JPH0697474A - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPH0697474A
JPH0697474A JP4269697A JP26969792A JPH0697474A JP H0697474 A JPH0697474 A JP H0697474A JP 4269697 A JP4269697 A JP 4269697A JP 26969792 A JP26969792 A JP 26969792A JP H0697474 A JPH0697474 A JP H0697474A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion device
electrode
substrate
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4269697A
Other languages
Japanese (ja)
Inventor
Setsuo Nakajima
節男 中嶋
Yasuyuki Arai
康行 荒井
Hisato Shinohara
久人 篠原
Masayoshi Abe
雅芳 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
TDK Corp
Original Assignee
Semiconductor Energy Laboratory Co Ltd
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd, TDK Corp filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP4269697A priority Critical patent/JPH0697474A/en
Publication of JPH0697474A publication Critical patent/JPH0697474A/en
Priority to US08/554,241 priority patent/US5821597A/en
Priority to US09/149,289 priority patent/US6720576B1/en
Priority to JP2000045077A priority patent/JP3393842B2/en
Priority to US10/821,879 priority patent/US7095090B2/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent a substrate from being deformed and distorted by providing an output end through which an output of a photoelectric conversion device is derivable on a surface of a substrate located oppositely to a surface where the photoelectric conversion device is provided. CONSTITUTION:An output of a photoelectric conversion unit 101 on the side of a substrate is simultaneously derived on a pljotoelectric conversion layer in a formation process of a second electrode 7 upon constructing an integrated structure, and is connected with a derivation electrode 15. In contrast, an output of a second electrode of a photoelectric conversion unit 103 is connected with a derivation electrode 14 yieled by extending the second electrode 7. The derivation electrodes 14, 15 are connected with an output end 13 provided on the back througli a conduction part 12 of a conduction hole 11 provided through a photoelectric conversion device constituting material located below the substrate. The conduction part 12 is provided with the same material as that of the second electrode '7. Hereby, the photoelectric conversion device alloits output lqo be derived through the output 13 provided oppositely to photoelectric conversion device of the substrate 1 to the outside.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】本発明は光電変換装置の新規な構造
に関し、特に耐熱性の低い可撓性基板を利用した光電変
換装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel structure of a photoelectric conversion device, and more particularly to a photoelectric conversion device using a flexible substrate having low heat resistance.

【0002】[0002]

【従来の技術】電子・電気部品等の小型化、薄型化さら
には軽量化への市場の要求が高まり、これら部品を構成
する材料も多種多様なものが使用され始めている。太陽
電池等の光電変換装置もこの例外ではなく、様々な仕様
の装置が提案されている。この中で、基板材料として可
撓性(フレキシブル)を持つ有機フィルムや金属薄板を
使った薄型で軽量のものが、他の電気製品、産業機械製
品等への応用を前提として、注目されはじめている。
2. Description of the Related Art There is an increasing demand in the market for miniaturization, thinning, and weight reduction of electronic / electrical parts and the like, and a wide variety of materials are being used to form these parts. Photoelectric conversion devices such as solar cells are no exception to this, and devices with various specifications have been proposed. Among these, thin and lightweight products that use flexible organic films and thin metal plates as substrate materials have begun to be noticed on the assumption that they are applied to other electrical products, industrial machinery products, etc. .

【0003】このような、可撓性基板の中でも、有機材
料を使用した基板の光電変換装置がコスト、特性、作業
性の点から注目され、可撓性基板の光電変換装置の主流
となりつつある。可撓性基板の有機材料基板は金属薄板
基板にくらべ、加工性のよさや軽量である点など優れた
点を多数持つ。
Among such flexible substrates, a photoelectric conversion device using a substrate made of an organic material is drawing attention from the viewpoints of cost, characteristics, and workability, and is becoming the mainstream of photoelectric conversion devices for flexible substrates. . The organic material substrate of the flexible substrate has many advantages such as good workability and light weight as compared with the thin metal substrate.

【0004】このような有機材料の可撓性基板を使用し
た光電変換装置の一例として、図7にその概略の構造を
示す。可撓性基板1上に、光電変換装置が形成されてい
るが、この図では3つの光電変換素子が直列に集積化さ
れた構造を示している。各々の光電変換素子は第1の電
極71、非単結晶半導体層72および第2の電極73、
74とから構成されている。この例では光は第2の電極
側から照射される構成となっており、そのため第2の電
極は透光性の電極材料であるITO73とグリッド状の
補助電極74とで構成されている。
As an example of a photoelectric conversion device using such a flexible substrate made of an organic material, FIG. 7 shows a schematic structure thereof. Although the photoelectric conversion device is formed on the flexible substrate 1, this figure shows a structure in which three photoelectric conversion elements are integrated in series. Each photoelectric conversion element includes a first electrode 71, a non-single-crystal semiconductor layer 72 and a second electrode 73,
And 74. In this example, light is emitted from the second electrode side, and therefore the second electrode is composed of the translucent electrode material ITO 73 and the grid-shaped auxiliary electrode 74.

【0005】第2の電極74はそのとなり合った光電変
換素子の第1の電極71と接続されて、各々の素子が直
列に接続されている。このような光電変換装置の出力は
銅リード75から外部に取り出される。このリードは第
2の電極に半田で固定接続されている。
The second electrode 74 is connected to the adjacent first electrode 71 of the photoelectric conversion element, and each element is connected in series. The output of such a photoelectric conversion device is taken out from the copper lead 75 to the outside. This lead is fixedly connected to the second electrode by soldering.

【0006】[0006]

【発明が解決しようとする課題】このうよな、可撓性基
板の有機材料等の耐熱性を有さない基板は他の基板材料
と比較して、熱に対して十分な耐性を有していない。耐
熱性が高いと言われるポリイミドフィルムでも精々30
0〜350℃程度であった。そのため、光電変換装置を
製造する際には極力熱が加わることを避ける方式がとら
れ、実用化されている。しかしながら、光電変換装置を
作製した後、それを利用する際には必ず設けなければな
らない出力取り出し部の形成の際には、半田付けによる
接続が一般的であり、そのため、半田を解かすために、
極部的に熱を加える必要があった。
Such a flexible substrate such as an organic material having no heat resistance has sufficient heat resistance as compared with other substrate materials. Not not. Even polyimide film that is said to have high heat resistance is 30
It was about 0 to 350 ° C. Therefore, when manufacturing a photoelectric conversion device, a method of avoiding application of heat as much as possible is adopted and put into practical use. However, after forming the photoelectric conversion device, soldering is generally used when forming the output take-out portion that must be provided when using the photoelectric conversion device. ,
It was necessary to apply heat locally.

【0007】そのため、可撓性基板の有機材料の一部の
みに極度の熱がくわわり、この部分だけが熱変形を起こ
す問題があった、また、熱変形を起こさない程度の温度
で、リードと光電変換装置の電極との接続を行うと、今
度は接続部分の接着強度が十分とれず導通不良や、接着
部分の剥離が起こり、信頼性不安がある。この出力取り
出し部分の改良が望まれていた。
Therefore, there is a problem that only a part of the organic material of the flexible substrate is subjected to extreme heat, and only this part is thermally deformed. Also, at a temperature at which thermal deformation does not occur, the leads are not heated. If the connection between the electrode and the electrode of the photoelectric conversion device is made, the connection portion will not have sufficient adhesive strength this time, and conduction failure or peeling of the adhesive portion will occur, causing concern about reliability. There has been a demand for improvement of this output extraction part.

【0008】[0008]

【課題を解決するための手段】(第1の発明)本発明
は、耐熱性を有さない基板上に設けられた薄膜状の光電
変換装置であって、前記光電変換装置の出力を取り出せ
る出力端は前記基板の前記光電変換装置が設けられた面
とは反対の面上に設けられており、前記光電変換装置の
電極と前記出力端とを導通する導通部を有する光電変換
装置。 (第2の発明)また、上記の光電変換装置において、前
記導通部は可撓性基板に設けられた導通孔に存在する光
電変換装置。 (第3の発明)さらにまた、上記の光電変換装置におい
て、前記導通部は可撓性基板の端面に存在する光電変換
装置。 (第4の発明)本発明は、耐熱性を有さない基板上に設
けられた薄膜状の光電変換装置であって、前記光電変換
装置の出力を取り出せる出力端は前記基板の前記光電変
換装置が設けられた面とは反対の面上に設けられてお
り、前記光電変換装置の電極と前記出力端とを導通する
導通部は前記光電変換装置の電極の一部に使用されてい
る材料と同一であることを特徴とする光電変換装置。
(First Invention) The present invention is a thin film photoelectric conversion device provided on a substrate having no heat resistance, and an output capable of taking out the output of the photoelectric conversion device. The end is provided on the surface of the substrate opposite to the surface on which the photoelectric conversion device is provided, and the photoelectric conversion device has a conduction portion that electrically connects the electrode of the photoelectric conversion device and the output end. (2nd invention) Moreover, in the said photoelectric conversion apparatus, a photoelectric conversion apparatus in which the said conduction | electrical_connection part exists in the conduction hole provided in the flexible substrate. (Third invention) Furthermore, in the above photoelectric conversion device, the conductive portion is present on the end surface of the flexible substrate. (Fourth invention) The present invention is a thin-film photoelectric conversion device provided on a substrate having no heat resistance, wherein an output end from which the output of the photoelectric conversion device can be taken out is the photoelectric conversion device of the substrate. Is provided on a surface opposite to the surface provided with, the conducting portion for conducting the electrode of the photoelectric conversion device and the output end is a material used for a part of the electrode of the photoelectric conversion device. A photoelectric conversion device characterized by being the same.

【0009】すなわち、上記の本発明の構成はいずれ
も、光電変換装置の出力を外部へ取り出す際に必要な、
取り出しリードを光電変換装置に設ける際に、リードの
接着とリードと光電変換装置の電極との電気的な接続と
を別々に行い、局部的な高温を印加することなく、十分
な接着強度を実現したものである。そのため、出力取り
出しの出力端を基板の光電変換装置とは反対面側に設
け、基板と出力端とを固定し、その固定された出力端と
光電変換装置の電極とを導電材料にて導通させるもので
あります。これにより、耐熱性を有さない基板に過度の
熱を加えずに、十分な接着強度を持つ出力端を設けるこ
とができる。以下に実施例より本発明を説明する。
That is, any of the above-mentioned configurations of the present invention is necessary for taking out the output of the photoelectric conversion device to the outside.
When the extraction lead is installed in the photoelectric conversion device, the bonding of the lead and the electrical connection between the lead and the electrode of the photoelectric conversion device are performed separately, and sufficient adhesive strength is achieved without applying a local high temperature. It was done. Therefore, an output end for output extraction is provided on the surface of the substrate opposite to the photoelectric conversion device, the substrate and the output end are fixed, and the fixed output end and the electrode of the photoelectric conversion device are electrically connected by a conductive material. It is a thing. This makes it possible to provide an output end having sufficient adhesive strength without applying excessive heat to the substrate having no heat resistance. The present invention will be described below with reference to examples.

【0010】[0010]

【実施例】〔実施例1〕図1(A)に本実施例の集積化
された光電変換装置の一例を示す。プラスチックフィル
ム基板1、第1の電極2、PIN型の光電変換層3、第
2の電極6、7、絶縁物であるエポキシ樹脂からなる絶
縁物4、5を有している。
[Embodiment 1] FIG. 1A shows an example of an integrated photoelectric conversion device of this embodiment. It has a plastic film substrate 1, a first electrode 2, a PIN type photoelectric conversion layer 3, second electrodes 6 and 7, and insulators 4 and 5 made of an epoxy resin which is an insulator.

【0011】ここで101、102および103がそれ
ぞれ光電変換装置の一つのユニット素子となる。そし
て、接続部9により、光電変換ユニット101の第2の
電極7と光電変換ユニット102の第1の電極2とが電
気的に接続されている。また、第1の開溝8によって光
電変換ユニット101と第2の光電変換ユニット102
の第1の電極並びに光電変換層とはそれぞれ絶縁され、
第2の電極6はレーザースクライブによって形成された
開溝10によって互いに絶縁されている。
Here, each of 101, 102 and 103 constitutes one unit element of the photoelectric conversion device. Then, the second electrode 7 of the photoelectric conversion unit 101 and the first electrode 2 of the photoelectric conversion unit 102 are electrically connected by the connecting portion 9. Moreover, the photoelectric conversion unit 101 and the second photoelectric conversion unit 102 are formed by the first groove 8.
Is insulated from the first electrode and the photoelectric conversion layer of
The second electrode 6 is insulated from each other by the groove 10 formed by laser scribing.

【0012】また、光電変換ユニット101の基板側の
出力は集積化構造とする際の第2の電極7の形成工程に
て、同時に光電変換層上に導出され、導出電極15に接
続されている。一方、光電変換ユニット103の第2の
電極の出力は第2の電極7を延長した導出電極14に接
続されている。
The output of the photoelectric conversion unit 101 on the substrate side is simultaneously led out on the photoelectric conversion layer and connected to the lead electrode 15 in the step of forming the second electrode 7 in the integrated structure. . On the other hand, the output of the second electrode of the photoelectric conversion unit 103 is connected to the lead-out electrode 14 obtained by extending the second electrode 7.

【0013】本実施例における光電変換装置では、この
導出電極14、15はその下の光電変換装置構成材料な
らびに基板の両方を貫通して設けられた導通孔11の導
通部12によって、裏面に設けられた出力端13に接続
されている。この導通部12は第2の電極7の構成材料
と同一のもので設けられている。これにより、本実施例
の光電変換装置は基板1の光電変換素子とは反対面側に
設けられた出力端13よりその出力を外部へ取り出すこ
とができる。
In the photoelectric conversion device according to the present embodiment, the lead-out electrodes 14 and 15 are provided on the back surface by the conduction portion 12 of the conduction hole 11 provided through both the photoelectric conversion device constituent material below and the substrate. Is connected to the output terminal 13 provided. The conducting portion 12 is made of the same material as the constituent material of the second electrode 7. As a result, the photoelectric conversion device of this embodiment can take out its output from the output end 13 provided on the surface of the substrate 1 opposite to the photoelectric conversion element.

【0014】以下、本実施例の光電変換装置の作製工程
を図2以下を用いて説明する。まず、柔軟性を有する可
とう性基板であるプラスチックフィルム基板(以下単に
基板と記す)1上に第1の電極2としてCr膜をスパッ
タ法によって2000Åの厚さに成膜する。本実施例で
は、プラスチックフィルム基板としてポリエチレンテレ
フタレートを用いた。
The manufacturing process of the photoelectric conversion device of this embodiment will be described below with reference to FIGS. First, a Cr film is formed as a first electrode 2 on a plastic film substrate (hereinafter simply referred to as a substrate) 1 which is a flexible substrate having a thickness of 2000 Å by a sputtering method. In this example, polyethylene terephthalate was used as the plastic film substrate.

【0015】このCr膜の成膜はDCマグネトロンスパ
ッタ装置を用い、以下の成膜条件で行った。 アルゴン分圧 6×10-3Torr DC電流 1A 基板温度 加熱無し
The Cr film was formed by using a DC magnetron sputtering device under the following film forming conditions. Argon partial pressure 6 × 10 -3 Torr DC current 1A Substrate temperature No heating

【0016】この後、このCr膜上に非単結晶シリコン
の光電変換層3を形成する。この光電変換層は何ら限定
されるものではないが、プラスチックフィルム基板の耐
熱性を考えると100度以下の基板温度で形成できる方
法が好ましい。
After that, the photoelectric conversion layer 3 of non-single crystal silicon is formed on the Cr film. This photoelectric conversion layer is not limited in any way, but considering the heat resistance of the plastic film substrate, a method capable of forming at a substrate temperature of 100 ° C. or less is preferable.

【0017】本実施例においては、光電変換層3とし
て、基板側からN型、I型、P型の順に非単結晶シリコ
ン半導体を成膜しPIN型の光電変換層(計4500Å
厚)を作製した。作製はプラズマCVD法を用い、以下
に示す条件で行った。
In this embodiment, as the photoelectric conversion layer 3, a non-single-crystal silicon semiconductor is formed in this order from the substrate side in the order of N-type, I-type and P-type, and a PIN-type photoelectric conversion layer (total of 4500Å).
Thickness). The production was performed using the plasma CVD method under the following conditions.

【0018】N型半導体層(400Å厚)の作製条件。 基板温度 80℃ RFパワー 10W(13.56MHz) 成膜圧力 0.04Torr ガス流量 SiH4 =15sccm (PH3 1%含
有) H2 =150sccm I型半導体層(4000Å厚)の作製条件。 基板温度 80℃ RFパワー 10W(13.56MHz) 成膜圧力 0.04Torr ガス流量 SiH4 =15sccm H2 =150sccm P型半導体層(100Å厚)の成膜条件。 基板温度 80℃ RFパワー 10W(13.56MHz) 成膜圧力 0.04Torr ガス流量 SiH4 =16sccm (B2 6 1%
含有) CH4 =18sccm H2 =145sccm
Manufacturing conditions of the N-type semiconductor layer (400 Å thickness). Substrate temperature 80 ° C. RF power 10 W (13.56 MHz) Film forming pressure 0.04 Torr Gas flow rate SiH 4 = 15 sccm (containing PH 3 1%) H 2 = 150 sccm I-type semiconductor layer (4000 Å thickness) manufacturing conditions. Substrate temperature 80 ° C. RF power 10 W (13.56 MHz) Film formation pressure 0.04 Torr Gas flow rate SiH 4 = 15 sccm H 2 = 150 sccm P-type semiconductor layer (100 Å thickness) film formation conditions. Substrate temperature 80 ° C. RF power 10 W (13.56 MHz) Film formation pressure 0.04 Torr Gas flow rate SiH 4 = 16 sccm (B 2 H 6 1%
Contained) CH 4 = 18 sccm H 2 = 145 sccm

【0019】こうして図2の状態を得たら、レーザース
クライブ法(レーザー光を用いた加工方法)により第1
の電極2と光電変換層3とからなる積層体の4ヶ所にお
いて第1の開溝8を形成する。このレーザースクライブ
は、KrFエキシマレーザー(波長248nm)を用い
以下の条件で行った。第1の開溝に対して 1.0 J/cm2 ×7ショット
When the state of FIG. 2 is obtained in this way, the first method is performed by the laser scribing method (processing method using laser light).
The first open groove 8 is formed at four places of the laminated body including the electrode 2 and the photoelectric conversion layer 3. This laser scribing was performed under the following conditions using a KrF excimer laser (wavelength 248 nm). 1.0 J / cm 2 × 7 shots for the first groove

【0020】また、本実施例においては、レーザービー
ムを線状に光学系で成形したものを用い、1ショットで
線状にレーザー加工を行ったが、スポットビームを線状
に操作していって加工を行う方法でもよい。
Further, in the present embodiment, a laser beam formed by a linear optical system was used to perform linear laser processing with one shot. However, the spot beam is operated linearly. A method of processing may be used.

【0021】また、レーザースクライブを行うためのレ
ーザー光の種類としては、その用途に応じて、ArFエ
キシマレーザー、XeFエキシマレーザー、YAGレー
ザー(スポット加工)等を用いることができる。前述の
ようにレーザー光の波長としては、600nm以下のも
のが好ましいが、YAGレーザー(波長1.06μm)
でも使用は可能である。
As the type of laser light for performing laser scribing, ArF excimer laser, XeF excimer laser, YAG laser (spot processing) or the like can be used depending on the application. As described above, the wavelength of the laser light is preferably 600 nm or less, but the YAG laser (wavelength 1.06 μm)
But it can be used.

【0022】ここで重要なのは、従来と異なり第1の電
極2と光電変換層3とを積層した状態でレーザースクラ
イブを行うことによって、第1の電極のレーザースクラ
イブ時におけるプラスチックフィルム基板からの剥離、
ささくれ、フレークの発生を大幅に抑えることができる
という顕著な特徴を有する点である。
What is important here is that, unlike the prior art, by performing laser scribing in a state where the first electrode 2 and the photoelectric conversion layer 3 are laminated, peeling of the first electrode from the plastic film substrate during laser scribing,
It has a remarkable feature that the generation of flakes and flakes can be significantly suppressed.

【0023】次に、図2に示すように絶縁物であるエポ
キシ樹脂4、5をスクリーン印刷法によって2μm〜2
0μmの厚さに所定の位置に設けた。こうして、これら
を所定のパターンに形成することによって、第1の開溝
8に絶縁物であるエポキシ樹脂4が充填され、同時にエ
ポキシ樹脂よりなる絶縁物の層5が光電変換層3上に設
けられる。ここで、スクリーン印刷法を用いることで絶
縁物4と絶縁物の層5とを同時に形成すことができ、不
良が発生する大きな原因の一つであるパターニング工程
が簡略化されるという顕著な効果を得ることができる。
さらに、本発明の構成をとるとパターニング工程が上記
の絶縁物の加工のみですむので、上記のようなスクリー
ン印刷法を用いて、絶縁物のパターニング工程における
不良の発生を抑えることは、完成品の歩留りを向上させ
るのに大きな効果がある。
Next, as shown in FIG. 2, epoxy resins 4 and 5 which are insulators are screened to 2 μm to 2 μm.
It was provided at a predetermined position with a thickness of 0 μm. In this way, by forming these into a predetermined pattern, the first opening 8 is filled with the epoxy resin 4 which is an insulator, and at the same time, the layer 5 of an insulator made of an epoxy resin is provided on the photoelectric conversion layer 3. . Here, by using the screen printing method, the insulating material 4 and the insulating material layer 5 can be formed at the same time, and the remarkable effect that the patterning process, which is one of the major causes of defects, is simplified. Can be obtained.
Further, since the patterning process only needs to process the above-mentioned insulator with the configuration of the present invention, it is possible to suppress the occurrence of defects in the patterning process of the insulator by using the screen printing method as described above. It has a great effect on improving the yield of.

【0024】また、ここでは加工がし易すいのでエポキ
シ樹脂を絶縁物をして用いたが、絶縁物であれば特に限
定されるものではなく、酸化珪素、さらにはポリイミ
ド、シリコンゴム等の有機樹脂、ウレタン、アクリル等
を用いることができる。しかしながら、後のレーザース
クライブ工程に際してレーザー光が照射されることにな
るので、弱いレーザー光の照射によって焼ききれたり昇
華してしまわない程度に耐熱性を有していた方が好まし
く、また、レーザー光を完全に透過してしまうような材
料は好ましくない。
Further, here, the epoxy resin is used as the insulator because it is easy to process, but it is not particularly limited as long as it is an insulator, and silicon oxide, and further organic materials such as polyimide and silicon rubber can be used. Resin, urethane, acrylic, etc. can be used. However, since the laser light will be irradiated during the subsequent laser scribing step, it is preferable that it has heat resistance to the extent that it is not burned out or sublimated by irradiation with a weak laser light. A material that completely penetrates through is not preferable.

【0025】この様にして図3の状態を得る。また、開
溝8さらには絶縁物4、5の実際の位置は、パターニン
グ工程(本実施例ではスクリーン印刷法)やレーザース
クライブ工程の精度によって決定されるもので、図で示
される距離関係に限定されるものでないことはいうまで
もない。
In this way, the state shown in FIG. 3 is obtained. The actual positions of the groove 8 and further the insulators 4 and 5 are determined by the accuracy of the patterning process (screen printing method in this embodiment) and the laser scribing process, and are limited to the distance relationship shown in the figure. It goes without saying that this is not what is done.

【0026】図3の状態を得た後、第2の電極6を20
00Åの厚さに成膜する。第2の電極に使用する材料と
しては本実施例ではITO膜を真空蒸着によって成膜し
たが、他に透光性を有するものであれば、その他の材料
例えば、SnO2 やZnO等で形成してもよい。また、
その形成方法も多様であるが、本実施例のように耐熱性
の乏しいプラスチックフィルム基板を用いる場合には、
基板に熱ダメージを与えない低温成膜方法が好ましい。
After obtaining the state shown in FIG.
A film is formed to a thickness of 00Å. As the material used for the second electrode, an ITO film was formed by vacuum evaporation in this embodiment, but other materials such as SnO 2 and ZnO may be used as long as they have a light-transmitting property. May be. Also,
There are various forming methods, but when using a plastic film substrate having poor heat resistance as in this embodiment,
A low temperature film forming method that does not damage the substrate by heat is preferable.

【0027】次に、絶縁物の層5上に成膜された第2の
電極6をレーザースクライブ法によって開溝10を形成
して切断することによって、図4の状態を得る。この
時、絶縁物の層5が遮蔽物となり光電変換層3にはレー
ザー光が届かないようにすることは重要である。従来
は、この透明導電膜のみを切断するレーザースクライブ
工程で、下の光電変換層3と第1の電極2をも一緒に加
工してしまうことが多々あり、そうすると、この領域で
合金化しショートが発生する等の問題が発生し、集積化
を困難としていた。しかしながら、本実施例に示すよう
な構成をとること、絶縁物の層5がレーザー光によって
ダメージを受けとめることになるので、この層が実質的
にバリアとなり、光電変換層3がレーザースクライブに
よって切断されることがなく、しかも確実に裏面電極を
切断することができ、プロセスの再現性および歩留りの
向上に極めて優れた効果があった。
Next, the second electrode 6 formed on the insulator layer 5 is cut by forming a groove 10 by a laser scribing method to obtain the state shown in FIG. At this time, it is important that the insulating layer 5 serves as a shield so that the laser light does not reach the photoelectric conversion layer 3. Conventionally, in the laser scribing step of cutting only the transparent conductive film, the lower photoelectric conversion layer 3 and the first electrode 2 are often processed together, which causes alloying in this region and a short circuit. Problems such as occurrence have occurred, making integration difficult. However, since the insulating layer 5 is damaged by the laser light when the structure shown in this embodiment is adopted, this layer substantially serves as a barrier and the photoelectric conversion layer 3 is cut by the laser scribe. In addition, the back electrode can be cut without fail, and the reproducibility of the process and the yield were extremely excellent.

【0028】この後、光電変換素子の周辺部分に第2の
電極6、光電変換層3、第1の電極2および基板1を貫
通する導通孔11をレーザ光により形成する。この導通
孔11は基板まで貫通するため、基板を保持できる程度
には基板をのこす必要があり、本実施例ではこの導通孔
の合計面積が周辺の導通をとる領域の30%程度となる
ようにYAGレーザを使用して、複数箇所形成した。
After that, a conduction hole 11 penetrating the second electrode 6, the photoelectric conversion layer 3, the first electrode 2 and the substrate 1 is formed by laser light in the peripheral portion of the photoelectric conversion element. Since the conduction hole 11 penetrates to the substrate, it is necessary to extend the substrate to the extent that the substrate can be held. In this embodiment, the total area of the conduction holes is about 30% of the peripheral conduction region. Multiple locations were formed using a YAG laser.

【0029】次にこの導通孔が設けられた部分の反対側
の基板面に銅薄板13をエポキシ系の接着剤を使用し
て、導通孔以外の部分を固着した。この後、第2の電極
の一部として、グリッド状の補助電極7を第2の電極6
上に設ける。この補助電極7は受光面では櫛状に形成さ
れ、となりの素子との接続部付近では棒状にほぼ全面に
形成されている。
Next, a copper thin plate 13 was fixed on the surface of the substrate opposite to the portion where the through holes were provided by using an epoxy adhesive, except for the through holes. Then, as a part of the second electrode, the grid-shaped auxiliary electrode 7 is provided with the second electrode 6.
Provide on top. The auxiliary electrode 7 is formed in a comb shape on the light receiving surface, and is formed in a bar shape on almost the entire surface in the vicinity of the connection portion with the adjacent element.

【0030】この補助電極7のパターンを改良し、光電
変換素子周辺の導通孔11付近にまで形成し、導出電極
部14、15を設ける。この補助電極7は銀ペーストを
使用し、所定のパターンでスクリーン印刷法によって、
形成される。これによって、導通部12を設け、図5の
状態を得る。この補助電極7を100℃50分の熱処理
を施し、焼成して、補助電極7の完成と導通部12の形
成とを行ない、光電変換装置の出力を基板の裏面に設け
られた出力端13より取り出せるようにする。
The pattern of the auxiliary electrode 7 is improved so that it is formed near the conduction hole 11 around the photoelectric conversion element, and the lead-out electrode portions 14 and 15 are provided. This auxiliary electrode 7 uses silver paste, and is screen-printed in a predetermined pattern.
It is formed. Thereby, the conducting portion 12 is provided and the state shown in FIG. 5 is obtained. This auxiliary electrode 7 is subjected to heat treatment at 100 ° C. for 50 minutes and fired to complete the auxiliary electrode 7 and form the conducting portion 12, and the output of the photoelectric conversion device is output from the output end 13 provided on the back surface of the substrate. Make it accessible.

【0031】次に、この補助電極が形成された第2の電
極6、7を隣の光電変換素子ユニットの第1の電極と接
続を行なう。この接続にはレーザ光を使用し、第2の電
極6、7側からYAGレーザ光を照射し、この第2の電
極成分を溶融、拡散させてゆき、半導体層3を貫通し
て、第1の電極と接続するものであります。この接続の
ために照射するレーザ光の照射条件は1.06μmの波
長のYAGレーザ光を使用し、レーザのQスイッチの発
振周波数2KHz、0.2Wのエネルギーで、導通を取
る部分を10mm/秒のスキャンスピードでスキャンし
てゆくことて、第2の電極6、7と第1の電極2との接
続部9を形成する。以上のような、作製工程にて、本実
施例の光電変換装置を完成することができた。
Next, the second electrodes 6 and 7 on which the auxiliary electrode is formed are connected to the first electrode of the adjacent photoelectric conversion element unit. Laser light is used for this connection, and YAG laser light is irradiated from the second electrodes 6 and 7 side to melt and diffuse the second electrode component, penetrate the semiconductor layer 3, and pass through the first electrode. It is connected to the electrode of. The irradiation condition of the laser light irradiated for this connection is to use YAG laser light with a wavelength of 1.06 μm. The laser Q switch has an oscillation frequency of 2 KHz and energy of 0.2 W, and the portion that conducts electricity is 10 mm / sec. By scanning at the scanning speed of 1, the connection portion 9 between the second electrodes 6 and 7 and the first electrode 2 is formed. Through the above manufacturing steps, the photoelectric conversion device of this example could be completed.

【0032】この様な構造をとることにより、光電変換
装置の出力端13は基板と直接に強力な接着剤で固定す
ることができ、十分な接着力を持っている。さらに、電
極との接続はAgペーストにより、十分良好な接続を実
現でき、極部的な加熱を行なうことが無く、光電変換装
置の出力端を形成することができた。また、このように
出力端が基板の裏面側に設けることができたので、この
出力を外部に供給する際に光電変換装置の面積で行なう
ことができ、取り出しのための周辺の面積を減らすこと
ができた。
By adopting such a structure, the output end 13 of the photoelectric conversion device can be directly fixed to the substrate with a strong adhesive and has a sufficient adhesive force. Further, the connection with the electrode was achieved by Ag paste, which was sufficiently good, and it was possible to form the output end of the photoelectric conversion device without performing local heating. Further, since the output end can be provided on the back surface side of the substrate as described above, this output can be performed by the area of the photoelectric conversion device when being supplied to the outside, and the peripheral area for taking out can be reduced. I was able to.

【0033】〔実施例2〕本実施例では、光電変換装置
の構造として、図1(B)のような構造とした。この構
造では、第2の電極7と基板裏面にある出力端13との
接続ための導通部12が基板の端面に設けられている例
である。その他の作製工程は、実施例1と同様に作製す
ることができるが、基板を貫通するためレーザ工程が不
要となっている。
[Embodiment 2] In this embodiment, the photoelectric conversion device has a structure as shown in FIG. This structure is an example in which the conductive portion 12 for connecting the second electrode 7 and the output end 13 on the back surface of the substrate is provided on the end surface of the substrate. Other manufacturing steps can be performed in the same manner as in Example 1, but the laser step is not necessary because the substrate is penetrated.

【0034】また、基板端面を導通部12として使用す
るために、出力端13は基板からはみでるように基板裏
面に接着されている。このようにすると、実施例1と同
様な効果を得られながら、より工程数を少なくすること
ができる。また、実施例1のように導通部12が限られ
た大きさではないので、より、接続のための信頼性およ
び製造歩留りを高くすることができる利点がある。
In order to use the end face of the substrate as the conducting portion 12, the output end 13 is adhered to the back face of the substrate so as to protrude from the substrate. By doing so, the number of steps can be further reduced while obtaining the same effect as that of the first embodiment. Further, unlike the first embodiment, since the conductive portion 12 is not limited in size, there is an advantage that the reliability for connection and the manufacturing yield can be increased.

【0035】〔実施例3〕本実施例では、光電変換装置
の構造として、図1(C)のような構造とした。この構
造では、第2の電極7と基板裏面にある出力端13との
接続ための導通部12が基板の端面に設けられている例
である。実施例2とは異なり、導通部12が第2の電極
7を構成する材料ではなく、基板裏面に設けられた出力
端13を構成する材料で構成されてており、基板を挟む
ような計上の金属性のクランプとなっている。その他の
作製工程は、実施例1と同様に作製することができる
が、基板を貫通するためレーザ工程が不要となってい
る。
[Embodiment 3] In this embodiment, the photoelectric conversion device has a structure as shown in FIG. This structure is an example in which the conductive portion 12 for connecting the second electrode 7 and the output end 13 on the back surface of the substrate is provided on the end surface of the substrate. Unlike the second embodiment, the conductive portion 12 is not made of the material of the second electrode 7 but of the material of the output end 13 provided on the back surface of the substrate, and the conductive portion 12 does not have to sandwich the substrate. It is a metal clamp. Other manufacturing steps can be performed in the same manner as in Example 1, but the laser step is not necessary because the substrate is penetrated.

【0036】この導通部12と出力端13を兼ねた金属
性のクランプは光電変換装置の断面に対してコの字型に
嵌め込むように設けられ、より強力に固定される。当然
ながら、必要により、基板との接着剤を設けてもよい。
また、基板を挟むだけでは、第2の電極6との十分な導
通を確保できないので、第2の電極7(補助電極)をこ
のクランプ上にまで延長し、第2の電極6、7との接続
を確保することで、十分な接続を実現できた。
The metallic clamp which also serves as the conducting portion 12 and the output end 13 is provided so as to be fitted in a U-shape with respect to the cross section of the photoelectric conversion device, and is more firmly fixed. Of course, an adhesive to the substrate may be provided if necessary.
Further, since it is not possible to secure sufficient electrical continuity with the second electrode 6 simply by sandwiching the substrate, the second electrode 7 (auxiliary electrode) is extended to above this clamp, and the second electrode 6 and 7 are connected. By securing the connection, we were able to realize a sufficient connection.

【0037】本実施例のような構成の場合、外部への出
力の取り出しを基板裏面のみではなく、基板の端面も利
用でき、このような光電変換装置を補助電源とするよう
な製品に組み込む際に優位であった。
In the case of the configuration of this embodiment, the output can be taken out to the outside not only on the back surface of the substrate but also on the end surface of the substrate, and when such a photoelectric conversion device is incorporated into a product as an auxiliary power source. Was superior to.

【0038】以上の3つの実施例ては特定の集積化構造
を持つ光電変換装置を例にして、説明をおこなったが,
特にこの集積化構造に限定されることはなく、その他の
構造のものでも、本発明を適用できることはいうまでも
ない。
The above three embodiments have been described by taking the photoelectric conversion device having a specific integrated structure as an example.
It is needless to say that the present invention can be applied to other structures as well, without being limited to this integrated structure.

【0039】[0039]

【発明の効果】本発明の構成により、半田付けなしで、
良好な接着強度と十分な導通性を持つ出力端を耐熱性の
ない可撓性基板上に設けることができた。これにより、
基板のそり、歪みの発生しない光電変換装置を実現でき
た。
According to the configuration of the present invention, without soldering,
It was possible to provide an output end having good adhesive strength and sufficient conductivity on a flexible substrate having no heat resistance. This allows
A photoelectric conversion device that does not generate warpage or distortion of the substrate has been realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光電変換装置の概略断面図を示す。FIG. 1 shows a schematic cross-sectional view of a photoelectric conversion device of the present invention.

【図2】本発明の光電変換装置の作製工程の一例を示
す。
FIG. 2 shows an example of a manufacturing process of a photoelectric conversion device of the present invention.

【図3】本発明の光電変換装置の作製工程の一例を示
す。
FIG. 3 illustrates an example of a manufacturing process of a photoelectric conversion device of the present invention.

【図4】本発明の光電変換装置の作製工程の一例を示
す。
FIG. 4 illustrates an example of a manufacturing process of a photoelectric conversion device of the present invention.

【図5】本発明の光電変換装置の作製工程の一例を示
す。
FIG. 5 illustrates an example of a manufacturing process of a photoelectric conversion device of the present invention.

【図6】本発明の光電変換装置の作製工程の一例を示
す。
FIG. 6 illustrates an example of a manufacturing process of a photoelectric conversion device of the present invention.

【図7】従来の光電変換装置の概略断面図を示す。FIG. 7 is a schematic sectional view of a conventional photoelectric conversion device.

【符号の説明】[Explanation of symbols]

1......基板 2......第1の電極 3......半導体層 6、7....第2の電極 11.....導通孔 12.....導通部 13.....出力端 1. . . . . . Substrate 2. . . . . . First electrode 3. . . . . . Semiconductor layer 6, 7. . . . Second electrode 11. . . . . Through hole 12. . . . . Conducting part 13. . . . . Output end

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠原 久人 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 (72)発明者 阿部 雅芳 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisato Shinohara 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDC Corporation (72) Inventor Masayoshi Abe 1-13-1 Nihonbashi, Chuo-ku, Tokyo -In DC Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 耐熱性を有さない基板上に設けられた薄
膜状の光電変換装置であって、前記光電変換装置の出力
を取り出せる出力端は前記基板の前記光電変換装置が設
けられた面とは反対の面上に設けられており、前記光電
変換装置の電極と前記出力端とを導通する導通部を有す
る光電変換装置。
1. A thin film photoelectric conversion device provided on a substrate having no heat resistance, wherein an output end from which the output of the photoelectric conversion device can be taken out is a surface of the substrate on which the photoelectric conversion device is provided. A photoelectric conversion device, which is provided on a surface opposite to the surface of the photoelectric conversion device and has a conducting portion that electrically connects the electrode of the photoelectric conversion device and the output end.
【請求項2】請求項1記載の光電変換装置において、前
記導通部は可撓性基板に設けられた導通孔に存在する光
電変換装置。
2. The photoelectric conversion device according to claim 1, wherein the conductive portion is present in a conductive hole provided in the flexible substrate.
【請求項3】請求項1記載の光電変換装置において、前
記導通部は可撓性基板の端面に存在する光電変換装置。
3. The photoelectric conversion device according to claim 1, wherein the conductive portion is present on an end surface of the flexible substrate.
【請求項4】 耐熱性を有さない基板上に設けられた薄
膜状の光電変換装置であって、前記光電変換装置の出力
を取り出せる出力端は前記基板の前記光電変換装置が設
けられた面とは反対の面上に設けられており、前記光電
変換装置の電極と前記出力端とを導通する導通部は前記
光電変換装置の電極の一部に使用されている材料と同一
であることを特徴とする光電変換装置。
4. A thin-film photoelectric conversion device provided on a substrate having no heat resistance, wherein an output end from which the output of the photoelectric conversion device can be taken out is a surface of the substrate on which the photoelectric conversion device is provided. And a conducting portion that is provided on the surface opposite to that for conducting the electrode of the photoelectric conversion device and the output end is the same as the material used for a part of the electrode of the photoelectric conversion device. A characteristic photoelectric conversion device.
JP4269697A 1992-09-11 1992-09-11 Photoelectric conversion device Pending JPH0697474A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4269697A JPH0697474A (en) 1992-09-11 1992-09-11 Photoelectric conversion device
US08/554,241 US5821597A (en) 1992-09-11 1995-11-08 Photoelectric conversion device
US09/149,289 US6720576B1 (en) 1992-09-11 1998-09-09 Plasma processing method and photoelectric conversion device
JP2000045077A JP3393842B2 (en) 1992-09-11 2000-02-17 Method for manufacturing photoelectric conversion device
US10/821,879 US7095090B2 (en) 1992-09-11 2004-04-12 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4269697A JPH0697474A (en) 1992-09-11 1992-09-11 Photoelectric conversion device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000045077A Division JP3393842B2 (en) 1992-09-11 2000-02-17 Method for manufacturing photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPH0697474A true JPH0697474A (en) 1994-04-08

Family

ID=17475933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4269697A Pending JPH0697474A (en) 1992-09-11 1992-09-11 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH0697474A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004005A1 (en) * 1996-07-24 1998-01-29 Tdk Corporation Solar battery and method for manufacturing the same
US5865904A (en) * 1995-08-21 1999-02-02 Fuji Electric Co., Ltd. Flexible photoelectric conversion module and method for its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865904A (en) * 1995-08-21 1999-02-02 Fuji Electric Co., Ltd. Flexible photoelectric conversion module and method for its manufacture
WO1998004005A1 (en) * 1996-07-24 1998-01-29 Tdk Corporation Solar battery and method for manufacturing the same
US6225552B1 (en) 1996-07-24 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Planar solar cell array and production method of the same

Similar Documents

Publication Publication Date Title
JP3035565B2 (en) Fabrication method of thin film solar cell
US10930804B2 (en) Metallization of solar cells using metal foils
EP0482511B1 (en) Integrated photovoltaic device
AU2004204637B2 (en) Transparent thin-film solar cell module and its manufacturing method
US5580509A (en) Method for electrically contacting thin-film solar modules
JPH06342924A (en) Thin-film solar cell and manufacture thereof
JPH0983001A (en) Integrated thin film solar battery
JP3393842B2 (en) Method for manufacturing photoelectric conversion device
JPH0851229A (en) Integrated solar battery and its manufacture
JP2000150929A (en) Photovoltaic element and manufacture thereof
JPH0697474A (en) Photoelectric conversion device
JPH0419713B2 (en)
JPH0476227B2 (en)
JP3685964B2 (en) Photoelectric conversion device
JP3111813B2 (en) Method for manufacturing flexible solar cell module
JP3170914B2 (en) Thin film solar cell and method of manufacturing the same
JPH0758351A (en) Manufacture of thin film solar cell
JP3209702B2 (en) Photovoltaic device manufacturing method
JP2585503B2 (en) Laser processing method
JPS62147784A (en) Amorphous solar cell and manufacture thereof
JPH08306946A (en) Manufacture of electrode of solar cell
JPS61241981A (en) Manufacture of thin film solar battery
JPH0566755B2 (en)
JPS61234574A (en) Photocell unit and manufacture thereof
JPH0566756B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011002