JPH0690995B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JPH0690995B2
JPH0690995B2 JP31857690A JP31857690A JPH0690995B2 JP H0690995 B2 JPH0690995 B2 JP H0690995B2 JP 31857690 A JP31857690 A JP 31857690A JP 31857690 A JP31857690 A JP 31857690A JP H0690995 B2 JPH0690995 B2 JP H0690995B2
Authority
JP
Japan
Prior art keywords
film
electrolytic capacitor
solid electrolytic
conductive
conductive portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31857690A
Other languages
Japanese (ja)
Other versions
JPH04188816A (en
Inventor
利邦 小島
正雄 福山
康夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31857690A priority Critical patent/JPH0690995B2/en
Priority to US07/795,564 priority patent/US5223120A/en
Priority to EP19910119876 priority patent/EP0487085A3/en
Publication of JPH04188816A publication Critical patent/JPH04188816A/en
Publication of JPH0690995B2 publication Critical patent/JPH0690995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、固体電解質に導電性高分子膜を用いる固体
電解コンデンサの製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer film as a solid electrolyte.

従来の技術 最近、電気機器回路のディジタル化に伴い、そこに使用
されるコンデンサに対する高周波領域における低インピ
ーダンス化および小型大容量化の要求が高まっている。
2. Description of the Related Art Recently, with the digitization of electric equipment circuits, there is an increasing demand for capacitors used therein to have a low impedance in a high frequency region and a small size and a large capacity.

従来、高周波コンデンサと言えば、プラスチックフィル
ムコンデンサ、マイカコンデンサ、積層セラミックコン
デンサ等が一般的である。しかし、前2者のプラスチッ
クフィルムコンデンサやマイカコンデンサは、形状が大
きくなり過ぎるため、大容量化が困難であり、3者目の
積層セラミックコンデンサは、大容量・小型化の要望か
ら生まれたものであるが、非常に高価であり、温度特性
が十分でない。
Conventionally, a plastic film capacitor, a mica capacitor, a monolithic ceramic capacitor and the like are generally known as high frequency capacitors. However, the former two types of plastic film capacitors and mica capacitors are too large in shape, so it is difficult to increase the capacity, and the third type of monolithic ceramic capacitors was born from the demand for large capacity and miniaturization. However, it is very expensive and has insufficient temperature characteristics.

上記コンデンサの他に、アルミニウム乾式電解コンデン
サやアルミニウム固体電解コンデンサまたはタンタル固
体電解コンデンサがある。
In addition to the above capacitors, there are aluminum dry electrolytic capacitors, aluminum solid electrolytic capacitors, and tantalum solid electrolytic capacitors.

アルミニウム乾式電解コンデンサでは、エッチングを施
した陽、陰極アルミニウム箔を紙のセパレータを介して
巻き取り、液状の電解質を使うようにしている。しか
し、この電解コンデンサの場合には、電解質液の漏れ、
イオン伝導性等に起因して経時的に起こる静電容量の減
少・損失の増大、高周波領域および低温領域での損失が
大きいという欠点がある。
In the aluminum dry electrolytic capacitor, the etched positive and negative aluminum foils are wound around a paper separator to use a liquid electrolyte. However, in the case of this electrolytic capacitor, leakage of electrolyte solution,
There are drawbacks such as a decrease in capacitance and an increase in loss that occur over time due to ionic conductivity and the like, and a large loss in a high frequency region and a low temperature region.

アルミニウム固体電解コンデンサやタンタル固体電解コ
ンデンサは、液状電解質に基づく上記問題の改善を図る
ため、電解質の固体化を図っている。固体電解質を設け
るにあたっては、誘電体皮膜が形成された弁金属を硝酸
マンガン液に浸漬し、350℃前後の高温炉中にて熱分解
し、二酸化マンガン層を形成するようにする。このコン
デンサでは、固体電解質であるために高温における電解
液の揮散、低温領域での凝固からくる機能低下などの欠
点がなく、周波数特性や温度特性も改善される。また、
弁金属表面の誘電体皮膜を非常に薄くすることができる
ため大容量化も図れる。
Aluminum solid electrolytic capacitors and tantalum solid electrolytic capacitors are intended to be solidified in order to improve the above problems due to liquid electrolytes. In providing the solid electrolyte, the valve metal on which the dielectric film is formed is immersed in a manganese nitrate solution and pyrolyzed in a high temperature furnace at about 350 ° C. to form a manganese dioxide layer. Since this capacitor is a solid electrolyte, it has no drawbacks such as volatilization of the electrolytic solution at high temperatures and functional deterioration due to solidification in low temperature regions, and frequency characteristics and temperature characteristics are improved. Also,
Since the dielectric film on the valve metal surface can be made extremely thin, a large capacity can be achieved.

最近では、7,7,8,8−テトラシアノキノジメタン(TCN
Q)塩等の有機半導体を固体電解質に用いた固体電解コ
ンデンサ(特願昭58-17609号公報)、あるいは、ピロー
ルやフランスなどの重合性モノマーを電解重合させてな
る導電性高分子を固体電解質に用いた固体電解コンデン
サ(特願昭60-244017号公報)がある。
Recently, 7,7,8,8-tetracyanoquinodimethane (TCN
Q) A solid electrolytic capacitor using an organic semiconductor such as a salt as a solid electrolyte (Japanese Patent Application No. 58-17609), or a conductive polymer obtained by electrolytically polymerizing a polymerizable monomer such as pyrrole or France as a solid electrolyte. There is a solid electrolytic capacitor used in (Japanese Patent Application No. 60-244017).

しかしながら、固体電解質が二酸化マンガンの場合に
は、数回の高温熱分解による酸化皮膜の損傷および二酸
化マンガンの高比抵抗などの理由から高周波域での損失
は小さくない。固体電解質がTCNQ塩などの有機半導体の
場合、二酸化マンガンを用いたコンデンサに比べ優れた
高周波特性を示すが、有機半導体を塗布する際の比抵抗
の上昇や弁金属箔への接着性の不足があって、十分なも
のとは言えない。
However, when the solid electrolyte is manganese dioxide, the loss in the high frequency region is not small because of the damage of the oxide film due to several high temperature pyrolysis and the high specific resistance of manganese dioxide. When the solid electrolyte is an organic semiconductor such as TCNQ salt, it shows superior high frequency characteristics compared to a capacitor using manganese dioxide, but there is an increase in the resistivity when applying the organic semiconductor and insufficient adhesion to the valve metal foil. There isn't enough.

これに対し、固体電解質が電解重合による導電性高分子
の場合は、周波数特性、温度特性および寿命特性に優れ
ており、期待される固体電解コンデンサであると言え
る。
On the other hand, when the solid electrolyte is a conductive polymer obtained by electrolytic polymerization, it has excellent frequency characteristics, temperature characteristics, and life characteristics, and can be said to be an expected solid electrolytic capacitor.

発明が解決しようとする課題 しかしながら、固体電解質が電解重合による導電性高分
子である固体電解コンデンサには、漏れ電流が多いとい
う問題がある。
Problems to be Solved by the Invention However, a solid electrolytic capacitor in which the solid electrolyte is a conductive polymer obtained by electrolytic polymerization has a problem of large leakage current.

誘電体皮膜の上に導電性高分子膜の形成を行う際に、重
合開始用の電極(例えば、先端針状の金属電極)を外部
から当て接触させるようにするが、これで誘電体皮膜が
損傷するためである。それに、重合開始用の電極を外部
から当て接触させる場合、製造装置全体が大型化し実施
が容易でないという問題もある。
When a conductive polymer film is formed on the dielectric film, an electrode for initiating polymerization (for example, a needle-shaped metal electrode) is applied from outside to bring it into contact with the dielectric film. This is because it will be damaged. In addition, when the electrode for initiating the polymerization is externally applied and brought into contact, there is a problem in that the whole manufacturing apparatus becomes large and it is not easy to carry out.

上記誘電体皮膜の損傷を防ぐため、以下のような方法が
提案されている。
In order to prevent damage to the dielectric film, the following methods have been proposed.

すなわち、誘電体皮膜が表面に形成された弁金属箔上に
電解重合により導電性高分子薄膜を形成してから、一部
分切断することにより弁金属箔の金属面を部分的に露出
させ、ここを電解重合開始部(陽極)とする方法であ
る。しかしながら、この場合、露出させた金属面が電解
重合溶液により陽極酸化されて電気的な絶縁が断たれる
ため、重合膜形成の途中で電流が流れなくなり、重合膜
形成の進行が極端に遅れ、著しい場合には重合反応が停
止するという問題がある。
That is, after forming a conductive polymer thin film on a valve metal foil having a dielectric film formed on its surface by electrolytic polymerization, the metal surface of the valve metal foil is partially exposed by partially cutting it. This is a method of using the electrolytic polymerization initiation part (anode). However, in this case, since the exposed metal surface is anodized by the electrolytic polymerization solution and the electrical insulation is cut off, the current stops flowing during the formation of the polymer film, and the progress of the polymer film formation is extremely delayed. In a remarkable case, there is a problem that the polymerization reaction is stopped.

この発明は、上記事情に鑑み、誘電体皮膜を損傷するこ
となく、固体電解質用の誘電性高分子膜の形成が速やか
に行え、漏れ電流の少ない固体電解コンデンサを得るこ
とができる方法を提供することを目的とする。
In view of the above circumstances, the present invention provides a method capable of promptly forming a dielectric polymer film for a solid electrolyte without damaging the dielectric film and obtaining a solid electrolytic capacitor with a small leakage current. The purpose is to

課題を解決するための手段 前記目的を達成するため、この発明の固体電解コンデン
サの製造方法では、表面が誘電体皮膜で覆われ同誘電体
皮膜上にマンガン酸化物膜が積層されている弁金属箔の
金属面を部分的に露出させて、この露出した部分に電解
重合溶液に対する導電部を陽極酸化されない材料で設け
ておいて、この導電部を用いて、電解重合により固体電
解質用導電性高分子膜を前記マンガン酸化物膜の上に積
層形成し、その上にさらに導電ペイント膜を積層形成し
た後、前記導電部を除去するようにしている。
Means for Solving the Problems In order to achieve the above object, in the method for producing a solid electrolytic capacitor of the present invention, a valve metal having a surface covered with a dielectric film and a manganese oxide film laminated on the dielectric film. The metal surface of the foil is partially exposed, and a conductive part for the electrolytic polymerization solution is provided on the exposed part with a material that is not anodized, and this conductive part is used to conduct high conductivity for solid electrolyte by electrolytic polymerization. A molecular film is laminated on the manganese oxide film, a conductive paint film is further laminated thereon, and then the conductive portion is removed.

以下、この発明をより詳しく説明する。Hereinafter, the present invention will be described in more detail.

弁金属表面の誘電体皮膜は陽極酸化あるいは陽極化成に
より形成されたものである。
The dielectric film on the surface of the valve metal is formed by anodic oxidation or anodization.

電解重合開始部になる導電部は、具体的には、以下のよ
うにして設ける。
Specifically, the conductive portion that becomes the electrolytic polymerization initiation portion is provided as follows.

導電部を金属材料で構成する場合には、請求項2のよう
に、陽極酸化されない金属弁を露出した金属面に溶接接
合するが、請求項3のように、陽極酸化されない金属片
を露出した金属面にかしめ止めするようにする。
When the conductive part is made of a metal material, the metal valve that is not anodized is welded to the exposed metal surface as in claim 2, but the metal piece that is not anodized is exposed as in claim 3. Be caulked on a metal surface.

導電部を導電ペイントで構成する場合には、請求項4の
ように、Agペイントを露出した金属面に塗布するか、あ
るいは、請求項5のように、カーボンペイントを露出し
た金属面に塗布するようにする。
When the conductive portion is composed of conductive paint, Ag paint is applied to the exposed metal surface as in claim 4, or carbon paint is applied to the exposed metal surface as in claim 5. To do so.

導電部を導電性高分子で構成する場合には、請求項6の
ように、導電性高分子層を露出した金属面に化学重合で
形成するようにする。
When the conductive portion is made of a conductive polymer, the conductive polymer layer is formed by chemical polymerization on the exposed metal surface as in the sixth aspect.

導電部は1個所だけでなく複数個所に設けてもよい。The conductive portion may be provided not only at one location but also at a plurality of locations.

なお、マンガン酸化物膜は導電性があり、固体電解質用
の導電性高分子膜の電解重合による形成を容易にする働
きをする。
The manganese oxide film has conductivity and functions to facilitate the formation of a conductive polymer film for solid electrolyte by electrolytic polymerization.

固体電解質用の導電性高分子膜を形成する場合、例え
ば、請求項7のように、ピロール、チオフェンあるいは
それらの誘導体の少なくとも一種と支持電解質を含む電
解重合溶液を用い、同溶液中に弁金属箔を漬け電解重合
膜を形成するようにする。
When forming a conductive polymer film for a solid electrolyte, for example, as in claim 7, an electrolytic polymerization solution containing at least one of pyrrole, thiophene or a derivative thereof and a supporting electrolyte is used, and a valve metal is added to the solution. Soak the foil to form an electropolymerized film.

弁金属としては、具体的には、請求項8のように、アル
ミニウムおよびタンタルのうちの一つが例示される。
As the valve metal, specifically, one of aluminum and tantalum is exemplified as in claim 8.

導電性高分子膜の上に形成する誘電ペイント膜の構成と
しては、例えば、カーボンペイント層と同カーボンペイ
ント層の上に形成したAgペイント層からなる2層構成の
ものが例示される。
Examples of the structure of the dielectric paint film formed on the conductive polymer film include a two-layer structure composed of a carbon paint layer and an Ag paint layer formed on the carbon paint layer.

作用 この発明の固体電解コンデンサの製造方法の場合、陽極
酸化しない材料で電解重合開始部用の導電部が形成され
ており、固体電解質用の導電性高分子膜を形成する間、
導電部で陽極酸化が起こらず、反応中、正常な通電状態
が維持されるため、導電性高分子膜の電解重合形成が速
やかに進行する。
Action In the case of the method for manufacturing a solid electrolytic capacitor of the present invention, the conductive portion for the electrolytic polymerization initiation portion is formed of a material that does not anodize, while forming the conductive polymer film for the solid electrolyte,
Since anodic oxidation does not occur in the conductive portion and a normal energized state is maintained during the reaction, electrolytic polymerization formation of the conductive polymer film proceeds rapidly.

この発明の場合、誘導体皮膜の上から電解重合開始のた
めに電極を外から当てて接触させる必要がないため、電
極当接による誘導体皮膜損傷が起こらず、その結果、得
られたコンデンサの漏れ電流が少なく、しかも、装置全
体が小さくてすみ、容易に実施できる。
In the case of the present invention, since it is not necessary to contact the electrode by contacting the electrode from the outside in order to start the electrolytic polymerization from above the derivative film, the dielectric film is not damaged by the electrode contact, and as a result, the leakage current of the obtained capacitor is reduced. And the entire device is small, which is easy to implement.

上記の電解重合開始部用の導電部はそのまま残しおくと
弁金属箔と導電性高分子膜間の短絡を起しコンデンサ機
能を損なうが、この発明では、前記導電部を、通常はそ
の上の導電性高分子膜および導電ペイント膜と共に除去
するため、コンデンサ機能が損なわれことはない。
If the conductive part for the electrolytic polymerization initiation part is left as it is, a short circuit occurs between the valve metal foil and the conductive polymer film and the capacitor function is impaired, but in the present invention, the conductive part is usually formed on the conductive part. Since it is removed together with the conductive polymer film and the conductive paint film, the capacitor function is not impaired.

実施例 以下、この発明の実施例を説明する。この発明は、下記
の実施例に限らない。
Examples Examples of the present invention will be described below. The present invention is not limited to the embodiments described below.

実施例1 本発明の第1の実施例における固体電解コンデンサの製
造方法を第1図〜第10図を用いて説明する。各図におい
て(b)は正面図,(a)は側面図または一部破砕側面
図を示す。
Example 1 A method of manufacturing a solid electrolytic capacitor according to Example 1 of the present invention will be described with reference to FIGS. 1 to 10. In each figure, (b) shows a front view and (a) shows a side view or a partially crushed side view.

第1図(a),(b)に示す弁作用金属箔2(アルミニ
ウムエッチド箔)を7%アジピン酸アンモニウム水溶液
を用い、約70℃、40分間、印加電圧42Vの条件で陽極酸
化し、第2図(a),(b)のごとく誘電体皮膜3を形
成した。硝酸マンガン水溶液を塗布し300℃、20分の条
件で熱分解し第3図(a),(b)のごとくマンガン酸
化物膜4からなる誘電層を形成した。ついで、第4図
(a),(b)に示すように、重合開始誘電部10(実施
例ではニッケル箔片、直径1mm、厚さ50um)を溶接によ
ってマンガン酸化物膜4の上に設置した。重合開始導電
部10は第5図第4図(b)のA−A′断面図に示すよう
に誘電体皮膜3、マンガン酸化物膜4を突き抜けて弁作
用金属箔2と接触している。
The valve action metal foil 2 (aluminum etched foil) shown in FIGS. 1 (a) and (b) was anodized using a 7% ammonium adipate aqueous solution at about 70 ° C. for 40 minutes under an applied voltage of 42 V, A dielectric film 3 was formed as shown in FIGS. 2 (a) and 2 (b). An aqueous solution of manganese nitrate was applied and thermally decomposed at 300 ° C. for 20 minutes to form a dielectric layer composed of the manganese oxide film 4 as shown in FIGS. 3 (a) and 3 (b). Then, as shown in FIGS. 4 (a) and 4 (b), a polymerization initiating dielectric portion 10 (a nickel foil piece, a diameter of 1 mm, and a thickness of 50 μm in the embodiment) was placed on the manganese oxide film 4 by welding. . The polymerization initiation conductive portion 10 penetrates the dielectric film 3 and the manganese oxide film 4 and is in contact with the valve action metal foil 2, as shown in the AA 'sectional view of FIG. 4 (b).

ピロール(0.25M)、トリイソプロピルナフタレンスルフ
ォネート(0.1M)、水からなる電解重合溶液に弁金属箔を
浸し、ニッケル箔片を電解重合開始部として、2.5Vの定
電圧を30分印加し、第6図(a),(b)に示すように
マンガン酸化物上に固体電解質用の誘電性高分子膜5
(ポリピロール膜)を形成した。この後、第7図
(a),(b),第8図(a),(b)に示すごとくカ
ーボンペイント膜6、ついで、銀ペイント膜7を形成し
た。続いて、第9図(a),(b)にみるように、ニッ
ケル箔片10をその上下の弁作用金属箔2、誘電体皮膜
3、マンガン酸化物膜4、導電性高分子膜5、カーボン
ペイント膜6、銀ペイント膜7と共に折り曲げて除去し
た。最後に第10図に示すように陽極リード1を弁作用金
属箔2に溶接で取り付け陰極リード8を銀ペイント膜7
の上に接続し、樹脂で外装して固体電解コンデンサを得
た。
Dip the valve metal foil in an electrolytic polymerization solution consisting of pyrrole (0.25M), triisopropylnaphthalene sulfonate (0.1M), and water, and apply a constant voltage of 2.5V for 30 minutes with the nickel foil piece as the electrolytic polymerization start part. As shown in FIGS. 6 (a) and 6 (b), the dielectric polymer film 5 for solid electrolyte is formed on the manganese oxide.
(Polypyrrole film) was formed. Thereafter, as shown in FIGS. 7A, 7B, 8A, and 8B, a carbon paint film 6 and then a silver paint film 7 were formed. Subsequently, as shown in FIGS. 9A and 9B, the nickel foil piece 10 is provided with the valve metal foil 2, the dielectric film 3, the manganese oxide film 4, the conductive polymer film 5 above and below the nickel foil piece 10. The carbon paint film 6 and the silver paint film 7 were bent and removed. Finally, as shown in FIG. 10, the anode lead 1 is attached to the valve action metal foil 2 by welding and the cathode lead 8 is attached to the silver paint film 7.
Was connected to the above and was packaged with a resin to obtain a solid electrolytic capacitor.

実施例2 本発明の第2の実施例における固体電解コンデンサの製
造方法を第11図〜第21図を用いて説明する。各図の
(b)は正面図,(a)は側面図または一部破砕側面図
である。
Example 2 A method for manufacturing a solid electrolytic capacitor according to Example 2 of the present invention will be described with reference to FIGS. 11 to 21. In each figure, (b) is a front view and (a) is a side view or a partially crushed side view.

第11図(a),(b)に示す弁作用金属箔2(アルミニ
ウムエッチド箔)を7%アジピン酸アンモニウム水溶液
を用い、約70℃、40分間、印加電圧42Vの条件で陽極酸
化し、第12図(a),(b)のごとく誘電体皮膜3形成
した。つぎに、硝酸マンガン水溶液を塗布し300℃、20
分の条件で熱分解し第13図(a),(b)(c)のごと
くマンガン酸化物膜4からなる導電層を形成した。つい
で、第14図に示す線A−A′に沿って素子を切断し、第
15図(a),(b)に示すごとく誘電体皮膜3とマンガ
ン酸化物膜4に被覆されている弁作用金属箔2を露出さ
せる。ついで、先の切断面にペースト状の銀ペイントを
塗布し、120℃、10分間、加熱し硬化させ、電解重合開
始部用の導電部10を設けた。(第16図(a),(b)参
照)。ピロール(0.25M)、トリイソプロピルナフタレン
スルフォネート(0.1M)、水からなる電解重合溶液に弁金
属箔を浸し、銀ペイントからなる導電部10を電解重合開
始部にして、2.5Vの定電圧を40分印加し、第17図
(a),(b)に示すようにマンガン酸化物上に固体電
解質用の導電性高分子膜5(ポリピロール膜)を形成し
た。この後、第18図(a),(b)第19図(a),
(b)に示すごとくカーボンペイント膜6、ついで、銀
ペイント膜7を形成した。続いて、第20図(a),
(b)にみるように、銀ペイントからなる導電部10をそ
の上下の弁作用金属箔2、誘電体皮膜3、マンガン酸化
物膜4、導電性高分子膜5、カーボンペイント膜6、銀
ペイント膜7と共に折り曲げて除去した。最後に第21図
に示すように陽極リード1を弁作用金属箔2に溶接で取
り付け、陰極リード8を銀ペイント膜7の上に接続し、
樹脂で外装して固体電解コンデンサを得た。
The valve action metal foil 2 (aluminum etched foil) shown in FIGS. 11 (a) and 11 (b) was anodized using a 7% ammonium adipate aqueous solution at about 70 ° C. for 40 minutes under an applied voltage of 42 V. A dielectric film 3 was formed as shown in FIGS. 12 (a) and 12 (b). Next, apply a manganese nitrate aqueous solution at 300 ° C for 20
Thermal decomposition was carried out under the conditions of minutes to form a conductive layer composed of the manganese oxide film 4 as shown in FIGS. 13 (a), 13 (b) and 13 (c). Then, the element is cut along the line AA ′ shown in FIG.
As shown in FIGS. 15A and 15B, the valve action metal foil 2 covered with the dielectric film 3 and the manganese oxide film 4 is exposed. Then, a paste-like silver paint was applied to the cut surface and heated and cured at 120 ° C. for 10 minutes to provide a conductive portion 10 for an electrolytic polymerization initiation portion. (See FIGS. 16 (a) and 16 (b)). Pyrrole (0.25M), triisopropyl naphthalene sulphonate (0.1M), dip the valve metal foil in an electropolymerization solution consisting of water, using the conductive part 10 made of silver paint as the electropolymerization initiation part, and a constant voltage of 2.5V. Was applied for 40 minutes to form a conductive polymer film 5 (polypyrrole film) for solid electrolyte on the manganese oxide as shown in FIGS. 17 (a) and 17 (b). After this, FIG. 18 (a), (b) FIG. 19 (a),
As shown in (b), a carbon paint film 6 and then a silver paint film 7 were formed. Then, FIG. 20 (a),
As shown in (b), the conductive portion 10 made of silver paint is provided on the upper and lower sides of the valve action metal foil 2, the dielectric film 3, the manganese oxide film 4, the conductive polymer film 5, the carbon paint film 6, and the silver paint. It was bent and removed together with the membrane 7. Finally, as shown in FIG. 21, the anode lead 1 is attached to the valve action metal foil 2 by welding, and the cathode lead 8 is connected on the silver paint film 7.
It was packaged with a resin to obtain a solid electrolytic capacitor.

比較例1 銀ペースの代わりに、露出させた弁金属箔自身を電解重
合開始部導電部10として、ピロール(0.25M)、トリイソ
プロピルナフタレンスルフォネート(0.1M)、水からなる
電解液に浸し2.5Vの定電圧を印加し電解重合を行ったと
ころ、弁金属箔が電解液中で化成反応を起こし抵抗が増
加し、電解重合反応を妨げたため、電解重合時間は160
分であった。この他は実施例2と同様にして固体電解コ
ンデンサを得た。
Comparative Example 1 Instead of the silver pace, the exposed valve metal foil itself was immersed in an electrolytic solution containing pyrrole (0.25M), triisopropylnaphthalene sulfonate (0.1M) and water as the electroconductive polymerization initiation part conductive part 10. When electrolysis was carried out by applying a constant voltage of 2.5 V, the valve metal foil caused a chemical conversion reaction in the electrolytic solution to increase the resistance and interfered with the electropolymerization reaction.
It was a minute. A solid electrolytic capacitor was obtained in the same manner as in Example 2 except for the above.

比較例2 ニッケル箔片10とその上下の弁作用金属箔2、誘電体皮
膜3、マンガン酸化物膜4、導電性高分子膜5、カーボ
ンペイント膜6、銀ペイント膜7の除去を行わず、第8
図(a),(b)の状態のままでリード8を銀ペイント
膜7上に接続するようにした他は、実施例1と同様にし
て固体電解コンデンサを得た。
Comparative Example 2 The nickel foil piece 10 and the valve metal foil 2 above and below it, the dielectric film 3, the manganese oxide film 4, the conductive polymer film 5, the carbon paint film 6, and the silver paint film 7 were not removed, 8th
A solid electrolytic capacitor was obtained in the same manner as in Example 1 except that the lead 8 was connected to the silver paint film 7 in the states shown in FIGS.

実施例3 Agペイントの代わりにカーボンペイントを用い、120
℃、5分間の熱処理で硬化させて導電部を設けるととも
に、電解重合時間を60分とした他は、実施例2と同様に
して固体電解コンデンサを得た。
Example 3 Carbon paint was used instead of Ag paint, and 120
A solid electrolytic capacitor was obtained in the same manner as in Example 2 except that the conductive portion was provided by curing by heat treatment at 5 ° C. for 5 minutes, and the electrolytic polymerization time was 60 minutes.

実施例4 Agペイントの代わりに、過硫酸アンモニウム水溶液(0.0
1モル/l)を塗り、乾燥させた後、塗布面をピロールモノ
マー溶液に5分間浸漬し化学重合導電性高分子層を形成
し、これを電解重合開部用の導電部とした他は、実施例
2と同様にして、固体電解コンデンサを得た。
Example 4 Instead of Ag paint, an aqueous solution of ammonium persulfate (0.0
1 mol / l) and after drying, the coated surface was immersed in a pyrrole monomer solution for 5 minutes to form a chemically polymerized conductive polymer layer, which was used as a conductive part for electrolytic polymerization opening, A solid electrolytic capacitor was obtained in the same manner as in Example 2.

実施例5 1%燐酸水溶液を用い、約90℃、60分間、30Vの電圧を
印加して陽極酸化することにより誘電体皮膜を表面に形
成させた液中容量1.1μF/cm2のタンタル弁金属体(タン
タル焼結体)に、硝酸マンガン水溶液を塗布し300℃、2
0分の条件で熱分解しマンガン酸化物膜からなる導電層
を形成した。ついで、弁金属箔の下端を1mm切断し弁金
属箔の金属面を露出させ、同金属面にAgペーストを塗布
し120℃、10分間、加熱し硬化させ、電解重合開始部用
の導電部を設けた。
Example 5 A tantalum valve metal having a liquid content of 1.1 μF / cm 2 and having a dielectric film formed on its surface by anodizing using a 1% phosphoric acid aqueous solution at a voltage of 30 V for 60 minutes at about 90 ° C. Body (tantalum sintered body) coated with manganese nitrate aqueous solution, 300 ℃, 2
It was thermally decomposed under the condition of 0 minutes to form a conductive layer made of a manganese oxide film. Then, cut the lower end of the valve metal foil by 1 mm to expose the metal surface of the valve metal foil, apply Ag paste to the same metal surface, heat at 120 ° C. for 10 minutes to cure, and set the conductive part for the electrolytic polymerization initiation part. Provided.

続いて、ピロール(0.25モル)、nブチル燐酸エステル
(0.1モル)、水からなる電解重合溶液に弁金属箔に浸
し、Agペイント導電部を電解重合開始部にして、2.5Vの
定電圧を20分印加し、マンガン酸化物膜上に固体電解質
用の導電性高分子膜を形成した。
Then, dip the valve metal foil in an electropolymerization solution consisting of pyrrole (0.25 mol), n-butyl phosphate (0.1 mol), and water, and use the Ag paint conductive part as the electropolymerization start part and apply a constant voltage of 2.5 V to 20%. Was applied to form a conductive polymer film for a solid electrolyte on the manganese oxide film.

この後、導電性高分子膜の上に、さらに、カーボンペイ
ント膜、ついで、Agペイント膜を形成してから、電解重
合開始部用のAgペイントをその上の導電性高分子膜、カ
ーボンペイント膜およびAgペイント膜と共に除去した。
After this, a carbon paint film and then an Ag paint film are formed on the conductive polymer film, and then Ag paint for the electrolytic polymerization initiation portion is formed on the conductive polymer film and the carbon paint film. And removed with Ag paint film.

最後にリードをAgペイント膜の上に接続し、樹脂で外装
して固体電解コンデンサを得た。
Finally, the lead was connected to the top of the Ag paint film and covered with resin to obtain a solid electrolytic capacitor.

実施例および比較例のコンデンサの初期特性を測定し
た。測定結果を、第1表に記す。第1表中、容量および
損失は120Hz、インピーダンスは1MHzで測定し、漏れ電
流は、定格電圧印加2分後に測定した。
The initial characteristics of the capacitors of Examples and Comparative Examples were measured. The measurement results are shown in Table 1. In Table 1, the capacity and loss were measured at 120 Hz and the impedance was 1 MHz, and the leakage current was measured 2 minutes after the rated voltage was applied.

実施例の各コンデンサは、第1表にみるように、容量・
インピーダンスおよび漏れ電流が十分で固体電解質の形
成も速やかにできる。比較例1のコンデンサの場合、損
失が多く、固体電解質の形成に要する時間が長い。ま
た、比較例2のコンデンサの場合、漏れ電流が多過ぎて
コンデンサ機能を果たせない。
As shown in Table 1, each capacitor of the embodiment has a capacitance
The impedance and leakage current are sufficient, and the solid electrolyte can be formed quickly. In the case of the capacitor of Comparative Example 1, the loss is large and the time required to form the solid electrolyte is long. Also, in the case of the capacitor of Comparative Example 2, the leakage current is too large to fulfill the capacitor function.

発明の効果 この発明の固体電解コンデンサの製造方法の場合、電解
重合溶液に対する導電部が陽極酸化されないため、固体
電解質用の導電性高分子膜の形成を速やかに行え、誘電
体皮膜の上から電解重合開始電極を当てて接触させる必
要がないため、電極当接による誘電体皮膜損傷が起こら
ず漏れ電流が少なく、装置全体が小型で済み実施が容易
である。
EFFECTS OF THE INVENTION In the case of the method for producing a solid electrolytic capacitor of the present invention, since the conductive portion with respect to the electrolytic polymerization solution is not anodized, the conductive polymer film for the solid electrolyte can be quickly formed, and the electrolysis is performed on the dielectric film. Since it is not necessary to contact the polymerization initiating electrode to bring it into contact with each other, the dielectric film is not damaged by the contact of the electrodes, the leakage current is small, and the entire apparatus is small and easy to carry out.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第10図は、この発明の第1の実施例における
固体電解コンデンサの製造方法をあらわす工程図、第11
図乃至第21図は、この発明の第2の実施例における固体
電解コンデンサの製造方法を示す工程図である。 1……陽極リード、2……弁作用金属箔、3……誘電体
皮膜、4……マンガン酸化物膜、5……導電性高分子
膜、6……カーボンペイント膜、7……Agペイント膜、
8……陰極リード、10……導電部。
1 to 10 are process drawings showing a method of manufacturing a solid electrolytic capacitor according to a first embodiment of the present invention, and FIG.
FIG. 21 to FIG. 21 are process drawings showing a method for manufacturing a solid electrolytic capacitor according to the second embodiment of the present invention. 1 ... Anode lead, 2 ... Valve metal foil, 3 ... Dielectric film, 4 ... Manganese oxide film, 5 ... Conductive polymer film, 6 ... Carbon paint film, 7 ... Ag paint film,
8: cathode lead, 10: conductive part.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】表面が誘電体皮膜で覆われ同誘電体皮膜上
にマンガン酸化物膜が積層されている弁金属体の金属面
を部分的に露出させて、この露出した部分に電解重合溶
液に対する導電部を陽極酸化されない材料で設けておい
て、電解重合による固体電解質用導電性高分子膜を前記
マンガン酸化物膜の上に積層形成し、その上にさらに導
電ペイント膜を積層形成した後、前記導電部を除去する
ようにする固体電解コンデンサの製造方法。
1. A metal surface of a valve metal body, the surface of which is covered with a dielectric film and a manganese oxide film is laminated on the dielectric film, is partially exposed, and the exposed portion is subjected to an electrolytic polymerization solution. After providing a conductive portion for a material not to be anodized, a conductive polymer film for solid electrolyte by electrolytic polymerization is laminated and formed on the manganese oxide film, and a conductive paint film is further laminated thereon. A method for manufacturing a solid electrolytic capacitor, wherein the conductive portion is removed.
【請求項2】導電部を、露出した金属面に金属片を溶接
接合することにより設ける請求項1記載の固体電解コン
デンサの製造方法。
2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the conductive portion is provided by welding and joining a metal piece to the exposed metal surface.
【請求項3】導電部を、露出した金属面に金属片をかし
め止めすることにより設ける請求項1記載の固体電解コ
ンデンサの製造方法。
3. The method for producing a solid electrolytic capacitor according to claim 1, wherein the conductive portion is provided by caulking a metal piece to the exposed metal surface.
【請求項4】導電部を、露出した金属面にAgペイントを
塗布することにより設ける請求項1記載の固体電解コン
デンサの製造方法。
4. The method for producing a solid electrolytic capacitor according to claim 1, wherein the conductive portion is provided by applying Ag paint on the exposed metal surface.
【請求項5】導電部を、露出した金属面にカーボンペイ
ントを塗布することにより設ける請求項1記載の固体電
解コンデンサの製造方法。
5. The method for producing a solid electrolytic capacitor according to claim 1, wherein the conductive portion is provided by applying carbon paint on the exposed metal surface.
【請求項6】導電部を、露出した金属面に導電性高分子
層を化学重合で形成することにより設ける請求項1記載
の固体電解コンデンサの製造方法。
6. The method for producing a solid electrolytic capacitor according to claim 1, wherein the conductive portion is provided by forming a conductive polymer layer on the exposed metal surface by chemical polymerization.
【請求項7】固体電解質用の導電性高分子膜を、ピロー
ル、チオフェンあるいはそれらの誘導体の少なくとも一
種と支持電解質を含む電解重合溶液を用いて形成する請
求項1から6までのいずれかに記載の固体電解コンデン
サの製造方法。
7. The conductive polymer membrane for a solid electrolyte is formed by using an electrolytic polymerization solution containing at least one of pyrrole, thiophene or a derivative thereof and a supporting electrolyte. Manufacturing method of solid electrolytic capacitor.
【請求項8】弁金属がアルミニウムおよびタンタルのう
ちの一つである請求項1から7までのいずれかに記載の
固体電解コンデンサの製造方法。
8. The method for producing a solid electrolytic capacitor according to claim 1, wherein the valve metal is one of aluminum and tantalum.
JP31857690A 1990-11-22 1990-11-22 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JPH0690995B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31857690A JPH0690995B2 (en) 1990-11-22 1990-11-22 Method for manufacturing solid electrolytic capacitor
US07/795,564 US5223120A (en) 1990-11-22 1991-11-21 Method for fabricating solid electrolytic capacitors using an organic conductive layer
EP19910119876 EP0487085A3 (en) 1990-11-22 1991-11-21 Method for fabricating solid electrolytic capacitors using an organic conductive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31857690A JPH0690995B2 (en) 1990-11-22 1990-11-22 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH04188816A JPH04188816A (en) 1992-07-07
JPH0690995B2 true JPH0690995B2 (en) 1994-11-14

Family

ID=18100677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31857690A Expired - Fee Related JPH0690995B2 (en) 1990-11-22 1990-11-22 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0690995B2 (en)

Also Published As

Publication number Publication date
JPH04188816A (en) 1992-07-07

Similar Documents

Publication Publication Date Title
US4943892A (en) Solid electrolytic capacitor and method for manufacturing the same
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0794368A (en) Solid electrolytic capacitor and manufacture thereof
JP3036027B2 (en) Method for manufacturing solid electrolytic capacitor
US5223120A (en) Method for fabricating solid electrolytic capacitors using an organic conductive layer
JPH06124858A (en) Capacitor and its manufacture
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JPH0690995B2 (en) Method for manufacturing solid electrolytic capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JP2786331B2 (en) Method for manufacturing solid electrolytic capacitor
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2924310B2 (en) Manufacturing method of capacitor
JP2924252B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2775762B2 (en) Solid electrolytic capacitors
JPH10321474A (en) Solid electrolytic capacitor and its manufacture
JPH05304056A (en) Manufacture of solid electrolytic capacitor
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JPH0693420B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03139816A (en) Manufacture of solid electrolytic capacitor
JPH0430409A (en) Manufacture of solid electrolytic capacitor
JPH0682587B2 (en) Solid electrolytic capacitor
JPH02132815A (en) Solid electrolytic capacitor and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees