JPH069231B2 - Manufacturing method of light receiving element - Google Patents

Manufacturing method of light receiving element

Info

Publication number
JPH069231B2
JPH069231B2 JP59019615A JP1961584A JPH069231B2 JP H069231 B2 JPH069231 B2 JP H069231B2 JP 59019615 A JP59019615 A JP 59019615A JP 1961584 A JP1961584 A JP 1961584A JP H069231 B2 JPH069231 B2 JP H069231B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
surface portion
layer
high surface
carrier concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59019615A
Other languages
Japanese (ja)
Other versions
JPS60164355A (en
Inventor
健一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59019615A priority Critical patent/JPH069231B2/en
Publication of JPS60164355A publication Critical patent/JPS60164355A/en
Publication of JPH069231B2 publication Critical patent/JPH069231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明はフォトダイオードと電界効果トランジスタを同
一半導体基板の上に一体化した受光素子の製造方法に関
する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a light receiving element in which a photodiode and a field effect transistor are integrated on the same semiconductor substrate.

(従来技術) 近来、特に1μmの長波長帯の光ファイバ通信に於いて
PINフォトダイオードと電界効果トランジスタ(以下
FETと略記する)を用いたPIN−FETと呼ばれる受
光素子がアバランシェフォトダイオード同じく優れた性
能を持つ受光素子として脚光を浴びている。PIN−F
ETとしてはPINフオトダイオードとGaAs−FET
を用いたものが現在のところ実用に供せられているが、
更に装置を小型化し、浮遊容量を低減して高速応答を図
ることを目的に両者を同一半導体基板の上に一体化した
構造のものが作製されている。
(Prior Art) Recently, a light receiving element called a PIN-FET using a PIN photodiode and a field effect transistor (hereinafter abbreviated as FET) has been excellent as well as an avalanche photodiode especially in optical fiber communication in a long wavelength band of 1 μm. It is in the spotlight as a light-receiving element with high performance. PIN-F
PIN photo diode and GaAs-FET as ET
The one using is currently put to practical use,
Further, for the purpose of downsizing the device, reducing stray capacitance, and achieving high-speed response, a structure in which both are integrated on the same semiconductor substrate is manufactured.

例えば、大仲等「InGaAsモノシリックPIN−PD/JFET受光
素子」(電子通信学会技術研究報告OQE83−70,47〜54
頁)に、半絶縁性InP基板の上にInGaAs層を成長させ、
そこにPINフォトダイオードと接合型FETを一体化し
て形成したPIN-FETが発表されている。
For example, Ohnaka et al. “InGaAs monolithic PIN-PD / JFET photodetector” (Technical Report of the Institute of Electronics and Communication Engineers OQE83-70, 47-54)
Page), growing an InGaAs layer on a semi-insulating InP substrate,
A PIN-FET, which is formed by integrating a PIN photodiode and a junction FET, is announced there.

第1図は従来のPIN−FETの一例の断面図である。FIG. 1 is a sectional view of an example of a conventional PIN-FET.

このPIN-FETは、前述の大仲等によるPIN-FETを示したも
のである。第1図において、11は半絶縁性InP基板、
12はこのInP基板11の上に液相成長法によつて形成さ
れたIn0.53Ga0.47As層、13はAu/Sn/Au層、14はAu
層、15はパッシベーション用のポリイミド層、161,16
2及び17はZnの拡散領域である。拡散はゲートのボン
ディングパッド部の接合容量を低減するための半絶縁性
InP基板11に達する深い拡散と、ゲート及び受光部を
形成するための浅い拡散から成り、深い拡散工程で拡散
領域17が作られ、又浅い拡散によって拡散領域161
及び162が作られる。拡散領域162はPINフォトダ
イオードのP側領域となり、又拡散領域161は接合型
FETのゲート領域となる。
This PIN-FET shows the PIN-FET by Oonaka et al. In FIG. 1, 11 is a semi-insulating InP substrate,
12 is an In 0.53 Ga 0.47 As layer formed on the InP substrate 11 by the liquid phase growth method, 13 is an Au / Sn / Au layer, and 14 is Au.
Layers, 15 is a polyimide layer for passivation, 161, 16
2 and 17 are Zn diffusion regions. Diffusion is a semi-insulating property to reduce the junction capacitance of the gate bonding pad
It consists of a deep diffusion reaching the InP substrate 11 and a shallow diffusion for forming a gate and a light receiving portion. The diffusion region 17 is formed by the deep diffusion process, and the diffusion region 161 is formed by the shallow diffusion.
And 162 are made. The diffusion region 162 serves as the P-side region of the PIN photodiode, and the diffusion region 161 serves as the gate region of the junction FET.

PIN-FETの受信感度を高めるために、接合型FETの相
互コンダクタンスとしては大きいことが望ましく、In
0.53Ga0.47As層12のキャリア濃度としてはn=5×1
016cm-3程度か好い。一方、PINフォトダイオードの
接合容量は小さいことが望ましく、そのためにはキャリ
ア濃度は低い程好い。気相成長法を用いると、キャリア
濃度はn=1×1015cm-3程度にまで低減させることが可
能である。従って、第1図に示した構造では接合型FET
とPINフォトダイオードのそれぞれに最適なキャリア
濃度を同時に実現することは不可能であるという欠点が
あった。
In order to improve the receiving sensitivity of PIN-FET, it is desirable that the junction FET has a large mutual conductance.
0.53 Ga 0.47 As layer 12 has a carrier concentration of n = 5 × 1
0 16 cm -3 or so On the other hand, it is desirable that the junction capacitance of the PIN photodiode be small, and for that purpose, the lower the carrier concentration, the better. By using the vapor phase growth method, the carrier concentration can be reduced to about n = 1 × 10 15 cm -3 . Therefore, in the structure shown in FIG.
However, there is a drawback that it is impossible to simultaneously realize the optimum carrier concentration for each of the PIN photodiode and the PIN photodiode.

(発明の目的) 本発明の目的は、上記欠点を除去し、接合型FETとP
INフォトダイオードをそれぞれ独立に最適設計を図る
ことを可能とならしめる一体化構造の受光素子の製造方
法を提供することにある。
(Object of the Invention) The object of the present invention is to eliminate the above-mentioned drawbacks and to provide a junction type FET and a P-type FET.
An object of the present invention is to provide a method of manufacturing a light-receiving element having an integrated structure, which makes it possible to independently design the IN photodiodes independently.

(発明の構成) 本発明の特徴は、半絶縁性半導体基板の表面を選択的に
除去して高い表面部と低い表面部とから段差形状を形成
する工程と、前記低い表面部上から前記高い表面部上に
かけて第1のキャリア濃度を有する一導電型の第1の半
導体層を形成する工程と、前記高い表面部上の前記第1
の半導体層を除去して該高い表面部を露出させ、前記低
い表面上の前記第1の半導体層を残余せしめる工程と、
露出せる前記高い表面部上から残余せる前記第1の半導
体層上にかけて前記第1のキャリア濃度より高濃度の第
2のキャリア濃度を有する一導電型の第2の半導体層を
形成する工程とを有し、前記低い表面部上において、前
記第2の半導体層を貫通して前記第1の半導体層に達す
る反対導電型の第1の領域と該第1の半導体層とからフ
ォトダイオードを形成し、かつ、前記高い表面部上にお
いて、前記第2の半導体層に設けられた反対導電型の第
2の領域をゲートとし該第2の半導体層の表面の該ゲー
トの両側に設けられた電極をそれぞれソースおよびドレ
インとする接合型電界効果トランジスタを形成する受光
素子の製造方法にある。
(Structure of the Invention) A feature of the present invention is to selectively remove a surface of a semi-insulating semiconductor substrate to form a step shape from a high surface portion and a low surface portion, and to form the stepped shape from the low surface portion. Forming a first-conductivity-type first semiconductor layer having a first carrier concentration on the surface portion; and forming the first semiconductor layer on the high surface portion
Removing the semiconductor layer to expose the high surface portion, leaving the first semiconductor layer on the low surface.
Forming a second semiconductor layer of one conductivity type having a second carrier concentration higher than the first carrier concentration from the exposed high surface portion to the remaining first semiconductor layer. A photodiode is formed on the lower surface portion from the first semiconductor layer and a first region of opposite conductivity type that penetrates the second semiconductor layer and reaches the first semiconductor layer. And an electrode provided on both sides of the gate on the surface of the second semiconductor layer with the second region of the opposite conductivity type provided in the second semiconductor layer as the gate on the high surface portion. This is a method of manufacturing a light receiving element for forming a junction field effect transistor having a source and a drain, respectively.

(実施例) 次に、本発明の実施例について図面を用いて説明する。(Example) Next, the Example of this invention is described using drawing.

第2図(a)〜(c)は本発明の一実施例の製造方法を説明す
るための工程順に示した断面図である。
2 (a) to 2 (c) are sectional views showing the order of steps for explaining the manufacturing method of the embodiment of the present invention.

まず、第2図(a)に示すように、半絶縁性のInP基板21
をエッチして3μm程度の段差部を形成する。次に、全
表面に第1のキャリア濃度n1を含有する第1の半導体
層としてSi等をn1=1×1015cm-3程度含有するN型
のIn0.53Ga0.47As層22を気相成長法によって約3μm
の厚さに成長させる。
First, as shown in FIG. 2 (a), a semi-insulating InP substrate 21 is used.
Is etched to form a step portion of about 3 μm. Next, an N-type In 0.53 Ga 0.47 As layer 22 containing Si or the like at about n 1 = 1 × 10 15 cm −3 is formed as a first semiconductor layer containing the first carrier concentration n 1 on the entire surface. About 3 μm by phase growth method
Grow to a thickness of.

次に、第2図(b)に示すように、高い方の段差部の表面
上に成長したIn0.53Ga0.47As層22をエッチング除去
し、表面をほぼ平坦にする。このとき、図示するように
V字形溝が生じるが、この溝はできる限り小さい方が好
ましい。次に、第1のキャリア濃度n1より高濃度の第
2のキャリア濃度n2(n2>n1)を有する第2の半導
体層としてSi等をn2=5×1015cm-3程度含有するN型
のIn0.53Ga0.47As層23を気相成長法によって約1μm
の厚さに成長する。
Next, as shown in FIG. 2B, the In 0.53 Ga 0.47 As layer 22 grown on the surface of the higher step portion is removed by etching to make the surface substantially flat. At this time, a V-shaped groove is formed as shown, but it is preferable that this groove is as small as possible. Next, as a second semiconductor layer having a second carrier concentration n 2 (n 2 > n 1 ) higher than the first carrier concentration n 1 , Si or the like is n 2 = 5 × 10 15 cm −3 or so. The N type In 0.53 Ga 0.47 As layer 23 containing about 1 μm was formed by vapor phase epitaxy.
To grow to a thickness of.

次に、第2図(c)に示すように、Zn等のP型不純物を
拡散してInP基板21に達する深いP型の拡散領域2
4を形成した後、同じP型の浅い拡散領域251,25
2を形成する。拡散領域251,252の深さはそれぞれ0.
5μm,1.2μmにする。次に、Au/Sn/Au層26,Au層
27で電極を形成し、パシベーション用のポリイミド層
28を塗布する。
Next, as shown in FIG. 2C, a deep P-type diffusion region 2 that diffuses P-type impurities such as Zn and reaches the InP substrate 21.
4, the same P-type shallow diffusion regions 251, 25 are formed.
Form 2. The depth of the diffusion regions 251, 252 is 0.
Set to 5 μm and 1.2 μm. Next, electrodes are formed from the Au / Sn / Au layers 26 and 27, and a polyimide layer 28 for passivation is applied.

P型拡散領域252とN型のIn0.53Ga0.47As層22とで
フォトダイオードの受光部を構成し、深い拡散領域24
はそのボンディング部となる。また、P型拡散領域25
1はゲートとなり、その両側に形成された二つのAu/Sn/
Au層26,Au層27がそれぞれソース,ドレインとな
る接合型FETが形成される。
The P-type diffusion region 252 and the N-type In 0.53 Ga 0.47 As layer 22 constitute the light receiving portion of the photodiode, and the deep diffusion region 24
Is the bonding part. In addition, the P-type diffusion region 25
1 is a gate, and two Au / Sn / s formed on both sides
A junction type FET is formed in which the Au layer 26 and the Au layer 27 serve as a source and a drain, respectively.

(発明の効果) 以上詳細に説明したように、本発明によれば、接合型F
ETの活性層とフォトダイオードの光吸収層のキャリア
濃度をそれぞれ独立に設計できる。接合型FETのゲー
ト長及びゲート幅をそれぞれ5μm及び100μmとする
と相互コンダクタンスとして15mSが得られるがこの
値はGaAsFET並みの大きな値である。又、フォトダイオ
ードの受光径80μmφとすると5Vの逆方向電圧をか
けることによりフォトダイオードの接合容量は0.2pF
と小さな値が得られる。
(Effects of the Invention) As described in detail above, according to the present invention, the junction type F
The carrier concentrations of the active layer of ET and the light absorption layer of the photodiode can be designed independently. If the gate length and the gate width of the junction FET are 5 μm and 100 μm, respectively, a mutual conductance of 15 mS can be obtained, but this value is as large as a GaAs FET. Also, assuming that the light receiving diameter of the photodiode is 80 μmφ, the junction capacitance of the photodiode is 0.2 pF by applying a reverse voltage of 5V.
And a small value is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来のPIN-FETの一例の断面図、第2図(a)〜
(c)は本発明の一実施例の製造方法を説明するための工
程順に示した断面図である。 11……半絶縁性InP基板、12……In0.53Ga0.47As
層、13……Au/Sn/Au層、14……Au層、15……ポ
リイミド層、17……P型拡散領域、21……半絶縁性
InP基板、22……In0.53Ga0.47As層(第1の半導体
層)、23……In0.53Ga0.47As層(第2の半導体層)、
24……P型拡散領域、26……Au/Sn/Au層、27……
An層、28……ポリイミド層、161,162……P型
拡散領域、251,252……P型拡散領域。
FIG. 1 is a sectional view of an example of a conventional PIN-FET, and FIG. 2 (a)-
FIG. 3C is a sectional view showing a sequence of steps for explaining the manufacturing method according to the embodiment of the present invention. 11 ... Semi-insulating InP substrate, 12 ... In 0.53 Ga 0.47 As
Layer, 13 ... Au / Sn / Au layer, 14 ... Au layer, 15 ... polyimide layer, 17 ... P type diffusion region, 21 ... semi-insulating InP substrate, 22 ... In 0.53 Ga 0.47 As layer (First semiconductor layer), 23 ... In 0.53 Ga 0.47 As layer (second semiconductor layer),
24 ... P-type diffusion region, 26 ... Au / Sn / Au layer, 27 ...
An layer, 28 ... Polyimide layer, 161, 162 ... P-type diffusion area, 251, 252 ... P-type diffusion area.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 8422−4M H01L 31/10 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location 8422-4M H01L 31/10 A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半絶縁性半導体基板の表面を選択的に除去
して高い表面部と低い表面部とから段差形状を形成する
工程と、前記低い表面部上から前記高い表面部上にかけ
て第1のキャリア濃度を有する一導電型の第1の半導体
層を形成する工程と、前記高い表面部上の前記第1の半
導体層を除去して該高い表面部を露出させ、前記低い表
面上の前記第1の半導体層を残余せしめる工程と、露出
せる前記高い表面部上から残余せる前記第1の半導体上
にかけて前記第1のキャリア濃度より高濃度の第2のキ
ャリア濃度を有する一導電型の第2の半導体層を形成す
る工程とを有し、前記低い表面部上において、前記第2
の半導体層を貫通して前記第1の半導体層に達する反対
導電型の第1の領域と該第1の半導体層とからフォトダ
イオードを形成し、かつ、前記高い表面部上において、
前記第2の半導体層に設けられた反対導電型の第2の領
域をゲートとし該第2の半導体層の表面の該ゲートの両
側に設けられた電極をそれぞれソースおよびドレインと
する接合型電界効果トランジスタを形成することを特徴
とする受光素子の製造方法。
1. A step of selectively removing a surface of a semi-insulating semiconductor substrate to form a step shape from a high surface portion and a low surface portion; and a first step from the low surface portion to the high surface portion. Forming a first conductivity type first semiconductor layer having a carrier concentration of, and removing the first semiconductor layer on the high surface portion to expose the high surface portion, A step of leaving the first semiconductor layer remaining, and a first conductivity type second portion having a second carrier concentration higher than the first carrier concentration from the exposed high surface portion to the left first semiconductor portion. A second semiconductor layer is formed, and the second semiconductor layer is formed on the lower surface portion.
Forming a photodiode from the first semiconductor layer and a first region of the opposite conductivity type that penetrates the semiconductor layer to reach the first semiconductor layer, and on the high surface portion,
Junction field effect in which the second region of the opposite conductivity type provided in the second semiconductor layer is used as a gate, and the electrodes provided on both sides of the gate on the surface of the second semiconductor layer are used as a source and a drain, respectively. A method for manufacturing a light-receiving element, which comprises forming a transistor.
JP59019615A 1984-02-06 1984-02-06 Manufacturing method of light receiving element Expired - Lifetime JPH069231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59019615A JPH069231B2 (en) 1984-02-06 1984-02-06 Manufacturing method of light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59019615A JPH069231B2 (en) 1984-02-06 1984-02-06 Manufacturing method of light receiving element

Publications (2)

Publication Number Publication Date
JPS60164355A JPS60164355A (en) 1985-08-27
JPH069231B2 true JPH069231B2 (en) 1994-02-02

Family

ID=12004087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59019615A Expired - Lifetime JPH069231B2 (en) 1984-02-06 1984-02-06 Manufacturing method of light receiving element

Country Status (1)

Country Link
JP (1) JPH069231B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2670553B2 (en) * 1986-08-15 1997-10-29 日本電信電話株式会社 Semiconductor light receiving / amplifying device
JPH0242768A (en) * 1988-08-01 1990-02-13 Sharp Corp Photodetector with built-in circuit

Also Published As

Publication number Publication date
JPS60164355A (en) 1985-08-27

Similar Documents

Publication Publication Date Title
US4814847A (en) Ingaas semiconductor structures
US4835575A (en) Monolithically integrated waveguide-photodiode combination
KR920009898B1 (en) Photo-electric integrated circuit devices and its manufacturing method for receiver
US4625226A (en) Photodetector
US4729963A (en) Fabrication method for modified planar semiconductor structures
GB2168528A (en) PIN-diode and FET
JPH069231B2 (en) Manufacturing method of light receiving element
JPS6244709B2 (en)
JPS60233855A (en) Semiconductor device
JP2633234B2 (en) Optical semiconductor device
KR100249785B1 (en) Semiconductor device integrating heterojunction bipolar transistor and lateral pin photo-diode and its fabricating method
JPS6032812B2 (en) photodetector
JPH0316275A (en) Manufacture of semiconductor photodetector
JPH01196182A (en) Photodiode
JPS60161682A (en) Light receiving device
JPS59149070A (en) Photodetector
JP2570424B2 (en) Semiconductor light receiving element
JPS60233872A (en) Semiconductor device and method of producing same
JPS63124475A (en) Semiconductor photodetector
JP2841876B2 (en) Semiconductor light receiving element
JPS6064464A (en) Semiconductor device and manufacture thereof
JPH041740Y2 (en)
JPH01175776A (en) Semiconductor photodetector
JPH04312986A (en) Semiconductor device
JP2711055B2 (en) Semiconductor photodetector and method of manufacturing the same