JPH0696779A - Solid electrolytic fuel cell - Google Patents

Solid electrolytic fuel cell

Info

Publication number
JPH0696779A
JPH0696779A JP4245240A JP24524092A JPH0696779A JP H0696779 A JPH0696779 A JP H0696779A JP 4245240 A JP4245240 A JP 4245240A JP 24524092 A JP24524092 A JP 24524092A JP H0696779 A JPH0696779 A JP H0696779A
Authority
JP
Japan
Prior art keywords
electrode
battery
separator
cell
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4245240A
Other languages
Japanese (ja)
Other versions
JP3244310B2 (en
Inventor
Shunsuke Taniguchi
俊輔 谷口
Koji Yasuo
耕司 安尾
Noboru Ishida
登 石田
Yukinori Akiyama
幸徳 秋山
Toshihiko Saito
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24524092A priority Critical patent/JP3244310B2/en
Publication of JPH0696779A publication Critical patent/JPH0696779A/en
Application granted granted Critical
Publication of JP3244310B2 publication Critical patent/JP3244310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the effective area of the whole cell, and provide a solid electrolytic fuel cell increased in cell output. CONSTITUTION:A solid electrolytic fuel cell is constituted by plurally laminating a cell 4 having a fuel electrode 3 and an oxidizing agent electrode 2 mutually opposed through a solid electrolytic plate 1, and a separator 5 having irregular parts for forming reaction gas passages 6, 7 formed thereon. The average porosity or average pore diameter of the part making contact with the protruding part 5a of the separator in at least one electrode of both the electrodes 2, 3 is set larger than the average porosity or average pore diameter of the part making no contact with the protruding part 5a of the separator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池に
関し、詳しくはその電極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly to improvement of its electrode.

【0002】[0002]

【従来の技術】燃料電池は、供給されるガスの化学エネ
ルギーを直接電気エネルギーに変換するので、高い発電
効率が期待できる。特に、固体電解質型燃料電池(SO
FC)は、リン酸型燃料電池(PAFC),溶融炭酸塩
型燃料電池(MCFC)に次ぐ第三世代の燃料電池とし
て注目され、また約1000℃という高温で作動するた
め、廃熱の利用を含めると発電効率を前記PAFC,M
CFCに比べて向上させることができる等の利点がある
ため、各分野で研究されている。
2. Description of the Related Art A fuel cell directly converts chemical energy of a supplied gas into electric energy, so that high power generation efficiency can be expected. In particular, solid oxide fuel cells (SO
FC) has attracted attention as a third-generation fuel cell next to phosphoric acid fuel cells (PAFCs) and molten carbonate fuel cells (MCFCs), and since it operates at a high temperature of approximately 1000 ° C, it is necessary to use waste heat. If the power generation efficiency is included, the PAFC, M
It has been studied in various fields because it has the advantage that it can be improved compared to CFC.

【0003】図6は平板型SOFCの基本構成を示す分
解斜視図であり、固体電解質板11を介して両面に酸化
剤極12と燃料極13とを配して成るセル14と,セパ
レータ15とを交互に複数積層させた構造であり、また
電池の内部抵抗を低減するために電池全体を締め付けて
構成している。
FIG. 6 is an exploded perspective view showing the basic structure of a flat plate type SOFC. A cell 14 having an oxidizer electrode 12 and a fuel electrode 13 on both sides of a solid electrolyte plate 11 and a separator 15 are shown. Are alternately stacked, and the entire battery is tightened to reduce the internal resistance of the battery.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記の如く
電池全体を締めつけると各構成要素間の接触抵抗を低減
することができるが、図7に示すように、セパレータの
凸部(以下、「リブ」と称する。)15aと接する電極
部分(図示例では酸化剤極)12aに反応ガス(図示例
では酸化剤ガス)が拡散しにくくなるため、電極面内で
有効に発電を行うことができなくなる。したがって、電
極全体の有効面積が減少するため、電池出力が減少する
という課題を有していた。
However, the contact resistance between the respective components can be reduced by tightening the entire battery as described above. However, as shown in FIG. 7, as shown in FIG. It is difficult to diffuse the reaction gas (oxidant gas in the illustrated example) into the electrode portion (oxidant electrode in the illustrated example) 12a that is in contact with the electrode 15a, so that it is not possible to effectively generate power in the electrode surface. . Therefore, since the effective area of the entire electrode is reduced, there is a problem that the battery output is reduced.

【0005】そこで、電極面内で有効に発電を行わせる
ため、セパレータのリブ幅を狭くする方法が考えられる
が、電池全体を締め付ける場合に、上下のセパレータの
リブの位置のわずかなずれによって、セパレータ間に介
在される電解質板に不必要な応力が働き、電解質板が破
損するという問題が生じる。また、セパレータ材料であ
る合金の切削加工による製造コスト等も考えると、リブ
幅を2mm以下にすることは現状では困難である。
Therefore, a method of narrowing the rib width of the separator can be considered in order to effectively generate power in the electrode surface. However, when tightening the whole battery, a slight deviation of the positions of the ribs of the upper and lower separators causes Unnecessary stress acts on the electrolyte plate interposed between the separators, which causes a problem that the electrolyte plate is damaged. Further, considering the manufacturing cost of cutting the alloy that is the separator material and the like, it is currently difficult to reduce the rib width to 2 mm or less.

【0006】本発明は上記課題に鑑み、電池全体の有効
面積を増大させ、電池出力が増大した固体電解質型燃料
電池を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a solid oxide fuel cell in which the effective area of the whole cell is increased and the cell output is increased.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するため、固体電解質板を介して燃料極と酸化剤極とが
相対向するセルと,反応ガス流路を形成する凹凸部が形
成されたセパレータとを複数積層させて成る固体電解質
型燃料電池において、前記両電極のうち少なくとも一方
の電極におけるセパレータの凸部と接する部分の平均気
孔率,又は平均気孔径は、セパレータの凸部と接しない
部分の平均気孔率,又は平均気孔径よりも大きくなるよ
う構成されていることを特徴とする。
In order to solve the above problems, the present invention forms a cell in which a fuel electrode and an oxidizer electrode face each other through a solid electrolyte plate, and an uneven portion which forms a reaction gas flow path. In a solid oxide fuel cell comprising a plurality of laminated separators, the average porosity of the portion in contact with the convex portion of the separator in at least one of the two electrodes, or the average pore diameter is the convex portion of the separator. It is characterized in that it is configured to be larger than the average porosity or the average pore diameter of the non-contact portion.

【0008】[0008]

【作用】上記の如く、セパレータの凸部(リブ)と接す
る電極部分の平均気孔率等が大きい、即ち当該部分での
空洞たるガス流路部分が大きければ、従来、反応ガスが
拡散されにくかったセパレータの凸部(リブ)と接する
電極部分にも反応ガスが拡散,供給されやすくなるた
め、電極面内で有効に発電を行うことができる。したが
って、電極全体の有効面積が増大するため、反応抵抗,
接触抵抗等による損失を軽減でき、電池出力が増大す
る。
As described above, if the average porosity of the electrode portion in contact with the convex portion (rib) of the separator is large, that is, if the gas passage portion which is a cavity in that portion is large, it has been difficult for the reaction gas to diffuse conventionally. Since the reaction gas is easily diffused and supplied to the electrode portion in contact with the convex portion (rib) of the separator, it is possible to effectively generate power within the electrode surface. Therefore, the effective area of the entire electrode increases, so that the reaction resistance,
Loss due to contact resistance and the like can be reduced, and the battery output increases.

【0009】[0009]

【実施例】【Example】

(第一実施例) 〔実施例1〕図1は本発明の第一実施例に係る固体電解
質型燃料電池の要部断面図であり、固体電解質板1を介
して酸化剤極2と燃料極3とが配されて成るセル4と,
セパレータ5とを複数積層させた構造である。前記セパ
レータ5は、上下いずれかの一方の面に酸化剤ガス流路
6・燃料ガス流路7を形成するためリブ(幅2mm)5a
が例えば、2mmの間隔をおいて複数設けられた金属製
(例えば、インコネル600)のプレートで構成されて
いる。前記固体電解質板1は、超塑性のイオン導電性セ
ラミックスから成る緻密な3mol %イットリア添加部分
安定化ジルコニア板(電極面積100cm2 ,厚み0.2m
m)を用いた。尚、図中8は固体電解質板1との界面の
シール部であり、例えば、パイレックスガラスのような
非導電性高粘度融体から成るシール材が用いられてい
る。
(First Embodiment) [First Embodiment] FIG. 1 is a cross-sectional view of a main part of a solid oxide fuel cell according to a first embodiment of the present invention, in which an oxidizer electrode 2 and a fuel electrode are interposed via a solid electrolyte plate 1. Cell 4 consisting of 3 and
This is a structure in which a plurality of separators 5 are laminated. The separator 5 has ribs (width 2 mm) 5a for forming the oxidant gas flow channel 6 and the fuel gas flow channel 7 on one of the upper and lower surfaces.
Is composed of a plurality of metal plates (for example, Inconel 600) provided at intervals of 2 mm. The solid electrolyte plate 1 is a dense 3 mol% yttria-added partially stabilized zirconia plate (electrode area 100 cm 2 , thickness 0.2 m) made of superplastic ion conductive ceramics.
m) was used. Reference numeral 8 in the drawing denotes a seal portion at the interface with the solid electrolyte plate 1, and for example, a seal material made of a non-conductive high viscosity melt such as Pyrex glass is used.

【0010】ここで、上記電池を以下のようにして作製
した。先ず、燃料極3の原料として平均粒径0.3μmの
8mol %イットリア添加安定化ジルコニア(YSZ)粉
末を50wt%混合した平均粒径1μmのNiO粉末を
用意し、テルピネオール溶媒を用いてスラリー化し、燃
料極用スラリーとした。
The battery was manufactured as follows. First, as a raw material for the fuel electrode 3, a NiO powder having an average particle size of 1 μm prepared by mixing 50 wt% of 8 mol% yttria-added stabilized zirconia (YSZ) powder having an average particle size of 0.3 μm was prepared, and slurried using a terpineol solvent. The slurry was used for the fuel electrode.

【0011】一方、酸化剤極2の原料として平均粒径1
μmの8mol %イットリア添加安定化ジルコニア(YS
Z)粉末を20wt%混合した平均粒径2μm,及び2
0μmのLa0.9 Sr0.1 MnO3 を用意し、テルピネ
オール溶媒を用いてスラリー化し、それぞれ酸化剤極用
2μmスラリー,及び酸化剤極用20μmスラリーとし
た。
On the other hand, as the raw material for the oxidizer electrode 2, the average particle size is 1
Stabilized zirconia with 8 μm yttria of μm (YS
Z) Powder mixed with 20 wt% and having an average particle diameter of 2 μm, and 2
0 μm La 0.9 Sr 0.1 MnO 3 was prepared and slurried using a terpineol solvent to prepare a 2 μm slurry for the oxidant electrode and a 20 μm slurry for the oxidant electrode, respectively.

【0012】次に、前記固体電解質板1の一方の面に前
記燃料極用スラリーを厚さ70μmとなるように塗布
し、これを空気中1250℃で2時間焼成した。しかる
後、後述する方法にて前記固体電解質板1の他方の面に
前記2種類の酸化剤極用スラリーをそれぞれ厚さ70μ
mとなるように塗布した。即ち、図2に示すように、セ
パレータのリブ5aと接する電極部分2aには酸化剤極
用20μmスラリーを塗布し、セパレータのリブ5aと
接しない電極部分2b(即ち、酸化剤ガス流路6に面す
る電極部分)には酸化剤極用2μmスラリーを塗布し、
これを空気中1100℃で4時間焼成した。このように
して作製した酸化剤極2は、セパレータのリブ5aと接
する電極部分2aの平均気孔率(又は平均気孔径)がセ
パレータのリブ5aと接しない電極部分2bのそれより
も大きい。
Next, the fuel electrode slurry was applied to one surface of the solid electrolyte plate 1 so as to have a thickness of 70 μm, and this was baked in air at 1250 ° C. for 2 hours. Then, the two types of oxidizer electrode slurries are respectively applied to the other surface of the solid electrolyte plate 1 by a method described later to a thickness of 70 μm.
It was applied so that it would be m. That is, as shown in FIG. 2, the electrode portion 2a in contact with the rib 5a of the separator is coated with the 20 μm slurry for the oxidant electrode, and the electrode portion 2b not in contact with the rib 5a of the separator (that is, the oxidant gas flow channel 6 is 2 μm slurry for oxidizer electrode is applied to the facing electrode part),
This was calcined in air at 1100 ° C. for 4 hours. In the oxidant electrode 2 thus produced, the average porosity (or the average pore diameter) of the electrode portion 2a in contact with the rib 5a of the separator is larger than that of the electrode portion 2b not in contact with the rib 5a of the separator.

【0013】このようにして作製した電池を、以下
(A)電池と称する。 〔比較例1〕固体電解質板の燃料極側と反対側の面の全
面に酸化剤極用2μmスラリーのみを塗布し、平均気孔
率(又は平均気孔径)の小さい材料のみで酸化剤極を構
成する他は、上記実施例1と同様にして電池を作製し
た。尚、3kgf/cm2 の圧で電池全体を締め付けた。
The battery thus manufactured is hereinafter referred to as (A) battery. [Comparative Example 1] Only the 2 μm slurry for the oxidant electrode was applied to the entire surface of the solid electrolyte plate on the side opposite to the fuel electrode side, and the oxidant electrode was composed of only a material having a small average porosity (or average pore diameter). A battery was produced in the same manner as in Example 1 except that the above was performed. The whole battery was tightened with a pressure of 3 kgf / cm 2 .

【0014】このようにして作製した電池を、以下(X
1 )電池と称する。 〔比較例2〕固体電解質板の燃料極側と反対側の面の全
面に酸化剤極用20μmスラリーのみを塗布し、平均気
孔率(又は平均気孔径)の大きい材料のみで酸化剤極を
構成する他は、上記実施例1と同様にして電池を作製し
た。
The battery thus prepared is
1 ) Called battery. [Comparative Example 2] Only the 20 μm slurry for the oxidant electrode was applied to the entire surface of the solid electrolyte plate on the side opposite to the fuel electrode side, and the oxidant electrode was composed of only a material having a large average porosity (or average pore diameter). A battery was produced in the same manner as in Example 1 except that the above was performed.

【0015】このようにして作製した電池を、以下(X
2 )電池と称する。 〔実験1〕上記本発明の(A)電池,及び比較例の(X
1 )・(X2 )電池を用いて、電流−電圧特性を調べた
ので、その結果を図3に示す。図3から明らかなよう
に、本発明の(A)電池は比較例の(X1 )・(X2
電池に比べて電池特性が向上しているのが認められる。
The battery thus prepared is
2 ) Called battery. [Experiment 1] The (A) battery of the present invention and the (X) of the comparative example
The current-voltage characteristics of the 1 ). (X 2 ) battery were investigated, and the results are shown in FIG. As is clear from FIG. 3, the battery (A) of the present invention is (X 1 ) · (X 2 ) of the comparative example.
It can be seen that the battery characteristics are improved compared to the battery.

【0016】本発明の(A)電池が比較例の(X1 )電
池に比べて電池特性が向上するのは、本発明の(A)電
池はセパレータのリブ5aと接する電極部分2aの平均
気孔径(平均気孔率)が比較例の(X1 )電池のそれよ
りも大きいため、従来酸化剤ガスが拡散しにくくかった
電極部分2aにまで酸化剤ガスが拡散,供給されるから
である。また、電池の特性解析の結果、比較例の
(X1 )電池では、セパレータのリブと接する電極部分
(幅約2mm)には両端から0.5mmの電極部分ですら酸化
剤ガスが供給されていなかった。
The battery characteristics of the battery (A) of the present invention are improved as compared with the battery (X 1 ) of the comparative example, because the battery (A) of the present invention has an average gas distribution of the electrode portion 2a in contact with the rib 5a of the separator. This is because the pore diameter (average porosity) is larger than that of the (X 1 ) battery of the comparative example, so that the oxidant gas is diffused and supplied to the electrode portion 2a where it was difficult for the oxidant gas to diffuse conventionally. In addition, as a result of battery characteristic analysis, in the (X 1 ) battery of the comparative example, the oxidant gas was supplied to the electrode portion (width about 2 mm) in contact with the rib of the separator even at the electrode portion 0.5 mm from both ends. There wasn't.

【0017】加えて、本発明の(A)電池が比較例の
(X2 )電池に比べて電池特性が向上するのは、本発明
の(A)電池はセパレータのリブ5aと接しない電極部
分2b(即ち、酸化剤ガス流路6に面する電極部分)の
平均気孔径(平均気孔率)が比較例の(X2 )電池のそ
れよりも小さいため、電極活性が増大するからである。
以上の結果から、セパレータのリブ5aと接する電極部
分2aの平均気孔率(又は平均気孔径)は、セパレータ
のリブ5aと接しない電池部分2a(即ち、酸化剤ガス
流路6に面する電極部分のそれよりも大きい材料で構成
するのが好ましいことがわかる。 〔実施例2〕セパレータのリブ5aと接する電極部分2
aに難焼結性物質,セパレータのリブ5aと接しない電
極部分2bに高導電性物質を用いる他は、上記実施例1
と同様にして電池を作製した。
In addition, the battery characteristics of the battery (A) of the present invention are improved as compared with the battery (X 2 ) of the comparative example, because the battery portion (A) of the present invention has an electrode portion which is not in contact with the rib 5a of the separator. This is because the average pore diameter (average porosity) of 2b (that is, the electrode portion facing the oxidant gas flow channel 6) is smaller than that of the (X 2 ) battery of the comparative example, so that the electrode activity increases.
From the above results, the average porosity (or average pore diameter) of the electrode portion 2a in contact with the rib 5a of the separator is determined by the battery portion 2a not in contact with the rib 5a of the separator (that is, the electrode portion facing the oxidant gas flow channel 6). It is understood that it is preferable to use a material larger than that of Example 2. [Example 2] The electrode portion 2 in contact with the rib 5a of the separator
Example 1 except that a hardly sinterable substance is used for a and a highly conductive substance is used for the electrode portion 2b that does not contact the rib 5a of the separator.
A battery was prepared in the same manner as in.

【0018】ここで、上記電池を以下のようにして作製
した。先ず、燃料極3の原料として平均粒径0.3μmの
8mol %イットリア添加安定化ジルコニア(YSZ)粉
末を50wt%混合した平均粒径1μmのNiO粉末を
用意し、テルピネオール溶媒を用いてスラリー化し、燃
料極用スラリーとした。
Here, the battery was manufactured as follows. First, as a raw material for the fuel electrode 3, a NiO powder having an average particle size of 1 μm prepared by mixing 50 wt% of 8 mol% yttria-added stabilized zirconia (YSZ) powder having an average particle size of 0.3 μm was prepared, and slurried using a terpineol solvent. The slurry was used for the fuel electrode.

【0019】一方、酸化剤極2の原料として平均粒径1
μmの8mol %イットリア添加安定化ジルコニア(YS
Z)粉末を20wt%混合した平均粒径2μmのLa
0.9 Sr0.1 MnO3 を用意し、テルピネオール溶媒を
用いてスラリー化し、酸化剤極用スラリーAとした。ま
た、平均粒径1μmの8mol %イットリア添加安定化ジ
ルコニア(YSZ)粉末を20wt%混合した平均粒径
20μmのLa0.9 Ca 0.1 CrO3 を用意し、テルピ
ネオール溶媒を用いてスラリー化し、酸化剤極用スラリ
ーBとした。
On the other hand, as the raw material of the oxidizer electrode 2, the average particle size is 1
Stabilized zirconia with 8 μm yttria of μm (YS
Z) La having an average particle size of 2 μm mixed with 20 wt% of powder
0.9 Sr0.1MnO3 Prepare the terpineol solvent
It was made into a slurry to obtain an oxidizer electrode slurry A. Well
In addition, 8 mol% yttria with a mean particle size of 1 μm
Average particle size of 20 wt% of luconia (YSZ) powder
20 μm La0.9 Ca 0.1CrO3 Prepare and Terpi
Slurry using Neol solvent, slurry for oxidizer electrode
-B.

【0020】次に、前記固体電解質板1の一方の面に前
記燃料極用スラリーを厚さ70μmとなるように塗布
し、これを空気中1250℃で2時間焼成した。しかる
後、後述する方法にて前記固体電解質板1の他方の面に
前記2種類の酸化剤極用スラリーをそれぞれ厚さ70μ
mとなるように塗布した。即ち、セパレータのリブ5a
と接する電極部分2aには酸化剤極用スラリーBを塗布
し、セパレータのリブ5aと接しない電極部分2b(即
ち、酸化剤ガス流路6に面する電極部分)には酸化剤極
用スラリーAを塗布し、これを空気中1100℃で4時
間焼成した。
Next, the fuel electrode slurry was applied to one surface of the solid electrolyte plate 1 so as to have a thickness of 70 μm, and this was baked in air at 1250 ° C. for 2 hours. Then, the two types of oxidizer electrode slurries are respectively applied to the other surface of the solid electrolyte plate 1 by a method described later to a thickness of 70 μm.
It was applied so that it would be m. That is, the rib 5a of the separator
The oxidizer electrode slurry B is applied to the electrode portion 2a in contact with the oxidizer electrode slurry B for the electrode portion 2b not in contact with the rib 5a of the separator (that is, the electrode portion facing the oxidant gas flow channel 6). Was applied, and this was baked in air at 1100 ° C. for 4 hours.

【0021】上記難焼結性物質としては、一般式(I)
で表されるペロブスカイト型酸化物が挙げられる。 La1-x x CrO3 (I) 〔上記式中、MはMg,Ca,Sr,Baを、xは0≦
x≦0.5をそれぞれ示す。〕 上記高導電性物質としては、一般式(II)で表されるペロ
ブスカイト型酸化物が挙げられる。
The above-mentioned hardly sinterable substance has the general formula (I)
A perovskite type oxide represented by La 1-x M x CrO 3 (I) [In the above formula, M is Mg, Ca, Sr, Ba, and x is 0 ≦
x ≦ 0.5 is shown. Examples of the highly conductive substance include the perovskite oxide represented by the general formula (II).

【0022】(La1-x x y MnO3 (II) 〔上記式中、MはMg,Ca,Sr,Baを、xは0≦
x≦0.5を、yは0.7≦y≦1をそれぞれ示す。〕 一般に(La1-x x y MnO3 系ペロブスカイト型
酸化物は、La1-x x CrO3 系ペロブスカイト型酸
化物に比べて焼結しやすく、導電性が高い物質である。
1000℃における導電率は、(La1-x x y Mn
3 系ペロブスカイト型酸化物が102 S・cm-1程度で
あり、La1-x x CrO3 系ペロブスカイト型酸化物
は10S・cm-1程度である。 〔その他の事項〕上記実施例においては、酸化剤極を例
にとって説明したが、燃料極のみ,又は酸化剤極,及び
燃料極の両極に適用することも勿論可能である。
(La1-xMx)yMnO3 (II) [In the above formula, M is Mg, Ca, Sr, or Ba, and x is 0 ≦
x ≦ 0.5, and y represents 0.7 ≦ y ≦ 1. ] Generally (La1-xMx)yMnO3System perovskite type
The oxide is La1-xM xCrO3System perovskite type acid
It is a substance that is easier to sinter and has higher conductivity than other compounds.
The conductivity at 1000 ° C. is (La1-xMx)yMn
O310 perovskite oxides2S · cm-1To a degree
Yes, La1-xMxCrO3-Based perovskite oxide
Is 10 cm-1It is a degree. [Other Matters] In the above embodiment, the oxidizer electrode is used as an example.
As described above, only the fuel electrode or the oxidizer electrode, and
Of course, it is also possible to apply to both electrodes of the fuel electrode.

【0023】(第二実施例) 〔実施例〕図4は本発明の第二実施例に係る固体電解質
型燃料電池のセルの平面図(一部破断面)である。この
セル24は、固体電解質板21を介してLa0.9 Sr
0.1MnO3 から成る酸化剤極22と,後述する燃料極
23とを配した構造である。前記固体電解質板21は、
超塑性のイオン導電性セラミックスから成る緻密な3mo
l %イットリア添加部分安定化ジルコニア板(大きさ1
50mm×150mm)を用いた。
(Second Embodiment) [Embodiment] FIG. 4 is a plan view (partially broken section) of a cell of a solid oxide fuel cell according to a second embodiment of the present invention. The cell 24 is made of La 0.9 Sr via the solid electrolyte plate 21.
This structure has an oxidizer electrode 22 made of 0.1 MnO 3 and a fuel electrode 23, which will be described later. The solid electrolyte plate 21 is
Dense 3mo made of superplastic ion conductive ceramics
l% yttria-added partially stabilized zirconia plate (size 1
50 mm × 150 mm) was used.

【0024】前記燃料極23は、図4に示すように、電
極高温部23aは平均粒径10μmのニッケルを用いた
ニッケル−ジルコニアサーメット(以下、「サーメット
A」と称する。)であり、電極低温部23bは平均粒径
1μmのニッケルを用いたニッケル−ジルコニアサーメ
ット(以下、「サーメットB」と称する。)である。こ
こで、前記燃料極23は以下のようにして作製した。
As shown in FIG. 4, in the fuel electrode 23, the electrode high temperature portion 23a is a nickel-zirconia cermet (hereinafter referred to as "cermet A") using nickel having an average particle diameter of 10 μm, and the electrode low temperature. The portion 23b is a nickel-zirconia cermet (hereinafter referred to as "cermet B") using nickel having an average particle size of 1 μm. Here, the fuel electrode 23 was manufactured as follows.

【0025】先ず、燃料極23の原料として混合量50
wt%のジルコニア焼成体に、サーメットA粉末とテレ
ピン油とを重量比10:3で混入したペーストを塗布し
80℃で乾燥させた。これを室温まで徐冷した後、サー
メットB粉末とテレピン油とを重量比10:3で混入し
たペーストを塗布し80℃で乾燥させた。次に、前記燃
料極23を単セルの形に組み込んだ後、セル面内の最高
温度が運転時に1100℃を越えないように所定温度ま
で昇温した。
First, as a raw material for the fuel electrode 23, a mixed amount of 50
A paste in which cermet A powder and turpentine oil were mixed at a weight ratio of 10: 3 was applied to a wt% zirconia fired body and dried at 80 ° C. After this was gradually cooled to room temperature, a paste in which cermet B powder and turpentine oil were mixed at a weight ratio of 10: 3 was applied and dried at 80 ° C. Next, after the fuel electrode 23 was assembled in the form of a single cell, the temperature was raised to a predetermined temperature so that the maximum temperature in the cell plane did not exceed 1100 ° C. during operation.

【0026】このようにして作製した電池を、以下
(B)電池と称する。 〔比較例1〕固体電解質板の一方の面の全面をサーメッ
トAとする他は、上記実施例と同様にして電池を作製し
た。このようにして作製した電池を、以下(Y1 )電池
と称する。 〔比較例2〕固体電解質板の一方の面の全面をサーメッ
トAとし、且つ、セル面内の最低温度が1000℃未満
にならないように温度制御する他は、上記実施例と同様
にして電池を作製した。
The battery thus manufactured is hereinafter referred to as (B) battery. [Comparative Example 1] A battery was produced in the same manner as in the above-described example except that the entire surface of one surface of the solid electrolyte plate was cermet A. The battery thus produced is hereinafter referred to as a (Y 1 ) battery. [Comparative Example 2] A battery was prepared in the same manner as in the above Example except that the whole surface of one surface of the solid electrolyte plate was cermet A and the temperature was controlled so that the minimum temperature in the cell surface did not fall below 1000 ° C. It was made.

【0027】このようにして作製した電池を、以下(Y
2 )電池と称する。 〔実験1〕上記本発明の(B)電池,及び比較例の(Y
1 )・(Y2 )電池を用いて、セル電圧の経時変化につ
いて調べたので、その結果を図5に示す。尚、実験は3
00mA/cm2 負荷で行った。
The battery thus produced is
2 ) Called battery. [Experiment 1] The above-mentioned (B) battery of the present invention and (Y) of the comparative example
Using the 1 ) and (Y 2 ) batteries, changes in cell voltage with time were examined. The results are shown in FIG. The experiment is 3
It was carried out at a load of 00 mA / cm 2 .

【0028】図5から明らかなように、本発明の(B)
電池は比較例の(Y1 )・(Y2 )電池に比べて電池特
性が向上しているのが認められ、約700時間後まで電
圧の大きな変化は見られなかった。また、900時間運
転後、セルを分解しSEM分析を行ったところ、燃料極
のいずれの部分にも急激な焼結は観察されなかった。こ
れは、電極高温部が23aが粒径の大きいニッケル粉末
で構成されているためである。
As is apparent from FIG. 5, (B) of the present invention.
It was recognized that the battery had improved battery characteristics as compared with the (Y 1 ) and (Y 2 ) batteries of Comparative Example, and no significant change in voltage was observed until after about 700 hours. Further, after 900 hours of operation, the cell was disassembled and subjected to SEM analysis, and no rapid sintering was observed in any part of the fuel electrode. This is because the high temperature electrode portion 23a is composed of nickel powder having a large particle diameter.

【0029】一方、比較例の(Y1 )電池は約700時
間後まで、電圧の大きな低下はみられなかったが、運転
初期からセル電圧が低かった。これは、電極低温部が粒
径の大きいニッケル粉末で構成されているため、電極/
電解質界面の反応有効面積が小さく電極活性が十分でな
かったためであると思われる。また、比較例の(Y2
電池は運転初期の電圧は本発明の(B)電池と略同程度
であったが、その後徐々に低下し約500時間で寿命と
なった。その後、SEM分析を行った結果、部分的に燃
料極の急激な焼結がみられた。これは、SOFC発電時
の発熱反応により、セル面内温度が1100℃を越える
部分が生じたためであると考えられる。
On the other hand, the (Y 1 ) battery of the comparative example did not show a large drop in voltage until after about 700 hours, but the cell voltage was low from the beginning of the operation. This is because the low temperature part of the electrode is composed of nickel powder with a large particle size.
This is probably because the reaction effective area of the electrolyte interface was small and the electrode activity was not sufficient. In addition, (Y 2 ) of the comparative example
The voltage of the battery at the initial stage of operation was almost the same as that of the battery (B) of the present invention, but then gradually decreased and reached the end of its life at about 500 hours. Then, as a result of SEM analysis, abrupt sintering of the fuel electrode was partially observed. It is considered that this is because the exothermic reaction during SOFC power generation caused a portion where the in-plane temperature of the cell exceeded 1100 ° C.

【0030】上記実施例によれば、不均一な温度分布が
生じる大面積セルにおいて、燃料極の焼結が抑制され、
セルの長寿命化と共に電池特性の向上を図ることができ
る。 〔その他の事項〕 上記実施例においては、燃料極を例にとって説明し
たが、酸化剤極のみ,又は酸化剤極,及び燃料極の両極
に適用することも勿論可能である。 電極低温部に用いる原料粉末の粒径は0.001〜1
0μmであり、電極高温部に用いる原料粉末の粒径は0.
1〜100μmであり、且つ、電極低温部の粒径<電極
高温部の粒径である原料粉末を使用するのが好ましい。
電極低温部に粒径の小さい原料粉末を用いると、電極/
電解質界面の反応有効面積が大きくなるため電極活性が
向上する。また、電極高温部に粒径の大きい原料粉末を
用いると、焼結しにくくなる。
According to the above-mentioned embodiment, in a large area cell in which a non-uniform temperature distribution occurs, sintering of the fuel electrode is suppressed,
The battery life can be extended and the battery characteristics can be improved. [Other Matters] In the above embodiment, the fuel electrode was described as an example, but it is of course possible to apply it to only the oxidant electrode or both the oxidant electrode and the fuel electrode. The particle size of the raw material powder used for the low temperature part of the electrode is 0.001-1
The particle size of the raw material powder used for the high temperature part of the electrode is 0 μm.
It is preferable to use a raw material powder having a particle diameter of 1 to 100 μm and a particle diameter of the electrode low temperature portion <a particle diameter of the electrode high temperature portion.
If raw material powder with a small particle size is used in the low temperature part of the electrode,
Since the effective reaction area of the electrolyte interface is increased, the electrode activity is improved. Further, if a raw material powder having a large particle size is used in the high temperature part of the electrode, it becomes difficult to sinter.

【0031】[0031]

【発明の効果】以上の本発明によれば、セパレータの凸
部(リブ)と接する電極部分の平均気孔率等が大きい、
即ち当該部分での空洞たるガス流路部分が大きいので、
従来、反応ガスが拡散されにくかったセパレータの凸部
(リブ)と接する電極部分にも反応ガスが拡散,供給さ
れやすくなる。したがって、電極面内で有効に発電を行
うことができる。その結果、電極全体の有効面積が増大
するため、反応抵抗,接触抵抗等による損失を軽減で
き、電池出力が増大するといった優れた効果を奏する。
According to the present invention described above, the average porosity and the like of the electrode portion in contact with the convex portion (rib) of the separator is large,
That is, since the gas flow passage part that is a cavity in that part is large,
Conventionally, the reaction gas is easily diffused and supplied also to the electrode portion that is in contact with the convex portion (rib) of the separator, which is difficult to diffuse the reaction gas in the past. Therefore, it is possible to effectively generate power within the electrode surface. As a result, the effective area of the entire electrode is increased, so that the loss due to reaction resistance, contact resistance, etc. can be reduced, and the excellent effect of increasing the battery output is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例に係る固体電解質型燃料電
池の要部断面図である。
FIG. 1 is a cross-sectional view of a main part of a solid oxide fuel cell according to a first embodiment of the present invention.

【図2】本発明の第一実施例に係る固体電解質型燃料電
池の要部拡大断面図である。
FIG. 2 is an enlarged sectional view of a main part of a solid oxide fuel cell according to a first embodiment of the present invention.

【図3】本発明の(A)電池,及び比較例の(X1 )・
(X2 )電池を用いた場合における、電流─電圧特性を
示すグラフである。
FIG. 3 shows the battery (A) of the present invention and the battery (X 1 ) of the comparative example.
In (X 2) when a battery is used, a graph showing current ─ voltage characteristics.

【図4】本発明の第二実施例に係る固体電解質型燃料電
池のセルの平面図(一部破断面)である。
FIG. 4 is a plan view (partially broken surface) of a cell of a solid oxide fuel cell according to a second embodiment of the present invention.

【図5】本発明の(B)電池,及び比較例の(Y1 )・
(Y2 )電池を用いた場合における、セル電圧の経時変
化を示すグラフである。
FIG. 5 is a battery of the present invention (B) and a comparative example of (Y 1 ).
(Y 2) in the case of using a battery, is a graph showing a change with time of the cell voltage.

【図6】従来の平板型SOFCの基本構成を示す分解斜
視図である。
FIG. 6 is an exploded perspective view showing a basic configuration of a conventional flat plate SOFC.

【図7】従来の平板型SOFCの要部拡大断面図であ
る。
FIG. 7 is an enlarged cross-sectional view of a main part of a conventional flat plate SOFC.

【符号の説明】[Explanation of symbols]

1 固体電解質板 2 酸化剤極 3 燃料極 4 セル 5 セパレータ 5a セパレータの凸部(リブ) 6・7 反応ガス流路 1 Solid Electrolyte Plate 2 Oxidizer Electrode 3 Fuel Electrode 4 Cell 5 Separator 5a Separator Projection (Rib) 6.7 Reaction Gas Flow Path

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋山 幸徳 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 齋藤 俊彦 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yukinori Akiyama 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. Within

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質板を介して燃料極と酸化剤
極とが相対向するセルと,反応ガス流路を形成する凹凸
部が形成されたセパレータとを複数積層させて成る固体
電解質型燃料電池において、 前記両電極のうち少なくとも一方の電極におけるセパレ
ータの凸部と接する部分の平均気孔率,又は平均気孔径
は、セパレータの凸部と接しない部分の平均気孔率,又
は平均気孔径よりも大きくなるよう構成されていること
を特徴とする固体電解質型燃料電池。
1. A solid electrolyte fuel comprising a stack of a plurality of cells in which a fuel electrode and an oxidizer electrode are opposed to each other via a solid electrolyte plate, and a separator having concavo-convex portions forming reaction gas flow paths. In the battery, the average porosity of the portion in contact with the convex portion of the separator in at least one of the electrodes, or the average pore diameter, the average porosity of the portion not in contact with the convex portion of the separator, or than the average pore diameter A solid oxide fuel cell, which is configured to be large.
JP24524092A 1992-09-14 1992-09-14 Solid oxide fuel cell Expired - Lifetime JP3244310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24524092A JP3244310B2 (en) 1992-09-14 1992-09-14 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24524092A JP3244310B2 (en) 1992-09-14 1992-09-14 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH0696779A true JPH0696779A (en) 1994-04-08
JP3244310B2 JP3244310B2 (en) 2002-01-07

Family

ID=17130748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24524092A Expired - Lifetime JP3244310B2 (en) 1992-09-14 1992-09-14 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3244310B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499880A (en) * 1990-08-13 1992-03-31 Nippon Steel Corp Zinc plated steel sheet having superior press formability and chemical convertibility
JP2003511834A (en) * 1999-10-08 2003-03-25 グローバル サーモエレクトリック インコーポレイテッド Composite electrodes for solid-state electrochemical devices
JP2007087745A (en) * 2005-09-21 2007-04-05 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2011210420A (en) * 2010-03-29 2011-10-20 Toshiba Corp Electrochemical cell
EP2511974A1 (en) * 2010-12-20 2012-10-17 NGK Insulators, Ltd. Solid oxide fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499880A (en) * 1990-08-13 1992-03-31 Nippon Steel Corp Zinc plated steel sheet having superior press formability and chemical convertibility
JP2003511834A (en) * 1999-10-08 2003-03-25 グローバル サーモエレクトリック インコーポレイテッド Composite electrodes for solid-state electrochemical devices
JP2007087745A (en) * 2005-09-21 2007-04-05 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2011210420A (en) * 2010-03-29 2011-10-20 Toshiba Corp Electrochemical cell
EP2511974A1 (en) * 2010-12-20 2012-10-17 NGK Insulators, Ltd. Solid oxide fuel cell
EP2511974A4 (en) * 2010-12-20 2013-08-07 Ngk Insulators Ltd Solid oxide fuel cell
US8574784B2 (en) 2010-12-20 2013-11-05 Ngk Insulators, Ltd. Solid oxide fuel cell including electrode containing dense bonding portions and porous non-bonding portions

Also Published As

Publication number Publication date
JP3244310B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
US6589681B1 (en) Series/parallel connection of planar fuel cell stacks
JP3064746B2 (en) Flat solid electrolyte fuel cell
JPH07153469A (en) Solid electrolyte fuel cell
US20100186220A1 (en) Fabrication method of metal supported solid oxide fuel cell
JPH11297344A (en) Solid electrolyte type fuel cell of honeycomb integrated structure
JP3244310B2 (en) Solid oxide fuel cell
JPH09129252A (en) Highly durable solid electrlyte fuel cell and manufacture thereof
JP3113347B2 (en) Solid oxide fuel cell
JP4258985B2 (en) Fuel cell
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using this
JPH03116659A (en) Solid electrolyte type fuel battery
JP2948453B2 (en) Solid oxide fuel cell
JP7152142B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JPH0479163A (en) Solid electrolyte type fuel cell
JP2948441B2 (en) Flat solid electrolyte fuel cell
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
JP2980921B2 (en) Flat solid electrolyte fuel cell
JP3213400B2 (en) Method for manufacturing solid oxide fuel cell
JP2771090B2 (en) Solid oxide fuel cell
JP2002075410A (en) Collector for solid-oxide fuel cell and solid-oxide fuel cell using same
JPH0462757A (en) Solid electrolyte type fuel cell
JP3308089B2 (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using the same
JPH0927325A (en) Solid electrolyte fuel cell anode and solid electrolyte fuel cell using it, and solid electrolyte fuel cell operating method
JPH03238758A (en) Fuel cell of solid electrolyte type
JPH09190825A (en) Solid electrolyte fuel cell and unit cell used to its fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11