JP2004042579A - Copper-clad laminated sheet and its manufacturing method - Google Patents

Copper-clad laminated sheet and its manufacturing method Download PDF

Info

Publication number
JP2004042579A
JP2004042579A JP2002206483A JP2002206483A JP2004042579A JP 2004042579 A JP2004042579 A JP 2004042579A JP 2002206483 A JP2002206483 A JP 2002206483A JP 2002206483 A JP2002206483 A JP 2002206483A JP 2004042579 A JP2004042579 A JP 2004042579A
Authority
JP
Japan
Prior art keywords
thermocompression
copper
bondable
copper foil
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002206483A
Other languages
Japanese (ja)
Inventor
Koji Narui
鳴井 耕治
Toshinori Hosoma
細馬 敏徳
Toshihiko Abu
阿武 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2002206483A priority Critical patent/JP2004042579A/en
Publication of JP2004042579A publication Critical patent/JP2004042579A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-clad laminated sheet suitable as an all polyimide substrate material, which can cope with a fine pattern formation which can not be achieved by a conventional and publicized copper-clad laminated sheet for a substrate. <P>SOLUTION: An ultrathin copper plating with a heat resistance carrier and a heat press bondable multilayer polyimide film comprising a heat press bondable aromatic polyimide layer and an aromatic polyimide layer high in heat resistance are heat press bonded, cooled and laminated under pressure, to obtain the copper-clad laminated sheet having a bonding strength of not less than 0.7 N/mm between the copper plating and the heat press bondable multilayer polyimide film and a peeling strength of not more than 0.2 N/mm between the carrier and the copper plating. Then, the lamination is executed by heat press bonding, cooling and laminating at a temperature from the glass transition of the heat press bondable aromatic polyimide to 400°C under pressure by a double belt press. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、銅張積層板及びその製造方法に関するものであり、さらに詳しくは極薄の銅箔を使用するにも関わらず大きな接着強度を有し、製品外観が良好であり、基板材料として好適な銅張積層板に関するものである。
【0002】
【従来の技術】
カメラ、パソコン、液晶ディスプレイなどの電子機器類への用途として芳香族ポリイミドフィルムは広く使用されている。
芳香族ポリイミドフィルムをフレキシブルプリント板(FPC)やテ−プ・オ−トメイティッド・ボンディング(TAB)などの基板材料として使用するためには、エポキシ樹脂などの接着剤を用いて銅箔を張り合わせる方法が採用されている。
【0003】
芳香族ポリイミドフィルムは耐熱性、機械的強度、電気的特性などが優れているが、接着剤の耐熱性等が劣るため、本来のポリイミドの特性を損なうことが指摘されている。
このような問題を解決するために、接着剤を使用しないでポリイミドフィルムに銅を電気メッキしたり、銅箔にポリアミック酸溶液を塗布し、乾燥、イミド化したり、熱可塑性ポリイミドを熱圧着させたオ−ルポリイミド基材が開発されている。
しかし、これらの方法によって得られるオ−ルポリイミドの金属箔積層体は、接着強度が小さいとか、接着強度は大きいが広幅、長尺の製品を得ることが困難であり、塗工厚みが厚い場合にイミド化に長時間を要し生産性が悪いという問題点が指摘されている。
【0004】
また、ポリイミドフィルムと金属箔との間にポリイミド接着剤をサンドイッチ状に接合したポリイミドラミネ−トが知られている(米国特許第4543295号)。
しかし、このポリイミドラミネ−トでは、低熱線膨張のビフェニルテトラカルボン酸系ポリイミドフィルムについては接着強度が小さく使用できないという問題がある。
【0005】
このため、ロ−ルラミネ−ト法においてラミネ−トロ−ルの材質として特定の硬度を有する金属を使用する方法や、熱圧着性のポリイミドとして特定の芳香族ジアミンによって得られたものを使用する方法が提案されている。
しかし、このポリイミドラミネ−トおよびその製法は、接着強度の大きい銅張積層板を得ることが困難であった。
【0006】
一方、ファインパタ−ン化の要求は大きく、銅箔として12μm程度の厚みのものが使用されはじめている。
しかし、このような改良によっても更なるファインパタ−ン化への要求には対応が困難である。
このため、蒸着またはスパッタ法によってあらかじめポリイミドフィルムに下地金属層を形成し銅メッキによって所定の厚さの銅メッキして得られる積層板や、キャリア無しあるいは有機系接合剤を使用したキャリア付き極薄銅箔をポリイミドフィルムにラミネ−トする試みもされているが、得られる銅張積層板は接着強度が小さいとか銅張基板に発泡が生じるとか後工程の加熱時に剥離するという問題が指摘されている。
【0007】
【発明が解決しようとする課題】
この発明の目的は、従来公知の基板用の銅張積層板では不可能であったファインパタ−ン化への対応を可能とするための極薄銅箔を使用することによる接着強度が小さいこと及び発泡の発生や加熱時の剥離発生等の問題点を解消した、オ−ルポリイミドの基板材料として好適な銅張積層板を提供することである。
【0008】
【課題を解決するための手段】
すなわち、この発明は、耐熱性キャリア付き極薄銅箔と熱圧着性の芳香族ポリイミド層および高耐熱性の芳香族ポリイミド層からなる熱圧着性多層ポリイミドフィルムとが加圧下に熱圧着−冷却して積層されてなり、銅箔と熱圧着性多層ポリイミドフィルムとの接着強度が0.7N/mm以上で、キャリアと銅箔との剥離強度が0.2N/mm以下である銅張積層板に関する。
【0009】
また、この発明は、耐熱性キャリア付き極薄銅箔と熱圧着性の芳香族ポリイミド層および高耐熱性の芳香族ポリイミド層からなる熱圧着性多層ポリイミドフィルムとをダブルベルトプレスによって加圧下に、熱圧着性の芳香族ポリイミドのガラス転移温度以上で400℃以下の温度で熱圧着−冷却して積層する前記の銅張積層板の製造方法に関する。
【0010】
【発明の実施の形態】
以下にこの発明の好ましい態様を列記ずる。
1)耐熱性キャリア付き極薄銅箔が、厚み1〜7μmの極薄銅箔を積層したものである上記の銅張積層板。
2)熱圧着性多層ポリイミドフィルムが、厚み7〜50μmである上記の銅張積層板。
3)熱圧着性多層ポリイミドフィルムが、共押出−流延製膜成形法によって高耐熱性の芳香族ポリイミド層の少なくとも片面に熱圧着性の芳香族ポリイミド層を積層一体化して得られるものである上記の銅張積層板。
【0011】
この発明の銅張積層板の構成としては、例えば次の組み合わせが挙げられる。
次の記載でTPI−Fは熱圧着性多層ポリイミドフィルムを示す。
▲1▼耐熱性キャリア付き極薄銅箔/TPI−F
▲2▼耐熱性キャリア付き極薄銅箔/TPI−F/金属箔またはセラミック箔
▲3▼耐熱性キャリア付き極薄銅箔/TPI−F/TPI/耐熱性キャリア付き極薄銅箔
【0012】
この発明においては、耐熱性キャリア付き極薄銅箔を使用することが必要である。この耐熱性キャリア付き極薄銅箔のキャリアとしては、金属系、セラミックス系等の耐熱性を有する接合剤と厚み20〜35μm程度の肉厚の銅箔などの金属とからなるものが挙げられ、極薄銅箔の厚みが3〜5μmであるものが好適である。
【0013】
前記の耐熱性キャリア付き極薄銅箔の具体例としては、例えばオ−リン社製の極薄銅箔(XTF:厚さ5μm/35μm、厚さ3μm/35μm、いずれも極薄銅箔/キャリア銅箔)、古河電気工業社製の極薄銅箔(F−CP:厚さ5μm/35μm、厚さ3μm/35μm、いずれも極薄銅箔/キャリア銅箔)が挙げられる。
【0014】
この発明における熱圧着性多層ポリイミドフィルムは、例えば高耐熱性の芳香族ポリイミドの前駆体(ポリアミック酸ともいう)溶液乾燥膜の片面あるいは両面に熱圧着性の芳香族ポリイミドの前駆体溶液を積層した後、あるいは好ましくは、共押出し−流延製膜法によって高耐熱性の芳香族ポリイミドの前駆体溶液の片面あるいは両面に熱圧着性の芳香族ポリイミドの前駆体溶液を積層した後、乾燥、イミド化して熱圧着性多層ポリイミドフィルムを得る方法によって得ることができる。
【0015】
前記の熱圧着性多層ポリイミドフィルムを構成する熱圧着性の芳香族ポリイミドとしては、300〜400℃程度の温度で熱圧着できる熱可塑性の芳香族ポリイミドであれば何でも良い。好適には1,3−ビス(4−アミノフェノキシベンゼン)(以下、TPERと略記することもある。)と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(以下、a−BPDAと略記することもある。)とから製造される。
また、前記の熱圧着性の芳香族ポリイミドとしては、1,3−ビス(4−アミノフェノキシ)−2,2−ジメチルプロパン(DANPG)と4,4’−オキシジフタル酸二無水物(ODPA)とから製造される。
あるいは、4,4’−オキシジフタル酸二無水物(ODPA)およびピロメリット酸二無水物と1,3−ビス(4−アミノフェノキシベンゼン)とから製造される。
また、1,3−ビス(3−アミノフェノキシ)ベンゼンと3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物とから、あるいは3,3’−ジアミノベンゾフェノンおよび1,3−ビス(3−アミノフェノキシ)ベンゼンと3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物とから製造される。
また、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下、単にs−BPDAと略記することもある。)、1,3−ビス(4−アミノフェノキシベンゼン)、4,4’−ジアミノジフェニルエ−テル(以下、単にDADEと略記することもある。)とから製造される。
【0016】
この熱圧着性の芳香族ポリイミドの物性を損なわない範囲で他のテトラカルボン酸二無水物、例えば3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3、4−ジカルボキシフェニル)プロパン二無水物などで置き換えられてもよい。
また、熱圧着性の芳香族ポリイミドの物性を損なわない範囲で他のジアミン、例えば4,4’−ジアミノジフェニルエ−テル、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルメタン、2,2−ビス(4−アミノフェニル)プロパン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェニル)ジフェニルエ−テル、4,4’−ビス(4−アミノフェニル)ジフェニルメタン、4,4’−ビス(4−アミノフェノキシ)ジフェニルエ−テル、4,4’−ビス(4−アミノフェノキシ)ジフェニルメタン、2,2−ビス〔4−(アミノフェノキシ)フェニル〕プロパンなどの複数のベンゼン環を有する芳香族ジアミン、によって置き換えられてもよい。
前記の熱圧着性の芳香族ポリイミドのアミン末端を封止するためにジカルボン酸類、例えば、フタル酸およびその置換体、ヘキサヒドロフタル酸およびその置換体など、特に、無水フタル酸を使用してもよい。
【0017】
前記の熱圧着性多層ポリイミドフィルムにおける高耐熱性の芳香族ポリイミドは、好適には3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とパラ−フェニレンジアミン(以下単にPPDと略記することもある。)と場合によりさらに4,4’−ジアミノジフェニルエ−テルおよび/またはピロメリット酸二無水物(以下単にPMDAと略記することもある。)とから製造される。この場合PPD/DADE(モル比)は100/0〜85/15であることが好ましい。また、s−BPDA/PMDAは100:0〜50/50であることが好ましい。
【0018】
また、高耐熱性の芳香族ポリイミドは、ピロメリット酸二無水物とパラフェニレンジアミンおよび4,4’−ジアミノジフェニルエ−テルとから製造される。この場合DADE/PPD(モル比)は90/10〜10/90であることが好ましい。
さらに、高耐熱性の芳香族ポリイミドは、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)およびピロメリット酸二無水物(PMDA)とパラフェニレンジアミン(PPD)および4,4’−ジアミノジフェニルエ−テル(DADE)とから製造される。この場合、酸二無水物中BTDAが20〜90モル%、PMDAが10〜80モル%、ジアミン中PPDが30〜90モル%、DADEが10〜70モル%であることが好ましい。
前記の高耐熱性の芳香族ポリイミドの物性を損なわない範囲で、他の種類の芳香族テトラカルボン酸二無水物や芳香族ジアミン、例えば4,4’−ジアミノジフェニルメタン等を使用してもよい。
また、前記の芳香族テトラカルボン酸二無水物や芳香族ジアミンの芳香環にフッ素基、水酸基、メチル基あるいはメトキシ基などの置換基を導入してもよい。
【0019】
前記の高耐熱性の芳香族ポリイミドとしては、単層のポリイミドフィルムの場合にガラス転移温度が約340℃未満程度の温度では確認不可能であるものが好ましく、特に線膨張係数(50〜200℃)(MD、TDおよびこれらの平均のいずれも)が5×10−6〜25×10−6cm/cm/℃であるものが好ましい。
この高耐熱性の芳香族ポリイミドの合成は、最終的に各成分の割合が前記範囲内であればランダム重合、ブロック重合、ブレンド、あるいはあらかじめ2種類以上のポリアミック酸溶液を合成しておき各ポリアミック酸溶液を混合してポリアミック酸の再結合によって共重合体を得る、いずれの方法によっても達成される。
【0020】
前記のポリアミック酸を得るために使用する有機溶媒は、高耐熱性の芳香族ポリイミドおよび熱圧着性の芳香族ポリイミドのいずれに対しても、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、クレゾ−ル類などが挙げられる。これらの有機溶媒は単独で用いてもよく、2種以上を併用してもよい。
【0021】
また、ポリアミック酸のゲル化を制限する目的でリン系安定剤、例えば亜リン酸トリフェニル、リン酸トリフェニル等をポリアミック酸重合時に固形分(ポリマ−)濃度に対して0.01〜1%の範囲で添加することができる。また、イミド化促進の目的で、ド−プ液中に塩基性有機化合物系触媒を添加することができる。例えば、イミダゾ−ル、2−イミダゾ−ル、1,2−ジメチルイミダゾ−ル、2−フェニルイミダゾ−ルなどをポリアミック酸(固形分)に対して0.01〜20重量%、特に0.5〜10重量%の割合で使用することができる。これらは比較的低温でポリイミドフィルムを形成するため、イミド化が不十分となることを避けるために使用する。
【0022】
前記の熱圧着性多層ポリイミドフィルムの製造においては、好適には共押出し−流延製膜法、例えば上記の高耐熱性の芳香族ポリイミドを与えるポリアミック酸溶液の片面あるいは両面に熱圧着性の芳香族ポリイミドを与えるポリアミック酸溶液を共押出して、これをステンレス鏡面、ベルト面等の支持体面上に流延塗布し、100〜200℃で半硬化状態またはそれ以前の乾燥状態とする方法が採用できる。200℃を越えた高い温度で流延フィルムを処理すると、熱圧着性多層ポリイミドフィルムの製造において、接着性の低下などの欠陥を来す傾向にある。この半硬化状態またはそれ以前の状態とは、加熱および/または化学イミド化によって自己支持性の状態にあることを意味する。
【0023】
前記高耐熱性の芳香族ポリイミドを与えるポリアミック酸の溶液と熱圧着性の芳香族ポリイミドを与えるポリアミック酸の溶液との共押出しは、例えば特開平3−180343号公報(特公平7−102661号公報)に記載の共押出法によって二層あるいは三層の押出し成形用ダイスに供給し、支持体上にキャストしておこなうことができる。
前記の高耐熱性の芳香族ポリイミドを与える押出し物層の片面あるいは両面に、熱圧着性の芳香族ポリイミドを与えるポリアミック酸溶液を積層して多層フィルム状物を形成して乾燥後、熱圧着性の芳香族ポリイミドのガラス転移温度(Tg)以上で劣化が生じる温度以下の温度、好適には300〜400℃の温度(表面温度計で測定した表面温度)まで加熱して(好適にはこの温度で1〜60分間加熱して)乾燥およびイミド化して、高耐熱性(基体層)の芳香族奥ポリイミドの片面あるいは両面に熱圧着性の芳香族ポリイミドを有する熱圧着性多層ポリイミドフィルムを製造することができる。
【0024】
この発明における熱圧着性多層ポリイミドを構成する熱圧着性の芳香族ポリイミドは、前記の酸成分とジアミン成分とを使用することによって、ガラス転移温度が180〜275℃、特に200〜275℃であって、好適には前記の条件で乾燥・イミド化して熱圧着性の芳香族ポリイミドのゲル化を実質的に起こさせないことによって得られる、ガラス転移温度以上で300℃以下の範囲内の温度で液状化せず、かつ弾性率が、通常275℃での弾性率が室温付近の温度(50℃)での弾性率の0.0002〜0.2倍程度を保持しているものが好ましい。
【0025】
この発明において、前記の熱圧着性多層ポリイミドを構成する熱圧着性の芳香族ポリイミド層の厚みは各々0.5〜10μm、特に1〜8μm程度が好ましい。0.5μm未満では接着性能が低下し、10μmを超えても使用可能であるが特に効果はなく、むしろ銅張積層板の耐熱性が低下する。
また、この発明において、前記の熱圧着性多層ポリイミドを構成する高耐熱性の(基体層)ポリイミド層の厚さは5〜50μm、特に5〜40μmであることが好ましい。5μm未満では作成した熱圧着性多層ポリイミドフィルムの機械的強度、寸法安定性に問題が生じる。
また、熱圧着性多層ポリイミドフィルムは厚みが7〜50μm、特に7〜50μmであることが好ましい。7μm未満では作成したフィルムの取り扱いが難しく、50μmより厚くなるとファインパタ−ン化に不利である。
【0026】
前記の共押出し−流延製膜法によれば、高耐熱性の芳香族ポリイミド層とその片面あるいは両面の熱圧着性の芳香族ポリイミドとを比較的低温度でキュアして熱圧着性の芳香族ポリイミドの劣化を来すことなく、自己支持性フィルムのイミド化、乾燥を完了させることができ、良好な電気特性および接着強度を有する熱圧着性多層ポリイミドフィルムを得ることができる。
【0027】
この発明においては、前記の耐熱性キャリア付き極薄銅箔と熱圧着性多層ポリイミドフィルムと、場合によりさらに同種の耐熱性キャリア付き極薄銅箔あるいは異種の金属箔とをダブルベルトプレスに導入し、好適には導入する直前のインラインで150〜250℃程度に予熱して、加圧下に高温加熱−冷却して積層一体化して、銅張積層板を得る。
【0028】
また、ダブルベルトプレスの加熱圧着ゾ−ンの温度が熱圧着性の芳香族ポリイミドのガラス転移温度より20℃以上高く400℃以下の温度、特にガラス転移温度より30℃以上高く400℃以下の温度で加圧下に熱圧着し、引き続いて冷却ゾ−ンで加圧下に冷却して、好適には熱圧着性ポリイミドのガラス転移温度より20℃以上低い温度、特に30℃以上低い温度まで冷却して、銅張積層板を得ることが好ましい。
【0029】
前記の方法において、3層構造の熱圧着性多層ポリイミドフィルムを使用して片面耐熱性キャリア付き極薄銅箔の1層と積層する場合には、剥離容易な高耐熱性フィルム、例えばRzが2μm未満の高耐熱性フィルム、好適にはポリイミドフィルム(宇部興産社製、ユ−ピレックスS)やフッ素樹脂フィルムなどの高耐熱性樹脂フィルムや圧延銅箔などであって表面粗さが小さく表面平滑性の良好な金属箔を保護材として、巻き取り時に熱圧着性ポリイミド層と他の耐熱性キャリア付き極薄銅箔の耐熱性キャリア面との間に介在させてもよい。この保護材は積層後、積層体から除いて巻き取っても良く、保護材を積層したままで巻き取って使用時に取り除いてもよい。
【0030】
この発明においては、耐熱性キャリア付き極薄銅箔と熱圧着性の芳香族ポリイミド層および高耐熱性の芳香族ポリイミド層からなる熱圧着性多層ポリイミドフィルムとをダブルベルトプレスによって加圧下に、熱圧着性の芳香族ポリイミドのガラス転移温度以上で400℃以下の温度で熱圧着−冷却して積層することによって、銅箔と熱圧着性多層ポリイミドフィルムとの接着強度が0.7N/mm以上で、キャリアと銅箔との剥離強度が0.2N/mm以下、好適には0.1N/mm以下であり、耐熱性キャリア表面に発泡が実質的に認められない程外観が良好な銅張積層板を得ることができる。
【0031】
この発明の銅張積層板は、そのままあるいはロ−ル巻き、エッチング、および場合によりカ−ル戻し等の各処理を行った後、必要ならば所定の大きさに切断して、電子部品用基板として使用できる。
例えば、FPC、TAB、多層FPC、フレックスリジッド基板の基板として好適に使用することができる。
また、耐熱性キャリアを剥離した極薄銅箔の厚みが1〜7μm、特に3〜5μmで熱圧着性多層ポリイミドフィルム層の厚みが7〜50μmである片面銅箔積層体(全体厚みが15〜27μm)あるいは両面銅箔積層体(全体厚みが25〜40μm)から、エポキシ系接着剤あるいは熱可塑性ポリイミドや熱可塑性ポリアミドイミドあるいはポリイミドシロキサン−エポキシ系などの耐熱性ポリイミド系接着剤から選ばれる耐熱性接着剤(厚み5〜50μm、好ましくは5〜15μm、特に7〜12μm)で複数の銅箔積層体を接着することによって銅箔積層体が2〜10層で、高耐熱性・低吸水・低誘電率・高電気特性を満足する多層基板を好適に得ることができる。
この発明の銅張積層板には、長尺状のものだけでなく前記のように長尺状のものを所定の大きさに切断したものも含まれる。
【0032】
この発明の銅張積層板には、耐熱性キャリアを剥離してそれ自体公知のエッチング工程および加熱工程の逐次処理を加えて、回路基板として使用される。
前記のエッチング工程としては、例えば銅張積層板の銅箔を常温で塩化第二鉄水溶液などのエッチング処理液によってエッチング処理する方法が挙げられる。また、前記の加熱工程としては、例えば耐熱性キャリアを剥離した銅張積層板を280℃の半田浴に10秒間程度浸漬する半田処理や、他の銅張積層板と耐熱性接着剤によって積層して多層基板とする加熱圧着が挙げられる。
【0033】
【実施例】
以下、この発明を実施例によりさらに詳細に説明する。
以下の各例において、物性評価は以下の方法に従って行った。
熱線膨張係数:50−200℃、5℃/分で測定(TD、MDの平均値)、cm/cm/℃
ガラス転移温度(Tg):粘弾性より測定。
接着強度:銅厚さを厚付けメッキでさらに10μm程増した状態で、90°剥離強度を10mm幅の試料について、50mm/分の速度で測定した。
剥離強度:キャリア銅箔と極薄銅箔との間の90°剥離強度を10mm幅の試料について、50mm/分の速度で測定した。
製品外観:積層後の製品外観について、発泡による膨れの有無を目視判定して評価。
○は発泡無しで良好、△は一部に発泡有り、×全面に発泡が発生
総合評価:○は良好、△はやや良好、×は不良
【0034】
高耐熱性の芳香族ポリイミド製造用ド−プの合成例1
攪拌機、窒素導入管を備えた反応容器に、N−メチル−2−ピロリドンを加え、さらに、パラフェニレンジアミンと3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とを1000:998のモル比でモノマ−濃度が18%(重量%、以下同じ)になるように加えた。添加終了後50℃を保ったまま3時間反応を続けた。得られたポリアミック酸溶液は褐色粘調液体であり、25℃における溶液粘度は約1500ポイズであった。この溶液をド−プとして使用した。
【0035】
熱圧着性の芳香族ポリイミド製造用ド−プの合成−1
攪拌機、窒素導入管を備えた反応容器に、N−メチル−2−ピロリドンを加え、さらに、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,3−ビス(4−アミノフェノキシ)ベンゼンおよび4,4’−ジアミノジフェニルエ−テルを20:80:50:50のモル比でモノマ−濃度が22%になるように、またトリフェニルホスフェ−トをモノマ−重量に対して0.1%加えた。添加終了後25℃を保ったまま1時間反応を続けた。このポリアミック酸溶液は、25℃における溶液粘度が約2000ポイズであった。この溶液をド−プとして使用した。
【0036】
参考例1
上記の高耐熱性の芳香族ポリイミド用ド−プと熱圧着性の芳香族ポリイミド製造用ド−プとを三層押出し成形用ダイス(マルチマニホ−ルド型ダイス)を設けた製膜装置を使用し、ダイスの厚みを変え、金属製支持体上に流延し、140℃の熱風で連続的に乾燥し、固化フィルムを形成した。この固化フィルムを支持体から剥離した後加熱炉で200℃から320℃まで徐々に昇温して溶媒の除去、イミド化を行って、次の2種類の熱圧着性三層押出しポリイミドフィルムを巻き取りロ−ルに巻き取った。
この熱圧着性三層押出しポリイミドフィルムは、次のような物性を示した。
【0037】
1)熱圧着性多層ポリイミドフィルム
厚み構成:4μm/17μm/4μm(合計25μm)
熱圧着性の芳香族ポリイミドのTg:261℃
熱線膨張係数(50〜200℃):19×10−6×cm/cm/℃
体積抵抗:5×1015Ω・cm
2)熱圧着性多層ポリイミドフィルム−2
厚み構成:5μm/28μm/5μm(合計38μm)
熱圧着性の芳香族ポリイミドのTg:265℃
熱線膨張係数(50〜200℃):20×10−6×cm/cm/℃
体積抵抗:6×1015Ω・cm
【0038】
実施例1
熱圧着性三層押出しポリイミドフィルム−1と、耐熱性キャリア付き極薄銅箔としてオ−リン社製のXTF(極薄銅箔の厚さ5μm/キャリア銅箔の厚さ35μm)2枚とを、ダブルベルトプレスに連続的に供給し、予熱後、加熱ゾ−ンの温度(最高加熱温度)330℃(設定)、冷却ゾ−ンの温度(最低冷却温度)117℃)、圧着圧力40kg/cm、圧着時間2分で、連続的に加圧下に熱圧着−冷却して積層し、銅張積層板(幅:約530mm、以下同じ)であるロ−ル巻状物を得た。
得られた銅張積層板についての評価結果を次に示す。
製品外観:○
接着強度:0.9N/mm
キャリア銅箔剥離強度:0.00N/mm
総合評価:○
【0039】
実施例2
耐熱性キャリア付き極薄銅箔として、オ−リン社製のXTF(極薄銅箔の厚さ3μm/キャリア銅箔の厚さ35μm)を使用した他は実施例1と同様にして、銅張積層板(幅:約530mm、以下同じ)であるロ−ル巻状物を得た。
得られた銅張積層板についての評価結果を次に示す。
製品外観:○
接着強度:1.0N/mm
キャリア銅箔剥離強度:0.00N/mm
総合評価:○
【0040】
実施例3
熱圧着性多層ポリイミドフィルムとして熱圧着性三層押出しポリイミドフィルム−2を使用した他は実施例1と同様にして、銅張積層板(幅:約530mm、以下同じ)であるロ−ル巻状物を得た。
得られた銅張積層板についての評価結果を次に示す。
製品外観:○
接着強度:0.9N/mm
キャリア銅箔剥離強度:0.00N/mm
総合評価:○
【0041】
実施例4
耐熱性キャリア付き極薄銅箔として、古河電気工業社製のF−CP(極薄銅箔の厚さ5μm/キャリア銅箔の厚さ35μm)を使用した他は実施例1と同様にして、銅張積層板(幅:約530mm、以下同じ)であるロ−ル巻状物を得た。
得られた銅張積層板についての評価結果を次に示す。
製品外観:○
接着強度:0.9N/mm
キャリア銅箔剥離強度:0.05N/mm
総合評価:○
【0042】
実施例5
耐熱性キャリア付き極薄銅箔として、古河電気工業社製のF−CP(極薄銅箔の厚さ3μm/キャリア銅箔の厚さ35μm)を使用した他は実施例1と同様にして、銅張積層板(幅:約530mm、以下同じ)であるロ−ル巻状物を得た。
得られた銅張積層板についての評価結果を次に示す。
製品外観:○
接着強度:0.9N/mm
キャリア銅箔剥離強度:0.04N/mm
総合評価:○
【0043】
実施例6
熱圧着性多層ポリイミドフィルムとして熱圧着性三層押出しポリイミドフィルム−2を使用し、耐熱性キャリア付き極薄銅箔として古河電気工業社製のF−CP(極薄銅箔の厚さ5μm/キャリア銅箔の厚さ35μm)を使用した他は実施例1と同様にして、銅張積層板(幅:約530mm、以下同じ)であるロ−ル巻状物を得た。
得られた銅張積層板についての評価結果を次に示す。
製品外観:○
接着強度:0.8N/mm
キャリア銅箔剥離強度:0.06N/mm
総合評価:○
【0044】
比較例1
銅箔として三井金属工業社製のMT35S−H(極薄銅箔のみの厚さ5μm)を使用し、圧着温度320℃とした他は実施例1と同様にして、銅張積層板(幅:約530mm、以下同じ)であるロ−ル巻状物を得た。
得られた銅張積層板についての評価結果を次に示す。
製品外観:×(発泡激しい)
接着強度:0.8N/mm
総合評価:×
【0045】
比較例2
銅箔として三井金属工業社製のMT35S−H(極薄銅箔のみの厚さ5μm)を使用し、圧着温度340℃とした他は実施例1と同様にして、銅張積層板(幅:約530mm、以下同じ)であるロ−ル巻状物を得た。
得られた銅張積層板についての評価結果を次に示す。
製品外観:×(発泡激しい)
接着強度:0.8N/mm
総合評価:×
【0046】
実施例1〜6で得られた銅箔キャリア付き極薄銅箔を両面に有する銅張積層板から巻替機にて銅箔キャリアを剥離し、ドライフィルムを使用し塩化第二鉄でエッチングすることによって、40μmピッチの細線配線を形成することができた。
【0047】
【発明の効果】
この発明によれば、以上のような構成を有しているため、次のような効果を奏する。
この発明によれば、接着強度が大きく外観良好で極薄銅箔であるため細線パタ−ンエッチングに対応できる銅張積層板を得ることができ、特に40μmピッチ以下の細線配線に有効な銅張積層板を得ることができる。
また、この発明によれば、上記の銅張積層板を容易に得ることができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a copper-clad laminate and a method for producing the same, and more particularly, has a large adhesive strength despite using an extremely thin copper foil, has a good product appearance, and is suitable as a substrate material. Copper-clad laminates.
[0002]
[Prior art]
Aromatic polyimide films are widely used for electronic devices such as cameras, personal computers, and liquid crystal displays.
In order to use an aromatic polyimide film as a substrate material for a flexible printed board (FPC) or a tape-automated bonding (TAB), a copper foil is laminated using an adhesive such as an epoxy resin. The method has been adopted.
[0003]
It has been pointed out that aromatic polyimide films are excellent in heat resistance, mechanical strength, electrical properties, and the like, but are inferior in properties of polyimide due to poor heat resistance of adhesives.
In order to solve such a problem, copper was electroplated on a polyimide film without using an adhesive, a polyamic acid solution was applied to a copper foil, dried, imidized, or thermoplastic polyimide was thermocompressed. All-polyimide substrates have been developed.
However, the metal foil laminate of all-polyimide obtained by these methods has a low adhesive strength or a large adhesive strength, but it is difficult to obtain a wide and long product. It has been pointed out that imidization takes a long time and productivity is poor.
[0004]
Also, a polyimide laminate in which a polyimide adhesive is sandwiched between a polyimide film and a metal foil is known (US Pat. No. 4,543,295).
However, this polyimide laminate has a problem that it cannot be used for a biphenyltetracarboxylic acid-based polyimide film having a low linear thermal expansion because of its low adhesive strength.
[0005]
For this reason, a method of using a metal having a specific hardness as a material of the laminating roll in the roll laminating method or a method of using a polyimide obtained by using a specific aromatic diamine as a thermocompression bonding polyimide Has been proposed.
However, it has been difficult to obtain a copper-clad laminate having high adhesive strength by using this polyimide laminate and its manufacturing method.
[0006]
On the other hand, there is a great demand for fine patterns, and copper foils having a thickness of about 12 μm have begun to be used.
However, even with such improvements, it is difficult to respond to demands for further fine patterning.
For this reason, a laminated board obtained by forming a base metal layer on a polyimide film in advance by vapor deposition or sputtering and copper plating of a predetermined thickness by copper plating, or an ultra-thin with no carrier or with a carrier using an organic bonding agent Attempts have been made to laminate copper foil to polyimide film, but the resulting copper-clad laminate has problems such as low adhesive strength, foaming of the copper-clad substrate, and peeling during heating in the post-process. I have.
[0007]
[Problems to be solved by the invention]
It is an object of the present invention to reduce the adhesive strength by using an ultra-thin copper foil to enable fine patterning, which was impossible with a conventionally known copper-clad laminate for a substrate. An object of the present invention is to provide a copper-clad laminate suitable as a substrate material of all-polyimide, which has solved problems such as generation of foaming and peeling during heating.
[0008]
[Means for Solving the Problems]
That is, the present invention provides a thermocompression bonding multilayer polyimide film comprising an ultrathin copper foil with a heat-resistant carrier, a thermocompression-bondable aromatic polyimide layer and a high heat-resistance aromatic polyimide layer, which is thermocompression-pressed and cooled. A copper-clad laminate having an adhesion strength between a copper foil and a thermocompression-bondable multilayer polyimide film of 0.7 N / mm or more and a peel strength between a carrier and the copper foil of 0.2 N / mm or less. .
[0009]
In addition, the present invention, under ultra-thin copper foil with a heat-resistant carrier and a thermocompression-bondable aromatic polyimide layer and a thermocompression-bondable multilayer polyimide film composed of a high heat-resistance aromatic polyimide layer under pressure by a double belt press, The present invention relates to a method for producing the above-mentioned copper-clad laminate, in which thermocompression bonding and cooling are performed at a temperature not lower than the glass transition temperature of the thermocompression-bonding aromatic polyimide and not higher than 400 ° C. and cooling.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the present invention will be listed below.
1) The above-mentioned copper-clad laminate, wherein the ultra-thin copper foil with a heat-resistant carrier is obtained by laminating ultra-thin copper foils having a thickness of 1 to 7 µm.
2) The above copper-clad laminate, wherein the thermocompression-bondable multilayer polyimide film has a thickness of 7 to 50 µm.
3) A thermocompression-bondable multilayer polyimide film is obtained by laminating and integrating a thermocompression-bondable aromatic polyimide layer on at least one surface of a highly heat-resistant aromatic polyimide layer by a coextrusion-cast film forming method. The above copper clad laminate.
[0011]
Examples of the configuration of the copper-clad laminate of the present invention include the following combinations.
In the following description, TPI-F indicates a thermocompression-bondable multilayer polyimide film.
(1) Ultra-thin copper foil with heat-resistant carrier / TPI-F
(2) Ultra-thin copper foil with heat-resistant carrier / TPI-F / metal foil or ceramic foil
(3) Ultra-thin copper foil with heat-resistant carrier / TPI-F / TPI / ultra-thin copper foil with heat-resistant carrier
[0012]
In the present invention, it is necessary to use an ultra-thin copper foil with a heat-resistant carrier. Examples of the ultra-thin copper foil carrier with a heat-resistant carrier include those made of a metal-based, ceramic-based heat-resistant bonding agent and a metal such as a copper foil having a thickness of about 20 to 35 μm, It is preferable that the thickness of the ultra-thin copper foil is 3 to 5 μm.
[0013]
Specific examples of the ultra-thin copper foil with a heat-resistant carrier include, for example, an ultra-thin copper foil (XTF: 5 μm / 35 μm in thickness, 3 μm / 35 μm in thickness, all of which are ultra-thin copper foil / carrier Copper foil) and ultra-thin copper foil (F-CP: thickness 5 μm / 35 μm, thickness 3 μm / 35 μm, all ultra-thin copper foil / carrier copper foil) manufactured by Furukawa Electric Co., Ltd.
[0014]
The thermocompression-bondable multilayer polyimide film in the present invention is obtained by laminating a thermocompression-bondable aromatic polyimide precursor solution on one or both sides of a high heat-resistant aromatic polyimide precursor (also referred to as polyamic acid) solution dried film. Later, or preferably, after laminating a thermocompression-bondable aromatic polyimide precursor solution on one or both sides of a highly heat-resistant aromatic polyimide precursor solution by co-extrusion-casting film forming method, drying, imide To obtain a thermocompression-bondable multilayer polyimide film.
[0015]
As the thermocompression-bondable aromatic polyimide constituting the thermocompression-bondable multilayer polyimide film, any thermoplastic aromatic polyimide that can be thermocompression-bonded at a temperature of about 300 to 400 ° C. may be used. Preferably, 1,3-bis (4-aminophenoxybenzene) (hereinafter sometimes abbreviated as TPER) and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (hereinafter a- BPDA).
Further, as the thermocompression-bondable aromatic polyimide, 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane (DANPG) and 4,4′-oxydiphthalic dianhydride (ODPA) are used. Manufactured from.
Alternatively, it is produced from 4,4′-oxydiphthalic dianhydride (ODPA) and pyromellitic dianhydride and 1,3-bis (4-aminophenoxybenzene).
Alternatively, 1,3-bis (3-aminophenoxy) benzene and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride or 3,3′-diaminobenzophenone and 1,3-bis ( Prepared from 3-aminophenoxy) benzene and 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride.
Further, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter may be simply abbreviated as s-BPDA) ), 1,3-bis (4-aminophenoxybenzene), and 4,4′-diaminodiphenyl ether (hereinafter may be simply abbreviated as DADE).
[0016]
Other tetracarboxylic dianhydrides such as 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,2-bis (3 , 4-dicarboxyphenyl) propane dianhydride and the like.
Further, other diamines such as 4,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylmethane, and 2,4,4′-diaminodiphenyl ether within a range that does not impair the physical properties of the thermocompression-bondable aromatic polyimide. 2-bis (4-aminophenyl) propane, 1,4-bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenyl) diphenyl ether, 4,4'-bis (4- Aminophenyl) diphenylmethane, 4,4'-bis (4-aminophenoxy) diphenylether, 4,4'-bis (4-aminophenoxy) diphenylmethane, 2,2-bis [4- (aminophenoxy) phenyl] It may be replaced by an aromatic diamine having multiple benzene rings, such as propane.
Dicarboxylic acids, such as phthalic acid and its substituted products, such as hexahydrophthalic acid and its substituted products, in order to block the amine end of the thermocompression-bondable aromatic polyimide, particularly when phthalic anhydride is used. Good.
[0017]
The aromatic polyimide having high heat resistance in the thermocompression-bondable multilayer polyimide film is preferably 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and para-phenylenediamine (hereinafter simply abbreviated as PPD). In some cases) and optionally 4,4'-diaminodiphenyl ether and / or pyromellitic dianhydride (hereinafter sometimes abbreviated simply as PMDA). In this case, the PPD / DADE (molar ratio) is preferably from 100/0 to 85/15. Further, s-BPDA / PMDA is preferably from 100: 0 to 50/50.
[0018]
A high heat-resistant aromatic polyimide is produced from pyromellitic dianhydride, paraphenylenediamine and 4,4'-diaminodiphenyl ether. In this case, DADE / PPD (molar ratio) is preferably from 90/10 to 10/90.
Furthermore, high heat-resistant aromatic polyimides include 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and pyromellitic dianhydride (PMDA) and paraphenylenediamine (PPD) and 4 , 4'-diaminodiphenyl ether (DADE). In this case, it is preferable that BTDA in the acid dianhydride is 20 to 90 mol%, PMDA is 10 to 80 mol%, PPD in the diamine is 30 to 90 mol%, and DADE is 10 to 70 mol%.
Other kinds of aromatic tetracarboxylic dianhydrides and aromatic diamines such as 4,4'-diaminodiphenylmethane may be used as long as the physical properties of the high heat-resistant aromatic polyimide are not impaired.
Further, a substituent such as a fluorine group, a hydroxyl group, a methyl group or a methoxy group may be introduced into the aromatic ring of the aromatic tetracarboxylic dianhydride or the aromatic diamine.
[0019]
As the high heat-resistant aromatic polyimide, those which cannot be confirmed at a glass transition temperature of about less than about 340 ° C. in the case of a single-layer polyimide film are preferable, and particularly have a linear expansion coefficient (50 to 200 ° C.). ) (MD, TD and any of their averages) is 5 × 10 -6 ~ 25 × 10 -6 Those having a cm / cm / ° C are preferred.
In the synthesis of this highly heat-resistant aromatic polyimide, if the proportion of each component is finally within the above range, random polymerization, block polymerization, blending, or synthesis of two or more kinds of polyamic acid solutions in advance to prepare each polyamic acid This is achieved by any method of mixing an acid solution to obtain a copolymer by recombination of a polyamic acid.
[0020]
The organic solvent used to obtain the above polyamic acid is N-methyl-2-pyrrolidone, N, N-dimethylformamide for both high heat-resistant aromatic polyimide and thermocompression-bondable aromatic polyimide. , N, N-dimethylacetamide, N, N-diethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, N-methylcaprolactam, cresols and the like. These organic solvents may be used alone or in combination of two or more.
[0021]
For the purpose of limiting the gelling of the polyamic acid, a phosphorus-based stabilizer such as triphenyl phosphite, triphenyl phosphate or the like is used in an amount of 0.01 to 1% based on the solid content (polymer) concentration at the time of polyamic acid polymerization. Can be added. Further, a basic organic compound-based catalyst can be added to the dope solution for the purpose of accelerating imidization. For example, imidazole, 2-imidazole, 1,2-dimethylimidazole, 2-phenylimidazole, or the like is used in an amount of 0.01 to 20% by weight, especially 0.5% by weight based on polyamic acid (solid content). It can be used in a proportion of up to 10% by weight. These are used to form a polyimide film at a relatively low temperature and to prevent imidization from becoming insufficient.
[0022]
In the production of the thermocompression-bondable multilayer polyimide film, preferably, a co-extrusion-casting film forming method, for example, a thermocompression-bondable aromatic film is applied to one or both surfaces of a polyamic acid solution to give the high heat-resistant aromatic polyimide. A method of coextruding a polyamic acid solution to give an aromatic polyimide, casting and applying the solution on a support surface such as a stainless steel mirror surface, a belt surface, or the like, and setting it in a semi-cured state at 100 to 200 ° C. or a dried state before it can be adopted. . When the cast film is processed at a high temperature exceeding 200 ° C., defects such as a decrease in adhesiveness tend to occur in the production of a thermocompression-bondable multilayer polyimide film. The semi-cured state or a state before that means that it is in a self-supporting state by heating and / or chemical imidization.
[0023]
The co-extrusion of a polyamic acid solution giving an aromatic polyimide with high heat resistance and a polyamic acid solution giving an aromatic polyimide with thermocompression bonding is described, for example, in Japanese Patent Application Laid-Open No. 3-180343 (JP-B-7-102661). The co-extrusion method described in the above) can be applied to a two- or three-layer extrusion die and cast on a support.
On one or both sides of the extrudate layer giving the high heat-resistant aromatic polyimide, a polyamic acid solution giving the thermocompression-bondable aromatic polyimide is laminated to form a multilayer film-like material, dried, and then heat-pressed. Is heated to a temperature not higher than the temperature at which degradation occurs above the glass transition temperature (Tg) of the aromatic polyimide, preferably 300 to 400 ° C. (surface temperature measured by a surface thermometer) (preferably this temperature). Drying for 1 to 60 minutes) and imidization to produce a thermocompression-bondable multilayer polyimide film having a thermocompression-bondable aromatic polyimide on one or both sides of a high heat-resistant (substrate layer) aromatic back polyimide. be able to.
[0024]
The thermocompression-bondable aromatic polyimide constituting the thermocompression-bondable multilayer polyimide according to the present invention has a glass transition temperature of 180 to 275 ° C, particularly 200 to 275 ° C by using the acid component and the diamine component. Preferably, it is obtained by drying and imidizing under the above-mentioned conditions and substantially not causing gelation of the thermocompression-bondable aromatic polyimide. Preferably, the elastic modulus does not change and the elastic modulus at 275 ° C. is about 0.0002 to 0.2 times the elastic modulus at a temperature around room temperature (50 ° C.).
[0025]
In the present invention, the thickness of the thermocompression-bondable aromatic polyimide layer constituting the thermocompression-bondable multilayer polyimide is preferably 0.5 to 10 μm, particularly preferably about 1 to 8 μm. If it is less than 0.5 μm, the adhesive performance is reduced, and if it exceeds 10 μm, it can be used, but there is no particular effect, and rather the heat resistance of the copper clad laminate decreases.
In the present invention, the thickness of the high heat-resistant (substrate layer) polyimide layer constituting the thermocompression-bondable multilayer polyimide is preferably 5 to 50 μm, particularly preferably 5 to 40 μm. If the thickness is less than 5 μm, problems arise in mechanical strength and dimensional stability of the formed thermocompression-bondable multilayer polyimide film.
The thermocompression-bondable multilayer polyimide film preferably has a thickness of 7 to 50 μm, particularly preferably 7 to 50 μm. If the thickness is less than 7 μm, it is difficult to handle the prepared film, and if the thickness is more than 50 μm, it is disadvantageous to obtain a fine pattern.
[0026]
According to the co-extrusion-casting film forming method, a high heat-resistant aromatic polyimide layer and one or both sides of the thermocompression-bondable aromatic polyimide are cured at a relatively low temperature to form a thermocompression-bondable aromatic layer. The imidization and drying of the self-supporting film can be completed without deteriorating the group-III polyimide, and a thermocompression-bonding multilayer polyimide film having good electric properties and adhesive strength can be obtained.
[0027]
In the present invention, the ultra-thin copper foil with a heat-resistant carrier and the thermocompression-bonding multilayer polyimide film, and optionally, the ultra-thin copper foil with a heat-resistant carrier of the same type or a metal foil of a different kind are introduced into a double belt press. Preferably, it is preheated to about 150 to 250 ° C. in-line just before introduction, heated to high temperature under cooling and cooled, and laminated and integrated to obtain a copper-clad laminate.
[0028]
Further, the temperature of the thermocompression zone of the double belt press is higher than the glass transition temperature of the thermocompression-bonding aromatic polyimide by 20 ° C. or more and 400 ° C. or less, particularly the temperature of 30 ° C. or higher and 400 ° C. or less than the glass transition temperature. Thermocompression bonding under pressure, followed by cooling under pressure in a cooling zone, preferably to a temperature lower than the glass transition temperature of the thermocompression-bondable polyimide by 20 ° C. or more, particularly 30 ° C. or more. It is preferable to obtain a copper-clad laminate.
[0029]
In the above method, when using a thermocompression-bonding multi-layer polyimide film having a three-layer structure and laminating it with one layer of an ultra-thin copper foil with a single-sided heat-resistant carrier, a highly heat-resistant film that is easily peelable, for example, Rz is 2 μm Less heat-resistant film, preferably a polyimide film (Ube Industries, U-PILEX S), a high heat-resistant resin film such as a fluororesin film, a rolled copper foil, etc., having low surface roughness and low surface smoothness May be interposed between the thermocompression-bonding polyimide layer and the heat-resistant carrier surface of another heat-resistant ultra-thin copper foil with a carrier as a protective material. After lamination, this protective material may be removed from the laminate and rolled up, or may be rolled up with the protective material laminated and removed at the time of use.
[0030]
In the present invention, the ultra-thin copper foil with a heat-resistant carrier and a thermocompression-bonding multilayer polyimide film comprising a thermocompression-bonding aromatic polyimide layer and a high heat-resistance aromatic polyimide layer are heated under pressure by a double belt press, and then heat-treated. The thermocompression bonding at a temperature of 400 ° C. or lower and the glass transition temperature of the aromatic polyimide is higher than the glass transition temperature by cooling and laminating, so that the adhesive strength between the copper foil and the thermocompression multilayer polyimide film is 0.7 N / mm or more. The copper-clad laminate has a peel strength between the carrier and the copper foil of 0.2 N / mm or less, preferably 0.1 N / mm or less, and has such a good appearance that substantially no foaming is observed on the surface of the heat-resistant carrier. You can get a board.
[0031]
The copper-clad laminate of the present invention may be cut to a predetermined size as it is or after being subjected to various processes such as roll winding, etching, and, if necessary, curling, and then cut to a predetermined size. Can be used as
For example, it can be suitably used as a substrate for FPC, TAB, multilayer FPC, or flex-rigid substrate.
Further, a single-sided copper foil laminate (having a total thickness of 15 to 10 μm), in which the thickness of the ultrathin copper foil from which the heat-resistant carrier has been removed is 1 to 7 μm, particularly 3 to 5 μm, and the thickness of the thermocompression-bondable multilayer polyimide film layer is 7 to 50 μm. 27 μm) or a double-sided copper foil laminate (having a total thickness of 25 to 40 μm), or an epoxy adhesive or a heat-resistant polyimide adhesive such as thermoplastic polyimide, thermoplastic polyamideimide, or polyimidesiloxane-epoxy. By bonding a plurality of copper foil laminates with an adhesive (thickness of 5 to 50 μm, preferably 5 to 15 μm, especially 7 to 12 μm), the copper foil laminate has 2 to 10 layers, and has high heat resistance, low water absorption, and low heat resistance. A multilayer substrate that satisfies the dielectric constant and high electrical characteristics can be suitably obtained.
The copper-clad laminate of the present invention includes not only a long one but also a long one cut into a predetermined size as described above.
[0032]
The copper-clad laminate of the present invention is used as a circuit board after the heat-resistant carrier is peeled off and subjected to a known etching step and heating step, which are known per se.
Examples of the etching step include a method of etching a copper foil of a copper-clad laminate at room temperature with an etching solution such as an aqueous ferric chloride solution. In the heating step, for example, the copper-clad laminate from which the heat-resistant carrier has been peeled off is immersed in a solder bath at 280 ° C. for about 10 seconds, or is laminated with another copper-clad laminate with a heat-resistant adhesive. Thermocompression bonding to form a multilayer substrate.
[0033]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
In each of the following examples, physical properties were evaluated according to the following methods.
Coefficient of linear thermal expansion: 50-200 ° C, measured at 5 ° C / min (average value of TD and MD), cm / cm / ° C
Glass transition temperature (Tg): measured from viscoelasticity.
Adhesive strength: 90 ° peel strength was measured at a rate of 50 mm / min for a sample having a width of 10 mm with the copper thickness further increased by about 10 μm by thick plating.
Peel strength: The 90 ° peel strength between the carrier copper foil and the ultra-thin copper foil was measured at a rate of 50 mm / min for a 10 mm wide sample.
Product appearance: The appearance of the product after lamination was evaluated by visually determining the presence or absence of blisters due to foaming.
○: good without foaming, △: foaming partially, × foaming all over
Comprehensive evaluation: ○ is good, △ is slightly good, × is bad
[0034]
Synthetic example 1 of dope for producing aromatic polyimide with high heat resistance
N-Methyl-2-pyrrolidone was added to a reaction vessel equipped with a stirrer and a nitrogen inlet tube, and paraphenylenediamine and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride were further added at 1000: 998. At a molar ratio of 18% (% by weight, the same applies hereinafter). After completion of the addition, the reaction was continued for 3 hours while maintaining the temperature at 50 ° C. The obtained polyamic acid solution was a brown viscous liquid, and the solution viscosity at 25 ° C. was about 1500 poise. This solution was used as a dope.
[0035]
Synthesis of thermo-compression dope for producing aromatic polyimide-1
N-Methyl-2-pyrrolidone was added to a reaction vessel equipped with a stirrer and a nitrogen inlet tube, and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4 '-Biphenyltetracarboxylic dianhydride, 1,3-bis (4-aminophenoxy) benzene and 4,4'-diaminodiphenyl ether in a molar ratio of 20: 80: 50: 50 having a monomer concentration of 22. % And triphenyl phosphate was added at 0.1% based on the monomer weight. After completion of the addition, the reaction was continued for 1 hour while maintaining the temperature at 25 ° C. This polyamic acid solution had a solution viscosity at 25 ° C. of about 2000 poise. This solution was used as a dope.
[0036]
Reference Example 1
Using a film forming apparatus provided with a three-layer extrusion die (multi-manifold type die), the above-mentioned high heat-resistant aromatic polyimide dope and thermocompression-bondable aromatic polyimide dope were formed. The thickness of the dice was changed, the mixture was cast on a metal support, and continuously dried with hot air at 140 ° C. to form a solidified film. After the solidified film is peeled from the support, the temperature is gradually raised from 200 ° C. to 320 ° C. in a heating furnace to remove the solvent and imidize, and the following two types of thermocompression-bondable three-layer extruded polyimide films are wound. It was wound on a take-up roll.
This thermocompression-bondable three-layer extruded polyimide film exhibited the following physical properties.
[0037]
1) Thermo-compressible multilayer polyimide film
Thickness configuration: 4 μm / 17 μm / 4 μm (total 25 μm)
Tg of thermocompression bonding aromatic polyimide: 261 ° C
Thermal expansion coefficient (50 to 200 ° C): 19 × 10 -6 × cm / cm / ℃
Volume resistance: 5 × 10 Fifteen Ω · cm
2) Thermo-compression multilayer polyimide film-2
Thickness configuration: 5 μm / 28 μm / 5 μm (total 38 μm)
Tg of thermocompression bonding aromatic polyimide: 265 ° C
Thermal expansion coefficient (50-200 ° C): 20 × 10 -6 × cm / cm / ℃
Volume resistance: 6 × 10 Fifteen Ω · cm
[0038]
Example 1
A thermocompression-bonding three-layer extruded polyimide film-1 and two X-Rin XTFs (ultra-thin copper foil thickness 5 μm / carrier copper foil thickness 35 μm) as ultra-thin copper foil with heat-resistant carrier. After being preheated, the temperature of the heating zone (maximum heating temperature) is 330 ° C. (set), the temperature of the cooling zone (minimum cooling temperature) is 117 ° C.), and the pressing pressure is 40 kg /. cm 2 The compression bonding time was 2 minutes, and the layers were continuously laminated under pressure and thermocompression under cooling to obtain a rolled product as a copper-clad laminate (width: about 530 mm, the same applies hereinafter).
The evaluation results of the obtained copper-clad laminate are shown below.
Product appearance: ○
Adhesive strength: 0.9 N / mm
Carrier copper foil peel strength: 0.00N / mm
Overall rating: ○
[0039]
Example 2
Copper-clad in the same manner as in Example 1 except that XTF (thickness of ultra-thin copper foil: 3 μm / thickness of carrier copper foil: 35 μm) manufactured by Orin was used as the ultra-thin copper foil with a heat-resistant carrier. A roll wound material as a laminate (width: about 530 mm, the same applies hereinafter) was obtained.
The evaluation results of the obtained copper-clad laminate are shown below.
Product appearance: ○
Adhesive strength: 1.0 N / mm
Carrier copper foil peel strength: 0.00N / mm
Overall rating: ○
[0040]
Example 3
A roll-wound copper-clad laminate (width: about 530 mm, the same applies hereinafter) in the same manner as in Example 1 except that a thermocompression-bonded three-layer extruded polyimide film-2 was used as the thermocompression-bonded multilayer polyimide film. I got something.
The evaluation results of the obtained copper-clad laminate are shown below.
Product appearance: ○
Adhesive strength: 0.9 N / mm
Carrier copper foil peel strength: 0.00N / mm
Overall rating: ○
[0041]
Example 4
Except for using F-CP (5 μm in thickness of ultra-thin copper foil / 35 μm in thickness of carrier copper foil) manufactured by Furukawa Electric Co., Ltd. as ultra-thin copper foil with heat-resistant carrier, A roll-wound material which is a copper-clad laminate (width: about 530 mm, the same applies hereinafter) was obtained.
The evaluation results of the obtained copper-clad laminate are shown below.
Product appearance: ○
Adhesive strength: 0.9 N / mm
Carrier copper foil peel strength: 0.05 N / mm
Overall rating: ○
[0042]
Example 5
Except for using F-CP (thickness of ultra-thin copper foil 3 μm / thickness of carrier copper foil 35 μm) made by Furukawa Electric Co., Ltd. as ultra-thin copper foil with heat-resistant carrier, A roll-wound material which is a copper-clad laminate (width: about 530 mm, the same applies hereinafter) was obtained.
The evaluation results of the obtained copper-clad laminate are shown below.
Product appearance: ○
Adhesive strength: 0.9 N / mm
Carrier copper foil peel strength: 0.04 N / mm
Overall rating: ○
[0043]
Example 6
Using a thermocompression-bonded three-layer extruded polyimide film-2 as a thermocompression-bonded multilayer polyimide film, F-CP manufactured by Furukawa Electric Co., Ltd. (thickness of ultra-thin copper foil 5 μm / carrier) A roll-wound material as a copper-clad laminate (width: about 530 mm, the same applies hereinafter) was obtained in the same manner as in Example 1 except that a copper foil thickness of 35 μm was used.
The evaluation results of the obtained copper-clad laminate are shown below.
Product appearance: ○
Adhesive strength: 0.8 N / mm
Carrier copper foil peel strength: 0.06 N / mm
Overall rating: ○
[0044]
Comparative Example 1
A copper-clad laminate (width: 5 mm) was used in the same manner as in Example 1 except that MT35S-H manufactured by Mitsui Kinzoku Kogyo KK (thickness of only ultra-thin copper foil was 5 μm) was used as the copper foil, and the crimping temperature was 320 ° C. 530 mm, the same applies hereinafter).
The evaluation results of the obtained copper-clad laminate are shown below.
Product appearance: × (strong foam)
Adhesive strength: 0.8 N / mm
Overall rating: ×
[0045]
Comparative Example 2
A copper clad laminate (width: 5 mm) was used in the same manner as in Example 1 except that MT35S-H manufactured by Mitsui Kinzoku Kogyo KK (thickness of only ultra-thin copper foil was 5 μm) was used as the copper foil, and the crimping temperature was 340 ° C. 530 mm, the same applies hereinafter).
The evaluation results of the obtained copper-clad laminate are shown below.
Product appearance: × (strong foam)
Adhesive strength: 0.8 N / mm
Overall rating: ×
[0046]
The copper foil carrier is peeled off from the copper-clad laminate having the ultra-thin copper foil with the copper foil carrier obtained in Examples 1 to 6 on both sides by a rewinding machine, and etched with ferric chloride using a dry film. As a result, a fine wire having a pitch of 40 μm could be formed.
[0047]
【The invention's effect】
According to the present invention, the following effects are achieved because of the configuration described above.
According to the present invention, it is possible to obtain a copper-clad laminate having a large adhesive strength, a good appearance and an ultra-thin copper foil, which can cope with fine-line pattern etching. In particular, a copper-clad laminate effective for fine-line wiring having a pitch of 40 μm or less can be obtained. A laminate can be obtained.
Further, according to the present invention, the above-mentioned copper-clad laminate can be easily obtained.

Claims (5)

耐熱性キャリア付き極薄銅箔と熱圧着性の芳香族ポリイミド層および高耐熱性の芳香族ポリイミド層からなる熱圧着性多層ポリイミドフィルムとが加圧下に熱圧着−冷却して積層されてなり、銅箔と熱圧着性多層ポリイミドフィルムとの接着強度が0.7N/mm以上で、キャリアと銅箔との剥離強度が0.2N/mm以下である銅張積層板。A thermocompression-bonded multi-layer polyimide film composed of an ultra-thin copper foil with a heat-resistant carrier, a thermocompression-bondable aromatic polyimide layer and a high heat-resistance aromatic polyimide layer, and thermocompression-compressed under pressure-cooled and laminated. A copper clad laminate having an adhesive strength between the copper foil and the thermocompression-bondable multilayer polyimide film of 0.7 N / mm or more and a peel strength between the carrier and the copper foil of 0.2 N / mm or less. 耐熱性キャリア付き極薄銅箔が、厚み1〜7μmの極薄銅箔を積層したものである請求項1に記載の銅張積層板。The copper-clad laminate according to claim 1, wherein the ultra-thin copper foil with a heat-resistant carrier is obtained by laminating an ultra-thin copper foil having a thickness of 1 to 7 µm. 熱圧着性多層ポリイミドフィルムが、厚み7〜50μmである請求項1または2に記載の銅張積層板。The copper-clad laminate according to claim 1, wherein the thermocompression-bondable multilayer polyimide film has a thickness of 7 to 50 μm. 熱圧着性多層ポリイミドフィルムが、共押出−流延製膜成形法によって高耐熱性の芳香族ポリイミド層の少なくとも片面に熱圧着性の芳香族ポリイミド層を積層一体化して得られるものである請求項1〜3のいずれかに記載の銅張積層板。The thermocompression-bondable multilayer polyimide film is obtained by laminating and integrating a thermocompression-bondable aromatic polyimide layer on at least one surface of a high heat-resistant aromatic polyimide layer by a coextrusion-cast film forming method. The copper-clad laminate according to any one of 1 to 3, above. 耐熱性キャリア付き極薄銅箔と熱圧着性の芳香族ポリイミド層および高耐熱性の芳香族ポリイミド層からなる熱圧着性多層ポリイミドフィルムとをダブルベルトプレスによって加圧下に、熱圧着性の芳香族ポリイミドのガラス転移温度以上で400℃以下の温度で熱圧着−冷却して積層する請求項1に記載の銅張積層板の製造方法。A thermocompression-bondable aromatic polyimide layer composed of an ultra-thin copper foil with a heat-resistant carrier and a thermocompression-bondable aromatic polyimide layer and a high heat-resistance aromatic polyimide layer and a thermocompression-bonded multi-layer polyimide film is pressed by a double belt press to form a thermocompression-bondable aromatic film. The method for producing a copper-clad laminate according to claim 1, wherein the laminate is formed by thermocompression bonding and cooling at a temperature not lower than the glass transition temperature of the polyimide and not higher than 400 ° C.
JP2002206483A 2002-07-16 2002-07-16 Copper-clad laminated sheet and its manufacturing method Pending JP2004042579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002206483A JP2004042579A (en) 2002-07-16 2002-07-16 Copper-clad laminated sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002206483A JP2004042579A (en) 2002-07-16 2002-07-16 Copper-clad laminated sheet and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007111346A Division JP2007216687A (en) 2007-04-20 2007-04-20 Manufacturing method of copper clad laminated sheet and manufacturing method of substrate for electronic part

Publications (1)

Publication Number Publication Date
JP2004042579A true JP2004042579A (en) 2004-02-12

Family

ID=31711454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002206483A Pending JP2004042579A (en) 2002-07-16 2002-07-16 Copper-clad laminated sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004042579A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254632A (en) * 2004-03-11 2005-09-22 Kaneka Corp Method for manufacturing metal-clad laminated sheet for semi-additive and metal-clad laminated sheet obtained thereby
JP2007203505A (en) * 2006-01-31 2007-08-16 Nippon Steel Chem Co Ltd Manufacturing method of double-sided metal sheet laminated plate
JP2007216687A (en) * 2007-04-20 2007-08-30 Ube Ind Ltd Manufacturing method of copper clad laminated sheet and manufacturing method of substrate for electronic part
US7459518B2 (en) 2006-05-25 2008-12-02 Industrial Technology Research Institute Thermoplastic polyimide composition
US20090136725A1 (en) * 2006-03-24 2009-05-28 Hiroto Shimokawa Process for producing copper wiring polyimide film, and copper wiring polyimide film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720347A (en) * 1980-07-14 1982-02-02 Nippon Denkai Kk Synthetic foil for printed wiring and its manufacture
JPH11317574A (en) * 1998-01-19 1999-11-16 Mitsui Mining & Smelting Co Ltd Composite copper foil, manufacture thereof, copper-plated laminate and printed wiring board provided therewith
WO2002024444A1 (en) * 2000-09-22 2002-03-28 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine wiring board
JP2002144476A (en) * 2000-08-28 2002-05-21 Ube Ind Ltd Polyimide film good in laser processability, substrate and processing method
JP2003340962A (en) * 2002-05-29 2003-12-02 Mitsui Chemicals Inc Polyimide copper-clad laminate using extra-thin copper foil and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720347A (en) * 1980-07-14 1982-02-02 Nippon Denkai Kk Synthetic foil for printed wiring and its manufacture
JPH11317574A (en) * 1998-01-19 1999-11-16 Mitsui Mining & Smelting Co Ltd Composite copper foil, manufacture thereof, copper-plated laminate and printed wiring board provided therewith
JP2002144476A (en) * 2000-08-28 2002-05-21 Ube Ind Ltd Polyimide film good in laser processability, substrate and processing method
WO2002024444A1 (en) * 2000-09-22 2002-03-28 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine wiring board
JP2003340962A (en) * 2002-05-29 2003-12-02 Mitsui Chemicals Inc Polyimide copper-clad laminate using extra-thin copper foil and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254632A (en) * 2004-03-11 2005-09-22 Kaneka Corp Method for manufacturing metal-clad laminated sheet for semi-additive and metal-clad laminated sheet obtained thereby
JP4516769B2 (en) * 2004-03-11 2010-08-04 株式会社カネカ Method for producing semi-additive metal-clad laminate and semi-additive metal-clad laminate obtained thereby
JP2007203505A (en) * 2006-01-31 2007-08-16 Nippon Steel Chem Co Ltd Manufacturing method of double-sided metal sheet laminated plate
US20090136725A1 (en) * 2006-03-24 2009-05-28 Hiroto Shimokawa Process for producing copper wiring polyimide film, and copper wiring polyimide film
US7459518B2 (en) 2006-05-25 2008-12-02 Industrial Technology Research Institute Thermoplastic polyimide composition
JP2007216687A (en) * 2007-04-20 2007-08-30 Ube Ind Ltd Manufacturing method of copper clad laminated sheet and manufacturing method of substrate for electronic part

Similar Documents

Publication Publication Date Title
JP5035220B2 (en) Copper-clad laminate and manufacturing method thereof
JP4147639B2 (en) Flexible metal foil laminate
JP4362917B2 (en) Metal foil laminate and its manufacturing method
JP2004098659A (en) Copper-clad laminate and its manufacturing process
JP2006188025A (en) Copper-clad laminate
JP4356184B2 (en) Flexible metal foil laminate
JP3580128B2 (en) Manufacturing method of metal foil laminated film
JP2001270036A (en) Flexible metal foil laminate
JP4345188B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP3938058B2 (en) POLYIMIDE FILM HAVING HEAT FUSION, LAMINATE USING SAME, AND METHOD FOR PRODUCING THEM
JP6412012B2 (en) Multilayer flexible metal-clad laminate and manufacturing method thereof
JP4389338B2 (en) Manufacturing method of flexible metal foil laminate
JP2002240195A (en) Polyimide/copper-clad panel
JP2004216830A (en) Method for manufacturing polyimide substrate having low dielectric constant
JP2007216688A (en) Copper clad laminated sheet and its manufacturing method
JP4257587B2 (en) Flexible metal foil laminate
JP4193461B2 (en) Heat-sealable polyimide and laminate using the polyimide
JP4123665B2 (en) Heat resistant resin board and manufacturing method thereof
JP2004042579A (en) Copper-clad laminated sheet and its manufacturing method
JP2001270035A (en) Flexible metal foil laminate
JP2008302569A (en) Manufacturing method of laminated body of parting agent and one side metal leaf laminated resin film, and one side metal leaf laminated film
JP2003191412A (en) Polyimide film and laminate
JP4345187B2 (en) Method for producing flexible metal foil laminate
JP4389337B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP2000123512A (en) Magnetic head suspension and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217