JP3209702B2 - Photovoltaic device manufacturing method - Google Patents

Photovoltaic device manufacturing method

Info

Publication number
JP3209702B2
JP3209702B2 JP09527997A JP9527997A JP3209702B2 JP 3209702 B2 JP3209702 B2 JP 3209702B2 JP 09527997 A JP09527997 A JP 09527997A JP 9527997 A JP9527997 A JP 9527997A JP 3209702 B2 JP3209702 B2 JP 3209702B2
Authority
JP
Japan
Prior art keywords
electrode
collector
collector electrode
solar cell
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09527997A
Other languages
Japanese (ja)
Other versions
JPH10275927A (en
Inventor
正樹 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP09527997A priority Critical patent/JP3209702B2/en
Publication of JPH10275927A publication Critical patent/JPH10275927A/en
Application granted granted Critical
Publication of JP3209702B2 publication Critical patent/JP3209702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面電極が金属酸
化物等からなる透明電極膜により形成され、その膜上に
金属の集電極が形成される太陽電池などの非晶質シリコ
ンの半導体部を有する光起電力装置製造方法に関し、詳
しくは集電極と表面電極との密着性の向上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous silicon such as a solar cell in which a surface electrode is formed of a transparent electrode film made of a metal oxide or the like, and a metal collecting electrode is formed on the film.
Relates to photovoltaic instrumentation 置製 granulation how having a semiconductor portion of the emissions, regarding details improving the adhesion between the collector electrode and the surface electrode.

【0002】[0002]

【従来の技術】従来、表面電極に金属酸化物等からなる
透明導電膜(TCO)が用いられる太陽電池,光センサ
等の光起電力装置においては、その面内抵抗を減らすた
めに、表面電極の膜上に金属からなる集電極を形成する
必要がある。
2. Description of the Related Art Conventionally, in a photovoltaic device such as a solar cell or an optical sensor in which a transparent conductive film (TCO) made of a metal oxide or the like is used for a surface electrode, the surface electrode is reduced in order to reduce its in-plane resistance. It is necessary to form a collecting electrode made of a metal on the film.

【0003】そして、光起電力装置が熱による損傷を受
け易い場合には、装置が高温にならないように、真空蒸
着法,低温で焼結可能な銀ペーストを使用する方法,低
温溶融型の半田ディップ法,又は特開平6−13255
1号公報(H01L 31/04)に記載の金属ワイヤ
ーを導電性接着剤により接着する方法等により、集電極
を表面電極の膜上に形成することが行われている。
If the photovoltaic device is easily damaged by heat, a vacuum deposition method, a method using a silver paste that can be sintered at a low temperature, a low-temperature melting type solder is used to prevent the device from becoming hot. Dipping method or JP-A-6-13255
A collector electrode is formed on a surface electrode film by, for example, a method of bonding a metal wire with a conductive adhesive described in Japanese Patent Publication No. 1 (H01L 31/04).

【0004】なお、前記の熱による損傷は、極端な場合
には表面電極と裏面電極との間の半導体部が加熱により
微結晶化等して熱劣化し、その導電率が大きくなってリ
ーク電流が増大することにより、表面電極と裏面電極と
の短絡(電極間短絡)として出現する。
[0004] In the extreme case, the above-mentioned damage due to heat causes the semiconductor portion between the front electrode and the rear electrode to be microcrystallized or the like due to heating, and thermally deteriorates. Is increased, a short circuit between the front electrode and the back electrode (short between electrodes) appears.

【0005】[0005]

【発明が解決しようとする課題】前記従来のように表面
電極の膜上に集電極の金属を蒸着,低温焼結,半田付
け,接着等により形成し、熱による損傷を受けないよう
にした場合、電極と表面電極との密着性が悪く、装置
の信頼性が低下する問題点がある。
In the case where the metal of the collecting electrode is formed on the surface electrode film by vapor deposition, low-temperature sintering, soldering, bonding or the like so as not to be damaged by heat. In addition, there is a problem that adhesion between the collector electrode and the surface electrode is poor and the reliability of the device is reduced.

【0006】例えば、低温で焼結した銀ペーストを使用
する方法や、低温溶融型の半田ディップ法で集電極を形
成した場合は、形成後数日間室温で放置すると集電極の
剥離等が発生し、装置の信頼性の著しい低下を招来す
る。
For example, when a collector electrode is formed by using a silver paste sintered at a low temperature or by a low-temperature melting type solder dipping method, if the collector electrode is left at room temperature for several days, peeling of the collector electrode occurs. This leads to a significant decrease in the reliability of the device.

【0007】また、真空蒸着法や金属ワイヤーの導電性
接着剤による接着方法を採用した場合は、大がかりな真
空プロセスが必要になったり、材料費が著しく高騰する
等の不都合も生じる。
[0007] When a vacuum deposition method or a bonding method of a metal wire with a conductive adhesive is employed, disadvantages such as the necessity of a large-scale vacuum process and a remarkable increase in material costs also occur.

【0008】本発明は、熱による電極間短絡を防止して
電極と表面電極との密着性を向上するようにした光起
電力装置製造方法を提供することを課題とする。
According to the present invention, a short circuit between electrodes due to heat is prevented.
And to provide a photovoltaic device manufacturing how you to improve the adhesion between the collector electrode and the surface electrode.

【0009】[0009]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の光起電力装置製造方法においては、装置
全体を加熱するのでなく、集電極を加熱し、集電極とそ
の直下の透光性の表面電極とを局所的に加熱して相互に
混ざり合わせ、電極と表面電極とを密着する。
In order to solve the above-mentioned problems, in the method of manufacturing a photovoltaic device according to the present invention, instead of heating the entire device, the collector electrode is heated, and the collector electrode and the portion immediately below the collector electrode are heated. The light-transmitting surface electrode is locally heated and mixed with each other, and the collector electrode and the surface electrode are brought into close contact with each other.

【0010】この場合、集電極の直下の半導体部の熱劣
化が少なく、表面電極と裏面電極との電極間短絡を防止
して集電極と表面電極との密着性が向上する。
[0010] In this case, the semiconductor portion immediately below the collector electrode is less thermally degraded, the short circuit between the front electrode and the back electrode is prevented, and the adhesion between the collector electrode and the front electrode is improved.

【0011】したがって、熱による損傷を受け易い場合
にも、大がかりな真空プロセスや材料費の高騰なく
極と表面電極とを十分に密着させて信頼性の高い光起電
力装置を安価に製造することができる。
Therefore, even in the case where the photovoltaic device is easily damaged by heat, a highly reliable photovoltaic device can be obtained by sufficiently adhering the current collector and the surface electrode without a large vacuum process or a rise in material costs. Can be manufactured at low cost.

【0012】そして、集電極の加熱は、電磁波の照射に
よる誘導加熱又はレーザ光の照射により行うことが実用
的で好ましい。
It is practical and preferable to heat the collecting electrode by induction heating by irradiating an electromagnetic wave or by irradiating a laser beam.

【0013】また、集電極の加熱による表面電極と裏面
電極との電極間短絡を確実に防止するため、ほぼ集電極
直下の表面電極と裏面電極との間に絶縁体を介在させて
集電極を加熱することが望ましい。
Further, in order to reliably prevent a short circuit between the front electrode and the back electrode due to heating of the collector electrode, an insulator is interposed between the front electrode and the back electrode substantially immediately below the collector electrode to form the collector electrode. It is desirable to heat.

【0014】この場合、集電極の加熱に伴う半導体部の
熱劣化が絶縁体により改善され、表面電極と裏面電極と
の間の短絡が確実に防止される。
In this case, the thermal deterioration of the semiconductor portion due to the heating of the collector electrode is improved by the insulator, and the short circuit between the front electrode and the back electrode is reliably prevented.

【0015】そして、裏面電極のほぼ集電極直下の部分
を除去し、等価的に前記の絶縁体を設けたのと同じ状態
にして集電極を加熱してもよい。
Then, the portion of the back electrode substantially immediately below the collector electrode may be removed, and the collector electrode may be heated in the same state as when the insulator is provided.

【0016】さらに、半導体部に高導電率層がある場合
は、この高導電率層及び裏面電極のほぼ集電極直下の部
分を除去して集電極を加熱することが好ましい。
Further, when the semiconductor portion has a high conductivity layer, it is preferable to remove the portion of the high conductivity layer and the back electrode substantially immediately below the collector and heat the collector.

【0017】[0017]

【0018】[0018]

【0019】[0019]

【0020】[0020]

【発明の実施の形態】本発明の実施の形態につき図1な
いし図11を参照して説明する。 (第1の形態)まず、光起電力装置の1例であるアモル
ファスシリコン太陽電池(以下アモルファスシリンコを
a−Siという)を、その裏面電極のほぼ集電極直下の
部分を除去して製造する場合につき、図1ないし図3を
参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. (First Embodiment) First, an amorphous silicon solar cell (hereinafter, amorphous syringe is referred to as a-Si), which is an example of a photovoltaic device, is manufactured by removing a portion of the back electrode substantially immediately below the collector electrode. The case will be described with reference to FIGS.

【0021】図1はシングルセル・サブモジュール構成
のa−Si太陽電池1の構造を示す断面図であり、この
太陽電池1のサブモジュールは基板2上に金属からなる
裏面電極3,半導体部4及び金属酸化物等からなる透明
電極膜(TCO)の表面電極5を形成し、表面電極5の
膜上に所定電極パターンで金属の集電極6を形成し、こ
の集電極6を加熱し集電極6と表面電極5とを密着させ
て製造される。
FIG. 1 is a cross-sectional view showing the structure of an a-Si solar cell 1 having a single-cell sub-module structure. The sub-module of this solar cell 1 has a back electrode 3 made of metal and a semiconductor section 4 on a substrate 2. And a transparent electrode film (TCO) made of a metal oxide or the like, a surface electrode 5 is formed, a metal collecting electrode 6 is formed on the film of the surface electrode 5 in a predetermined electrode pattern, and the collecting electrode 6 is heated to collect the collecting electrode. 6 and the surface electrode 5 are adhered to each other.

【0022】このとき、集電極6の加熱による表面電極
6と裏面電極3との電極間短絡を確実に防止するため、
裏面電極3は図1及び図2の裏面電極パターンに示すよ
うにほぼ集電極直下の部分を除去し、集電極6のパター
ンに沿う例えばストライプ状の溝3’を設けて形成され
る。
At this time, in order to reliably prevent a short circuit between the front electrode 6 and the back electrode 3 due to heating of the collector electrode 6,
As shown in the back electrode pattern of FIGS. 1 and 2, the back electrode 3 is formed by removing a portion substantially immediately below the collector electrode and providing, for example, a stripe-shaped groove 3 ′ along the pattern of the collector electrode 6.

【0023】なお、溝3’の幅は電力変換効率の低下を
極力防止して表面電極5と裏面電極3との電極間短絡を
確実に防止するため、集電極6の幅より弱干広くするこ
とが好ましい。
The width of the groove 3 ′ is slightly wider than the width of the collector electrode 6 in order to prevent a decrease in power conversion efficiency as much as possible and to reliably prevent a short circuit between the front electrode 5 and the back electrode 3. Is preferred.

【0024】また、PIN構造の非晶質シリコンの半導
体部4は裏面電極3の形成後に、プラズマ反応でn,
i,pの3層を順に生成して形成され、i層は真性a−
Siからなる。
Further, after the back surface electrode 3 is formed , the semiconductor portion 4 of the amorphous silicon having the PIN structure becomes n, n by a plasma reaction.
The i-layer is formed by sequentially generating three layers, i and p.
It is made of Si.

【0025】さらに、表面電極5は半導体部4の表面に
スパッタ等でITO,ZnO2 等の透明導電膜を生成し
て形成され、その膜上の集電極6は例えば銀ペーストを
スクリーン印刷した後に低温焼結し、図3の集電極パタ
ーンに形成される。なお、図3の7は集電極6から電流
を取出すために形成されたバスバーである。
Further, the surface electrode 5 is formed by forming a transparent conductive film of ITO, ZnO 2 or the like on the surface of the semiconductor portion 4 by sputtering or the like, and the collector electrode 6 on the film is formed by screen printing a silver paste, for example. Sintered at low temperature to form the collector electrode pattern of FIG. Incidentally, reference numeral 7 in FIG. 3 denotes a bus bar formed to extract a current from the collector electrode 6.

【0026】つぎに、形成された集電極6の密着性向上
のための加熱は、例えば、その各部に上方から高周波の
電磁波ビームを照射し、高周波誘導加熱によりうず電流
を発生させて行われる。
Next, the heating for improving the adhesion of the formed collector electrode 6 is performed by, for example, irradiating a high-frequency electromagnetic wave beam from above to each part thereof and generating an eddy current by high-frequency induction heating.

【0027】このとき、電磁波が集電極6に集中的に照
射され、しかも、金属の集電極6は表面電極5よりはる
かにうず電流が発生し易いため、集電極6のみが効率よ
く加熱され、この加熱により、集電極6と表面電極5の
集電極6との接触部分が瞬時的に高温溶融して相互に混
ざり合い、集電極6と表面電極5とが強固に密着する。
At this time, since the electromagnetic wave is intensively applied to the collector electrode 6 and the eddy current is more easily generated in the metal collector electrode 6 than in the surface electrode 5, only the collector electrode 6 is efficiently heated. By this heating, the contact portions of the collector electrode 6 and the surface electrode 5 with the collector electrode 6 are instantaneously melted at a high temperature and mixed with each other, so that the collector electrode 6 and the surface electrode 5 are firmly adhered to each other.

【0028】そして、太陽電池1全体が加熱されること
なく、集電極6のみが効率よく加熱される。また、本実
施形態にあっては、集電極6のほぼ直下においては、裏
面電極3が除去され基板2の絶縁性表面が露出せしめら
れてなる溝3’が設けられており、半導体部4は溝3’
における基板2の絶縁性表面上に形成されている。従っ
て、例え集電極6の直下において、半導体部4に加熱に
伴うa−Siの微結晶化が生じ導電率が大きくなったと
しても、この部分を介して裏面電極3と表面電極5とが
短絡することはない。
Then, only the collector electrode 6 is efficiently heated without heating the entire solar cell 1. Further, in the present embodiment, a groove 3 ′ is provided almost immediately below the collecting electrode 6, from which the back surface electrode 3 is removed and the insulating surface of the substrate 2 is exposed. Groove 3 '
Are formed on the insulating surface of the substrate 2. Therefore, even if a-Si is microcrystallized due to heating in the semiconductor portion 4 immediately below the collecting electrode 6 and the conductivity increases, the back electrode 3 and the front electrode 5 are short-circuited through this portion. I will not do it.

【0029】したがって、太陽電池1を製造する際に、
熱による表面電極5と裏面電極3との電極間短絡を防止
して表面電極5と集電極6との密着性を大幅に向上する
ことができ、集電極6の剥離等のない信頼性の高いa−
Si太陽電池を安価に得ることができる。
Therefore, when manufacturing the solar cell 1,
A short circuit between the front electrode 5 and the back electrode 3 due to heat can be prevented, the adhesion between the front electrode 5 and the collector electrode 6 can be greatly improved, and high reliability without peeling of the collector electrode 6 can be achieved. a-
Si solar cells can be obtained at low cost.

【0030】ところで、集電極6の加熱に用いる電磁波
ビームはマイクロ波帯のビームであってもよい。
Incidentally, the electromagnetic wave beam used for heating the collector electrode 6 may be a microwave band beam.

【0031】また、電磁波ビームを照射する代わりにレ
ーザ光をパルス照射等して加熱するようにしてもよい。
Alternatively, heating may be performed by irradiating a laser beam with a pulse instead of irradiating the electromagnetic wave beam.

【0032】(第2の形態)つぎに、第1の形態の場合
よりさらに一層確実に電極短絡を防止してa−Si太陽
電池を製造する場合につき、図4ないし図6を参照して
説明する。図4は図1と同様の断面図であり、この図4
のa−Si太陽電池1が図1と異なる点は、裏面電極3
だけでなく半導体部4の導電率が大きいn層(高導電率
層)についても、ほぼ集電極直下の部分が除去されてい
る点である。
(Second Embodiment) Next, a case where an a-Si solar cell is manufactured by preventing electrode short-circuiting even more reliably than in the first embodiment will be described with reference to FIGS. I do. FIG. 4 is a sectional view similar to FIG.
The point that the a-Si solar cell 1 of FIG.
Not only in the n-layer (high-conductivity layer) in which the conductivity of the semiconductor portion 4 is high but also almost immediately below the collector electrode is removed.

【0033】なお、n層はマスクを用いたエッチング
や、レーザ光の照射等の方法で加工されて前記の集電極
直下の不要部分が除去される。
Incidentally, the n-layer is processed by a method such as etching using a mask or irradiation of a laser beam to remove an unnecessary portion immediately below the collector electrode.

【0034】そして、図1のように裏面電極3のほぼ集
電極直下の部分のみを除去して太陽電池1を製造した場
合は、図5に示すように、集電極6の加熱により半導体
部4のほぼ集電極直下の劣化部分4’に導電率が大きい
n層が接触し、矢印に示すようなリーク電流が生じるお
それがある。
When the solar cell 1 is manufactured by removing only a portion of the back electrode 3 almost immediately below the collector electrode as shown in FIG. 1, the semiconductor portion 4 is heated by heating the collector electrode 6 as shown in FIG. The n-layer having high conductivity contacts the deteriorated portion 4 'almost immediately below the collector electrode, and a leak current as indicated by an arrow may occur.

【0035】しかし、図4のように裏面電極3だけでな
く半導体部4の導電率が大きいn層についても、ほぼ集
電極直下の部分を除去して太陽電池1を製造した場合
は、図6に示すように劣化部分4’にn層が接触せず、
リーク電流を完全に無くすことができる。
However, as shown in FIG. 4, not only the back layer 3 but also the n-layer having a large conductivity of the semiconductor portion 4 is removed almost completely immediately below the collector electrode to manufacture the solar cell 1 as shown in FIG. As shown in the figure, the n-layer does not contact the deteriorated portion 4 ',
Leakage current can be completely eliminated.

【0036】すなわち、図4の構造の太陽電池1は、図
1の場合と同様の手法で集電極6を加熱して集電極6と
表面電極5との密着性を向上する際に、図1の構造のも
のよりもさらに一層確実に、表面電極5と裏面電極3と
の電極短絡を防止することができ、集電極6と表面電極
5との密着性が向上し、信頼性が向上したa−Si太陽
電池を得ることができる。
[0036] That is, the solar cell 1 of the structure of Figure 4, the collector electrode 6 by heating the collector electrode 6 in the same manner as in FIG. 1
When improving the adhesion to the front electrode 5 , the short circuit between the front electrode 5 and the back electrode 3 can be prevented more reliably than the structure of FIG. An a-Si solar cell having improved adhesion to the film 5 and improved reliability can be obtained.

【0037】(第3の形態)つぎに、裏面電極やn層の
一部を除去しない代わりに、表面電極と裏面電極との
間,すなわち裏面電極上と半導体部との間に絶縁体を設
けてa−Si太陽電池を製造する場合につき、図7ない
し図9を参照して説明する。
(Third Embodiment) Next, instead of removing the back electrode and part of the n-layer, an insulator is provided between the front electrode and the back electrode, ie, between the back electrode and the semiconductor portion. A case of manufacturing an a-Si solar cell will be described with reference to FIGS.

【0038】図7は図1,図4と同様の断面図であり、
この図7の太陽電池1が図1,図4と異なる点は、裏面
電極3及び半導体部4は除去されず、半導体部4のほぼ
集電極直下の本来はn層が形成される部分にガラス,S
iO2 ,SiN等の絶縁体8を設けて形成されている点
である。
FIG. 7 is a sectional view similar to FIGS. 1 and 4,
The difference between the solar cell 1 of FIG. 7 and FIGS. , S
It is formed by providing an insulator 8 such as iO 2 or SiN.

【0039】この絶縁体8は、半導体部4の形成に先立
ち、例えば図8の絶縁体塗布パターンに示すように、裏
面電極3の表面のほぼ集電極直下の部分に形成して設け
られる。
Prior to the formation of the semiconductor portion 4, the insulator 8 is formed and provided almost immediately below the collector electrode on the surface of the back electrode 3, for example, as shown in an insulator application pattern in FIG.

【0040】また、半導体部4の形成後、図3と同様の
図9の集電極パターンで集電極6が形成される。
After the formation of the semiconductor portion 4, the collector electrode 6 is formed by the collector electrode pattern of FIG. 9 similar to FIG.

【0041】そして、集電極6が前記の高周波電磁誘導
又はレーザ光照射により加熱されて太陽電池1が製造さ
れる。
Then, the collector electrode 6 is heated by the above-described high frequency electromagnetic induction or laser beam irradiation, and the solar cell 1 is manufactured.

【0042】この場合、表面電極5と裏面電極3との間
すなわち半導体部4において、図5,図6の劣化部分
4’と同様の劣化部分に絶縁体8が位置し、この絶縁体
8により等価的に劣化部分の抵抗が増大してその部分を
通るリーク電流が減少し、図1,図4のように裏面電極
3,n層を除去することなく、それらと同様の効果が得
られる。
In this case, the insulator 8 is located between the front surface electrode 5 and the back surface electrode 3, that is, in the semiconductor portion 4, at a deteriorated portion similar to the deteriorated portion 4 ′ in FIGS. Equivalently, the resistance of the deteriorated portion increases and the leak current passing through the portion decreases, and the same effects can be obtained without removing the back electrode 3 and the n-layer as shown in FIGS.

【0043】したがって、本形態の場合も、集電極6と
表面電極5との密着性が向上し、信頼性が向上したa−
Si太陽電池を得ることができる。
Therefore, also in the case of this embodiment, the adhesion between the collector electrode 6 and the surface electrode 5 is improved, and the reliability is improved.
An Si solar cell can be obtained.

【0044】なお、場合によっては、裏面電極3の一部
の除去又は裏面電極3,半導体部4の高導電率層の一部
の除去と、絶縁体8の形成とを併用してもよい。
In some cases, the removal of a part of the back electrode 3 or the removal of a part of the high conductivity layer of the back electrode 3 and the semiconductor portion 4 and the formation of the insulator 8 may be used together.

【0045】(第4の形態)つぎに、結晶系太陽電池と
アモルファス太陽電池とを人工構築接合により複合化し
たハイブリッド型太陽電池(いわゆるHIT(Heteroju
nction with Intrinsic Thin-layer)構造太陽電池)の
製造に適用した場合につき、図10,図11を参照して
説明する。
(Fourth Embodiment) Next, a hybrid solar cell in which a crystalline solar cell and an amorphous solar cell are combined by artificial construction bonding (so-called HIT (Heteroju
The case where the present invention is applied to the manufacture of an nction with intrinsic thin-layer (structured solar cell) will be described with reference to FIGS.

【0046】図10はこのHIT構造太陽電池9の図1
1の集電極10を省いた構造を示し、図中の11は表面
電極(TCO)、12は半導体部であり、a−Siのp
層,i層及びn型結晶シリコン(n−Si)層,a−S
iのn型ハイドープ(n+ )拡散層からなる。13は裏
面電極である。
FIG. 10 shows this HIT structure solar cell 9 shown in FIG.
1 shows a structure in which the collector electrode 10 is omitted. In the figure, 11 is a surface electrode (TCO), 12 is a semiconductor portion, and p-type
Layer, i-layer and n-type crystalline silicon (n-Si) layer, a-S
An i-type highly doped (n + ) diffusion layer. 13 is a back surface electrode.

【0047】そして、太陽電池9の製造は、n−Siの
基板にプラズマ反応でa−Siのp,i,n+ の各層を
形成した後、表面電極11,裏面電極13を蒸着法等で
形成して行われる。
The solar cell 9 is manufactured by forming p, i, and n + layers of a-Si on a n-Si substrate by a plasma reaction, and then forming the front surface electrode 11 and the back surface electrode 13 by a vapor deposition method or the like. It is formed and performed.

【0048】さらに、表面電極11の膜上に、図3,図
9と同様の図11の電極パターンの集電極10が塗布,
焼結されて形成され、集電極10はバスバー14に接続
される。
Further, the collector electrode 10 having the same electrode pattern as that shown in FIGS.
The collector electrode 10 is formed by sintering, and is connected to the bus bar 14.

【0049】そして、形成された集電極10は前記第1
〜第3の形態の場合と同様、高周波電磁誘導加熱又はレ
ーザ光照射により加熱される。
Then, the formed collector electrode 10 corresponds to the first
As in the third to third embodiments, heating is performed by high-frequency electromagnetic induction heating or laser light irradiation.

【0050】この場合、裏面電極13,半導体部12
高導電率層の除去や絶縁体の形成は行われないが、集電
極10が集中的に加熱されて表面電極11と集電極10
とが密着するため、この加熱による太陽電池9の損傷,
すなわち表面電極11と裏面電極13との電極短絡を防
止して集電極10と表面電極11との密着性が向上す
る。
In this case, the back electrode 13 and the high-conductivity layer of the semiconductor portion 12 are not removed or an insulator is not formed, but the collector electrode 10 is heated intensively and the front electrode 11 and the collector electrode 10 are not heated.
DOO order to contact, damage of the solar cell 9 according to the heating,
That is, the electrode short-circuit between the front electrode 11 and the back electrode 13 is prevented, and the adhesion between the collector electrode 10 and the front electrode 11 is improved.

【0051】そして、本発明はアモルファス系の種々の
半導体構造の光起電力装置の製造に適用することがで
き、その際、半導体部がいわゆるタンデム型等の多層集
積型構造であってもよく、また、表面電極がピラミッド
形状のテクスチャ構造等のものであってもよいのは勿論
である。
[0051] Then, the present invention can be applied to the manufacture of photovoltaic devices of various semiconductor structures A Amorphous system, in which the semiconductor portion may be a multilayer integrated structure of a tandem type, etc. Of course, the surface electrode may have a pyramid-shaped texture structure or the like.

【0052】また、各電極や半導体の形成プロセスも集
電極6,10を加熱するプロセスを省き、どのようであ
ってもよい。
The process for forming the electrodes and the semiconductor may be any process, omitting the process of heating the collector electrodes 6 and 10.

【0053】[0053]

【実施例】つぎに、本発明の光起電力装置製造方法及び
それによって得られる光起電力装置について具体的に説
明する。 (実施例1)まず、第1の形態の実施例について、図1
〜図3及び図12を参照して述べる。図1の太陽電池1
において、サブモジュールの基板2は12cm角(120
mm×120mm)のガラス基板とした。
Next, a method of manufacturing a photovoltaic device according to the present invention and a photovoltaic device obtained by the method will be specifically described. Example 1 First, an example of the first embodiment will be described with reference to FIG.
This will be described with reference to FIGS. The solar cell 1 of FIG.
, The substrate 2 of the sub-module is 12 cm square (120
mm × 120 mm).

【0054】また、裏面電極3は蒸着法により基板2上
の図2に示す100mm×110mm(約76%)の範囲に
Agを3000Å以下の厚さに形成した。
The back electrode 3 was formed by depositing Ag in a range of 100 mm × 110 mm (about 76%) shown in FIG.

【0055】さらに、その溝3’は裏面電極3を蒸着す
る際に基板2にマスクを密着させることにより形成し、
その幅は1mm(そのパターン間隔(10mm)の10%)
とした。
Further, the groove 3 ′ is formed by bringing a mask into close contact with the substrate 2 when depositing the back electrode 3.
The width is 1mm (10% of the pattern interval (10mm))
And

【0056】つぎに、裏面電極3を形成した基板2上に
10cm角(100mm×100mm)の半導体部4,表面電
極5を順に形成した。
Next, a 10 cm square (100 mm × 100 mm) semiconductor portion 4 and a front surface electrode 5 were sequentially formed on the substrate 2 on which the back surface electrode 3 was formed.

【0057】このとき、半導体部4はRF−CVD法に
より形成し、表面電極5はRF−マグネトロンスパッタ
法によりITOで形成した。
At this time, the semiconductor portion 4 was formed by RF-CVD, and the surface electrode 5 was formed of ITO by RF-magnetron sputtering.

【0058】その際の形成条件は、つぎの表1,表2そ
れぞれに示すようにし、半導体部4の厚さは5000Å
以下,表面電極5の厚さは1000Å以下とした。
The forming conditions at that time are as shown in Tables 1 and 2 below, and the thickness of the semiconductor portion 4 is 5000 °
Hereinafter, the thickness of the surface electrode 5 is set to 1000 ° or less.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】つぎに、表面電極5の膜上に集電極6とし
て幅0.5mm(溝3’の幅の50%),厚さ0.5mmの
銀ペーストをスクリーン印刷法で図3のパターンに塗布
した。
Next, a silver paste having a width of 0.5 mm (50% of the width of the groove 3 ') and a thickness of 0.5 mm is formed on the film of the surface electrode 5 as a collector electrode 6 by screen printing into the pattern shown in FIG. Applied.

【0062】そして、この銀ペーストを150℃,1時
間の条件で恒温槽中で焼成して集電極6を形成した。
The silver paste was fired in a thermostat at 150 ° C. for 1 hour to form a collector electrode 6.

【0063】その後、高周波誘導加熱法により集電極6
のみを集中的に加熱した。この加熱プロセスの条件は、
200Wh/kg,400kHz,30秒とした。
After that, the collector electrode 6 is formed by a high-frequency induction heating method.
Only heated intensively. The conditions for this heating process are:
200 Wh / kg, 400 kHz, 30 seconds.

【0064】この加熱時の温度をサーモビュアーで測定
したところ,集電極6の温度は約550℃に達したが、
その他の表面電極5等は約100℃であった。
When the temperature during this heating was measured with a thermoviewer, the temperature of the collector electrode 6 reached about 550 ° C.
The temperature of the other surface electrodes 5 was about 100 ° C.

【0065】なお、誘導加熱に用いた電磁波が集電極6
にのみ照射されるように、適当な大きさの開口部を持つ
ステンレスのマスク体により電磁波ビームの照射を規制
した。
The electromagnetic wave used for the induction heating is
The irradiation of the electromagnetic wave beam was regulated by a stainless steel mask body having an opening of an appropriate size so that the irradiation was performed only on the substrate.

【0066】一方、製造した太陽電池1の変換効率を調
べるために、比較の対象とする太陽電池として、裏面電
極に溝を設けることなく太陽電池1と同じ条件で裏面電
極,半導体部,表面電極を形成し、この表面電極上に集
電極6と同形状の集電極を銀の蒸着で形成したサブモジ
ュール構成の太陽電池(比較用サブモジュール)を製造
した。
On the other hand, in order to examine the conversion efficiency of the manufactured solar cell 1, as a solar cell to be compared, the back electrode, the semiconductor portion, and the front electrode were formed under the same conditions as the solar cell 1 without providing a groove in the back electrode. Was formed, and a solar cell (comparative sub-module) having a sub-module configuration in which a collector electrode having the same shape as the collector electrode 6 was formed on the surface electrode by vapor deposition of silver was manufactured.

【0067】そして、太陽電池1を実施例サブモジュー
ルとすると、このサブモジュールと比較用サブモジュー
ルの出力特性は、つぎの表3に示すようになった。
When the solar cell 1 is an example sub-module, the output characteristics of this sub-module and the comparison sub-module are as shown in Table 3 below.

【0068】[0068]

【表3】 [Table 3]

【0069】この表3から、本実施例で製造された太陽
電池1は、集電極6の誘導加熱処理によっては特性が劣
化しないこと,すなわち表面電極5と裏面電極3との間
の絶縁が保たれていることが判明した。
From Table 3, it can be seen that the characteristics of the solar cell 1 manufactured in this embodiment are not deteriorated by the induction heating treatment of the collector electrode 6, that is, the insulation between the front electrode 5 and the back electrode 3 is maintained. It turned out to be dripping.

【0070】なお、太陽電池1の集電極6に高周波誘導
加熱を施さなかった場合は、初期特性及び室内で1週間
放置した後の出力特性を測定したところ、つぎの表4に
示すようになった。
When the collector electrode 6 of the solar cell 1 was not subjected to high-frequency induction heating, the initial characteristics and the output characteristics after being left for one week in a room were measured, and the results are shown in Table 4 below. Was.

【0071】[0071]

【表4】 [Table 4]

【0072】この表4から明らかなように、集電極6を
加熱しない場合、初期特性は高周波誘導加熱プロセスを
経た場合と同等であったが、1週間放置した後の特性
は、主に形状因子F.F.が大幅に低下している。
As is apparent from Table 4, when the collector electrode 6 was not heated, the initial characteristics were the same as those after the high-frequency induction heating process, but the characteristics after standing for one week were mainly due to the shape factor. F. F. Has dropped significantly.

【0073】これは、表面電極と集電極との間の接触抵
抗が増大した結果であると考えられる。
This is considered to be the result of an increase in contact resistance between the surface electrode and the collector electrode.

【0074】これに対し、本願発明によれば、太陽電池
1は集電極6の加熱により、表面電極5と集電極6とが
密着していることが確かめられた。
On the other hand, according to the invention of the present application, it was confirmed that the surface electrode 5 and the collector electrode 6 were in close contact with each other by heating the collector electrode 6 in the solar cell 1.

【0075】そして、表面電極5と集電極6との密着性
は、集電極6の加熱温度に依存し、その銀ペーストの誘
導加熱温度が約200℃を越える辺りから向上し、この
密着性の向上は前記F.F.の経時劣化が減少して信頼
性が向上することから確認された。
The adhesion between the surface electrode 5 and the collector electrode 6 depends on the heating temperature of the collector electrode 6, and the induction heating temperature of the silver paste is improved from about 200 ° C. or more. The improvement is described in F. F. It was confirmed from the fact that the deterioration with time decreased and the reliability improved.

【0076】具体的には、集電極6の加熱温度に対して
室内に1週間放置した後のF.F.が図12に示す特性
を示した。
Specifically, after leaving the room for one week at the heating temperature of the collector electrode 6, F. Showed the characteristics shown in FIG.

【0077】また、前記の密着性は、集電極6の加熱プ
ロセスの条件を、50Wh/kg〜1500Wh/kg,5
0kHz〜10MHz,1〜60秒の範囲にしても向上する
ことが確かめられた。
The above-mentioned adhesion is determined by changing the conditions of the heating process of the collector electrode 6 from 50 Wh / kg to 1500 Wh / kg,
It was confirmed that the improvement was achieved even in the range of 0 kHz to 10 MHz and 1 to 60 seconds.

【0078】ところで、裏面電極3の溝3’の幅に関し
ては、0.7mm以上(集電極6の幅0.5mmの1.4倍
以上)の幅があれば、誘導加熱の際に表面電極5と裏面
電極3との電極間短絡が生じないことが判明した。
By the way, if the width of the groove 3 ′ of the back electrode 3 is 0.7 mm or more (1.4 times or more of 0.5 mm of the width of the collector electrode 6), the width of the surface electrode during induction heating is increased. It has been found that a short circuit between the electrode 5 and the back electrode 3 does not occur.

【0079】ただし、その幅が広くなるにしたがって、
太陽電池モジュールとしての有効面積が減少するため、
溝3’は1mm以下の幅とすることが望ましいと考えられ
る。
However, as the width increases,
Because the effective area as a solar cell module decreases,
It is considered that the width of the groove 3 'is desirably 1 mm or less.

【0080】つぎに、集電極6の加熱をレーザ光照射で
行った場合、その出力特性としてつぎの表5の特性が得
られた。
Next, when the collector electrode 6 was heated by irradiating a laser beam, the characteristics shown in the following Table 5 were obtained as the output characteristics.

【0081】[0081]

【表5】 [Table 5]

【0082】この表5の出力特性は、前記の高周波誘導
加熱に代え、レーザ光の照射によって集電極6を加熱し
た場合の特性であり、その他の製造条件は前記の高周波
誘導加熱の場合と同様である。また、使用したレーザは
CW−YAGレーザで、その照射条件は20mW/cm2
とした。
The output characteristics in Table 5 are obtained when the collector electrode 6 is heated by irradiating a laser beam instead of the above-described high-frequency induction heating. Other manufacturing conditions are the same as those in the above-described high-frequency induction heating. It is. The laser used was a CW-YAG laser, and the irradiation condition was 20 mW / cm 2.
And

【0083】そして、集電極6を、前記照射条件でレー
ザ光を照射して加熱した結果、集電極6は400℃程度
に加熱された。
Then, the collector electrode 6 was heated by irradiating a laser beam under the above-mentioned irradiation conditions. As a result, the collector electrode 6 was heated to about 400 ° C.

【0084】表5は太陽電池1の出力の初期効率と、室
内で1週間放置した後に測定した結果を示し、この結果
から明らかなように、レーザ光を照射して加熱した場合
にも、集電極6と表面電極5との密着性が向上し、信頼
性が向上することが判明した。
Table 5 shows the initial efficiency of the output of the solar cell 1 and the result of measurement after being left in the room for one week. As is clear from the result, even when heating was performed by irradiating laser light, It has been found that the adhesion between the electrode 6 and the surface electrode 5 is improved, and the reliability is improved.

【0085】(実施例2)つぎに、第2の形態の実施例
について、図4〜図6を参照して述べる。この実施例に
おいては、裏面電極3を蒸着する際のマスクを実施例1
のものから変更し、図4の溝3’の幅を0.5mm(集電
極6の幅0.5mmと同じ)に狭くした。
(Embodiment 2) Next, an embodiment of the second embodiment will be described with reference to FIGS. In this embodiment, a mask for depositing the back electrode 3 is used in the first embodiment.
The width of the groove 3 'in FIG. 4 was reduced to 0.5 mm (the same as the width of the collector electrode 6 of 0.5 mm).

【0086】また、n層の除去には波長1.06μmの
パルスYAGレーザ(波長:1.06μm)を使用し、
そのレーザ強度は1×106 J/パルスとした。なお、
その他の条件は実施例1と同様とした。
For removing the n-layer, a pulse YAG laser (wavelength: 1.06 μm) having a wavelength of 1.06 μm is used.
The laser intensity was 1 × 10 6 J / pulse. In addition,
Other conditions were the same as in Example 1.

【0087】そして、図1の裏面電極3のみを0.5mm
の幅で除去した太陽電池1と、図4の裏面電極3及びn
層を除去した太陽電池1の出力特性はつぎの表6のよう
になった。
Then, only the back electrode 3 of FIG.
And the back electrode 3 and n in FIG.
The output characteristics of the solar cell 1 from which the layer was removed were as shown in Table 6 below.

【0088】[0088]

【表6】 [Table 6]

【0089】この表6から明らかなように、図4の太陽
電池1の特性が図1のものより優れている。
As is clear from Table 6, the characteristics of the solar cell 1 of FIG. 4 are superior to those of FIG.

【0090】これは、図1の太陽電池1は、図5による
劣化部分4’が導電率の大きいn層と接触するために、
表面電極5と裏面電極3との間にリーク電流が流れる
が、図4の太陽電池1の場合は、図6のようにリーク電
流が流れないからである。
This is because, in the solar cell 1 shown in FIG. 1, since the deteriorated portion 4 ′ shown in FIG.
This is because a leak current flows between the front surface electrode 5 and the back surface electrode 3, but no leak current flows in the case of the solar cell 1 of FIG. 4 as shown in FIG.

【0091】なお、この図4の太陽電池1の場合も、裏
面電極3の溝3’の幅を0.7mm以上(集電極6の幅の
1.4倍以上)にすれば、裏面電極3と熱劣化したa−
Si間の距離が広がり、太陽電池特性への悪影響が一層
小さくなると考えられる。
In the case of the solar cell 1 of FIG. 4 as well, if the width of the groove 3 ′ of the back electrode 3 is set to 0.7 mm or more (1.4 times or more the width of the collecting electrode 6), And heat-degraded a-
It is considered that the distance between Si is widened and the adverse effect on the solar cell characteristics is further reduced.

【0092】そして、本実施例の太陽電池1において
も、集電極6と表面電極5との密着性が向上し、信頼性
が向上することが判明した。
[0092] Also in the solar cell 1 of the present example, it was found that the adhesion between the collector electrode 6 and the surface electrode 5 was improved, and the reliability was improved.

【0093】(実施例3)つぎに、第3の形態の実施例
につき、図7〜図9を参照して述べる。この実施例にお
いては、図7の基板2を12cm角のガラス基板とし、こ
の基板2上に図8のように裏面電極3及び絶縁体8を形
成し、その後に、半導体部4及び表面電極5,集電極6
を形成した。
(Embodiment 3) Next, an embodiment of the third embodiment will be described with reference to FIGS. In this embodiment, the substrate 2 of FIG. 7 is a glass substrate of 12 cm square, and a back electrode 3 and an insulator 8 are formed on the substrate 2 as shown in FIG. , Collector electrode 6
Was formed.

【0094】そして、絶縁体8はガラスペーストをスク
リーン印刷法で塗布,焼結し、3000Å程度の厚さに
形成した。その焼結プロセスは、350℃,1時間程度
で窒素雰囲気中で行った。
The insulator 8 was formed by applying a glass paste by screen printing and sintering to a thickness of about 3000 °. The sintering process was performed at 350 ° C. for about one hour in a nitrogen atmosphere.

【0095】また、半導体部4,表面電極5,集電極6
の形成法は実施例1と同様とし、集電極6の加熱には実
施例1と同様の高周波誘導加熱プロセスを適用した。
Also, the semiconductor part 4, the surface electrode 5, the collecting electrode 6
The same high-frequency induction heating process as in Example 1 was applied to the heating of the collector electrode 6.

【0096】一方、この図7の太陽電池1の変換効率を
測定するため、裏面電極,半導体部,表面電極を図7の
太陽電池1と同様に形成し、表面電極の膜上に図9と同
様の電極パターンの集電極を銀の蒸着により形成した太
陽電池(比較用サブモジュール)を製造した。
On the other hand, in order to measure the conversion efficiency of the solar cell 1 of FIG. 7, a back electrode, a semiconductor portion, and a front electrode are formed in the same manner as the solar cell 1 of FIG. A solar cell (comparative sub-module) in which collector electrodes having the same electrode pattern were formed by silver deposition was manufactured.

【0097】そして、図7の太陽電池1を実施例サブモ
ジュールとすると、このサブモジュールと比較用サブモ
ジュールの出力特性はつぎの表7に示すようになった。
Then, assuming that the solar cell 1 of FIG. 7 is an example sub-module, the output characteristics of this sub-module and the comparison sub-module are as shown in Table 7 below.

【0098】[0098]

【表7】 [Table 7]

【0099】この表7から明らかなように、本実施例の
太陽電池1にあっても、集電極6の誘導加熱処理によっ
ては特性が劣化せず、表面電極5と裏面電極3との間の
絶縁が保たれ、集電極6と表面電極5との密着性が向上
し、信頼性が向上することが判明した。
As is clear from Table 7, even in the solar cell 1 of this embodiment, the characteristics are not deteriorated by the induction heating treatment of the collector electrode 6, and the characteristics between the front surface electrode 5 and the back surface electrode 3 are not deteriorated. It was found that the insulation was maintained, the adhesion between the collector electrode 6 and the surface electrode 5 was improved, and the reliability was improved.

【0100】また、裏面電極3と半導体部4との間の絶
縁体8については、0.6mm(集電極6の幅5mmの1.
2倍)以上の幅があれば、誘導加熱の際に表面電極5と
裏面電極3との電極間短絡が発生しないことが判明し
た。
The insulator 8 between the back electrode 3 and the semiconductor portion 4 is 0.6 mm (1 mm of the collector electrode 6 having a width of 5 mm).
It was found that if the width was twice or more, no short circuit between the front electrode 5 and the back electrode 3 occurred during the induction heating.

【0101】ただし、幅が広くなるにつれ太陽電池モジ
ュールとしての有効面積が減少するため、1mm(集電極
6の幅の2倍)以下の幅とすることが望ましいと考えら
れる。
However, since the effective area of the solar cell module decreases as the width increases, it is considered preferable to set the width to 1 mm (twice the width of the collector electrode 6) or less.

【0102】(実施例4) つぎに、第4の形態の実施例について、図10を参照し
て述べる。この実施例においては、図10のHIT構造
太陽電池9の製造に適用した。この太陽電池9について
は、まず、半導体部12のa−Siの各層をRF−CV
D法で形成し、表面電極11をRF−マグネトロンスパ
ッタ法で形成した。
Example 4 Next, an example of the fourth embodiment will be described with reference to FIG. In this example, the present invention was applied to the manufacture of the HIT solar cell 9 shown in FIG. Regarding the solar cell 9, first, each layer of a-Si of the semiconductor unit 12 is RF-CV
The surface electrode 11 was formed by an RF-magnetron sputtering method.

【0103】これらの形成条件は、つぎの表8,表9に
示すように設定した。
These forming conditions were set as shown in Tables 8 and 9 below.

【0104】[0104]

【表8】 [Table 8]

【0105】[0105]

【表9】 [Table 9]

【0106】さらに、表面電極11としてのITOの膜
を形成した後、その膜上に図11の集電極パターンに銀
ペーストを塗布し、焼結して集電極10を形成し、この
集電極10を高周波誘導加熱法により加熱した。
Further, after forming an ITO film as the surface electrode 11, a silver paste is applied to the collector electrode pattern of FIG. 11 on the film and sintered to form a collector electrode 10. Was heated by a high frequency induction heating method.

【0107】この加熱の条件は実施例1と同条件にし
た。そして、集電極10の加熱後、裏面電極13を銀の
蒸着により形成した。
The heating conditions were the same as in Example 1. Then, after heating the collector electrode 10, the back electrode 13 was formed by vapor deposition of silver.

【0108】一方、太陽電池9の特性を調べるために、
太陽電池9と同じ表面電極,裏面電極及び半導体部を有
するHIT構造の太陽電池(比較用サブモジュール)を
形成した。
On the other hand, in order to examine the characteristics of the solar cell 9,
A solar cell (comparative sub-module) having a HIT structure having the same surface electrode, rear electrode, and semiconductor portion as the solar cell 9 was formed.

【0109】この比較用サブモジュールの表面電極の膜
上には、図11の集電極パターンで銀を蒸着して集電極
を形成し、この集電極には集電極10のように加熱を施
さなかった。
On the surface electrode film of this comparative submodule, a collector electrode was formed by depositing silver using the collector electrode pattern shown in FIG. 11, and this collector electrode was not heated like the collector electrode 10. Was.

【0110】そして、太陽電池9(実施例サブモジュー
ル)と比較用サブモジュールの初期出力特性はつぎの表
10に示すようになった。
The initial output characteristics of the solar cell 9 (Example sub-module) and the comparison sub-module are as shown in Table 10 below.

【0111】[0111]

【表10】 [Table 10]

【0112】この表10から明らかなように、太陽電池
9は集電極10の加熱によっては特性が劣化せず、表面
電極11と裏面電極13との絶縁が保たれることが判明
した。
As is clear from Table 10, the characteristics of the solar cell 9 were not deteriorated by the heating of the collector electrode 10, and the insulation between the front electrode 11 and the back electrode 13 was maintained.

【0113】また、集電極を銀ペーストの塗布,焼結の
みで形成し、集電極に高周波誘導加熱プロセスを施さな
かった場合は、その初期特性及び室内で1週間放置した
後の特性がつぎの表11に示すようになった。
When the collector was formed only by applying and sintering a silver paste and the high-frequency induction heating process was not performed on the collector, the initial characteristics and the characteristics after being left in a room for one week are as follows. The results are as shown in Table 11.

【0114】[0114]

【表11】 [Table 11]

【0115】この表11から明らかなように、集電極を
加熱(高周波誘導加熱)しない場合、初期特性は集電極
の高周波誘導加熱プロセスを経た場合と同等であった
が、1週間後には主にF.F.が大幅に低下した。
As is clear from Table 11, when the collector was not heated (high-frequency induction heating), the initial characteristics were the same as those when the collector was subjected to the high-frequency induction heating process. F. F. Has dropped significantly.

【0116】これは、電極と表面電極との密着性が悪
く、両電極間の接触抵抗が増大した結果であると考えら
れる。
This is considered to be the result of poor adhesion between the collector electrode and the surface electrode, and an increase in contact resistance between the two electrodes.

【0117】すなわち、表11からは太陽電池9の集電
極10の加熱による表面電極11と集電極10との密着
性の向上に伴う効果が確かめられた。
That is, from Table 11, it was confirmed that the effect of improving the adhesion between the surface electrode 11 and the collector 10 by heating the collector 10 of the solar cell 9 was confirmed.

【0118】[0118]

【発明の効果】本発明は、以下に記載する効果を奏す
る。まず、本発明の光起電力装置製造方法においては、
装置全体を加熱するのでなく、集電極6,10とその直
下の表面電極5,11とを局所的に加熱して相互に混ざ
り合わせ、集電極6,10と表面電極5,11とを密着
するため、表面電極5,11と裏面電極3,13との間
の半導体部4,12の熱劣化が極めて少なく、表面電極
5,11と裏面電極3,13との電極間短絡を防止する
ことができ、非晶質シリコンからなる半導体部4,12
に熱の影響を与えることなく、集電極6,10と表面電
極5,11との密着性を向上することができる。
The present invention has the following effects. First, in the photovoltaic device manufacturing method of the present invention,
Instead of heating the entire apparatus , the collector electrodes 6, 10 and the surface electrodes 5, 11 immediately below the collector electrodes are locally heated and mixed with each other, and the collector electrodes 6, 10 and the surface electrodes 5 , 11 are brought into close contact with each other. Therefore, thermal degradation of the semiconductor portion 4, 12 between the front surface electrode 5 and 11 and the back electrode 3 and 13 is extremely small, to prevent short circuit between electrodes of the surface electrode 5 and 11 and the back electrode 3, 13
Semiconductor portions 4 and 12 made of amorphous silicon.
The collector electrodes 6 and 10 and the surface
Adhesion with poles 5 and 11 can be improved.

【0119】したがって、熱による損傷を受け易い場合
にも、真空プロセスや材料費の高騰等なく集電極6,1
0と表面電極5,11とを十分に密着させて信頼性の高
い光起電力装置を安価に製造することができる。
Therefore, even when the collector electrodes 6 and 1 are easily damaged by heat without increasing the vacuum process or material cost.
Thus , a highly reliable photovoltaic device can be manufactured at low cost by bringing the 0 and the surface electrodes 5 and 11 into close contact with each other.

【0120】そして、集電極6,10の加熱を、電磁波
の照射による誘導加熱又はレーザ光の照射により行うこ
とより、極めて実用的な手法で集電極6,10と表面電
極5,11とを密着させることができる。
The heating of the collecting electrodes 6 and 10 is performed by induction heating by electromagnetic wave irradiation or laser light irradiation.
The poles 5 and 11 can be brought into close contact.

【0121】また、ほぼ集電極直下の表面電極5,11
と裏面電極3,13との間に絶縁体8を介在させて集電
極6,10を加熱することにより、表面電極5,11と
裏面電極3,13との電極間短絡を一層確実に防止して
信頼性の一層の向上を図ることができる。
The surface electrodes 5, 11 almost immediately below the collector electrode
By heating the collector electrodes 6 and 10 with the insulator 8 interposed between the back electrodes 3 and 13, a short circuit between the front electrodes 5 and 11 and the back electrodes 3 and 13 is more reliably prevented. Reliability can be further improved.

【0122】さらに、裏面電極3,13のほぼ集電極直
下の部分を除去して集電極6,10を加熱することによ
り、前記の絶縁体8を設けることなく、絶縁体8を設け
た場合と同等の効果が得られる。
Further, by removing the portion of the back electrodes 3 and 13 immediately below the collector electrode and heating the collector electrodes 6 and 10, the case where the insulator 8 is provided without the insulator 8 is provided. An equivalent effect can be obtained.

【0123】また、半導体部4,12に高導電率層があ
る場合には、この高導電率層及び裏面電極3,13のほ
ぼ集電極直下の部分を除去して集電極6,10を加熱す
ることにより、表面電極5,11と裏面電極3,13と
の電極間短絡の防止を図ることができる。
If the semiconductor portions 4 and 12 have a high conductivity layer, the portions of the high conductivity layer and the back electrodes 3 and 13 which are almost immediately below the collector electrodes are removed to heat the collector electrodes 6 and 10. By doing so, it is possible to prevent a short circuit between the front electrodes 5 and 11 and the back electrodes 3 and 13.

【0124】[0124]

【0125】[0125]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1の形態の太陽電池の断面図
である。
FIG. 1 is a sectional view of a solar cell according to a first embodiment of the present invention.

【図2】図1の裏面電極パターンを示す平面図である。FIG. 2 is a plan view showing a back electrode pattern of FIG. 1;

【図3】図1の集電極パターンを示す平面図である。FIG. 3 is a plan view showing a collector electrode pattern of FIG. 1;

【図4】本発明の実施の第2の形態の太陽電池の断面図
である。
FIG. 4 is a sectional view of a solar cell according to a second embodiment of the present invention.

【図5】図4の太陽電池のn層を除去しなかった場合の
熱劣化に伴うリーク電流説明用の断面図である。
FIG. 5 is a cross-sectional view for explaining a leak current accompanying thermal degradation when the n-layer of the solar cell of FIG. 4 is not removed.

【図6】図4の太陽電池の熱劣化に伴うリーク電流説明
用の断面図である。
6 is a cross-sectional view for explaining a leak current caused by thermal deterioration of the solar cell of FIG.

【図7】本発明の実施の第3の形態の太陽電池の断面図
である。
FIG. 7 is a sectional view of a solar cell according to a third embodiment of the present invention.

【図8】図7の絶縁体塗布パターンを示す平面図であ
る。
FIG. 8 is a plan view showing an insulator application pattern of FIG. 7;

【図9】図7の集電極パターンを示す平面図である。FIG. 9 is a plan view showing the collector electrode pattern of FIG. 7;

【図10】本発明の実施の第4の形態の太陽電池の集電
極を除去した状態の断面図である。
FIG. 10 is a sectional view of a solar cell according to a fourth embodiment of the present invention in a state where a collector electrode is removed.

【図11】図10の太陽電池に形成される集電極パター
ンを示した平面図である。
FIG. 11 is a plan view showing a collector electrode pattern formed in the solar cell of FIG.

【図12】本発明の実施例1の集電極加熱温度に対する
太陽電池の特性図である。
FIG. 12 is a characteristic diagram of a solar cell with respect to a collecting electrode heating temperature in Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1,9 太陽電池 2 基板 3,13 裏面電極 4,12 半導体部 5,11 表面電極 6,10 集電極 8 絶縁体 1,9 solar cell 2 substrate 3,13 back electrode 4,12 semiconductor part 5,11 front electrode 6,10 collector electrode 8 insulator

フロントページの続き (56)参考文献 特開 平7−99331(JP,A) 特開 昭62−213282(JP,A) 特開 昭64−41277(JP,A) 特開 平7−321353(JP,A) 特開 平6−151915(JP,A) 特開 平7−335921(JP,A) 実開 昭61−57544(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 Continuation of the front page (56) References JP-A-7-99331 (JP, A) JP-A-62-213282 (JP, A) JP-A-64-41277 (JP, A) JP-A-7-321353 (JP) JP-A-6-151915 (JP, A) JP-A-7-335921 (JP, A) JP-A-61-57544 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB (Name) H01L 31/04-31/078

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 透光性の表面電極/非晶質シリコンから
なる半導体部/裏面電極の層構造に形成され、前記表面
電極の膜上に金属の集電極が形成された光起電力装置を
製造する光起電力装置製造方法において、 前記集電極とその直下の前記表面電極とを局所的に加熱
して相互に混ざり合わせることにより、前記電極と前
表面電極とを密着させることを特徴とする光起電力装
置製造方法。
1. Transparent surface electrode / from amorphous silicon
Becomes formed in the layer structure of the semiconductor unit / back electrode, wherein the photovoltaic device manufacturing method of manufacturing a photovoltaic device in which the metal of the collector electrode is formed on the film of the surface electrode, the collector electrode and immediately below the Local heating of the surface electrode
And causing the collector electrode and the surface electrode to adhere to each other by mixing with each other .
【請求項2】 集電極の加熱を、電磁波の照射による誘
導加熱により行うことを特徴とする請求項1記載の光起
電力装置製造方法。
2. The method for manufacturing a photovoltaic device according to claim 1, wherein the heating of the collector electrode is performed by induction heating by irradiation of electromagnetic waves.
【請求項3】 集電極の加熱を、レーザ光の照射により
行うことを特徴とする請求項1記載の光起電力装置製造
方法。
3. The method according to claim 1, wherein the collector electrode is heated by irradiating a laser beam.
【請求項4】 ほぼ集電極直下の表面電極と裏面電極と
の間に絶縁体を介在させ、集電極を加熱することを特徴
とする請求項1,請求項2又は請求項3記載の光起電力
装置製造方法。
4. The photovoltaic device according to claim 1, wherein an insulator is interposed between the front electrode and the back electrode substantially immediately below the collector electrode, and the collector electrode is heated. Power device manufacturing method.
【請求項5】 裏面電極のほぼ集電極直下の部分を除去
し、集電極を加熱することを特徴とする請求項1,請求
項2又は請求項3記載の光起電力装置製造方法。
5. The method for manufacturing a photovoltaic device according to claim 1, wherein a portion of the back electrode substantially immediately below the collector is removed, and the collector is heated.
【請求項6】 半導体部を構成する裏面電極側の高導電
率層及び裏面電極のほぼ集電極直下の部分を除去し、集
電極を加熱することを特徴とする請求項1,請求項2又
は請求項3記載の光起電力装置製造方法。
6. The collector according to claim 1, wherein a portion of the high conductivity layer on the back electrode side constituting the semiconductor portion and a portion of the back electrode substantially immediately below the collector are removed, and the collector is heated. The method for manufacturing a photovoltaic device according to claim 3.
JP09527997A 1997-03-28 1997-03-28 Photovoltaic device manufacturing method Expired - Fee Related JP3209702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09527997A JP3209702B2 (en) 1997-03-28 1997-03-28 Photovoltaic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09527997A JP3209702B2 (en) 1997-03-28 1997-03-28 Photovoltaic device manufacturing method

Publications (2)

Publication Number Publication Date
JPH10275927A JPH10275927A (en) 1998-10-13
JP3209702B2 true JP3209702B2 (en) 2001-09-17

Family

ID=14133345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09527997A Expired - Fee Related JP3209702B2 (en) 1997-03-28 1997-03-28 Photovoltaic device manufacturing method

Country Status (1)

Country Link
JP (1) JP3209702B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5179677B1 (en) * 2012-03-14 2013-04-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for manufacturing solar battery cell
JP2013247219A (en) * 2012-05-25 2013-12-09 Mitsubishi Electric Corp Method of manufacturing solar battery cell
EP2898113B1 (en) * 2012-09-20 2021-02-17 Ecole Polytechnique Federale de Lausanne (EPFL) Method for hardening a coating of a solar collector element

Also Published As

Publication number Publication date
JPH10275927A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
JP5025184B2 (en) Solar cell element, solar cell module using the same, and manufacturing method thereof
EP1727211B1 (en) Method of fabricating a thin-film solar cell, and thin-film solar cell
US20180097129A1 (en) Metallization of solar cells using metal foils
JPH04276665A (en) Integrated solar battery
US4542578A (en) Method of manufacturing photovoltaic device
US5580509A (en) Method for electrically contacting thin-film solar modules
US20060260673A1 (en) Photovoltaic element and method of producing photovoltaic element
TW200828609A (en) Semiconductor structure and process for forming ohmic connections to a semiconductor structure
JPH0472392B2 (en)
TW201104888A (en) Solar battery module and method for manufacturing the same
JP4171166B2 (en) Photovoltaic device and manufacturing method thereof
JP3209702B2 (en) Photovoltaic device manufacturing method
JP3393842B2 (en) Method for manufacturing photoelectric conversion device
JPH0476227B2 (en)
JP2585503B2 (en) Laser processing method
JPH0518275B2 (en)
JPS6261376A (en) Solar battery
JPH06112514A (en) Manufacture of photoelectric conversion semiconductor device
JPH06177408A (en) Thin film solar battery and its manufacture
EP0962990A2 (en) Method of fabricating a solar cell
JP3969966B2 (en) Photovoltaic element manufacturing method
JPH11126914A (en) Manufacture of integrated solar cell
JPS6158277A (en) Semiconductor device
JPH04130672A (en) Production of photovoltaic device
JPS6158278A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees