JPH0693537B2 - Method for producing double-sided conductor polyimide laminate - Google Patents

Method for producing double-sided conductor polyimide laminate

Info

Publication number
JPH0693537B2
JPH0693537B2 JP1240633A JP24063389A JPH0693537B2 JP H0693537 B2 JPH0693537 B2 JP H0693537B2 JP 1240633 A JP1240633 A JP 1240633A JP 24063389 A JP24063389 A JP 24063389A JP H0693537 B2 JPH0693537 B2 JP H0693537B2
Authority
JP
Japan
Prior art keywords
resin layer
polyimide
polyimide resin
thermal expansion
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1240633A
Other languages
Japanese (ja)
Other versions
JPH03104185A (en
Inventor
明 徳光
尚 渡辺
誠 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP1240633A priority Critical patent/JPH0693537B2/en
Publication of JPH03104185A publication Critical patent/JPH03104185A/en
Publication of JPH0693537B2 publication Critical patent/JPH0693537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱性、機械的特性あるいは電気的特性に優
れた両面導体ポリイミド積層体に係り、特にスルーホー
ル接続型両面フレキシブル回路基板として好適な回路加
工性並びに回路基板としての優れた実用特性を有する両
面導体ポリイミド積層体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a double-sided conductor polyimide laminate excellent in heat resistance, mechanical properties or electrical properties, and is particularly suitable as a through-hole connection type double-sided flexible circuit board. The present invention relates to a method for producing a double-sided conductor polyimide laminate having excellent circuit processability and excellent practical properties as a circuit board.

〔従来の技術〕[Conventional technology]

近年、電子部品及びそれを使った電子機器において、そ
の小型化、軽量化の要請が高まり、これに応じて配線材
料についてもその簡略化、高密度化の傾向が進み、フレ
キシブルプリント基板材料等についても例外ではない。
In recent years, there has been an increasing demand for miniaturization and weight reduction of electronic components and electronic devices using the same, and accordingly, wiring materials have tended to be simplified and densified. Is no exception.

フレキシブルプリント基板は、可撓性を有する印刷回路
基板であり、電気機器、電子機器の小型化、軽量化に大
いに貢献している。このフレキシブルプリント基板につ
いては、現在、この片面側のみに導体層を有する片面構
造のものと、絶縁体層を挟んでその両面側にそれぞれ導
体層を有する両面スルーホール構造のものとが実用化さ
れているが、特に両面スルーホール構造のものは基板の
両面に回路を形成することが可能であり、高密度実装の
ために近年では多く採用されている。
A flexible printed circuit board is a flexible printed circuit board, and contributes greatly to downsizing and weight reduction of electric devices and electronic devices. Regarding this flexible printed circuit board, one having a single-sided structure having a conductor layer only on one side and one having a double-sided through-hole structure having conductor layers on both sides of the insulator layer are put into practical use. However, in particular, the double-sided through-hole structure allows circuits to be formed on both sides of the substrate, and has been widely adopted in recent years for high-density mounting.

しかしながら、このような両面スルーホール構造の場
合、絶縁体層であるベースフィルムを中心にその両面に
接着剤を介して導体の銅箔等を貼り合わせて形成されて
おり、片面構造のフレキシブルプリント基板と比較して
一般的にその柔軟性が低いという問題がある。
However, in the case of such a double-sided through-hole structure, a flexible printed circuit board having a single-sided structure is formed by sticking a conductor copper foil or the like on both sides of the base film, which is an insulator layer, via an adhesive. Generally, there is a problem that the flexibility is low as compared with.

また、実質的に接着剤層を有しているため、回路基板と
しての特性の低下、特にポリイミドベースフィルムの有
する優れた耐熱性、難燃性等を損ねているという問題が
ある。さらに、接着剤層を有する他の問題として回路加
工性が悪くなるという問題がある。具体的には、スルー
ホール加工時のドリリングによる樹脂スミアの発生や、
導体スルーホールメッキにおける密着性の低下や、エッ
チング加工時の寸法変化率が大きい等の問題が挙げられ
る。
Further, since it has an adhesive layer substantially, there is a problem that the characteristics as a circuit board are deteriorated, and particularly the excellent heat resistance and flame retardancy of the polyimide base film are impaired. Another problem with the adhesive layer is that the processability of the circuit deteriorates. Specifically, the occurrence of resin smear due to drilling during through hole processing,
There are problems such as a decrease in adhesion in conductor through-hole plating and a large dimensional change rate during etching.

一方、ICの高密度化、プリント配線の微細化や高密度化
に伴い、発熱が大きくなり、良熱伝導体を貼り合わせる
ことが必要になる場合がある。また、よりコンパクトに
するため、ハウジングと配線を一体化する方法もある。
さらには、電気容量の異なった配線を必要としたり、よ
り高温に耐える配線材を必要とすることもある。
On the other hand, as the density of ICs and the miniaturization and density of printed wirings increase, heat generation increases, and it may be necessary to bond good thermal conductors. There is also a method of integrating the wiring with the housing in order to make it more compact.
Further, there are cases where wirings having different electric capacities are required, or wiring materials capable of withstanding higher temperatures are required.

このような問題を解決するため、本発明者らは、先に、
接着剤を介することなく導体に絶縁材を積層したフレキ
シブルプリント基板の製造方法を提案した(特開昭63−
84,188号公報)。
In order to solve such a problem, the present inventors have previously
A method for manufacturing a flexible printed circuit board in which an insulating material is laminated on a conductor without an adhesive is proposed (Japanese Patent Laid-Open No. 63-
84,188).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明者らは、先に提案した接着剤を介することなく導
体に絶縁材を積層してフレキシブルプリント基板を製造
する技術を展開し、ポリイミド系樹脂層の両面に接着剤
を介することなく導電性金属層を積層する方法について
さらに研究を進め、本発明に到達した。
The present inventors have developed a technique for manufacturing a flexible printed circuit board by laminating an insulating material on a conductor without interposing an adhesive, which has been previously proposed, and conductive on both sides of a polyimide resin layer without interposing an adhesive. The present invention has been achieved by further researching a method for laminating a metal layer.

従って、本発明の目的は、ポリイミド系樹脂層の両面に
接着剤を介することなく導電性金属層を積層して両面導
体ポリイミド系積層体を製造する方法を提供することに
ある。
Therefore, an object of the present invention is to provide a method for producing a double-sided conductor polyimide-based laminate by laminating conductive metal layers on both sides of a polyimide-based resin layer without interposing an adhesive.

また、本発明の他の目的は、スルーホール接続型両面フ
レキシブル回路基板とする際における優れた回路加工性
を有し、また、回路基板として優れた耐熱性や可撓性を
有する両面導体ポリイミド積層体を製造する方法を提供
することにある。
Another object of the present invention is to provide a double-sided conductor polyimide laminate having excellent circuit processability in forming a through-hole connection type double-sided flexible circuit board, and having excellent heat resistance and flexibility as a circuit board. It is to provide a method of manufacturing a body.

〔課題を解決するための手段〕[Means for Solving the Problems]

すなわち、本発明は、導電性金属箔(M1)上に低熱膨張
性ポリイミド系樹脂に変換可能な少なくとも一種の低熱
膨張性ポリイミド前駆体樹脂層を設け、さらにその上に
熱可塑性ポリイミド系樹脂に変換可能な少なくとも一種
の熱可塑性ポリイミド前駆体樹脂層を設け、次いで熱処
理して少なくとも一種の低熱膨張性ポリイミド系樹脂層
及び少なくとも一種のの熱可塑性ポリイミド系樹脂層を
有する片面導体積層体を製造する第一の工程と、加熱加
圧下に上記片面導体積層体の熱可塑性ポリイミド系樹脂
層に導電性金属箔(M2)を積層し、少なくとも一種の低
熱膨張性ポリイミド系樹脂層及び少なくとも一種の熱可
塑性ポリイミド系樹脂層よりなるポリイミド系樹脂層の
両面に導電性金属層が積層された両面積層体とする第二
の工程とからなることを特徴とする両面導体ポリイミド
積層体の製造方法であり、また、本発明は、導電性金属
箔(M1)上に熱可塑性ポリイミド系樹脂に変換可能な少
なくとも一種の熱可塑性ポリイミド前駆体樹脂層を設
け、その上に低熱膨張性ポリイミド系樹脂に変換可能な
少なくとも一種の低熱膨張性ポリイミド前駆体樹脂層を
設け、さらにその上に熱可塑性ポリイミド系樹脂に変換
可能な少なくとも一種の熱可塑性ポリイミド前駆体樹脂
層を設け、次いで熱処理して少なくとも一種の熱可塑性
ポリイミド系樹脂層、少なくとも一種の低熱膨張性ポリ
イミド系樹脂層及び少なくとも一種の熱可塑性ポリイミ
ド系樹脂層よりなる少なくとも三層のポリイミド系樹脂
層を有する片面導体積層体を製造する第一の工程と、加
熱加圧下に上記片面導体積層体の熱可塑性ポリイミド系
樹脂層に導電性金属箔(M2)を積層し、少なくとも一種
の低可塑性ポリイミド系樹脂層、少なくとも一種の低熱
膨張性ポリイミド系樹脂層及び少なくとも一種の熱可塑
性ポリイミド系樹脂層よりなる少なくとも三層のポリイ
ミド系樹脂層の両面に導電性金属層が積層された両面積
層体とする第二の工程とからなることを特徴とする両面
導体ポリイミド積層体の製造方法である。
That is, the present invention provides a conductive metal foil (M 1 ) on the at least one low thermal expansion polyimide precursor resin layer that can be converted into a low thermal expansion polyimide resin, further on the thermoplastic polyimide resin. Providing a convertible at least one thermoplastic polyimide precursor resin layer and then heat treating to produce a single sided conductor laminate having at least one low thermal expansion polyimide based resin layer and at least one thermoplastic polyimide based resin layer. In the first step, a conductive metal foil (M 2 ) is laminated on the thermoplastic polyimide resin layer of the one-sided conductor laminate under heat and pressure, and at least one low thermal expansion polyimide resin layer and at least one heat A second step of forming a double-sided laminate in which conductive metal layers are laminated on both sides of a polyimide-based resin layer made of a plastic polyimide-based resin layer. It is the method for producing the double-sided conductor polyimide laminate, wherein, also, the present invention is a conductive metal foil (M 1) at least one convertible to a thermoplastic polyimide resin on the thermoplastic polyimide precursor resin A layer is provided, and at least one low thermal expansion polyimide precursor resin layer that can be converted into a low thermal expansion polyimide resin is provided thereon, and at least one thermoplastic polyimide that can be converted into a thermoplastic polyimide resin is further provided thereon. Providing a precursor resin layer, and then heat-treating at least one thermoplastic polyimide resin layer, at least one low thermal expansion polyimide resin layer and at least one thermoplastic polyimide resin layer of at least three layers of polyimide resin The first step of producing a single-sided conductor laminate having a layer, and the heating of the single-sided conductor laminate under heat and pressure Plastic polyimide resin layer on the conductive metal foil (M 2) were laminated, comprising at least one low-thermoplastic polyimide resin layer, at least one low thermal expansion polyimide resin layer and at least one thermoplastic polyimide resin layer A method for producing a double-sided conductor polyimide laminate, comprising a second step of forming a double-sided laminate in which conductive metal layers are laminated on both sides of at least three polyimide resin layers.

ここでいうポリイミド系樹脂とは、イミド環構造を有す
る樹脂の総称であり、例えばポリイミド、ポリアミドイ
ミド、ポリエステルイミド等が挙げられる。そして、ポ
リイミドとしては、前記特開昭63−84,188号公報に記載
したような低熱膨張性のものや、加熱すると溶融若しく
は軟化する熱可塑性のもの等の種々のものがあるが、本
発明においては熱可塑性であって低熱膨張性のものが好
ましい。このような樹脂が入手困難なときは、両者の積
層体を使用することができる。また、低熱膨張性ポリイ
ミド系樹脂としては、その線膨張係数が30×10-6(1/
K)以下であることが好ましく、フィルムの耐熱性、可
撓性において優れた性能を有するものがよい。
The polyimide-based resin here is a general term for resins having an imide ring structure, and examples thereof include polyimide, polyamide-imide, and polyester-imide. And, as the polyimide, there are various ones such as those having low thermal expansion as described in JP-A-63-84,188 and thermoplastic ones that melt or soften when heated, but in the present invention, A thermoplastic material having a low thermal expansion coefficient is preferable. When such a resin is difficult to obtain, a laminate of both can be used. Further, as a low thermal expansion polyimide resin, its linear expansion coefficient is 30 × 10 -6 (1 /
K) or less is preferable, and one having excellent performance in heat resistance and flexibility of the film is preferable.

ここで、線膨張係数は、イミド化反応が充分に終了した
試料を用い、サーモメカニカルアナライザー(TMA)を
用いて250℃に昇温後、10℃/分の速度で冷却し、240〜
100℃の範囲における平均の線膨張係数を求めたもので
ある。
Here, the coefficient of linear expansion is determined by using a sample in which the imidization reaction has been sufficiently completed, using a thermomechanical analyzer (TMA) to raise the temperature to 250 ° C., and then cooling at a rate of 10 ° C./min.
This is an average linear expansion coefficient obtained in the range of 100 ° C.

このような性質を有する低熱膨張性ポリイミド系樹脂の
具体例としては、前記特開昭63−84,188号公報に記載さ
れたようなポリアミドイミド樹脂や、下記一般式(I) (但し、式中R1〜R4は低級アルキル基、低級アルコキシ
基、ハロゲン基又は水素を示す)で表される単位構造を
有するポリイミド樹脂がある。
Specific examples of the low thermal expansion polyimide-based resin having such properties include the polyamide-imide resin as described in JP-A-63-84,188 and the following general formula (I). (However, in the formula, R 1 to R 4 represent a lower alkyl group, a lower alkoxy group, a halogen group or hydrogen), and there is a polyimide resin having a unit structure.

また、本発明で使用する熱可塑性ポリイミド系樹脂とし
ては、そのガラス転移点が350℃以下のものであればい
かなる構造のものであってもよいが、好ましく加熱加圧
下で圧着した際にその界面の接着強度が充分であるもの
がよい。ここでいう熱可塑性ポリイミド系樹脂とは、ガ
ラス転移点以上の通常の状態で必ずしも充分な流動性を
示さなくてもよく、加圧によって接着可能なものも含ま
れる。
Further, the thermoplastic polyimide resin used in the present invention may have any structure as long as its glass transition point is 350 ° C. or less, but preferably its interface when pressure-bonded under heat and pressure. Adhesive strength is sufficient. The term "thermoplastic polyimide resin" as used herein does not necessarily exhibit sufficient fluidity in a normal state above the glass transition point, and includes those which can be bonded by pressure.

このような性質を有する熱可塑性ポリイミド系樹脂の具
体例としては、下記一般式(II) (但し、式中Ar1は2価の芳香族基であってその炭素数
が12以上である)で表される単位構造を有するものや、
一般式(III) (但し、式中Ar2は2価の芳香族基であってその炭素数
が12以上である)で表される単位構造を有するものを挙
げることができる。
Specific examples of the thermoplastic polyimide resin having such properties include the following general formula (II) (Wherein Ar 1 is a divalent aromatic group having a carbon number of 12 or more),
General formula (III) (However, in the formula, Ar 2 is a divalent aromatic group having a carbon number of 12 or more).

ここで、2価の芳香族基Ar1Ar2の具体例としては、例え
ば、 等を挙げることができ、好ましくは である。
Here, specific examples of the divalent aromatic group Ar 1 Ar 2 include, for example, And the like, and preferably Is.

本発明で使用するポリイミド前駆体溶液又はポリイミド
溶液には、公知の酸無水物系やアミン系硬化剤等の硬化
剤、シランカップリング剤、チタネートカップリング
剤、エポキシ化合物等の接着性付与剤、ゴム等の可撓性
付与剤等の各種の添加剤や触媒を加えてもよい。
The polyimide precursor solution or polyimide solution used in the present invention, a curing agent such as a known acid anhydride-based or amine-based curing agent, a silane coupling agent, a titanate coupling agent, an adhesion imparting agent such as an epoxy compound, Various additives such as a flexibility-imparting agent such as rubber and a catalyst may be added.

次に、本発明の両面導体型ポリイミド積層体の製造方法
について詳細に説明する。
Next, the method for producing the double-sided conductor type polyimide laminate of the present invention will be described in detail.

本発明の製造方法は、基本的には、ポリイミド系樹脂溶
液又はポリイミド系樹脂に変換可能なポリイミド前駆体
溶液を導電性金属箔(M1)へ塗工し、次いで熱処理して
片面導体積層体を製造する第一の工程と、この片面導体
積層体の樹脂層に導電性金属箔(M2)を加熱加圧下に積
層してポリイミド系樹脂層の両面に導電性金属層が積層
された両面積層体とする第二の工程とからなるものであ
る。
The manufacturing method of the present invention is basically a method of applying a polyimide resin solution or a polyimide precursor solution that can be converted to a polyimide resin to a conductive metal foil (M 1 ) and then heat-treating the single-sided conductor laminate. In the first step of manufacturing the single-sided conductor laminate, a conductive metal foil (M 2 ) is laminated on the resin layer of this single-sided conductor laminate under heat and pressure, and a conductive metal layer is laminated on both sides of the polyimide resin layer. And a second step of forming a laminated body.

第一の工程において製造される片面導体積層体は、導電
性金属箔(M1)に積層されるポリイミド系樹脂として、
少なくとも一種の熱可塑性ポリイミド系樹脂層を含み、
あるいはこれに加えて少なくとも一種の低熱膨張性ポリ
イミド系樹脂層を含み、さらに、最表面層に上記熱可塑
性ポリイミド系樹脂層が積層されていることが好まし
い。ここで、低熱膨張性ポリイミド系樹脂層を含まない
場合は、第一の工程で得られる片面導体積層体の反りや
カールが大きくなり、次の第二の工程での作業性が著し
く低下する。また、最表面層に熱可塑性ポリイミド系樹
脂層を含まないと、第二の工程で導電性金属箔との熱圧
着による接着力が充分に発揮されないので好ましくな
い。
The single-sided conductor laminate manufactured in the first step is a polyimide resin laminated on the conductive metal foil (M 1 ),
Including at least one thermoplastic polyimide resin layer,
Alternatively, in addition to this, it is preferable that at least one low thermal expansion polyimide-based resin layer is included, and the thermoplastic polyimide-based resin layer is further laminated on the outermost surface layer. Here, when the low thermal expansion polyimide-based resin layer is not included, warpage or curl of the single-sided conductor laminate obtained in the first step becomes large, and workability in the next second step is significantly reduced. Further, if the outermost surface layer does not include the thermoplastic polyimide resin layer, the adhesive force by thermocompression bonding with the conductive metal foil cannot be sufficiently exhibited in the second step, which is not preferable.

その際、低熱膨張性ポリイミド系樹脂層の厚みt1と熱可
塑性ポリイミド系樹脂層の厚みt2の厚さの比(t1/t2
は2〜100の範囲、好ましくは5〜20の範囲がよい。こ
の厚さの比(t1/t2)が2より小さいと、ポリイミド系
樹脂層全体の熱膨張係数が金属箔のそれに比べて高くな
りすぎ、この第一の工程で得られる片面導体積層体の反
りやカールが大きくなり、次の第二の工程での作業性が
著しく低下する。また、熱可塑性ポリイミド系樹脂層の
厚みt2が小さすぎ、厚さの比(t1/t2)が100を超える
ほどに大きくなると、第二の工程の熱圧着による接着力
が充分に発揮されなくなる場合が生じる。
At that time, the ratio of the thickness t 1 of the low thermal expansion polyimide-based resin layer to the thickness t 2 of the thermoplastic polyimide-based resin layer (t 1 / t 2 )
Is in the range of 2 to 100, preferably 5 to 20. If this thickness ratio (t 1 / t 2 ) is smaller than 2, the coefficient of thermal expansion of the entire polyimide resin layer becomes too high compared to that of the metal foil, and the single-sided conductor laminate obtained in this first step The warp and curl of the sheet become large, and the workability in the next second step is significantly reduced. Also, if the thickness t 2 of the thermoplastic polyimide resin layer is too small and the thickness ratio (t 1 / t 2 ) becomes too large to exceed 100, the adhesive force by thermocompression bonding in the second step will be fully exerted. There may be cases where it is not done.

導電性金属箔(M1)上へのこれら複数のポリイミド系樹
脂の塗工は、その樹脂溶液の形で行うこともできるが、
好ましくはその前駆体溶液の形で行われる。その際、積
層体における各ポリイミド系樹脂層間に充分な接着力は
付与するためには、複数の前駆体溶液の一括又は逐次の
塗工あるいはイミド閉環温度以下での脱溶剤処理の後、
前駆体のポリイミドへの加熱変換を一括して行うのが望
ましい。完全にポリイミドに変換された層の上にさらに
別のポリイミド系前駆体溶液を塗工し、熱処理してイミ
ド閉環させると、各ポリイミド系樹脂層間の接着力が充
分に発揮されないことがあり、製品の両面積層体の品質
を低下させる原因になる。
The application of these plural polyimide resins on the conductive metal foil (M 1 ) can be performed in the form of the resin solution,
It is preferably carried out in the form of its precursor solution. At that time, in order to impart sufficient adhesive force between the respective polyimide-based resin layers in the laminate, after batch or sequential coating of a plurality of precursor solutions or after desolvation treatment at an imide ring closure temperature or less,
It is desirable to carry out the heat conversion of the precursor into polyimide all at once. If another polyimide-based precursor solution is applied onto the layer that has been completely converted to polyimide, and heat treatment is performed to cause imide ring closure, the adhesive force between the polyimide-based resin layers may not be fully exerted. It causes the deterioration of the quality of the double-sided laminate.

導電性金属箔(M1)上にポリイミド系樹脂溶液あるいは
その前駆体溶液のへの塗工の方法としては、如何なる方
法であってもよく、例えばナイフコーター、ダイコータ
ー、ロールコーター、カーテンコーター等を使用して公
知の方法により行うことができ、特に厚塗りを行う場合
にはダイコーターやナイフコーターが適している。ま
た、樹脂溶液の状態で50μm以下の薄塗りをする場合に
はロールコーターが適している。なかでも3本のロール
の回転速度比と間隙により塗工厚みを制御できるリバー
ス方式のロールコーターは薄膜の塗工に有利な方法であ
る。また、2種類以上の樹脂溶液を同時に塗工する簡便
な方法として多層ダイ法がある。多層ダイにはいろいろ
な形式のものがあるが、厚み精度の正確さや厚み比の許
容範囲の広さからしてマルチマニフォールド方式の多層
ダイが優れている。
The method for coating the polyimide resin solution or its precursor solution on the conductive metal foil (M 1 ) may be any method, for example, knife coater, die coater, roll coater, curtain coater, etc. Can be carried out by a known method, and a die coater or a knife coater is particularly suitable for thick coating. A roll coater is suitable for applying a thin coating of 50 μm or less in the resin solution state. Among them, the reverse type roll coater capable of controlling the coating thickness by the rotation speed ratio of the three rolls and the gap is an advantageous method for coating a thin film. Further, there is a multi-layer die method as a simple method for simultaneously coating two or more kinds of resin solutions. There are various types of multi-layer dies, but the multi-manifold type multi-layer dies are superior in terms of accuracy of thickness accuracy and wide tolerance of thickness ratio.

塗工に使用するポリイミド系前駆体溶液のポリマー濃度
は、ポリマーの重合度にもよるが、通常5〜30重量%、
好ましくは10〜20重量%である。ポリマー濃度が5重量
%より低いと一回のコーティングで充分な膜厚が得られ
ず、また、30重量%より高くなると溶液粘度が高くなり
すぎて塗工しずらくなる。
The polymer concentration of the polyimide-based precursor solution used for coating is usually 5 to 30% by weight, though it depends on the degree of polymerization of the polymer.
It is preferably 10 to 20% by weight. When the polymer concentration is lower than 5% by weight, a sufficient film thickness cannot be obtained by one coating, and when it is higher than 30% by weight, the solution viscosity becomes too high and the coating becomes difficult.

導電性金属箔に均一な厚みに塗工されたポリアミック酸
溶液は、次に熱処理によって溶剤が除去され、さらにイ
ミド閉環される。この場合、急激に高温で熱処理する
と、樹脂表面にスキン層が生成して溶剤が蒸発しずらく
なったり、発泡したりするので、低温から徐々に高温ま
で上昇させながら熱処理していくのが望ましい。
The polyamic acid solution applied to the conductive metal foil with a uniform thickness is then subjected to heat treatment to remove the solvent and further undergo imide ring closure. In this case, when the heat treatment is rapidly performed at a high temperature, a skin layer is formed on the resin surface, the solvent is hard to evaporate, or foaming occurs. Therefore, it is desirable to perform the heat treatment while gradually increasing from a low temperature to a high temperature. .

この際の最終的な熱処理温度としては、通常300〜400℃
が好ましく、400℃以上ではポリイミドの熱分解が徐々
に起こり始め、また、300℃以下ではポリイミド被膜が
導電性金属箔上に充分に配向せず、平面性の良い片面導
体積層体が得られない。このようにして形成されるポリ
イミド樹脂層の全体の厚みは通常10〜150μmである。
The final heat treatment temperature at this time is usually 300 to 400 ° C.
The thermal decomposition of the polyimide gradually begins to occur at 400 ° C or higher, and at 300 ° C or lower, the polyimide coating is not sufficiently oriented on the conductive metal foil, and a single-sided conductor laminate having good flatness cannot be obtained. . The total thickness of the polyimide resin layer thus formed is usually 10 to 150 μm.

第二の工程では、上述のようして得られた片面導体ポリ
イミド積層体の樹脂層に導電性金属箔(M2)を重ね合わ
せ、加熱加圧下に圧着して積層する。この際の熱プレス
の方法としては、通常のハイドロプレス、真空タイプの
ハイドロプレス、オートクレープ加圧式真空プレス、連
続式熱ラミネータ等を使用することができる。このうち
真空ハイドロプレスは、充分なプレス圧力が得られ、残
留揮発分の除去も容易であり、また導電性金属箔(M1
M2)の酸化を防止できることから、最も好ましい熱プレ
ス法である。
In the second step, the conductive metal foil (M 2 ) is superposed on the resin layer of the single-sided conductor polyimide laminate obtained as described above, and is pressure-bonded under heat and pressure to be laminated. As a method of hot pressing at this time, a normal hydropress, a vacuum type hydropress, an autoclave pressure type vacuum press, a continuous type heat laminator, or the like can be used. Among them, the vacuum hydropress can obtain a sufficient pressing pressure, can easily remove the residual volatile components, and can also use the conductive metal foil (M 1 ,
It is the most preferable hot pressing method because it can prevent the oxidation of M 2 ).

そして、この際の熱プレス温度については、特に限定さ
れるものではないが、使用される熱可塑性ポリイミド系
樹脂のガラス転移以上であることが望ましい。また、熱
プレス圧力については、プレスに使用する機器の種類に
もよるが、1〜500kg/cm2、好ましくは5〜50kg/cm2
適当である。
The hot pressing temperature at this time is not particularly limited, but is preferably not less than the glass transition of the thermoplastic polyimide resin used. As for the hot pressing pressure, depending on the type of equipment used to press, 1~500kg / cm 2, and preferably is 5 to 50 kg / cm 2 suitable.

ハイドロプレスで熱プレスを行う場合、シート状の片面
積層体と導電性金属箔(M2)とを何層にも重ね合わせ、
同時に熱プレスで加熱加圧下に圧着して積層することに
より、一回の熱プレスで複数枚の両面導体ポリイミド積
層体を得ることも可能である。
When hot-pressing with hydropress, stacking sheet-like single-area layered body and conductive metal foil (M 2 ) in many layers,
At the same time, it is also possible to obtain a plurality of double-sided conductor polyimide laminates by one heat pressing, by pressing and laminating under heat and pressure with a hot press.

以上のような本発明の製造方法のほかに、接着層を有し
ない両面導体ポリイミド積層体の製造方法として、無接
着剤型片面導体ポリイミド積層体のポリイミド系樹脂層
にコロナ放電処理、プラズマ処理等を施し、樹脂表面の
接着性を高めた後に樹脂層と導電性金属箔とを貼り合わ
せ、両面導体型の積層体とする方法も適用できる。
In addition to the manufacturing method of the present invention as described above, as a method for manufacturing a double-sided conductor polyimide laminate having no adhesive layer, corona discharge treatment, plasma treatment, etc. on the polyimide-based resin layer of the adhesiveless single-sided conductor polyimide laminate It is also possible to apply a method in which the resin layer and the conductive metal foil are attached to each other to improve the adhesiveness of the resin surface, thereby forming a double-sided conductor type laminate.

本発明の両面導体ポリイミド積層体は、絶縁体としての
ポリイミド系樹脂層の両面に導体としての導電性金属層
を有するものであるが、導電性金属層を構成する金属と
しては、銅、アルミニウム、鉄、銀、パラジウム、ニッ
ケル、クロム、モリブデン、タングステン、亜鉛及びそ
れらの合金等を挙げることができ、好ましくは銅であ
る。また、ここで使用する導電性金属箔については、接
着力の向上を目的として、その表面にサイディング、ニ
ッケルメッキ、銅−亜鉛合金メッキ、あるいは、アルミ
ニウムアルコラート、アルミニウムキレート、シランカ
ップリング剤等による化学的又は機械的な表面処理を施
してもよい。
The double-sided conductor polyimide laminate of the present invention has a conductive metal layer as a conductor on both sides of a polyimide resin layer as an insulator, but as the metal constituting the conductive metal layer, copper, aluminum, Examples thereof include iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zinc and alloys thereof, and copper is preferable. Further, for the conductive metal foil used here, siding, nickel plating, copper-zinc alloy plating, or aluminum alcoholate, aluminum chelate, silane coupling agent or the like on its surface for the purpose of improving the adhesive strength. You may perform a mechanical or mechanical surface treatment.

〔実施例〕〔Example〕

以下、実施例及び比較例に基づいて、本発明を具体的に
説明する。
Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples.

なお、以下の実施例及び比較例において、熱膨張係数、
片面銅張品のカール及び接着力、及びハンダ耐熱性は以
下の方法で測定した。
In the following examples and comparative examples, the coefficient of thermal expansion,
The curl and adhesive strength of the single-sided copper-clad product and the solder heat resistance were measured by the following methods.

すなわち、熱膨張係数は、セイコー電子工業(株)製サ
ーモメカニカルアナライザー(TMA100)を用いて、250
℃に昇温後に10℃/分の速度で冷却し、240℃〜100℃の
間における平均線膨張係数を算出して求めた。
That is, the coefficient of thermal expansion was 250 using a thermomechanical analyzer (TMA100) manufactured by Seiko Denshi Kogyo.
After the temperature was raised to 0 ° C, it was cooled at a rate of 10 ° C / min, and the average linear expansion coefficient between 240 ° C and 100 ° C was calculated and obtained.

片面銅張品のカールとしては、熱処理してイミド化した
後における100mm×100mmの寸法の銅張品の曲率半径を測
定した。
As the curl of the one-sided copper-clad product, the radius of curvature of the copper-clad product having a size of 100 mm × 100 mm after heat treatment and imidization was measured.

片面銅張品の接着力は、JIS C 5016:7.1項に準じ、導体
幅3mmのパターンを使用し、銅箔を180°の方向に50mm/
分の速度で引き剥したときの値として求めた。
Adhesive strength of the one-sided copper-clad product conforms to JIS C 5016: 7.1, uses a pattern with a conductor width of 3 mm, and puts the copper foil in the direction of 180 ° to 50 mm /
It was determined as a value when peeled at a speed of minutes.

ハンダ耐熱性としては、JIS C 5016の方法に準じて、26
0℃から10℃間隔で徐々にハンダ浴温度を上げ、最高400
℃まで測定した。
As for solder heat resistance, according to the method of JIS C 5016, 26
Gradually raise the solder bath temperature from 0 ℃ to 10 ℃ at a maximum of 400
It was measured up to ° C.

また、実施例及び比較例中では以下の略号を使用した。Further, the following abbreviations are used in the examples and comparative examples.

PMDA:無水ピロメリット酸 BTDA:3,3′,4,4′−ベンゾフェノンテトラカルボン酸無
水物 BPDA:3,3′,4,4′−ビフェニルテトラカルボン酸無水物 DPSDA:3,3′,4,4′−ジフェニルスルフォンテトラカル
ボン酸無水物 DDE:4,4′−ジアミノジフェニルエーテル PPD:p−フェニレンジアミン DDS:3,3′−ジアミノジフェニルスルフォン MABA:2′−メトキシ−4,4′−ジアミノベンズアニリド BAPP:2,2−ビス[4−(アミノフェノキシ)フェニル〕
プロパン DABP:3,3′−ジアミノベンゾフェノン BAPB:1,3−[ビス(3−アミノフェノキシ)]ベンゼン 合成例1:低熱膨張性ポリイミドの合成 ガラス製反応器に窒素を通じながらN,N−ジメチルアセ
トアミド2,532gを仕込み、続いて攪拌下に0.5モルのDDE
と0.5モルのMABAとを仕込み、その後完全に溶解させ
た。この溶液を10℃に冷却し、反応液が30℃以下の温度
に保たれるように1モルのPMDAを少量ずつ添加し、添加
終了後引き続いて室温で2時間攪拌を行い、重合反応を
完結させた。
PMDA: Pyromellitic dianhydride BTDA: 3,3 ', 4,4'-Benzophenone tetracarboxylic acid anhydride BPDA: 3,3', 4,4'-Biphenyl tetracarboxylic acid anhydride DPSDA: 3,3 ', 4 , 4'-Diphenylsulfone tetracarboxylic acid anhydride DDE: 4,4'-diaminodiphenyl ether PPD: p-phenylenediamine DDS: 3,3'-diaminodiphenylsulfone MABA: 2'-methoxy-4,4'-diaminobenz Anilide BAPP: 2,2-bis [4- (aminophenoxy) phenyl]
Propane DABP: 3,3′-diaminobenzophenone BAPB: 1,3- [bis (3-aminophenoxy)] benzene Synthesis Example 1: Synthesis of low thermal expansion polyimide N, N-dimethylacetamide while passing nitrogen through a glass reactor Charge 2,532g, then with stirring 0.5 mol DDE.
And 0.5 mol of MABA were charged and then completely dissolved. This solution was cooled to 10 ° C, 1 mol of PMDA was added little by little so that the reaction solution was kept at a temperature of 30 ° C or less, and after the addition was completed, the mixture was stirred at room temperature for 2 hours to complete the polymerization reaction. Let

得られたポリイミド前駆体溶液についてそのポリマー濃
度及びB型粘度計による25℃でのみかけ粘度を測定し
た。結果を第1表に示す。
The polymer concentration of the obtained polyimide precursor solution and the apparent viscosity at 25 ° C. were measured by a B-type viscometer. The results are shown in Table 1.

合成例2〜5 種々のジアミンと酸無水物を使用し、合成例1と同様に
して低熱膨張性ポリイミド前駆体溶液を合成した。各合
成例において使用したジアミン及び酸無水物と、得られ
たポリマー溶液のポリマー濃度及びB型粘度計による25
℃でのみかけ粘度とを第1表に示す。
Synthesis Examples 2 to 5 Using various diamines and acid anhydrides, a low thermal expansion polyimide precursor solution was synthesized in the same manner as in Synthesis Example 1. The diamine and acid anhydride used in each synthesis example, the polymer concentration of the obtained polymer solution, and the B-type viscometer
Table 1 shows the apparent viscosity at ° C.

合成例6:熱可塑性ポリイミドの合成 ジアミン成分としてDDSの1モルを使用し、酸無水物成
分としてBTDAの1モルを使用した以外は、合成例1と同
様にして熱可塑性ポリイミド前駆体溶液を調製した。
Synthesis Example 6: Synthesis of thermoplastic polyimide A thermoplastic polyimide precursor solution was prepared in the same manner as in Synthesis Example 1 except that 1 mol of DDS was used as the diamine component and 1 mol of BTDA was used as the acid anhydride component. did.

得られたポリイミド前駆体溶液についてそのポリマー濃
度及びB型粘度計による25℃でのみかけ粘度を測定し
た。結果を第1表に示す。
The polymer concentration of the obtained polyimide precursor solution and the apparent viscosity at 25 ° C. were measured by a B-type viscometer. The results are shown in Table 1.

合成例7〜10 種々のジアミンと酸無水物を使用し、合成例6と同様に
して熱可塑性ポリイミド前駆体溶液を得た。各合成例に
おいて使用したジアミン及び酸無水物と、得られたポリ
マー溶液のポリマー濃度及びB型粘度計による25℃での
みかけ粘度とを第1表に示す。
Synthesis Examples 7 to 10 Using various diamines and acid anhydrides, a thermoplastic polyimide precursor solution was obtained in the same manner as in Synthesis Example 6. Table 1 shows the diamine and acid anhydride used in each synthesis example, the polymer concentration of the obtained polymer solution and the apparent viscosity at 25 ° C. measured by a B-type viscometer.

合成例11 ジアミン成分としてDDE1モルを使用し、酸無水物成分と
してBTDAの1モルを使用した以外は、合成例1と同様に
してポリイミド前駆体溶液を調製した。得られたポリイ
ミド前駆体溶液のポリマー濃度及びB型粘度計による25
℃でのみかけ粘度を測定した。結果を第1表に示す。
Synthesis Example 11 A polyimide precursor solution was prepared in the same manner as in Synthesis Example 1 except that 1 mol of DDE was used as the diamine component and 1 mol of BTDA was used as the acid anhydride component. 25 by the polymer concentration of the obtained polyimide precursor solution and a B-type viscometer
Apparent viscosity was measured at ° C. The results are shown in Table 1.

合成例12 ジアミン成分としてBAPPの1モルを使用し、酸無水物と
してPMDAの1モルを使用した以外は、合成例1と同様に
してポリイミド前駆体溶液を調製した。得られたポリイ
ミド前駆体溶液のポリマー濃度及びB型粘度計による25
℃でのみかけ粘度を測定した。結果を第1表に示す。
Synthesis Example 12 A polyimide precursor solution was prepared in the same manner as in Synthesis Example 1 except that 1 mol of BAPP was used as the diamine component and 1 mol of PMDA was used as the acid anhydride. 25 by the polymer concentration of the obtained polyimide precursor solution and a B-type viscometer
Apparent viscosity was measured at ° C. The results are shown in Table 1.

合成例13 ジアミン成分としてDDEの1モルを使用し、酸無水物と
してPMDAの1モルを使用した以外は、合成例1と同様に
してポリイミド前駆体溶液を調製した。得られたポリイ
ミド前駆体溶液のポリマー濃度及びB型粘度計による25
℃でのみかけ粘度を測定した。結果を第1表に示す。
Synthesis Example 13 A polyimide precursor solution was prepared in the same manner as in Synthesis Example 1 except that 1 mol of DDE was used as the diamine component and 1 mol of PMDA was used as the acid anhydride. 25 by the polymer concentration of the obtained polyimide precursor solution and a B-type viscometer
Apparent viscosity was measured at ° C. The results are shown in Table 1.

実施例1 35μmロール状の電解銅箔(日鉱グールド(株)製)粗
化面にダイコーターを用いて合成例2で調製した低熱膨
張性ポリイミド前駆体溶液を215μmの厚みで均一に塗
工した後、120℃の熱風乾燥炉で連続的に処理し溶剤を
除去した。次にこの低熱膨張性ポリイミド前駆体層の上
からリバース式ロールコーターを用いて合成例6で調製
した熱可塑性ポリイミド前駆体溶液を12μmの厚みで均
一に塗工し、次いで熱風乾燥炉で30分間かけて120℃か
ら360℃まで昇温させて熱処理しイミド化させ、ポリイ
ミド樹脂層の厚みが25μmで反りやカールのない平面性
の良好な片面銅張品aを得た。この片面銅張品aの銅箔
層とポリイミド樹脂層との間の180°引く剥し強さ(JIS
C-5016)を測定した結果は0.4kg/cmであり、エッチン
グ後のフィルムの熱膨張係数は23.5×10-6(1/℃)であ
った。
Example 1 A 35 μm roll-shaped electrolytic copper foil (manufactured by Nikko Gould Co., Ltd.) was uniformly coated with a low thermal expansion polyimide precursor solution prepared in Synthesis Example 2 to a thickness of 215 μm on a roughened surface using a die coater. Then, the solvent was removed by continuous treatment in a hot air drying oven at 120 ° C. Next, the thermoplastic polyimide precursor solution prepared in Synthesis Example 6 was uniformly coated on the low thermal expansion polyimide precursor layer using a reverse roll coater to a thickness of 12 μm, and then in a hot air drying oven for 30 minutes. Then, the temperature was raised from 120 ° C. to 360 ° C. and heat treatment was performed to imidize to obtain a single-sided copper-clad product a with a polyimide resin layer having a thickness of 25 μm and good flatness without warping or curling. The peel strength between the copper foil layer of this single-sided copper-clad product a and the polyimide resin layer is 180 °
C-5016) was measured to be 0.4 kg / cm, and the thermal expansion coefficient of the film after etching was 23.5 × 10 -6 (1 / ° C).

実施例2 35μmロール状の電解銅箔(日鉱グールド(株)製)粗
化面にリバース式ロールコーターを用いて合成例11で調
製したポリイミド前駆体溶液を28μmの厚みで均一に塗
工した後、120℃の熱風乾燥炉で連続的に処理し溶剤を
除去した。次にその上に積層するようにダイコーターを
用いて合成例1で調製した低熱膨張性ポリイミド前駆体
溶液を215μmの厚みで均一に塗工した後、120℃の熱風
乾燥炉で連続的に処理し溶剤を除去した。次いでさらに
この低熱膨張ポリイミド前駆体層の上にリバース式ロー
ルコーターを用いて合成例6で調製した熱可塑性ポリイ
ミド前駆体溶液を12μmの厚みで均一に塗工した後、熱
風乾燥炉で120℃から360℃まで30分間かけて熱処理しイ
ミド化させ、ポリイミド樹脂層の厚みが25μmで反りや
カールのない平面性の良好な片面銅張品bを得た。この
片面銅張品bの銅箔層とポリイミド樹脂層との180°引
き剥がし強さ(JIS C-5016)を測定した結果は1.8kg/cm
であり、エッチング後のフィルムの熱膨張係数は21.0×
10-6(1/℃)であった。
Example 2 A 35 μm rolled electrolytic copper foil (manufactured by Nikko Gould Co., Ltd.) was uniformly coated with a thickness of 28 μm on the roughened surface of the polyimide precursor solution prepared in Synthesis Example 11 using a reverse roll coater. The solvent was removed by continuous treatment in a hot air drying oven at 120 ° C. Next, a low-heat-expansion polyimide precursor solution prepared in Synthesis Example 1 was uniformly applied to a layer of 215 μm using a die coater so as to be laminated thereon, and then continuously treated in a hot air drying oven at 120 ° C. Then the solvent was removed. Next, after further applying the thermoplastic polyimide precursor solution prepared in Synthesis Example 6 on the low thermal expansion polyimide precursor layer using a reverse roll coater to a thickness of 12 μm, from 120 ° C. in a hot air drying oven. It was heat-treated to 360 ° C. for 30 minutes for imidization to obtain a single-sided copper-clad product b having a polyimide resin layer thickness of 25 μm and good flatness without warpage or curling. The 180 ° peel strength (JIS C-5016) between the copper foil layer and the polyimide resin layer of this single-sided copper-clad product b was measured to be 1.8 kg / cm.
And the coefficient of thermal expansion of the film after etching is 21.0 ×
It was 10 -6 (1 / ° C).

実施例3 35μmロール状の電解銅箔(日鉱グールド(株)製)粗
化面にリバース式ロールコーターを用いて合成例11で調
製したポリイミド前駆体溶液を28μmの厚みで均一に塗
工した後、120℃の熱風乾燥炉で連続的に処理し溶剤を
除去した。次にその上に積層するように合成例3で調製
した低熱膨張性ポリイミド前駆体溶液及び合成例6で調
製した熱可塑性ポリイミド前駆体溶液をマルチマニフォ
ールド式多層ダイから2層状に均一に押し出して塗工し
た。この時の低熱膨張性ポリイミド前駆体溶液及び熱可
塑性ポリイミド前駆体溶液のそれぞれの塗工厚みは196
μm及び24μmであった。塗工後、熱風乾燥炉で30分間
かけて120℃から360℃まで熱処理しイミド化させ、ポリ
イミド樹脂層の厚みが27μmの反りやカールのない平面
性の良好な片面銅張品cを得た。この片面銅張品cの銅
箔層とポリイミド樹脂層との180°引き剥し強さ(JIS C
-5016)を測定した結果は1.7kg/cmであり、エッチング
後のフィルムの熱膨張係数は24.0×10-6(1/℃)であっ
た。
Example 3 A 35 μm rolled electrolytic copper foil (manufactured by Nikko Gould Co., Ltd.) was uniformly coated with a polyimide precursor solution prepared in Synthesis Example 11 on a roughened surface to a thickness of 28 μm using a reverse roll coater. The solvent was removed by continuous treatment in a hot air drying oven at 120 ° C. Next, the low thermal expansion polyimide precursor solution prepared in Synthesis Example 3 and the thermoplastic polyimide precursor solution prepared in Synthesis Example 6 were uniformly extruded in two layers from a multi-manifold type multilayer die so as to be laminated thereon. I worked. The coating thickness of each of the low thermal expansion polyimide precursor solution and the thermoplastic polyimide precursor solution at this time was 196
μm and 24 μm. After coating, the product was heat-treated in a hot-air drying oven for 30 minutes from 120 ° C to 360 ° C to imidize to obtain a single-sided copper-clad product c with a polyimide resin layer thickness of 27 μm and good flatness without warping or curling. . 180 ° peeling strength between the copper foil layer and the polyimide resin layer of this single-sided copper clad product (JIS C
-5016) was 1.7 kg / cm, and the thermal expansion coefficient of the film after etching was 24.0 × 10 -6 (1 / ° C).

実施例4〜7 第一層目から第三層目まで種々のポリイミド系樹脂を実
施例2と同様の方法で塗工し、熱処理して対応する片面
銅張品d〜gを得た。それぞれの場合の塗工条件及び得
られた片面銅張品d〜gの特性を第2表に示す。
Examples 4 to 7 Various polyimide resins from the first layer to the third layer were coated in the same manner as in Example 2 and heat-treated to obtain corresponding single-sided copper-clad products d to g. Table 2 shows the coating conditions in each case and the characteristics of the obtained single-sided copper-clad products d to g.

比較例1 35μmロール状の電解銅箔(日鉱グールド(株)製)粗
化面にダイコーターを用いて合成例13で調製したポリイ
ミド前駆体溶液を233μmの厚みで均一に塗工した後、
熱風乾燥炉で30分間かけて120℃から360℃まで熱処理し
イミド化させ、ポリイミド樹脂層の厚みが25μmの片面
銅張品hを得た。得られた片面銅張品hはカールが著し
く(カール曲率半径5mm)、エッチング後のフィルムの
熱膨張係数も34.5×10-6(1/℃)と大きかった。また、
銅箔層とポリイミド樹脂層との180°引き剥し強さ(JIS
C-5016)は0.4kg/cmであった。
Comparative Example 1 A 35 μm rolled electrolytic copper foil (manufactured by Nikko Gould Co., Ltd.) was uniformly coated with a thickness of 233 μm on the roughened surface of the polyimide precursor solution prepared in Synthesis Example 13 using a die coater.
A single-sided copper-clad product h having a polyimide resin layer thickness of 25 μm was obtained by heat-treating from 120 ° C. to 360 ° C. for 30 minutes in a hot air drying oven to imidize. The obtained single-sided copper-clad product h had a remarkable curl (curl radius of curvature of 5 mm), and the thermal expansion coefficient of the film after etching was as large as 34.5 × 10 −6 (1 / ° C.). Also,
180 ° peel strength between copper foil layer and polyimide resin layer (JIS
C-5016) was 0.4 kg / cm.

比較例2〜4 第一婦目から第三層目まで種々のポリイミド系樹脂を実
施例2と同様の方法で塗工し、熱処理して対応する片面
銅張品i〜kを得た。それぞれの場合の塗工条件及び得
られた片面銅張品i〜kの特性を第2表に示す。
Comparative Examples 2 to 4 Various polyimide resins from the first female to the third layer were applied by the same method as in Example 2 and heat-treated to obtain corresponding single-sided copper-clad products i to k. Table 2 shows the coating conditions in each case and the characteristics of the obtained single-sided copper-clad products i to k.

比較例5 35μmロール状の電解銅箔(日鉱グールド(株)製)粗
化面にリバース式ロールコーターを用いて合成例11で調
製したポリイミド前駆体溶液を28μmの厚みで均一に塗
工した後、120℃の熱風乾燥炉で連続的に処理し溶剤を
除去した。次にその上に積層するようにダイコーターを
用いて合成例1で調製した低熱膨張性ポリイミド前駆体
溶液を215μmの厚みで均一に塗工した後、熱風乾燥炉
で30分間かけて120℃から360℃まで熱処理しイミド化せ
しめた。次にさらにその上に積層するようにリバース式
ロールコースターを用いて合成例6で調製した熱可塑性
ポリイミド前駆体溶液を12μmの厚みで均一に塗工した
後、熱風乾燥炉で30分間かけて120℃から360℃まで熱処
理しイミド化させ、ポリイミド樹脂層の厚みが25μmの
片面銅張品1を得た。この片面銅張品1の銅箔層とポリ
イミド樹脂層との180°引き剥し強さ(JIS C-5016)を
測定した結果は1.8kg/cmであり、エッチング後のフィル
ムの熱膨張係数は21.0×10-6(1/℃)であった。
Comparative Example 5 35 μm rolled electrolytic copper foil (manufactured by Nikko Gould Co., Ltd.) was uniformly coated with 28 μm thick on the roughened surface using the reverse roll coater with the polyimide precursor solution prepared in Synthesis Example 11. The solvent was removed by continuous treatment in a hot air drying oven at 120 ° C. Next, using a die coater so as to be laminated thereon, the low-thermal-expansion polyimide precursor solution prepared in Synthesis Example 1 was uniformly applied to a thickness of 215 μm, and then heated at 120 ° C. for 30 minutes in a hot air drying oven. It was heat-treated to 360 ° C and imidized. Next, the thermoplastic polyimide precursor solution prepared in Synthesis Example 6 was applied uniformly to a thickness of 12 μm using a reverse roll coaster so as to be further laminated thereon, and then 120 minutes in a hot air drying oven for 120 minutes. A single-sided copper-clad product 1 having a polyimide resin layer thickness of 25 μm was obtained by heat treatment from ℃ to 360 ° C. for imidization. The 180 ° peel strength (JIS C-5016) of the copper foil layer and the polyimide resin layer of this single-sided copper-clad product 1 was measured to be 1.8 kg / cm, and the thermal expansion coefficient of the film after etching was 21.0. It was × 10 -6 (1 / ° C).

実施例8 実施例1で調製した片面銅張品aの500×500mmのカット
シートの樹脂面と同寸法の35μm電解同箔粗化面とを互
いに接するように重ね合わせた後、真空熱プレス装置を
用いて、面圧100kg/cm2、330℃、10分間の条件で熱プレ
ス圧着し、両面銅張品を得た。この両面銅張品の熱圧着
面での180°引き剥し強さは1.4kg/cmであり、400℃、1
分のハンダ浸漬に対しても異常は認められなかった。ま
た、エッチング後のポリイミドフィルムの250℃、30分
処理後の収縮率は0.07%であった。
Example 8 The resin surface of the 500 × 500 mm cut sheet of the single-sided copper clad product a prepared in Example 1 and the 35 μm electrolytic same foil roughened surface of the same size were superposed so as to be in contact with each other, and then the vacuum hot press machine was used. Was used for hot pressing under conditions of a surface pressure of 100 kg / cm 2 , 330 ° C. and 10 minutes to obtain a double-sided copper-clad product. The 180 ° peel strength of this double-sided copper-clad product at the thermocompression bonding surface is 1.4 kg / cm, 400 ° C, 1
No abnormality was found even after immersion in solder for a minute. The shrinkage rate of the polyimide film after etching at 250 ° C. for 30 minutes was 0.07%.

実施例9〜17 実施例2〜7で調製した片面銅張品b〜gを用い、導電
性金属箔と熱圧着し、対応する両面銅張品を得た。熱プ
レス条件及び得られた両面銅張品の特性を第3表に示
す。
Examples 9 to 17 The single-sided copper-clad products b to g prepared in Examples 2 to 7 were thermocompression-bonded to a conductive metal foil to obtain corresponding double-sided copper-clad products. Table 3 shows the hot press conditions and the properties of the obtained double-sided copper-clad product.

比較例6 比較例1で調製した片面銅張品hの500×500mmのカット
シートの樹脂面と同寸法の35μm電解銅箔粗化面とを互
いに接するように重ね合わせた後、真空熱プレス装置を
用い、面圧100kg/cm2、330℃、10分間の条件で熱プレス
したが、樹脂面の熱圧着は認められなかった。
Comparative Example 6 The resin surface of the 500 × 500 mm cut sheet of the single-sided copper-clad product h prepared in Comparative Example 1 and the 35 μm electrolytic copper foil roughened surface having the same dimensions were superposed so as to be in contact with each other, and then the vacuum hot press machine was used. Was subjected to heat pressing under the conditions of a surface pressure of 100 kg / cm 2 , 330 ° C. for 10 minutes, but thermocompression bonding of the resin surface was not observed.

比較例7〜9 比較例2〜4で調製した片面銅張品i〜kを用いて、導
電性金属箔との熱圧着を試みた。結果を第3表に示す。
Comparative Examples 7 to 9 Using the single-sided copper-clad products i to k prepared in Comparative Examples 2 to 4, thermocompression bonding with a conductive metal foil was tried. The results are shown in Table 3.

比較例10 比較例5で調製した片面銅張品1の500×500mmのカット
シートの樹脂面と同寸法の35μm電解銅箔粗化面とを互
いに接するように重ね合わせた後、真空熱プレス装置を
用い、面圧100kg/cm2、330℃、10分間の条件で熱プレス
圧着し、両面銅張品とした。この両面銅張品の熱圧着面
での180°引き剥がし強さは0.5kg/cmであり、350℃、1
分のハンダ浸漬によって膨れが発生した。
Comparative Example 10 The resin surface of the 500 × 500 mm cut sheet of the single-sided copper-clad product 1 prepared in Comparative Example 5 and the 35 μm electrolytic copper foil roughened surface having the same dimensions were superposed so as to be in contact with each other, and then the vacuum hot press machine was used. Was used for hot pressing under conditions of a surface pressure of 100 kg / cm 2 , 330 ° C., and 10 minutes to obtain a double-sided copper-clad product. The 180 ° peel strength of this double-sided copper-clad product at the thermocompression bonding surface is 0.5 kg / cm, 350 ° C, 1
Swelling occurred due to the immersion of solder for a minute.

〔発明の効果〕 本発明によれば、ポリイミド系樹脂層の両面に接着剤を
介することなく導電性金属層を積層することができ、優
れた耐熱性及び可撓性を有するスルホール接続型両面フ
レキシブル回路基板として好適な両面導体ポリイミド積
層体を製造することができる。
EFFECTS OF THE INVENTION According to the present invention, a conductive metal layer can be laminated on both sides of a polyimide resin layer without an adhesive, and a through-hole connection type double-sided flexible having excellent heat resistance and flexibility. A double-sided conductor polyimide laminate suitable for a circuit board can be manufactured.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】導電性金属箔(M1)上に低熱膨張性ポリイ
ミド系樹脂に変換可能な少なくとも一種の低熱膨張性ポ
リイミド前駆体樹脂層を設け、さらにその上に熱可塑性
ポリイミド系樹脂に変換可能な少なくとも一種の熱可塑
性ポリイミド前駆体樹脂層を設け、次いで熱処理して少
なくとも一種の低熱膨張性ポリイミド系樹脂層及び少な
くとも一種の熱可塑性ポリイミド系樹脂層を有する片面
導体積層体を製造する第一の工程と、加熱加圧下に上記
片面導体積層体の熱可塑性ポリイミド系樹脂層に導電性
金属箔(M2)を積層し、少なくとも一種の低熱膨張性ポ
リイミド系樹脂層及び少なくとも一種の熱可塑性ポリイ
ミド系樹脂層よりなるポリイミド系樹脂層の両面に導電
性金属層が積層された両面積層体とする第二の工程とか
らなることを特徴とする両面導体ポリイミド積層体の製
造方法。
1. A conductive metal foil (M 1 ) is provided with at least one low thermal expansion polyimide precursor resin layer that can be converted into a low thermal expansion polyimide resin, and is further converted into a thermoplastic polyimide resin layer. Providing at least one possible thermoplastic polyimide precursor resin layer, followed by heat treatment to produce a single-sided conductor laminate having at least one low thermal expansion polyimide resin layer and at least one thermoplastic polyimide resin layer And a conductive metal foil (M 2 ) is laminated on the thermoplastic polyimide resin layer of the one-sided conductor laminate under heat and pressure, and at least one low thermal expansion polyimide resin layer and at least one thermoplastic polyimide And a second step of forming a double-sided laminate in which a conductive metal layer is laminated on both surfaces of a polyimide resin layer made of a system resin layer. Method for producing a double-sided conductor polyimide laminate to.
【請求項2】導電性金属箔(M1)上に熱可塑性ポリイミ
ド系樹脂に変換可能な少なくとも一種の熱可塑性ポリイ
ミド前駆体樹脂層を設け、その上に低熱膨張性ポリイミ
ド系樹脂に変換可能な少なくとも一種の低熱膨張性ポリ
イミド前駆体樹脂層を設け、さらにその上に熱可塑性ポ
リイミド系樹脂に変換可能な少なくとも一種の熱可塑性
ポリイミド前駆体樹脂層を設け、次いで熱処理して少な
くとも一種の熱可塑性ポリイミド系樹脂層、少なくとも
一種の低熱膨張性ポリイミド系樹脂層及び少なくとも一
種の熱可塑性ポリイミド系樹脂層よりなる少なくとも三
層のポリイミド系樹脂層を有する片面導体積層体を製造
する第一の工程と、加熱加圧下に上記片面導体積層体の
熱可塑性ポリイミド系樹脂層に導電性金属箔(M2)を積
層し、少なくとも一種の熱可塑性ポリイミド系樹脂層、
少なくとも一種の低熱膨張性ポリイミド系樹脂層及び少
なくとも一種の熱可塑性ポリイミド系樹脂層よりなる少
なくとも三層のポリイミド系樹脂層の両面に導電性金属
層が積層された両面積層体とする第二の工程とからなる
ことを特徴とする両面導体ポリイミド積層体の製造方
法。
2. A conductive metal foil (M 1 ) is provided with at least one thermoplastic polyimide precursor resin layer that can be converted into a thermoplastic polyimide resin, and a low thermal expansion polyimide resin can be converted onto the thermoplastic polyimide precursor resin layer. Providing at least one low thermal expansion polyimide precursor resin layer, further provided at least one thermoplastic polyimide precursor resin layer convertible to a thermoplastic polyimide resin, then heat treated at least one thermoplastic polyimide System resin layer, the first step of producing a single-sided conductor laminate having at least three polyimide resin layers consisting of at least one low thermal expansion polyimide resin layer and at least one thermoplastic polyimide resin layer, and heating thermoplastic polyimide resin layer on the conductive metal foil of the single-sided conductor laminate under pressure (M 2) are stacked, less the One thermoplastic polyimide resin layer,
Second step to form a double-sided laminate in which conductive metal layers are laminated on both surfaces of at least three polyimide resin layers consisting of at least one low thermal expansion polyimide resin layer and at least one thermoplastic polyimide resin layer A method for producing a double-sided conductor polyimide laminate, comprising:
【請求項3】低熱膨張性ポリイミド系樹脂の線膨張係数
が30×10-6(1/K)以下であることを特徴とする請求項
1又は2記載の両面導体ポリイミド積層体の製造方法。
3. The method for producing a double-sided conductor polyimide laminate according to claim 1, wherein the coefficient of linear expansion of the low thermal expansion polyimide resin is 30 × 10 −6 (1 / K) or less.
【請求項4】低熱膨張性ポリイミド系樹脂層の厚みt1
熱可塑性ポリイミド系樹脂層の厚みt2の厚さの比(t1
t2)が2〜100の範囲であることを特徴とする請求項1
又は2記載の両面導体ポリイミド積層体の製造方法。
4. A ratio of the thickness t 1 of the low thermal expansion polyimide resin layer to the thickness t 2 of the thermoplastic polyimide resin layer (t 1 /
t 2 ) is in the range of 2-100.
Or a method for producing the double-sided conductor polyimide laminate according to 2.
JP1240633A 1989-09-19 1989-09-19 Method for producing double-sided conductor polyimide laminate Expired - Lifetime JPH0693537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240633A JPH0693537B2 (en) 1989-09-19 1989-09-19 Method for producing double-sided conductor polyimide laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240633A JPH0693537B2 (en) 1989-09-19 1989-09-19 Method for producing double-sided conductor polyimide laminate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2744298A Division JP3034838B2 (en) 1998-02-09 1998-02-09 Method for producing double-sided conductor polyimide laminate

Publications (2)

Publication Number Publication Date
JPH03104185A JPH03104185A (en) 1991-05-01
JPH0693537B2 true JPH0693537B2 (en) 1994-11-16

Family

ID=17062400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240633A Expired - Lifetime JPH0693537B2 (en) 1989-09-19 1989-09-19 Method for producing double-sided conductor polyimide laminate

Country Status (1)

Country Link
JP (1) JPH0693537B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998455B1 (en) * 1999-10-21 2006-02-14 Nippon Steel Chemical Co., Ltd. Laminate and process for producing the same
JP2011513965A (en) * 2008-02-29 2011-04-28 エルジー イノテック カンパニー,リミティド Printed circuit board and manufacturing method thereof
JP7126634B1 (en) * 2022-01-31 2022-08-26 株式会社荏原製作所 Plating equipment and plating method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270035A (en) * 2000-03-28 2001-10-02 Ube Ind Ltd Flexible metal foil laminate
US8501279B2 (en) 2005-10-25 2013-08-06 Hitachi Chemical Company, Ltd. Flexible laminate board, process for manufacturing of the board, and flexible print wiring board
JP4830625B2 (en) * 2006-05-15 2011-12-07 日立化成工業株式会社 Manufacturing method and manufacturing apparatus for flexible laminate
JP5287247B2 (en) 2006-10-04 2013-09-11 日立化成株式会社 Polyamideimide resin, adhesive, flexible substrate material, flexible laminate and flexible printed wiring board

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3424232A1 (en) * 1984-06-30 1986-01-23 Akzo Gmbh, 5600 Wuppertal Flexible polyimide multilayer laminates
DE3620601A1 (en) * 1986-06-19 1987-12-23 Akzo Gmbh METHOD FOR PRODUCING POLYIMIDE METAL LAMINATES
JPS6374635A (en) * 1986-09-18 1988-04-05 日立化成工業株式会社 Manufacture of flexible printed substrate
JPS6384188A (en) * 1986-09-29 1988-04-14 新日鐵化学株式会社 Manufacture of flexible printed circuit substrate
JPS6481495A (en) * 1987-09-22 1989-03-27 Yamatake Honeywell Co Ltd Building control terminal equipment
JPH01166944A (en) * 1987-12-24 1989-06-30 Hitachi Chem Co Ltd Manufacture of metal plated laminated sheet whose both sides are flexible
JP2783389B2 (en) * 1988-12-22 1998-08-06 三井化学株式会社 Method of manufacturing flexible metal foil laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998455B1 (en) * 1999-10-21 2006-02-14 Nippon Steel Chemical Co., Ltd. Laminate and process for producing the same
JP2011513965A (en) * 2008-02-29 2011-04-28 エルジー イノテック カンパニー,リミティド Printed circuit board and manufacturing method thereof
US8590144B2 (en) 2008-02-29 2013-11-26 Lg Innotek Co., Ltd. Method of manufacturing printed circuit board
JP7126634B1 (en) * 2022-01-31 2022-08-26 株式会社荏原製作所 Plating equipment and plating method

Also Published As

Publication number Publication date
JPH03104185A (en) 1991-05-01

Similar Documents

Publication Publication Date Title
US7285321B2 (en) Multilayer substrates having at least two dissimilar polyimide layers, useful for electronics-type applications, and compositions relating thereto
US7348064B2 (en) Low temperature polyimide adhesive compositions and methods relating thereto
US4937133A (en) Flexible base materials for printed circuits
KR100742066B1 (en) Thermoplastic polyimide resin film, multilayer body and method for manufacturing printed wiring board composed of same
JP5031639B2 (en) Flexible copper clad laminate
JP2004189981A (en) Thermoplastic polyimide resin material and laminated body, and manufacturing method of printed wiring board
WO2002064363A1 (en) Laminate and process for producing the same
JP5480490B2 (en) Adhesive film and flexible metal-clad laminate
JPH0739161B2 (en) Double-sided conductor polyimide laminate and manufacturing method thereof
JP5095142B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
KR100728150B1 (en) Bonding sheet and one-side metal-clad laminate
JP4345188B2 (en) Flexible metal foil laminate and manufacturing method thereof
JPH0693537B2 (en) Method for producing double-sided conductor polyimide laminate
WO2005086547A1 (en) Flexible printed wiring board and manufacturing method thereof
JP2001270033A (en) Method for manufacturing flexible metal foil laminate
JP3034838B2 (en) Method for producing double-sided conductor polyimide laminate
WO2005090070A1 (en) Method for producing substrate for flexible printed wiring board
JP4345187B2 (en) Method for producing flexible metal foil laminate
JP4389337B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP2004042579A (en) Copper-clad laminated sheet and its manufacturing method
JP5355858B2 (en) Multilayer wiring circuit board
JP2006328407A (en) Polyimide film and substrate for electric and electronic apparatus using same
JPH05114784A (en) Double sided flexible metal plated laminate board
KR102521460B1 (en) Flexible metal clad laminate and printed circuit board containing the same and polyimide precursor composition
JP2007216687A (en) Manufacturing method of copper clad laminated sheet and manufacturing method of substrate for electronic part

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term