 기공의 막을 통해 용존가스가 제거될 수 있도록 구성된 것을 특징으로 한다.The membrane contactors 17 and 21 of the deionization apparatus 2 are characterized in that the hollow gas polyethylene or teflon material is configured to remove dissolved gas through a membrane having a pore size of 0,01 μm.

상기 탈이온처리장치(2)의 1,2차 역삼투막분리기(19)(20)는 통과되는 처리수의 폐화농도(pH)를 7 이상으로 조절하여 용존 CO2의 기체발생을 억제할 수 있도록 2단 직렬설치된 것을 특징으로 한다.The first and second reverse osmosis membrane separators 19 and 20 of the deionization apparatus 2 adjust the waste concentration (pH) of the treated water passed to 7 or more to suppress the generation of dissolved CO 2 gas. It is characterized by being installed in two stages in series.

상기 고순도화처리공정의 고순도화처리장치(24)는 처리수가 멤브레인콘텍터 (25)와 전기적탈이온교환막분리기(26) 및 혼상식이온수지기(27)를 순차통과하는 고순도화처리방법과, 혼상식이온교환수지(28)와 순수저장조(29) 및 멤브레인콘텍터 (30)와 자외선살균기(31)를 순차통과하는 고순도화처리방법중 어느 하나의 탈이온처리방법으로 선택통과되면서 최종적으로 고순도의 초순수로 정화되도록 된 것을 특징으로 한다.The high purity treatment apparatus 24 of the high purity treatment process includes a high purity treatment method in which treated water sequentially passes through the membrane contactor 25, the electrical deionization membrane separator 26, and the mixed-phase ion resin 27. It is finally passed through the deionization treatment method of any one of the high purity treatment methods of sequentially passing the common ion exchange resin 28, the pure water storage tank 29, the membrane contactor 30, and the ultraviolet sterilizer 31. Characterized in that it is purified to ultra pure water.

상기 고순도화처리장치(24)의 혼상식이온교환수지기(27)(28)는 이온성실리카와 중탄산이온을 포함한 이물질이 제거될 수 있도록 양이온수지와 음이온수지가 1:2.25 또는 1:1.5의 충진비율로 혼합된 것을 특징으로 한다.The mixed phase ion exchange resins 27 and 28 of the high purity treatment apparatus 24 have a cation resin and an anion resin of 1: 2.25 or 1: 1.5 so that foreign substances including ionic silica and bicarbonate ions can be removed. It is characterized in that the mixture at the filling ratio.

상기 고순도화처리공정의 초순수집수조(34)는 외부로부터의 N2공급시에 제거될 수 있도록 0.01㎛ 이하 기공의 필터로 제거될 수 있도록 구성되면서 초순수가 대기와 접촉되지 못하도록 질소가스로 실링처리된 것을 특징으로 한다.The ultrapure water collection tank 34 of the high purity treatment process is configured to be removed by a filter having pores of 0.01 μm or less so that it can be removed when N 2 is supplied from the outside, and the ultrapure water is sealed with nitrogen gas so that ultrapure water does not come into contact with the atmosphere. It is characterized by.

상기 고순도화처리공정의 한외여과막분리기(35)는 60℃ 이상의 열수에도 견딜 수 있도록 테프론 또는 폴리니트로아크릴재질로 형성된 것을 특징으로 한다.Ultrafiltration membrane separator 35 of the high purity treatment process is characterized in that it is formed of Teflon or polynitroacryl material to withstand hot water of 60 ℃ or more.

이하, 본 발명의 초순수제조방법에 따른 수돗물 및 지하수와 하천, 호수, 댐 및 강물을 집수하여 초순수로 여과처리하는 바람직한 실시예를 상세하게 설명한다.Hereinafter, a preferred embodiment of collecting tap water and ground water, rivers, lakes, dams and river water according to the ultrapure water production method of the present invention and filtering the ultrapure water will be described in detail.

도 1a와 도 1b는 비교적 부유물질이 적은 수돗물 및 지하수 이외에 상대적으로 부유물질이 많은 하천, 호수, 댐, 강물 등의 하천수를 전처리공정(Pre- treatment) 및 탈이온처리공정(Make-up)과 고순도화처리공정(Polishing)을 통해 초순수로 여과처리하면서 재회수공정(Reclamation)을 통해 여과처리되지 않은 농축수를 재회수하여 여과처리하는 본 발명의 초순수제조공정을 도시한 것이다.1A and 1B illustrate pre-treatment and de-ionization of river water such as rivers, lakes, dams, rivers, etc., in which rivers, lakes, dams, and rivers are relatively rich, in addition to tap water and groundwater, which are relatively less suspended. The ultrapure water production process of the present invention is shown by filtering the ultra-pure water through a high purity treatment process and retreating the filtered water through the reclamation process.

도면에서 보는 바와같이, 부유물질이 비교적 적은 수돗물 및 지하수는 지하수저장조(1)로 집수되는 한편, 부유물질이 상대적으로 많은 하천, 호수, 댐, 강물과 같은 하천수는 하천수집수조(8)로 집수되어 상기 지하수저장조(1)의 원수와 별도로 가압부상조(9)에 보내어 일정시간 체류되면서 오염물질 부유물질을 포함한 오염물질이 표층에 부상되어 분리제거된 다음, 화학처리조(10)를 통해 중화 및 응집 또는 침전되면서 상등수로 1차 정화되어 상기 지하저장조(1)로 집수되는 지하수와 같이 전처리여과장치(2)로 보내져 전처리여과된다.As shown in the figure, tap water and groundwater with relatively low suspended solids are collected in the groundwater storage tank (1), while river water such as rivers, lakes, dams, and rivers having relatively large amounts of suspended solids are collected in the river collection tank (8). Separated from the raw water of the groundwater storage tank (1) and sent to the pressurized flotation tank (9) to stay for a certain time, the contaminants, including the contaminant suspended solids floating on the surface layer is separated and removed, and neutralized through the chemical treatment tank (10) While agglomerated or precipitated, it is first purified by supernatant and sent to a pretreatment filtration device 2 such as groundwater collected in the underground storage tank 1 to be pretreated and filtered.

또한, 상기 가압부상조(9)와 화학처리조(10)를 통해 이물질들이 부상 분리되지 못하고 침전된 침전물은 농축조(11)로 이송된 다음에 탈수기(38)를 통해 고형물이 탈수처리되며, 상기 가압부상조(9)와 화학처리조 (10)에는 원수와의 응집반응을 가속시켜 이물질을 부상 분리시키면서 침전물을 침강 분리시킬 수 있도록 황산알루미늄{Al2(SO4)3}과 같은 무기응집제와 고분자응집제가 주로 이용된다.In addition, the sediment which is not separated from the flotation through the pressure flotation tank (9) and the chemical treatment tank (10) is precipitated is transferred to the concentration tank (11), and then the solids are dehydrated through the dehydrator (38), Pressurized flotation tanks (9) and chemical treatment tanks (10) and inorganic coagulants such as aluminum sulfate {Al 2 (SO 4 ) 3 } to accelerate the flocculation reaction with the raw water to sedimentation sediment while floating and separating the foreign matter; Polymeric coagulants are mainly used.

따라서, 상기 지하저장조(1)로부터의 지하수는 상기 전처리여과장치(2)를 통해 곧바로 1차 여과처리되는 데 반해, 상기 하천수집수조(8)로부터의 하천수는 1차적으로 가압부상조(9) 및 화학처리조(10)를 거쳐서 상기 전처리여과장치(2)를 보내져 2차 여과처리되며, 경우에 따라서는 하천수를 지하수와 같이 예비처리공정인 상기 전처리여과장치(2)로 곧바로 이송시켜 여과처리시킬 수도 있다.Therefore, the groundwater from the underground storage tank (1) is first filtered directly through the pretreatment filtration device (2), while the river water from the river collection tank (8) is primarily a pressurized floatation tank (9) and The pretreatment filtration device (2) is sent through the chemical treatment tank (10) to be subjected to secondary filtration. In some cases, the stream water is directly filtered to the pretreatment filtration device (2), which is a pretreatment process, such as groundwater. It may be.

그리고, 상기 전처리여과장치(2)로 이송된 지하수와 함께 하천수인 원수는 우선 다층여과기(3)와 활성탄여과기(4) 및 양이온교환수지탑(5)을 순차 통과하면서 전처리되거나, 또는 역세용정밀여과기(6) 또는 역세용한외여과분리기를 통과하는 전처리여과방법 외에 회전 또는 진동막분리기(7)를 통과하는 전처리방법 등 3가지 전처리여과방법을 선택적으로 사용하여 원수의 이온물질을 포함하여 전반적인 이물질을 제거시킬 수 있다.In addition, the raw water, which is a river water together with the groundwater transferred to the pretreatment filtration device 2, is first pretreated while sequentially passing through the multilayer filter 3, the activated carbon filter 4, and the cation exchange resin tower 5, or backwash precision. In addition to the pretreatment filtration through the filter (6) or backwash ultrafiltration separator, three pretreatment filtration methods, such as the pretreatment through the rotary or vibrating membrane separator (7), are selectively used to provide overall foreign substances, including ionic substances from raw water. Can be removed.

즉, 상기 전처리여과장치(2)의 첫 번째 여과처리구조는 여과재로 모래와 무연탄 및 자갈을 혼합시킨 1차 여과기인 다층여과기(3)와 모래와 무연탄 및 활성탄을 혼합 또는 단독 사용한 2차 여과기인 활성탄여과기(4)를 원수가 통과한 다음, 원수의 경도성분이 50ppm 이상일 때 재생제로 염화나트륨(NaCl)를 사용하는 양이온교환수지탑(3)을 통과되면서 전처리여과처리된다.That is, the first filtration structure of the pretreatment filtration device (2) is a multi-layer filter (3), which is a primary filter in which sand, anthracite and gravel are mixed as a filter material, and a secondary filter using a mixture of sand, anthracite and activated carbon alone or in combination. After the raw water passes through the activated carbon filter 4, the raw water is passed through a cation exchange resin tower 3 using sodium chloride (NaCl) as a regenerant when the hardness component of the raw water is 50 ppm or more.

그리고, 상기 전처리여과장치(2)의 두 번째 여과처리구조로 사용되는 역세용정밀여과기(6) 또는 역세용한외여과분리기는 원수에 포함된 0.01-1㎛ 정도의 유기성물질인 이물질을 제거시킬 수 있도록, 폴리슐폰, 폴리프로필렌, 폴리에틸렌, 폴리아크릴니트릴 및 폴리아마이드 등의 막재질로 중공사형(Hollow fiber)이나 관형(Tubular) 또는 평판형(Plate and Frame)이고, 원수가 막의 표면이나 안쪽으로통과되면서 이물질이 이들 1-5㎛ 기공의 정밀여과막이나 0.01-0.1㎛ 기공의 한외여과막에 의해 제거될 수 있으며, 아울러 투과된 투과수는 전처리집수조(12)로 보내지면서 막 표면에 달라붙은 이물질은 공급반대방향으로 물과 압축공기로써 역세 (Back flush)시켜 제거함으로써 반영구적으로 사용할 수 있다.In addition, the backwash precision filter 6 or the backwash ultrafiltration separator used as the second filtration structure of the pretreatment filtration device 2 can remove foreign matters of about 0.01-1 μm of organic matter contained in raw water. Membranes such as polysulfone, polypropylene, polyethylene, polyacrylonitrile and polyamide, which are hollow fiber, tubular or plate and frame, and raw water passes through or inside the membrane. The foreign matter can be removed by the microfiltration membrane of these 1-5㎛ pores or the ultrafiltration membrane of 0.01-0.1㎛ pores, and the permeated permeate is sent to the pretreatment collection tank 12, and the foreign matter that adheres to the membrane surface is supplied. It can be used semi-permanently by back flushing with water and compressed air in the opposite direction.

또한, 상기 역세용정밀여과기(6)는 폴리프로필렌이나 폴리에틸렌과 같은 1-2㎜ 두께의 도너츠형 모양이나 꽃잎모양의 앞뒷면에 1-40㎛ 크기의 미로를 형성시켜 서로 포개어 봉에 끼운 캔들형태로 구성하여 사용하게 되며, 이때 캔들모양의 표면에 다공질의 여과재인 규조토를 물에 녹여서 코팅처리하여 사용함으로써 보다 깨끗한 양질의 수질을 얻을 수 있도록 처리효율을 증대시킬 수 있다.In addition, the backwash precision filter (6) is a donut-like shape of 1-2 mm thick, such as polypropylene or polyethylene, or a maze of 1-40㎛ size formed on the front and back of the petal-shaped candle sandwiched in the rod In this case, by dissolving the diatomaceous earth, which is a porous filter medium, in a candle-like surface in water and using a coating treatment, the treatment efficiency may be increased to obtain a cleaner and higher quality water.

그리고, 상기 전처리여과장치(2)의 세 번째 여과처리구조로 사용되는 회전 또는 진동막분리기(7)를 통해 원수를 직접적으로 여과처리할 수 있으며, 이때 상기 회전 또는 진동막분리기(7)는 그 형태가 원형(Disc type)으로 미생물, 미립자, 유기물질, 이온물질, 탁도성분 등을 사용되는 막의 제거범위에 따라 제거시킬 수 있는 데, 즉 진동막으로 정밀여과막을 사용할 경우에는 미립자나 탁도성분 및 미생물을 제거할 수 있지만 한외여과막을 사용할 경우에는 유기물질까지도 제거될 수 있고, 아울러 역삼투막을 사용할 경우에는 이온물질을 포함하여 전반적인 이물질을 제거할 수 있으나, 본 발명의 전처리여과공정의 진동막분리기(7)로는 정밀여과막 또는 한외여과막을 사용함이 바람직하도록 하였다.And, the raw water can be directly filtered through the rotary or vibrating membrane separator 7 used as the third filtration structure of the pretreatment filtration device 2, wherein the rotary or vibrating membrane separator 7 is As the disc type, microorganisms, microparticles, organic materials, ionic materials, and turbidity components can be removed according to the removal range of the membrane used. That is, when a microfiltration membrane is used as a vibrating membrane, Although microorganisms can be removed, organic membranes can be removed when using ultrafiltration membranes, and in addition, when using reverse osmosis membranes, overall foreign substances including ionic substances can be removed, but the vibrating membrane separator of the pretreatment filtration process of the present invention ( 7) it is preferable to use a microfiltration membrane or an ultrafiltration membrane.

또한, 상기 하천수집수조(8)로 집수되는 하천수는 협작물이 계절에 따라 변동이 심한 관계로 가압부상조(9)나 화학처리조(10)를 통해 상등수로 1차 여과처리한 다음, 상술한 전처리여과장치(2)의 3가지 여과처리구조 중에서 적절하게 선택하여 2차 여과처리하면 된다.In addition, the river water collected in the river collection tank (8) is subjected to the primary filtration treatment with the supernatant water through the pressurized flotation tank (9) or chemical treatment tank (10) because the constricted material fluctuates depending on the season, and then What is necessary is just to select suitably from 3 filtration treatment structures of the pretreatment filtration apparatus 2, and to carry out a secondary filtration process.

그리고, 상술한 전처리공정의 전처리여과장치(2)를 거친 원수는 전처리집수조(12)에 모아져 열교환기(13)에 의해 20-25℃로 온도보정되어 유지되면서 마이크로필터(14)를 통해 좀더 정밀하게 여과처리된다.And, the raw water passed through the pretreatment filtration device 2 of the pretreatment process is collected in the pretreatment collection tank 12 and maintained at a temperature correction of 20-25 ° C. by the heat exchanger 13, and more precisely through the microfilter 14. Is filtered.

그리고, 상기 마이크로필터(14)를 통과한 원수는 미생물 번식에 의한 오염이 억제되도록 254㎚의 자외선살균기(15)를 거친 후에 탈이온처리장치(38)를 거치면서 중금속을 포함한 이물질이 제거되는 탈이온처리공정이 이루어진다.Then, the raw water passing through the micro filter 14 is passed through a 254 nm ultraviolet sterilizer 15 so that contamination by microbial propagation, and then deionized to remove foreign substances including heavy metals while passing through the deionization unit 38. An ion treatment process takes place.

상기 탈이온처리장치(32)는 처리수의 비저항치 및 용량에 따라 양이온교환수지탑(16)을 통해 멤브레인콘텍터(17)와 음이온교환수지탑(18)을 순차통과하게 되는 첫 번째의 탈이온처리방법과, 처리수의 수질순도 및 이온교환수지 재생에 따라 1,2차 역삼투분리기(19)(20)를 거쳐 맴브레인콘택터(21)를 통과하게 되는 두 번째의 탈이온처리방법으로 선택구별될 수 있다.The deionization apparatus 32 is the first deionized to sequentially pass through the membrane contactor 17 and the anion exchange resin tower 18 through the cation exchange resin tower 16 according to the specific resistance and capacity of the treated water. As a second deionization treatment method which passes through the membrane contactor 21 through the first and second reverse osmosis separators 19 and 20 according to the treatment method and the water purity of the treated water and the ion exchange resin regeneration. Can be.

즉, 자외선살균기(15)를 통과한 처리수의 비저항치가 15,000,000Ω-㎝ 정도로 대용량 사용시에 적용할 경우, 먼저 양이온교환교환수지탑(16)을 통과한 처리수가 중공사형의 폴리에틸렌재질로써 소수성막인 멤브레인콘텍터(17)로 확산 (Diffusion)에 의해 기체류만이 통과되어 음이온교환수지탑(18)을 거치면서 탈이온처리된 다음, 열교환기(22)를 통해 10-15℃로 온도하강되어 미생물의 번식이 억제유지될 수 있도록 온도관리되면서 탈이온집수조(23)로 이송되거나 또는 상기 열교환기(22)로 이송되지 않고 곧바로 보일러나 도금산업 등의 일반세척수로 사용될 수 있다.That is, when the specific resistance value of the treated water passed through the ultraviolet sterilizer 15 is 15,000,000 kPa-cm, when applied in a large capacity, the treated water first passed through the cation exchange exchange resin tower 16 is a hollow fiber-type polyethylene material, which is a hydrophobic film. Only the gas flow is passed through the membrane contactor 17 by diffusion, and deionized while passing through the anion exchange resin tower 18. Then, the temperature is lowered to 10-15 ° C. through the heat exchanger 22. Temperature control so that the propagation of the microorganisms can be suppressed and maintained in the deionization tank 23 or may not be transferred to the heat exchanger 22 and may be directly used as a general washing water such as a boiler or a plating industry.

또한, 상기 자외선살균기(15)를 통과한 처리수가 고순도의 수질요구 및 이온교환수지 재생에 따른 폐수발생의 예방을 위해 적용될 경우에는, 양이온교환교환수지탑(16)을 통과한 처리수가 다수의 역삼투막이 2단 직렬배열된 1,2차 역삼투막분리기(19)(20)를 통해 용존 CO2의 기체발생이 억제되면서 용존가스 제거막분리기인 멤브레인콘택터(21)를 거쳐 열교환기(22)로 이송된다.In addition, when the treated water passing through the ultraviolet sterilizer 15 is applied for the prevention of wastewater generation due to high purity water quality requirements and ion exchange resin regeneration, the treated water passed through the cation exchange exchange resin tower 16 has a plurality of reverse osmosis membranes. Gas generation of dissolved CO 2 is suppressed through the two-stage serially arranged first and second reverse osmosis membrane separators (19, 20) and is transferred to the heat exchanger (22) through the membrane contactor (21), which is a dissolved gas removal membrane separator. .

또한, 상기의 멤브레인콘텍터(17)(21)는 중공사형의 폴리에틸렌 또는 테프론 (PVDF)재질로써 형성되어 확산원리에 의해 기체류만이 0.01㎛ 기공의 막을 투과되면서 용존가스가 제거되며, 아울러 2단 직렬설치된 역삼투막분리기(19)(20)는 pH를 상기 2차 역삼투막분리기(20)에서 7-8 이상으로 조절하여 막의 오염이나 원수에 포함된 중탄산이온 및 용존 CO2의 기체발생이 억제되도록 하면서 투과되지 않은 농축수는 원수저장조인 지하수저장조(1)로 반송시켜 재사용할 수 있도록 한다.In addition, the membrane contactors 17 and 21 are formed of polyethylene or Teflon (PVDF) of hollow fiber type so that only gas flows through the 0.01 μm pore membrane by the diffusion principle to remove dissolved gases. However, the reverse osmosis membrane separators 19 and 20 installed in series may adjust the pH to 7-8 or more in the secondary reverse osmosis membrane separator 20 to prevent contamination of the membrane or gas generation of bicarbonate ions and dissolved CO 2 contained in raw water. The non-permeable concentrated water is returned to the groundwater storage tank (1), which is a raw water storage tank, to be reused.

그리고, 상술한 탈이온처리공정의 탈이온처리장치(32)를 거친 투과수는 열교환기(22)를 통해 온도보정되어 탈이온집수조(23)로 집수된 후에 고순도화처리공정의 해당 고순도화처리장치(24)로 이송된다.Then, the permeated water that has passed through the deionization apparatus 32 of the deionization process described above is temperature-corrected through the heat exchanger 22 and collected in the deionization tank 23, and then the corresponding high purity treatment of the high purity treatment process. Transferred to device 24.

상기 고순도화처리장치(24)는 탈이온된 처리수가 멤브레인콘텍터(21)를 통해 전기적탈이온교환막분리기(26)와 비재생형 혼상식이온교환수지기(27)를 순차통과하는 첫 번째의 고순도화처리구조와 함께, 비재생형 혼상식이온교환수지기(28)를 통해 순수저장조(29)로 모여진 후에 멤브레인콘텍터(30)와 총유기성 탄소화합물(TOC)제거용 자외선살균기(31)를 순차통과하게 되는 두 번째의 고순도화처리구조를 통해 고품질의 초순수화될 수 있는 고순도화처리공정이 이루어지게 된다.The high purity treatment device (24) is the first to pass the deionized treated water sequentially through the electrical deionization membrane separator (26) and the non-regeneration hybrid phase ion exchange resin (27) through the membrane contactor (21). Ultraviolet sterilizer (31) for removal of membrane contactor (30) and total organic carbon compound (TOC) after being gathered into pure water storage tank (29) through non-regeneration type mixed phase ion exchange resin (28) with high purity treatment structure Through the second high purity treatment structure which passes through sequentially, a high purity treatment process capable of high quality ultrapure is achieved.

즉, 첫 번째의 고순도화처리과정에서는 멤브레인콘텍터(21)에 의해 용존산소 (DO)와 이산화탄소(CO2) 등이 제거되고, 전기적 탈이온화장치로 회공약품을 사용하지 않고 양이온교환막과 음이온교환막 사이에 직류를 통과시켜 물 속에 함유된 양,음이온을 제거시키는 전기적탈이온교환막분리기(26)를 거친 다음, 양이온수지와 음이온교환수지가 1:2.25 정도의 충진비율로 혼합된 비재생형 혼상식이온교환수지기 (27)를 통해 이온성실리카 등이 제거되면서 최종적으로 고순도화된다.That is, in the first high-purification process, dissolved oxygen (DO) and carbon dioxide (CO 2 ), etc. are removed by the membrane contactor 21, and a cation exchange membrane and an anion exchange membrane are used as an electrical deionization apparatus without using a chemical. After passing through a direct current between the electrical deionization membrane separator (26) to remove the positive and negative ions contained in the water, and then a non-regenerated hybrid type mixture of cation resin and anion exchange resin at a filling ratio of about 1: 2.25 The ion exchange resin 27 removes the ionic silica and the like and finally becomes high purity.

또한, 두 번째의 고순도화처리과정으로 선택될 경우에는 양이온수지와 음이온수지가 1:15의 충진비율로 혼합된 비재생형 혼상식이온교환수지기(28)를 통해 이온성실리카와 중탄산이온 등이 제거되고, 질소가스로 외부 이산화탄소 등의 오염물질 유입을 막기 위해 질소가스로 실링처리된 순수저장조(29)로 유입된 후에 멤브레인콘택터(30)를 통과하면서 펌프가동중에 발생된 처리수의 용존가스가 제거되며, 아울러 물 속의 미생물을 조사하면 물 속의 CO2가 HCO3 -등으로 변화되는 탄소화합물제거용 자외선살균기(31)를 통해 185㎚의 총유기성 탄소화합물이 제거된다.In addition, in the case of the second high-purification process, ionic silica and bicarbonate ion, etc., are introduced through the non-regeneration type interphase ion exchange resin 28 in which the cation resin and the anion resin are mixed at a packing ratio of 1:15. This is removed, and dissolved gas of the treated water generated during pump operation while passing through the membrane contactor 30 after flowing into the pure water storage tank 29 sealed with nitrogen gas in order to prevent inflow of pollutants such as external carbon dioxide into nitrogen gas. When the microorganisms in the water are irradiated, 185 nm of total organic carbon compounds are removed through the ultraviolet sterilizer 31 for removing carbon compounds in which CO 2 is changed to HCO 3 - and the like.

그리고, 상술한 고순도화처리공정의 고순도화처리장치(24)를 거친 처리수가열교환기(33)를 통해 수온이 일정하게 관리유지되면서 대기와 접촉하지 못하도록 질소가스로 실링처리되고, 이때 질소가스가 초순수집수조(34)로 주입시에 0.01㎛ 이하 기공으로 구성된 필터를 통과하도록 함으로써 초순수가 초순수집수조(34)로 집수되면서 최상의 수질로 관리된다.Then, the treated water passed through the high purity treatment apparatus 24 of the high purity treatment process described above is sealed with nitrogen gas to prevent contact with the atmosphere while maintaining a constant water temperature. Ultra-pure water is collected in the ultra-pure water collection tank 34 by passing through a filter composed of pores of 0.01 μm or less when injected into the ultra-pure water collection tank 34, thereby managing the best water quality.

또한, 상기 초순수집수조(34)를 통과여과된 초순수는 수질의 사용중요도에 따라 한외여과막분리기(35)나 폴리싱역삼투막분리기(36)로 선택통과하게 되며, 이때 사용되는 상기 한외여과막분리기(35)는 60℃ 이상의 열수에도 견딜 수 있도록 테프론(PVDF) 또는 폴리니트로아크릴(PAN) 등의 재질로 형성되며, 아울러 상기 폴리싱역삼투막분리기(36)는 미립자, 미생물 뿐만 아니라 총유기성 탄소화합물(TOC)과 이온물질을 최종적으로 완벽하게 처리하게 된다.In addition, the ultrapure water filtered through the ultrapure water collection tank 34 is selectively passed through the ultrafiltration membrane separator 35 or the polishing reverse osmosis membrane separator 36 according to the importance of water quality, wherein the ultrafiltration membrane separator 35 used is It is formed of a material such as Teflon (PVDF) or polynitroacrylic acid (PAN) to withstand hot water of 60 ° C. or higher. In addition, the polishing reverse osmosis membrane separator 36 is a total organic carbon compound (TOC) and an ionic material as well as fine particles and microorganisms. Finally complete processing.

그리고, 상기 한외여과막분리기(35) 또는 폴리싱역삼투막분리기(36)를 선택통과한 초순수는 최종 사용지점의 배관 단부에 설치연결된 멤브레인콘택터(37)를 통해 공급되어, 최초 원수에 포함된 이물질 및 유해성분이 확실하게 제거되면서 초순도가 요구되는 반도체산업 등에 사용될 수 있는 고품질의 초순수로 최종 정화처리될 수 있으며, 특히 상기 멤브레인콘텍터(37)는 초순수가 공급되는 배관길이가 길어 이송도중에 용존산소 내지 용존이산화탄소 등이 증가되는 것을 막도록 한다.The ultrapure water, which has passed through the ultrafiltration membrane separator 35 or the polishing reverse osmosis membrane separator 36, is supplied through a membrane contactor 37 connected to the pipe end at the end point of use, so that foreign substances and harmful components contained in the original raw water are supplied. It can be reliably removed and finally purified with high quality ultrapure water that can be used in the semiconductor industry where ultrapure is required. In particular, the membrane contactor 37 has a long pipe length through which ultrapure water is supplied. Prevent your back from growing.

상술한 바와 같은 본 발명의 초순수제조방법에 의하면, 수질농도에 따라 부유물질이 비교적 적은 수돗물 및 지하수와 부유물질이 상대적으로 많은 하천, 호수, 댐 및 강물을 분리 집수하여 전처리시킨 후에 탈이온처리 및 고순도화처리를 통해 원수에 포함된 이물질 및 유해성분을 확실하게 제거하여 초순도가 요구되는 반도체산업 등에 사용될 수 있는 고품질의 초순수로 정화처리할 수 있도록 함으로써, 외국의 초순수기술 사용에 따른 막대한 외화낭비를 줄일 수 있는 것을 물론 국내의 초순수 사용업체의 국제적 경쟁력 강화와 함께 그 동안 초순수제조과정에서 발생되었던 이온교환수지의 재생에 따른 염산과 수산화나트륨 등의 화공약품 사용에 따른 각종 폐기물 및 폐이온교환수지 처분 등의 문제를 구조적을 해소시킬 수 있는 등의 효과가 제공될 것으로 기대된다.According to the ultrapure water production method of the present invention as described above, according to the water quality concentration, deionization and treatment after tapping and pretreatment by separately collecting streams, lakes, dams and rivers with a relatively large amount of tap water and groundwater and floating materials Through the high purity treatment, the foreign substances and harmful components contained in raw water are reliably removed so that they can be purified with high quality ultra pure water which can be used for the semiconductor industry which requires ultra high purity. Of various wastes and waste-ion exchange resins resulting from the use of chemicals such as hydrochloric acid and sodium hydroxide in the regeneration of ion exchange resins generated during the ultrapure water manufacturing process. Provides the effect of eliminating structural problems such as disposal It is expected.

Claims (12)

수돗물 및 지하수는 지하수저장조(1)로 집수되어 전처리여과장치(2)를 통과하면서 전처리여과되는 한편, 하천, 호수, 댐, 강물과 같은 하천수는 하천수집수조 (8)로 집수되어 가압부상조(9)와 화학처리조(10)를 통해 상등수로 1차 정화처리된 후에 상기 지하수저장조(1)의 원수와 같이 상기 전처리여과장치(2)를 통과하면서 2차 정화처리되어 전처리여과되는 전처리공정과;Tap water and ground water are collected by the groundwater storage tank (1) and passed through the pretreatment filtration system (2), and the pretreatment is filtered while river water, such as rivers, lakes, dams, and river water, is collected by the river water collection tank (8) and pressurized flotation (9). And a pretreatment step of preliminary filtration through the pretreatment filtration device (2) as the raw water of the groundwater storage tank (1) after the primary purification treatment with supernatant water through the chemical treatment tank (10); 상기 전처리공정을 통해 여과처리된 여과수는 전처리집수조(12)로 집수되어 열교환기(13)에 의해 온도보정되면서 마이크로필터(14)를 통해 정밀여과처리된 다음, 미생물 번식이 억제되도록 자외선살균기(15)를 거쳐 탈이온처리장치(32)를 통과하면서 양·음이온을 포함한 이물질이 제거되는 탈이온처리공정과;The filtered water filtered through the pretreatment process is collected by the pretreatment collecting tank 12 and subjected to microfiltration through the microfilter 14 while temperature correction by the heat exchanger 13, followed by an ultraviolet sterilizer 15 to suppress the growth of microorganisms. A deionization step of removing foreign substances including positive and negative ions while passing through the deionization unit 32 through; 상기 탈이온처리공정을 거친 처리수는 열교환기(22)를 통해 온도보정되면서 탈이온집수조(23)에 집수된 다음, 고순도화처리장치(24)를 통해 고순도화되면서 다시 열교환기(33)에 의해 온도보정되어 초순수집수조(34)로 집수되고, 한외여과막분리기(35) 또는 폴리싱역삼투막분리기(36)로 선택통과되면서 최종 사용지점의 배관 단부에 설치된 멤브레인콘택터(37)를 통해 초순도화되는 고순도화처리공정과;The treated water that has undergone the deionization process is collected in the deionization tank 23 while temperature is corrected through the heat exchanger 22, and then is purified again through the high purity treatment device 24, and then returned to the heat exchanger 33. The temperature is corrected by the ultrapure water collection tank (34), the ultra-pure membrane through the membrane contactor (37) installed at the end of the end point of use, while passing through the ultrafiltration membrane separator (35) or polishing reverse osmosis membrane separator (36). Treatment process; 아울러 상기 각 처리공정을 통해 처리투과되지 못하고 농축된 농축수가 상기 전처리공정으로 반송되는 재회수공정을 포함하여 원수를 초순수로 정화처리할 수 있도록 된 것을 특징으로 하는 초순수제조방법.In addition, the ultra-pure water production method characterized in that the raw water can be purified by ultrapure water, including a re-recovery process in which the concentrated water that has not been permeated through each treatment step is returned to the pretreatment step. 제 1항에 있어서, 상기 전처리공정의 전처리여과장치(2)는 원수가 다층여과기(3)와 활성탄여과기(4) 및 양이온교환수지탑(5)을 순차통과하는 전처리여과방법과, 역세용정밀여과기(4) 또는 역세용한외여과분리기를 순차통과하는 전처리여과방법과, 회전 또는 진동막분리기(7)를 통과하는 전처리여과방법 중 어느 하나의 전처리여과방법으로 선택통과되면서 원수의 이온물질을 포함하여 이물질이 제거되도록 된 것을 특징으로 하는 초순수제조방법.The pretreatment filtration device (2) according to claim 1, wherein the pretreatment filtration device (2) of the pretreatment step includes a pretreatment filtration method in which raw water passes sequentially through a multilayer filter (3), an activated carbon filter (4), and a cation exchange resin tower (5). The pretreatment filtration method which passes through the filter (4) or the backwash ultrafiltration separator sequentially, and the pretreatment filtration method which passes through the rotary or diaphragm separator (7), passes through the pretreatment filtration method, and contains ionic substance of raw water. Ultra-pure water production method characterized in that the foreign matter is removed by. 제 1항에 있어서, 상기 가압부상조(9)와 상기 화학처리조(10)에는 유산반토와 같은 무기응집제와 고분자응집제가 사용된 것을 특징으로 하는 초순수제조방법.The ultrapure water production method according to claim 1, wherein the pressure flotation tank (9) and the chemical treatment tank (10) use inorganic coagulants such as lactic acid alumina and polymer coagulants. 제 1항 및 제 2항에 있어서, 상기 전처리여과장치(2)의 양이온교환수지탑(5)은 재생제로 염화나트륨이 사용된 것을 특징으로 하는 초순수제조방법.The ultrapure water production method according to claim 1 or 2, wherein the cation exchange resin tower (5) of the pretreatment filtration device (2) uses sodium chloride as a regenerant. 제 1항 및 제 2항에 있어서, 상기 전처리여과장치(2)의 역세용정밀여과기(6)는 폴리슐폰, 폴리프로필렌, 폴리에틸렌, 폴리아크릴니트릴 및 폴리아마이드의 막재질로 중공사형이나 관형 또는 평판형으로 0.01-1㎛ 기공의 정밀여과막 또는 한외여과막으로 형성되면서, 각각 1-2㎜ 두께의 도너츠형 모양이나 꽃잎모양의 앞뒷면에 1-40㎛ 크기의 미로가 형성되어 서로 포기어 봉에 끼운 캔들형태로 구성된 특징으로 하는 초순수제조방법.3. The backwash fine filter (6) of the pretreatment filtration device (2) according to claim 1 or 2 is a hollow fiber, tubular or flat plate made of polysulfone, polypropylene, polyethylene, polyacrylonitrile and polyamide. Shaped as 0.01-1㎛ pores of precision filtration membrane or ultrafiltration membrane, each of which has a donut-shaped shape of 1-2 mm or a maze of 1-40㎛ size is formed on the front and back of petal shape, respectively Ultra-pure water production method characterized in the form of a candle. 제 1항에 있어서, 상기 탈이온처리공정의 탈이온처리장치(2)는 처리수가 양이온교환수지탑(16)과 멤브레인콘텍터(17) 및 음이온교환수지탑(18)을 순차통과하는 탈이온처리방법과, 1,2차 역삼투막분리기(19)(20) 및 멤브레인콘텍터(21)를 순차통과하는 탈이온처리방법중 어느 하나의 탈이온처리방법으로 선택통과되면서 처리수의 양·음이온을 포함한 이물질이 제거되도록 된 것을 특징으로 하는 초순수제조방법.The deionization apparatus (2) of the deionization process according to claim 1, wherein the deionization apparatus (2) of the deionization process passes through the cation exchange resin tower (16), the membrane contactor (17), and the anion exchange resin tower (18). The positive and negative ions of the treated water are selectively passed through the deionization treatment method of any one of the treatment method and the deionization treatment method of sequentially passing the first and second reverse osmosis membrane separators 19, 20 and the membrane contactor 21. Ultrapure water production method, characterized in that the foreign matter including. 제 1항 및 제 6항에 있어서, 상기 탈이온처리장치(2)의 멤브레인콘텍터 (17)(21)는 중공사형의 폴리에틸렌 또는 테프론재질로써 0,01㎛ 기공의 막을 통해 용존가스가 제거될 수 있도록 구성된 것을 특징으로 하는 초순수처리방법.The membrane contactor (17) (21) of the deionization apparatus (2) is a hollow fiber polyethylene or teflon material, and dissolved gas is removed through a membrane having a pore size of 0,01 mu m. Ultrapure water treatment method characterized in that configured to be. 제 1항 및 제 6항에 있어서, 상기 탈이온처리장치(2)의 1,2차 역삼투막분리기(19)(20)는 통과되는 처리수의 폐화농도(pH)를 7 이상으로 조절하여 용존 CO2의 기체발생을 억제할 수 있도록 2단 직렬설치된 것을 특징으로 하는 초순수처리방법.The first and second reverse osmosis membrane separators (19, 20) of the deionization apparatus (2) are dissolved by adjusting the waste concentration (pH) of the treated water to be 7 or more. Ultrapure water treatment method characterized in that the two-stage installation in order to suppress the generation of CO 2 gas. 제 1항에 있어서, 상기 고순도화처리공정의 고순도화처리장치(24)는 처리수가 멤브레인콘텍터(25)와 전기적탈이온교환막분리기(26) 및 혼상식이온수지기(27)를 순차통과하는 고순도화처리방법과, 혼상식이온교환수지(28)와 순수저장조(29) 및 멤브레인콘텍터(30)와 자외선살균기(31)를 순차통과하는 고순도화처리방법중 어느 하나의 탈이온처리방법으로 선택통과되면서 최종적으로 고순도의 초순수로 정화되도록 된 것을 특징으로 하는 초순수제조방법.The high purity treatment device (24) of the high purity treatment process has a high purity in which the treated water passes through the membrane contactor (25), the electrical deionization membrane separator (26), and the mixed-phase ionizer (27). Selected as either deionization method or high purity treatment method of sequentially passing mixed phase ion exchange resin (28), pure water storage tank (29), membrane contactor (30) and ultraviolet sterilizer (31). Ultra-pure water production method characterized in that it is finally purified to be purified with high purity ultra pure water. 제 1항 및 제 9항에 있어서, 상기 고순도화처리장치(24)의 혼상식이온교환수지기(27)(28)는 이온성실리카와 중탄산이온을 포함한 이물질이 제거될 수 있도록 양이온수지와 음이온수지가 1:2.25 또는 1:1.5의 충진비율로 혼합된 것을 특징으로 하는 초순수제조방법.10. The mixed phase ion exchange resins 27 and 28 of the high purity treatment apparatus 24 are cationic resins and anions to remove foreign substances including ionic silica and bicarbonate ions. Ultra-pure water production method characterized in that the resin is mixed at a filling ratio of 1: 2.25 or 1: 1.5. 제 1항에 있어서, 상기 고순도화처리공정의 초순수집수조(34)는 외부로부터의 N2공급시에 제거될 수 있도록 0.01㎛ 이하 기공의 필터로 제거될 수 있도록 구성되면서 초순수가 대기와 접촉되지 못하도록 질소가스로 실링처리된 것을 특징으로 하는 초순수제조방법.The ultrapure water collection tank 34 of the high purity treatment process is configured to be removed by a filter having a pore size of 0.01 μm or less so that the ultrapure water collection tank 34 can be removed when N 2 is supplied from the outside, and the ultrapure water does not come into contact with the atmosphere. Ultrapure water production method characterized in that the sealing treatment with nitrogen gas. 제 1항에 있어서, 상기 고순도화처리공정의 한외여과막분리기(35)는 60℃ 이상의 열수에도 견딜 수 있도록 테프론 또는 폴리니트로아크릴재질로 형성된 것을 특징으로 하는 초순수제조방법.The ultrapure membrane production method according to claim 1, wherein the ultrafiltration membrane separator (35) of the high purity treatment step is formed of Teflon or polynitroacryl material to withstand hot water of 60 ° C or higher.
KR1019990046303A 1999-10-25 1999-10-25 System of manufactured for ultra pure water KR100314714B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990046303A KR100314714B1 (en) 1999-10-25 1999-10-25 System of manufactured for ultra pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990046303A KR100314714B1 (en) 1999-10-25 1999-10-25 System of manufactured for ultra pure water

Publications (2)

Publication Number Publication Date
KR20000000457A KR20000000457A (en) 2000-01-15
KR100314714B1 true KR100314714B1 (en) 2001-11-23

Family

ID=19616708

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990046303A KR100314714B1 (en) 1999-10-25 1999-10-25 System of manufactured for ultra pure water

Country Status (1)

Country Link
KR (1) KR100314714B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943097B1 (en) 2002-03-18 2010-02-18 오르가노 가부시키가이샤 High-purity water producing apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402556B1 (en) * 2001-08-29 2003-10-17 지은상 Water treatment method for using membrane separation device
JP3878452B2 (en) * 2001-10-31 2007-02-07 株式会社ルネサステクノロジ Manufacturing method of semiconductor integrated circuit device
KR100796561B1 (en) * 2006-08-16 2008-01-23 지은상 Deionized water system with membrabe separation technology for power plant
KR100761323B1 (en) * 2006-09-06 2007-10-04 강순옥 An instant powder hot pepper paste manufacture method
KR100985920B1 (en) * 2009-07-24 2010-10-08 주식회사 선도 A functional hydrogen water supplier and hydroponics farming system for herbal crops using the same
KR100966079B1 (en) * 2010-01-05 2010-06-28 박홍규 High level purifying device of the sea water and underground water
US11021384B1 (en) * 2020-12-12 2021-06-01 GreenSource Fabrication LLC Zero liquid discharge recycling system for PCB FAB, general metal finishing, and chemical milling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943097B1 (en) 2002-03-18 2010-02-18 오르가노 가부시키가이샤 High-purity water producing apparatus

Also Published As

Publication number Publication date
KR20000000457A (en) 2000-01-15

Similar Documents

Publication Publication Date Title
Kavitha et al. Pretreatment processes for seawater reverse osmosis desalination systems—A review
Al Abdulgader et al. Hybrid ion exchange–Pressure driven membrane processes in water treatment: A review
KR100796561B1 (en) Deionized water system with membrabe separation technology for power plant
CN105000755A (en) Wastewater zero-emission industrial sewage treatment system and treatment method
CA2771223A1 (en) Treatment of contaminated water from gas wells
CN110451704B (en) Method for treating fluorine-containing reuse water
CN104108813B (en) Refinery sewage desalination integrated processing technique and device
CN103172216A (en) Method for advanced treatment and reuse of wastewater
CN106587451B (en) Deionization integrated treatment method and device for micro-polluted water source water treatment
Abdel-Fatah et al. Water treatment and desalination
Singh Analysis of energy usage at membrane water treatment plants
CN110759569A (en) Industrial water treatment system
KR100314714B1 (en) System of manufactured for ultra pure water
KR20050001895A (en) Leachate and Sewage Recycling Method and System Therefor
KR100356343B1 (en) Sewage and wastewater recycling metacarpus-treatment system using reverse osmosis membrane
KR101550702B1 (en) Water-purifying System with high recovery rate and Method Using Membrane Filtration for Manufacturing Purified Water
Rozzi et al. Pilot-scale membrane bioreactor and reverse osmosis studies for direct reuse of secondary textile effluents
Liu et al. Performance of landfill leachate treatment system with disc-tube reverse osmosis units
CN213295024U (en) Ultrapure water preparation device
CN206437968U (en) A kind of system of high-salt wastewater treatment for reuse
MX2010012427A (en) Apparatus for treating wastewater, particularly wastewater originating from a process for the production of photovoltaic cells.
Bahuguna et al. Physical method of Wastewater treatment-A review
CN112919693B (en) Full-membrane-process desalted water treatment system and treatment method thereof
CN210237294U (en) Near-zero emission treatment system for surface treatment wastewater
Nave et al. Introductory chapter: Osmotically driven membrane processes

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121101

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20131101

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee