JPH069262A - 酸化物セラミック高温超伝導体及びその製造方法 - Google Patents

酸化物セラミック高温超伝導体及びその製造方法

Info

Publication number
JPH069262A
JPH069262A JP5039966A JP3996693A JPH069262A JP H069262 A JPH069262 A JP H069262A JP 5039966 A JP5039966 A JP 5039966A JP 3996693 A JP3996693 A JP 3996693A JP H069262 A JPH069262 A JP H069262A
Authority
JP
Japan
Prior art keywords
mixture
temperature
volume
oxide ceramic
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5039966A
Other languages
English (en)
Inventor
Bernhard Dr Hettich
ベルンハルト・ヘティッヒ
Harro Dr Bestgen
ハルロ・ベストゲン
Steffen Dr Elschner
シュテッフェン・エルシュナー
Helga Weiss
ヘルガ・ヴァイス
Christoph Dr Lang
クリストフ・ラング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of JPH069262A publication Critical patent/JPH069262A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0661Processes performed after copper oxide formation, e.g. patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】 【目的】 酸化物セラミック超伝導性物質とその製造方
法とを提供すること。 【構成】 本発明は,ビスマス、ストロンチウム及び銅
の他に、さらに元素イットリウム、エルビウム及びユー
ロピウムの中の1種を含む酸化物セラミック高温超伝導
体の製造方法に関する。元素の酸化物又は酸化物先駆体
を最初に粉砕し、混合し、次に混合物を950℃以上の
温度に250K/時以下の速度で加熱し、この温度に1
0時間以上の期間維持し、次に混合物を60分間以下の
時間内に850℃の温度に冷却し、必要に応じて、混合
物をこの温度に20時間までの期間維持する。初期反応
混合物中の個々の金属の混合比を下記原子比: BiaEAbCu5x [式中、2.2≦a≦5、6.7
≦b≦8.8、及びEA=Sr+RE、(式中、9≦S
r/RE≦26、及びRE=Y、Eu又はEr)]が維
持されるように便宜的に調節する。 【効果】 製造される物質の混合物の臨界温度Tcは5
0〜70Kである。

Description

【発明の詳細な説明】
【0001】
【発明の利用分野】本発明は、ビスマス、ストロンチウ
ム及び銅の他に、さらに元素イットリウム、エルビウム
(Er)及びユーロピウム(Eu)の中の1種を含む酸
化物セラミック高温超伝導体の製造方法に関する。
【0002】
【従来の技術】通常の超伝導性物質は極低温においての
み用いることができ、非常に費用のかかる冷却剤ヘリウ
ムの使用を必要とするが、最近開発された超伝導性酸化
物物質は実質的により高い温度において機能し、このよ
うな温度の一部は比較的安価な冷却剤窒素によっても達
せられる。これは超伝導機器及びシステムの操作費用を
減じ、より多くの、広範囲な、可能な用途を開発する。
【0003】20Kの臨界温度を有し、酸化物形の元素
ビスマス、ストロンチウム及び銅を1:1:1の原子比
で含む酸化物超伝導体は既に公知である[C.Mich
el等、Z.Phys.B68(1987)、42
1]。しかし、約20Kの臨界温度は化学工業的目的の
ために満足できるものではない。
【0004】より高い臨界温度を有し、付加的にカルシ
ウムを含む酸化物超伝導体は例えばヨーロッパ特許出願
第0327044号によって開示されている。
【0005】Fuertes等、Physica C1
57(1989)421頁によると、Bi、Sr及びC
uの酸化物の混合物を950℃と700℃とにおいて2
段階加熱することによって、化合物Bi4Sr8Cu5
19+yの単結晶が得られるが、これは超伝導性ではない。
他方では、国際公開第90/02098号は、ビスマ
ス、ストロンチウム及び銅の他に、イットリウムをも含
む超伝導性金属酸化物を述べる。しかし、前記刊行物の
教示による物質全体中の超伝導相のそれらの量的割合は
まだ改良の余地がある。
【0006】
【発明が解決しようとする課題】本発明の目的は、製造
条件を変えることによって、超伝導相のより大きい割合
を有する、新規な酸化物超伝導性物質を得ることであっ
た。
【0007】
【課題を解決するための手段】この目的は、ビスマス、
ストロンチウム及び銅の他に、さらに元素イットリウ
ム、エルビウム及びユーロピウムの中の1種をも含む物
質の超伝導性混合物の製造方法によって達成され、この
方法の特徴的な態様は元素の酸化物又は酸化物先駆体を
粉砕混合する工程;次に該混合物を950℃以上の温度
に250K/時以下の速度で加熱し、この温度に10時
間以上の期間維持する工程と、次に該混合物を60分間
以下の時間内に850℃の温度に冷却し、必要に応じ
て、この温度に20時間まで維持する工程とを含む。
【0008】反応温度において反応して対応する酸化物
を形成する化合物、特に水酸化物と硝酸塩は一般に酸化
物先駆体として用いることができる。上記金属の酢酸
塩、ギ酸塩、蓚酸塩及び炭酸塩をも用いることができ
る。例えば、Y(NO33、炭酸ストロンチウム、ビス
マス酸、酸化ビスマス(III)及びCu2Oを用いる
ことができる。
【0009】好ましくは、初期反応混合物中の個々の金
属の混合比は、 BiaEAbCu5x[式中、2.2≦a≦5、6.7≦
b≦8.8及びEA=Sr+RE(式中、9≦Sr/R
E≦26及びRE=Y、Eu又はEr)]である。
【0010】第1熱処理工程を970℃以上の温度にお
いて実施し、該加熱を230K/時以下の速度で実施す
ることが好ましい。好ましくは、該熱処理は5容量%以
上の酸素、より好ましくは10容量%以上で25容量%
以下の酸素を含む酸化性炉雰囲気内で熱処理を実施す
る。
【0011】製造される溶融反応生成物の組成は、酸素
含量を除いて、フィードストック混合物の組成に一致す
る。
【0012】製造される生成物の臨界温度は50〜70
Kである。SQID磁力計による磁気感受率の測定は、
超伝導相の容量割合が10〜35%であることを示す。
【0013】
【実施例】下記の例示的実施態様によって、本発明をさ
らに詳細に説明する。
【0014】実施例1〜14 金属酸化物Bi23、SrO、Y23、Eu23、Er
23、CuOを特定の金属比で計り、アゲート(aga
te)乳鉢中で粉砕混合する。見たところ均質である混
合物をコランダム又はMgO又は金から製造された商業
的ボートに移し入れ、下記熱処理を実施する。サンプル
を最初に980℃に220゜/時で加熱し、この温度に
1時間維持する。次に850℃への冷却を特定時間t2
内で実施し、この温度をt3時間維持する。次に炉を停
止させ、炉中でサンプルを室温に冷却する。サンプルが
980℃において部分的に溶融することが重要である。
全熱処理を特定雰囲気中で実施する。臨界温度(Tc
と超伝導性容量比(マイスナー効果又は遮蔽効果)をS
QID磁力計で調べ、存在する相(構造型)を粉末回析
計で調べる。これらの検査結果も記載する。これに関連
して、記号“485”はBi4Sr8Cu519+x構造型
を意味し、記号“”はBi2EA3Cu28.2構造型
(二層化合物)を意味する。記号“”と“”とはそ
れぞれ、単層化合物と三層化合物とに相当する。“x”
はいわゆる1222又は2222構造型によって生ずる
回析ラインのセットを意味する。
【0015】比較例AとB Bi23、SrO2、Y23及びCuOから成る混合物
を粉砕し、混合し、ペレットに圧縮成形する。次に、国
際公開第90/2098号におけるように、ペレットを
900℃の温度に300K/時の速度で加熱し、この温
度に24時間維持する。これらを炉の中で冷却させてか
ら、測定する。
【0016】比較例C 特定混合物を実施例1〜14におけるように処理した
が、空気の代わりに純粋な酸素雰囲気を用いた。
【0017】必要なデータと結果の全てを表1に要約す
る。
【0018】
【表1】
【0019】
【発明の効果】本発明によれば、超伝導相のより大きい
割合を有する酸化物超伝導相物質が得られる。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 シュテッフェン・エルシュナー ドイツ連邦共和国デー−6272 ニーデルン ハウゼン,ホルバインシュトラーセ 5デ ー (72)発明者 ヘルガ・ヴァイス ドイツ連邦共和国デー−6230 フランクフ ルト・アム・マイン 80,ティオトマンシ ュトラーセ 11 (72)発明者 クリストフ・ラング ドイツ連邦共和国デー−6230 フランクフ ルト・アム・マイン 80,ハイムヒェンヴ ェーク 82

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 ビスマス、ストロンチウム及び銅の他
    に、さらに元素イットリウム、エルビウム及びユーロピ
    ウムの中の1種を含む酸化物セラミック高温超伝導体の
    製造方法において、元素の酸化物又は酸化物先駆体を粉
    砕し、混合する工程と、次に混合物を950℃以上の温
    度に250K/時以下の速度で加熱する工程と、混合物
    をこの温度に10時間以上の期間維持する工程と、次に
    混合物を60分間以下の時間内に850℃の温度に冷却
    する工程と、必要に応じて、混合物をこの温度に20時
    間まで維持する工程とを含む方法。
  2. 【請求項2】 反応温度において反応して、対応する酸
    化物を形成する化合物、好ましくは水酸化物及び硝酸塩
    を酸化物先駆体として用いる請求項1記載の方法。
  3. 【請求項3】 初期反応混合物中の個々の金属の混合比
    を下記原子比: BiaEAbCu5x [式中、2.2≦a≦5、6.7≦b≦8.8 及びEA=Sr+RE (式中、9≦Sr/RE≦26 及びRE=Y、Eu又はEr)]が維持されるように調
    節する請求項1又は2記載の方法。
  4. 【請求項4】 混合物を970℃以上の温度に230K
    /時以下の速度で加熱する請求項1〜3のいずれかに記
    載の方法。
  5. 【請求項5】 5容量%以上の酸素、好ましくは10容
    量%以上で25容量%以下の酸素を含む酸化性炉雰囲気
    内で熱処理を実施する請求項1〜4のいずれかに記載の
    方法。
  6. 【請求項6】 臨界温度が50〜70Kである請求項1
    〜5のいずれかに記載の方法によって製造される物質の
    混合物。
  7. 【請求項7】 SQID磁力計による磁気感受率の測定
    によって算出された超伝導相の容量割合が10〜35%
    である請求項6記載の物質の混合物。
JP5039966A 1992-02-28 1993-03-01 酸化物セラミック高温超伝導体及びその製造方法 Pending JPH069262A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4206160:1 1992-02-28
DE4206160 1992-02-28

Publications (1)

Publication Number Publication Date
JPH069262A true JPH069262A (ja) 1994-01-18

Family

ID=6452797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5039966A Pending JPH069262A (ja) 1992-02-28 1993-03-01 酸化物セラミック高温超伝導体及びその製造方法

Country Status (2)

Country Link
EP (1) EP0557951A1 (ja)
JP (1) JPH069262A (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1425588A (en) * 1987-01-12 1988-07-27 University Of Houston-University Park Superconductivity in square-planar compound systems
CA1338754C (en) * 1987-12-28 1996-12-03 Jun Akimitsu Metal oxide material
US5126316A (en) * 1988-08-24 1992-06-30 E. I. Du Pont De Nemours And Company Bi2 Sr3-x Yx Cu2 O8+y superconducting metal oxide compositions
DE4113726A1 (de) * 1991-04-26 1992-10-29 Hoechst Ag Supraleiter und verfahren zu seiner herstellung

Also Published As

Publication number Publication date
EP0557951A1 (de) 1993-09-01

Similar Documents

Publication Publication Date Title
EP0280812B1 (en) Superconductivity in square - planar compound systems
AU611707B2 (en) Process for preparing superconducting compositions
CN1028390C (zh) 改进的制造90k超导体的方法
JP3332334B2 (ja) 超伝導体及びその製造方法
US4861753A (en) Process for making superconductors using barium nitrate
US4990488A (en) Superconductors Bi-Sr-Cu-O
EP0398503B1 (en) Rare-earth barium copper oxide superconducting materials
JP2609944B2 (ja) 超電導性を示す酸化物材料及びその製造方法
US4952390A (en) Superconductive oxide crystal and a production process thereof
Prouteau et al. Optimization of superconductivity in the high-pressure Sr-Ca-Cu-O system
JPH069262A (ja) 酸化物セラミック高温超伝導体及びその製造方法
EP0366721A4 (en) Improved process for making 90 k superconductors
EP0324661A2 (en) Novel superconductors and processes for their preparation
US5270292A (en) Method for the formation of high temperature semiconductors
US5208214A (en) Multiphase superconductor and process for its production
US5418214A (en) Cuprate-titanate superconductor and method for making
JP2593480B2 (ja) 酸化物超電導体の製造方法
US5256635A (en) High temperature superconductor system comprising Tl2 Ba2 CuO+δ
JP2698689B2 (ja) 酸化物超伝導材料およびその製造方法
EP0374689A2 (en) High temperature superconductor materials and method for preparation
EP0357683A4 (en) Improved process for making 90 k superconductors
Os' kina et al. The synthesis of Bi (Pb) SrCaCuO superconductors with the use of separately precalcined precursors
JPH06506797A (ja) 超伝導体およびその製造方法
JPH02149426A (ja) 酸化物超伝導材料およびその製造法
EP0321862A2 (en) Use of barium peroxide in superconducting Y1Ba2Cu3Ox and related materials