JPH0697082A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0697082A
JPH0697082A JP4242440A JP24244092A JPH0697082A JP H0697082 A JPH0697082 A JP H0697082A JP 4242440 A JP4242440 A JP 4242440A JP 24244092 A JP24244092 A JP 24244092A JP H0697082 A JPH0697082 A JP H0697082A
Authority
JP
Japan
Prior art keywords
layer
polycrystalline
oxide film
layers
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4242440A
Other languages
Japanese (ja)
Other versions
JP3185396B2 (en
Inventor
Osamu Ishiwatari
統 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24244092A priority Critical patent/JP3185396B2/en
Publication of JPH0697082A publication Critical patent/JPH0697082A/en
Application granted granted Critical
Publication of JP3185396B2 publication Critical patent/JP3185396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To make it possible to control a resistance of a stacked polycrystalline Si layer precisely, by stacking two polycrystalline silicon layers and then specifying a thickness of an oxide film occurring in the interface between the two layers and recrystallizing the layer using a heat treatment. CONSTITUTION:A gate insulating film 2 is formed on an Si substrate 1 and a first polycrystalline Si layer 3 is deposited on the gate insulating film 2 using a low pressure CVD apparatus and then a second polycrystalline Si layer 4 is formed. In this case, an interface oxide film 5 occurs between both the polycrystalline Si layers 3 and 4. Then, a temperature in a reactor of the CVD apparatus before inserting a cassette on which the substrate 1 is mounted is set to 300 deg.C and thereby a thickness of the interface oxide film 5 is formed to less than 1mm. After this, a phosphorus atom 6 of the polycrystalline Si layer is implanted and a heat treatment is performed in an N2 atmosphere. Thus, crystals of both the polycrystalline Si layers are continuously formed and crystal grains in the interface result in an epitaxial recrystallization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板上に多結晶
シリコン (Si) 層を積層してなる配線を有する半導体装
置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a wiring formed by laminating a polycrystalline silicon (Si) layer on a semiconductor substrate.

【0002】[0002]

【従来の技術】多結晶シリコン層は高純度のものが得や
すく、半導体としての性質を利用するほかに、ステップ
カバレージ性がよいことを利用して半導体基板上のゲー
ト電極あるいは配線として用いられる。表面にゲート酸
化膜を有する半導体基板に多結晶シリコンからなる配線
を直接接触させるために埋込み接触 (Buried Contact)
と呼ばれる技術がある。これは、ゲート酸化膜にフォト
リソグラフィ技術により窓を開けるために、その上に直
接レジストを塗るとゲート酸化膜の汚染が避けられな
い。そこで薄い多結晶Si層をゲート酸化膜とレジストの
間のバッファに用いる方法である。図3(a) 〜(c) はそ
のような埋込み接触の形成工程を示す。例えばp形のシ
リコン基板1の上にLOCOS法で厚い酸化膜21を形成
し、それ以外の個所にゲート酸化膜2を形成したのち、
表面の汚染を避けて連続工程で表面上に約500 Åの厚さ
の多結晶Si層3を形成し〔同図(a) 〕、その上にレジス
ト4を塗り、フォトエッチングにより窓11を開け、多結
晶Si層3をマスクにしてりんイオン12を注入し、n領域
13を形成する〔同図(b) 〕。このあと、露出しているゲ
ート酸化膜2を除去し、約3000Åの厚さの多結晶Si層4
を積層する〔同図(c) 〕。これにより多結晶Si層4とシ
リコン基板1との直接コンタクトがとれる。そして、多
結晶Si層の導電性を向上させるためのドーパントをイオ
ン注入などの方法で供給する。
2. Description of the Related Art A polycrystalline silicon layer is easily obtained with high purity, and is used as a gate electrode or a wiring on a semiconductor substrate by utilizing not only the characteristics as a semiconductor but also the good step coverage. Buried contact for directly contacting the wiring made of polycrystalline silicon to the semiconductor substrate having the gate oxide film on the surface
There is a technology called. This is because a window is formed in the gate oxide film by a photolithography technique, so that if the resist is directly applied on the window, the contamination of the gate oxide film cannot be avoided. Therefore, it is a method of using a thin polycrystalline Si layer as a buffer between the gate oxide film and the resist. 3 (a)-(c) illustrate the process of forming such a buried contact. For example, after a thick oxide film 21 is formed on the p-type silicon substrate 1 by the LOCOS method and the gate oxide film 2 is formed at other places,
A polycrystalline Si layer 3 with a thickness of about 500Å is formed on the surface in a continuous process to avoid surface contamination [Fig. (A)], resist 4 is applied on it, and window 11 is opened by photoetching. , The polycrystalline Si layer 3 is used as a mask to implant phosphorus ions 12 and
13 is formed [(b) in the figure]. After that, the exposed gate oxide film 2 is removed, and the polycrystalline Si layer 4 having a thickness of about 3000 Å is removed.
Are laminated [(c) in the figure]. As a result, direct contact between the polycrystalline Si layer 4 and the silicon substrate 1 can be obtained. Then, a dopant for improving the conductivity of the polycrystalline Si layer is supplied by a method such as ion implantation.

【0003】[0003]

【発明が解決しようとする課題】しかし、CVD法によ
って多結晶Si層をSi基板上に成膜する際、界面層への酸
素の巻込みが避けられず、薄い界面酸化膜が生ずること
が知られている。このような界面酸化膜は、高抵抗層と
して働き、導電性を高めるために導入するドーパントの
拡散障壁となり、積層多結晶Si層の抵抗を精密に制御す
る上での障害となる。
However, it is known that when a polycrystalline Si layer is formed on a Si substrate by the CVD method, the inclusion of oxygen in the interface layer is unavoidable and a thin interface oxide film is produced. Has been. Such an interfacial oxide film acts as a high resistance layer and serves as a diffusion barrier for a dopant introduced to enhance conductivity, which is an obstacle to precisely controlling the resistance of the laminated polycrystalline Si layer.

【0004】本発明の目的は、このような問題を解決
し、積層多結晶Si層の抵抗の精密な制御を可能にするこ
とにある。
An object of the present invention is to solve such a problem and enable precise control of the resistance of the laminated polycrystalline Si layer.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、半導体基板上に2層の多結晶Si層を積
層したのち、表面から不純物を導入して低抵抗の配線層
を形成する工程を有する半導体装置の製造方法におい
て、両多結晶Si層の界面に生ずる酸化膜の厚さを1nm未
満とし、積層多結晶Si層を熱処理により再結晶化するも
のとする。そして、多結晶Si層の成膜を減圧CVD法で
行い、界面に生ずる酸化膜の厚さを半導体基板を挿入す
る際のCVD反応炉内の温度を制御することにより1nm
未満とすることが有効である。あるいは、上記の製造方
法において、両多結晶Si層の界面に生じた酸化膜に損傷
を与え、そのあとの熱処理により積層多結晶Si層を再結
晶化するものとする。そして、界面酸化膜にイオン注入
により損傷を与えることが有効である。また、両多結晶
Si層の結晶の連続性を、イオンマイクロアナライザによ
るSi層の厚さ方向の不純物濃度分布分析結果から判定す
ることが有効である。
In order to achieve the above-mentioned object, the present invention is to form a low resistance wiring layer by laminating two layers of polycrystalline Si layers on a semiconductor substrate and then introducing impurities from the surface. In the method for manufacturing a semiconductor device having a step of forming a film, the thickness of the oxide film formed at the interface between both polycrystalline Si layers is less than 1 nm, and the laminated polycrystalline Si layer is recrystallized by heat treatment. Then, the polycrystalline Si layer is formed by the low pressure CVD method, and the thickness of the oxide film formed at the interface is controlled to 1 nm by controlling the temperature in the CVD reaction furnace when the semiconductor substrate is inserted.
It is effective to set it to less than. Alternatively, in the above-described manufacturing method, the oxide film formed at the interface between both polycrystalline Si layers is damaged, and the laminated polycrystalline Si layer is recrystallized by subsequent heat treatment. Then, it is effective to damage the interface oxide film by ion implantation. Also, both polycrystals
It is effective to judge the crystal continuity of the Si layer from the result of analysis of the impurity concentration distribution in the thickness direction of the Si layer by an ion microanalyzer.

【0006】[0006]

【作用】界面酸化膜の厚さが1nm以上であると、熱処理
の際、その酸化膜が障壁となって固相エピタキシャル再
結晶化が起きない。しかし、界面酸化膜の厚さが1nm未
満であれば、固相エピタキシャル再結晶化で連続的な多
結晶Si層が生ずる。界面酸化膜の厚さが1nm以上であっ
ても、積層した多結晶Si層の上からのイオン注入などに
よる原子混合 (atomic mixing)効果で酸化膜を不連続に
すると、熱処理の際に酸化膜をはさむ両多結晶Si層が固
相エピタキシャル再結晶化で連続的になる。このように
形成された連続的な多結晶Si層には、主として粒界拡散
による不純物の拡散により層厚方向に均一なドーピング
が行われる。
When the thickness of the interfacial oxide film is 1 nm or more, the oxide film acts as a barrier during heat treatment and solid phase epitaxial recrystallization does not occur. However, if the thickness of the interfacial oxide film is less than 1 nm, solid-phase epitaxial recrystallization produces a continuous polycrystalline Si layer. Even if the thickness of the interfacial oxide film is 1 nm or more, if the oxide film is made discontinuous due to the effect of atomic mixing (atomic mixing) from the top of the laminated polycrystalline Si layer by the ion implantation, etc. Both polycrystalline Si layers sandwiching the layer become continuous by solid phase epitaxial recrystallization. The continuous polycrystalline Si layer formed in this way is uniformly doped in the layer thickness direction mainly by diffusion of impurities by grain boundary diffusion.

【0007】[0007]

【実施例】以下、図3と共通の部分に同一の符号を付し
た図を引用して本発明の実施例について述べる。図1、
図2に示すようにSi基板1上に20nmの厚さのゲート酸化
膜2を形成したのち、その上に縦型減圧CVD装置を用
いて一層目の多結晶Si層3を45nmの厚さに堆積し、次い
で二層目の多結晶Si層4を250nm の厚さに形成した。そ
の際、一層目の多結晶Si層3と二層目の多結晶Si層4の
間には界面酸化膜5が生ずる〔図1(a) 、図2(a) 〕。
図1の場合は基板を装置したカセットを挿入する前のC
VD装置の反応炉内の温度を300 ℃にすることにより、
界面酸化膜5の厚さを1nm未満、平均値で0.5nmとし、
図2の場合は同じく反応炉内温度を600 ℃にすることに
より、界面酸化膜5の厚さを1nm以上、平均値で2nmと
した。このあと、多結晶Si層へのドーピングのためにり
んイオンを加速電圧30kV、ドーズ量1.5×1016ions/cm
2 で注入した。図1(b) 、図2(b) は注入後の状態を模
式的に示し、いずれも表面層にりん(P) 原子6が注入さ
れている。拡散のための熱処理は、N2 雰囲気中で900
℃、10分間行った。図1(c) 、図2(c) は熱処理後の状
態を模式的に示し、界面酸化膜5が2nmの場合は、熱処
理後二層目の多結晶Si層4の粒径は増大しているが、一
層目の多結晶Si層3の粒径は比較的小さいままである
〔図2(c) 〕。それに対し、界面酸化膜0.5nmの場合
は、上下の多結晶Si層3、4の結晶は連続的であり、界
面でも概ね結晶粒はエピタキシャル再結晶化しているこ
とがわかる。高分解能の透過型電子顕微鏡で観察する
と、界面酸化膜5が2nmの場合、上下の多結晶Si層3、
4は連続した界面酸化膜5により結晶的に分離している
が、界面酸化膜5が0.5nmの場合、熱処理によって上下
の多結晶Si層は結晶的に一体となっており、界面をはさ
んでSi(111) 面が連続している。図4に積層多結晶Si層
へドーピングしたPの深さ方向濃度分布をイオンマイク
ロアナライザ (IMA) で分析した結果を示す。線41で
示す界面酸化膜5が0.5nmの場合には、二層目の多結晶
Si層4および一層目の多結晶Si層3とも、P濃度はほぼ
一定である。これは、図1(c) に示すように粒界が上下
の多結晶Si層にわたって連続的であるため、P原子6の
粒界拡散が均一に行われたためである。一方、線42で示
す界面酸化膜5が2nmの場合には、0.5nmの場合に比べ
多結晶Si層4ではP濃度が低く、多結晶Si層3では逆に
P濃度は高い。これは、一層目の多結晶Si層3の結晶粒
が細かく、すなわち粒界7が多いため、図2(c) に示す
ようにより多くの粒界7にP6が拡散したためである。
多結晶Si層4の厚さは多結晶Si層3の厚さの5倍以上あ
るので、多結晶Si層3、4を1層としてみたときのシー
ト抵抗は界面酸化膜5が2nmのときは45Ω/□であった
のに対し、界面酸化膜5が0.5nmのときは34、5 Ω/□
で22%減少した配線が得られた。ここで重要なことは、
界面酸化膜5が1nm未満のときは再現性良くシート抵抗
値を得ることができるが、界面酸化膜5がそれより厚い
場合は厚さに応じて多結晶Si層3の結晶粒の細かさが変
化し、シート抵抗値の制御が極めて困難となることであ
る。
Embodiments of the present invention will be described below with reference to the drawings in which the same parts as those in FIG. Figure 1,
As shown in FIG. 2, after a gate oxide film 2 having a thickness of 20 nm is formed on a Si substrate 1, a first low-pressure CVD apparatus is used to form a first-layer polycrystalline Si layer 3 having a thickness of 45 nm. Then, a second layer of polycrystalline Si layer 4 was formed to a thickness of 250 nm. At that time, an interfacial oxide film 5 is formed between the first-layer polycrystalline Si layer 3 and the second-layer polycrystalline Si layer 4 [FIGS. 1 (a) and 2 (a)].
In the case of FIG. 1, C before inserting the cassette in which the substrate is mounted
By setting the temperature in the reaction furnace of the VD device to 300 ° C,
The thickness of the interfacial oxide film 5 is less than 1 nm, and the average value is 0.5 nm.
In the case of FIG. 2, the temperature in the reaction furnace was also set to 600 ° C., so that the thickness of the interfacial oxide film 5 was 1 nm or more, and the average value was 2 nm. After that, phosphorus ions are added to the polycrystalline Si layer for accelerating voltage of 30 kV and dose of 1.5 × 10 16 ions / cm 2.
Injected at 2 . 1 (b) and 2 (b) schematically show the state after the implantation, and in each case, phosphorus (P) atoms 6 are implanted in the surface layer. The heat treatment for diffusion is 900 in an N 2 atmosphere.
It was carried out at ℃ for 10 minutes. FIGS. 1 (c) and 2 (c) schematically show the state after the heat treatment. When the interface oxide film 5 is 2 nm, the grain size of the second polycrystalline Si layer 4 after the heat treatment increases. However, the grain size of the first-layer polycrystalline Si layer 3 remains relatively small [Fig. 2 (c)]. On the other hand, when the interface oxide film is 0.5 nm, the crystals of the upper and lower polycrystalline Si layers 3 and 4 are continuous, and it can be seen that the crystal grains are substantially epitaxially recrystallized at the interface. When observed with a high-resolution transmission electron microscope, when the interfacial oxide film 5 is 2 nm, the upper and lower polycrystalline Si layers 3,
4 is crystallinely separated by the continuous interfacial oxide film 5, but when the interfacial oxide film 5 is 0.5 nm, the upper and lower polycrystalline Si layers are crystallized integrally by heat treatment, and the interface is separated. The Si (111) plane is continuous. FIG. 4 shows the result of analyzing the concentration distribution of P doped in the laminated polycrystalline Si layer in the depth direction by an ion microanalyzer (IMA). When the interfacial oxide film 5 shown by the line 41 is 0.5 nm, the second-layer polycrystal
The P concentration of both the Si layer 4 and the first-layer polycrystalline Si layer 3 is substantially constant. This is because the grain boundaries are continuous across the upper and lower polycrystalline Si layers as shown in FIG. 1 (c), so that the grain boundaries of P atoms 6 are uniformly diffused. On the other hand, when the interface oxide film 5 shown by the line 42 is 2 nm, the P concentration is lower in the polycrystalline Si layer 4 and is higher in the polycrystalline Si layer 3 than when it is 0.5 nm. This is because the crystal grains of the first-layer polycrystalline Si layer 3 are fine, that is, the number of grain boundaries 7 is large, so that P6 diffuses into more grain boundaries 7 as shown in FIG. 2 (c).
Since the thickness of the polycrystalline Si layer 4 is 5 times or more the thickness of the polycrystalline Si layer 3, the sheet resistance when the polycrystalline Si layers 3 and 4 are regarded as one layer is when the interface oxide film 5 is 2 nm. It was 45 Ω / □, whereas when the interface oxide film 5 was 0.5 nm, it was 34,5 Ω / □.
The wiring obtained was reduced by 22%. The important thing here is
When the interfacial oxide film 5 is less than 1 nm, the sheet resistance value can be obtained with good reproducibility, but when the interfacial oxide film 5 is thicker, the fineness of the crystal grains of the polycrystalline Si layer 3 depends on the thickness. That is, it becomes very difficult to control the sheet resistance value.

【0008】図5(a) 〜(c) は本発明の別の実施例を示
す。この場合は、一層目の多結晶Si層3と二層目の多結
晶Si層4との間の界面に1nm以上の厚さのシリコン酸化
膜5が存在するが〔同図(a) 〕、Siを高エネルギーでイ
オン注入すると、表面からの深さdまでの領域が非晶質
化層81となり、さらに界面酸化膜5の存在した領域にat
omic mixing により不連続になった酸化膜51だけを残
す。従って、熱処理の際に上下の多結晶Si層3、4を固
相エピタキシャル再結晶化で連続的な粗大化した多結晶
Si層8とすることができ〔同図(c) 〕、導入したPの粒
界拡散を層厚方向に均一にする。この結果、図4の線41
のようなPの分布を得ることができる。この方法は、界
面酸化膜が10nm程度まで厚い場合にも有効である。 な
お、図4からわかるように、熱処理後に上下の多結晶Si
層が固相エピタキシャル再結晶化で連続的な多結晶Si層
となっているかを知るためには、積層多結晶Si層の表面
から深さ方向にイオンマイクロアナライザ (IMA) で
不純物元素の濃度分析をすることで簡易的に粒界の連続
性を判断することができる。
5 (a) to 5 (c) show another embodiment of the present invention. In this case, there is a silicon oxide film 5 having a thickness of 1 nm or more at the interface between the first-layer polycrystalline Si layer 3 and the second-layer polycrystalline Si layer 4 [FIG. When Si is ion-implanted with high energy, the region up to the depth d from the surface becomes the amorphization layer 81, and at the region where the interfacial oxide film 5 existed, at.
Only the oxide film 51 which is discontinuous by omic mixing is left. Therefore, the upper and lower polycrystalline Si layers 3 and 4 are continuously coarsened by solid phase epitaxial recrystallization during heat treatment.
The Si layer 8 can be formed [(c) in the figure], and the grain boundary diffusion of the introduced P is made uniform in the layer thickness direction. This results in line 41 in FIG.
It is possible to obtain a distribution of P such as This method is also effective when the interface oxide film is as thick as about 10 nm. As can be seen from FIG. 4, the upper and lower polycrystalline Si after heat treatment
In order to know whether the layer is a continuous polycrystalline Si layer by solid-phase epitaxial recrystallization, the concentration of impurity elements was analyzed in the depth direction from the surface of the laminated polycrystalline Si layer with an ion microanalyzer (IMA). By doing so, the continuity of grain boundaries can be easily determined.

【0009】[0009]

【発明の効果】本発明によれば、積層多結晶Si層界面の
酸化膜を極く薄くすることにより、熱処理時の固相再結
晶化の過程で上下の多結晶Si層が連続的になり、粒界分
布が均一になり、導入したドーパント不純物の分布も均
一化できた。これを実現できる限界は界面の酸化膜が1
nm未満の場合である。また、界面の酸化膜が厚い場合で
も、Siイオン注入などの補助的手段を併用して界面酸化
膜に損傷を与えることで同様の効果を得ることができ
た。また、良好に拡散処理が行われているかをIMA分
析法により判定する基準とその根拠を明確にし、実プロ
セスでの管理にも役立たせることができた。
According to the present invention, by making the oxide film at the interface of the laminated polycrystalline Si layers extremely thin, the upper and lower polycrystalline Si layers become continuous during the solid phase recrystallization during heat treatment. The grain boundary distribution became uniform, and the distribution of the introduced dopant impurities could be made uniform. The limit to realizing this is that the oxide film at the interface is 1.
When it is less than nm. Even when the oxide film on the interface was thick, the same effect could be obtained by using an auxiliary means such as Si ion implantation to damage the interface oxide film. In addition, the criteria and the basis for judging whether the diffusion processing is being performed favorably by the IMA analysis method were clarified, and it was possible to use it for the management in the actual process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の配線形成工程を(a) ないし
(c) の順に示す断面図
FIG. 1 is a diagram illustrating a wiring forming process according to an embodiment of the present invention (a)
Sectional views shown in order of (c)

【図2】比較例の配線形成工程を(a) ないし(c) の順に
示す断面図
FIG. 2 is a cross-sectional view showing a wiring forming process of a comparative example in the order of (a) to (c).

【図3】埋込み接触形成工程を(a) ないし(c) の順に示
す断面図
FIG. 3 is a cross-sectional view showing the step of forming a buried contact in the order of (a) to (c).

【図4】本発明の一実施例と比較例のIMAによるPの
深さ方向の濃度分布図
FIG. 4 is a concentration distribution diagram of P in the depth direction by IMA of an example of the present invention and a comparative example.

【図5】本発明の別の実施例の配線形成工程を(a) ない
し(c) の順に示す断面図
FIG. 5 is a cross-sectional view showing a wiring forming process of another embodiment of the present invention in the order of (a) to (c).

【符号の説明】[Explanation of symbols]

1 Si基板 2 ゲート酸化膜 3 多結晶Si層第一層 4 多結晶Si層第二層 5 界面酸化膜 6 りん原子 1 Si substrate 2 Gate oxide film 3 Polycrystalline Si layer First layer 4 Polycrystalline Si layer Second layer 5 Interface oxide film 6 Phosphorus atom

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に2層の多結晶シリコン層を
積層したのち、表面から不純物を導入して低抵抗の配線
層を形成する工程を有する半導体装置の製造方法におい
て、両多結晶シリコン層の界面に生ずる酸化膜の厚さを
1nm未満とし、積層多結晶シリコン層を熱処理により再
結晶化することを特徴とする半導体装置の製造方法。
1. A method of manufacturing a semiconductor device, comprising the steps of laminating two layers of polycrystalline silicon layers on a semiconductor substrate and then introducing impurities from the surface to form a wiring layer of low resistance. A method of manufacturing a semiconductor device, wherein the thickness of an oxide film formed at the interface between layers is less than 1 nm, and the laminated polycrystalline silicon layer is recrystallized by heat treatment.
【請求項2】多結晶シリコン層の成膜を減圧CVD法で
行い、界面に生ずる酸化膜の厚さを半導体基板を挿入す
る際のCVD反応炉内の温度を制御することにより1nm
未満とする請求項1記載の半導体装置の製造方法。
2. A polycrystalline silicon layer is formed by a low pressure CVD method, and the thickness of an oxide film formed at the interface is controlled to 1 nm by controlling the temperature in a CVD reaction furnace when inserting a semiconductor substrate.
The method for manufacturing a semiconductor device according to claim 1, wherein
【請求項3】半導体基板上に2層の多結晶シリコン層を
積層したのち、表面から不純物を導入して低抵抗の配線
層を形成する工程を有する半導体装置の製造方法におい
て、両多結晶シリコン層の界面に生じた酸化膜に損傷を
与え、そのあとの熱処理により積層多結晶シリコン層を
再結晶化することを特徴とする半導体装置の製造方法。
3. A method of manufacturing a semiconductor device, comprising the steps of laminating two polycrystalline silicon layers on a semiconductor substrate and then introducing impurities from the surface to form a low resistance wiring layer. A method of manufacturing a semiconductor device, comprising: damaging an oxide film formed at a layer interface, and then recrystallizing the laminated polycrystalline silicon layer by a heat treatment thereafter.
【請求項4】界面酸化膜にイオン注入により損傷を与え
る請求項3記載の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 3, wherein the interfacial oxide film is damaged by ion implantation.
【請求項5】両多結晶シリコン層の結晶の連続性を、イ
オンマイクロアナライザによるシリコン層の厚さ方向の
不純物濃度分布分析結果から判定する請求項1ないし4
のいずれかに記載の半導体装置の製造方法。
5. The crystal continuity of both polycrystalline silicon layers is determined from the result of impurity concentration distribution analysis in the thickness direction of the silicon layers by an ion microanalyzer.
A method for manufacturing a semiconductor device according to any one of 1.
JP24244092A 1992-09-11 1992-09-11 Method for manufacturing semiconductor device Expired - Fee Related JP3185396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24244092A JP3185396B2 (en) 1992-09-11 1992-09-11 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24244092A JP3185396B2 (en) 1992-09-11 1992-09-11 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0697082A true JPH0697082A (en) 1994-04-08
JP3185396B2 JP3185396B2 (en) 2001-07-09

Family

ID=17089125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24244092A Expired - Fee Related JP3185396B2 (en) 1992-09-11 1992-09-11 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3185396B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707344A3 (en) * 1994-09-19 1996-08-28 Hitachi Ltd Semiconductor device using a polysilicium thin film and production thereof
JP2008004594A (en) * 2006-06-20 2008-01-10 Elpida Memory Inc Semiconductor device and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707344A3 (en) * 1994-09-19 1996-08-28 Hitachi Ltd Semiconductor device using a polysilicium thin film and production thereof
US5670793A (en) * 1994-09-19 1997-09-23 Hitachi, Ltd. Semiconductor device having a polycrystalline silicon film with crystal grains having a uniform orientation
CN1054235C (en) * 1994-09-19 2000-07-05 株式会社日立制作所 Semiconductor device and method for mfg. same
US6187100B1 (en) 1994-09-19 2001-02-13 Hitachi, Ltd. Semiconductor device and production thereof
KR100396400B1 (en) * 1994-09-19 2003-09-03 가부시키가이샤 히타치세이사쿠쇼 Semiconductor device
KR100397086B1 (en) * 1994-09-19 2003-09-06 가부시키가이샤 히타치세이사쿠쇼 Semiconductor device
JP2008004594A (en) * 2006-06-20 2008-01-10 Elpida Memory Inc Semiconductor device and manufacturing method thereof
JP4560820B2 (en) * 2006-06-20 2010-10-13 エルピーダメモリ株式会社 Manufacturing method of semiconductor device
US8735230B2 (en) 2006-06-20 2014-05-27 Kanta Saino Method for manufacturing a semiconductor device including an impurity-doped silicon film

Also Published As

Publication number Publication date
JP3185396B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
US6255146B1 (en) Thin film transistor and a method of manufacturing thereof
US4717681A (en) Method of making a heterojunction bipolar transistor with SIPOS
EP0085434B1 (en) Semiconductor devices and method for making the same
US5597741A (en) Process for forming a recrystallized layer and diffusing impurities
US3789504A (en) Method of manufacturing an n-channel mos field-effect transistor
US4437225A (en) Method of forming SOS devices by selective laser treatment and reactive formation of isolation regions
US5616507A (en) Method of manufacturing substrate having semiconductor on insulator
US5015593A (en) Method of manufacturing semiconductor device
JPH11288883A (en) Manufacture of polycrystalline silicon structure
JP2799304B2 (en) Method of forming contact conductive layer of semiconductor device and method of forming junction and contact conductive layer of semiconductor device
JP3316027B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JPH0697082A (en) Manufacture of semiconductor device
EP0762490A2 (en) Method of manufacturing a LDD-MOSFET
JPH05275702A (en) Thin-film transistor
JP3091800B2 (en) Method for manufacturing SOI substrate
JPH11238872A (en) Semiconductor device
JPS6317227B2 (en)
KR0136532B1 (en) Thin film transistor
JPH0193132A (en) Manufacture of semiconductor device
JPS63117420A (en) Manufacture of silicide layer
JP2718450B2 (en) Method for manufacturing semiconductor device
JPH03297148A (en) Manufacture of semiconductor device
JP2875258B2 (en) Semiconductor device and manufacturing method thereof
JPH04307741A (en) Manufacture of semiconductor device
JPH03200319A (en) Formation of poly-crystalline silicon

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees