JPH0690790B2 - Method of manufacturing magnetic recording medium - Google Patents

Method of manufacturing magnetic recording medium

Info

Publication number
JPH0690790B2
JPH0690790B2 JP62136069A JP13606987A JPH0690790B2 JP H0690790 B2 JPH0690790 B2 JP H0690790B2 JP 62136069 A JP62136069 A JP 62136069A JP 13606987 A JP13606987 A JP 13606987A JP H0690790 B2 JPH0690790 B2 JP H0690790B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic recording
recording medium
layer
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62136069A
Other languages
Japanese (ja)
Other versions
JPS63300427A (en
Inventor
久雄 河合
大成 粕川
Original Assignee
ホ−ヤ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホ−ヤ株式会社 filed Critical ホ−ヤ株式会社
Priority to JP62136069A priority Critical patent/JPH0690790B2/en
Publication of JPS63300427A publication Critical patent/JPS63300427A/en
Publication of JPH0690790B2 publication Critical patent/JPH0690790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録装置に用いられる磁気記録媒体の製
造方法に係り、特に、耐湿性等が良好で高い耐候性を有
する磁気記録媒体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a magnetic recording medium used in a magnetic recording device, and more particularly to a magnetic recording medium having good moisture resistance and high weather resistance. It relates to a manufacturing method.

〔従来の技術〕[Conventional technology]

従来の磁気記録媒体の製造方法としては、例えば以下に
記すものが知られている。
As a conventional magnetic recording medium manufacturing method, for example, the following method is known.

すなわち、第4図に示すように、高精度研摩したドーナ
ッツ板状のソーダライムガラスからなる非磁性支持体1
の一主表面上に、スパッタリング法により、クロムから
なる下地層2,コバルトとニッケルとクロムとからなる磁
性層3を順次積層し、次にメタン等の炭化水素を含有し
てなる雰囲気中でRF−プラズマCVD法等の高周波グロー
放電法により、炭素を含有してなる保護層4を磁性層3
上に被着して磁気記録媒体5を製造している。
That is, as shown in FIG. 4, a non-magnetic support 1 made of soda-lime glass in the shape of a donut plate that has been highly precisely polished.
An underlayer 2 made of chromium and a magnetic layer 3 made of cobalt, nickel and chromium are sequentially laminated on one main surface by a sputtering method, and then RF is applied in an atmosphere containing a hydrocarbon such as methane. -By a high frequency glow discharge method such as a plasma CVD method, a protective layer 4 containing carbon is formed on the magnetic layer 3.
The magnetic recording medium 5 is manufactured by depositing it on top.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記した方法によって製造した磁気記録
媒体5においては、以下に記すような問題点が生じる。
However, the magnetic recording medium 5 manufactured by the above method has the following problems.

磁気記録媒体5の磁性層3には磁気ヘッドにより情報の
書き込み(情報の記録)が行われ、そして書き込まれた
情報は磁性層3に長期間保持されることが要求される。
そこで、磁性層3上に保護層4を被着・形成して磁性層
3が温度及び湿度等の条件により影響を受けて化学的に
変化することを防止し、磁性層3に情報を長期間保持し
ようとしている。
Information is recorded (information is recorded) on the magnetic layer 3 of the magnetic recording medium 5 by a magnetic head, and the written information is required to be retained in the magnetic layer 3 for a long period of time.
Therefore, a protective layer 4 is deposited and formed on the magnetic layer 3 to prevent the magnetic layer 3 from being chemically changed under the influence of conditions such as temperature and humidity, and to store information in the magnetic layer 3 for a long time. Trying to hold.

ところが、前述したようにして保護層4を形成しても、
長い期間が経過すると磁性層3に書き込まれた情報が消
失してしまう。この原因は、上記保護層4が、温度及び
湿度等の条件に起因する磁性層3の耐久性の劣化を有効
に防止しえないためである。
However, even if the protective layer 4 is formed as described above,
After a long period of time, the information written in the magnetic layer 3 disappears. This is because the protective layer 4 cannot effectively prevent deterioration of durability of the magnetic layer 3 due to conditions such as temperature and humidity.

本発明は、以上のような事情を鑑みてなされたものであ
り、情報を長時間確実に保持することができる優れた耐
久性を有する磁気記録媒体の製造方法を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of manufacturing a magnetic recording medium having excellent durability capable of reliably holding information for a long time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記した目的を達成するためになされたもの
であり、非磁性支持体の主表面上に磁性層を形成し、該
磁性層上に高周波グロー放電法により原料ガスから炭素
を含有した保護層を形成する磁気記録媒体の製造方法に
おいて、磁性層と、炭素からなる保護層との間にスパッ
タリング法によってタングステン及びモリブデンのうち
少なくとも一つを含む中間層を形成し、前記高周波グロ
ー放電は、磁性層を形成した非磁性支持体に高周波電力
を印加して行うことを特徴とする。
The present invention has been made to achieve the above-mentioned object, and a magnetic layer is formed on the main surface of a non-magnetic support, and carbon is contained from a source gas by a high frequency glow discharge method on the magnetic layer. In the method for manufacturing a magnetic recording medium for forming a protective layer, an intermediate layer containing at least one of tungsten and molybdenum is formed between a magnetic layer and a protective layer made of carbon by a sputtering method, and the high frequency glow discharge is It is characterized in that high frequency power is applied to the non-magnetic support on which the magnetic layer is formed.

〔作用〕[Action]

タングステン及びモリブデンのうち少なくとも一つを含
有した中間層の上に、高周波電力を非磁性支持体に印加
する高周波グロー放電によって保護層を形成するので、
耐候性、耐久性に優れた磁気記録媒体を形成することが
できる。
Since the protective layer is formed on the intermediate layer containing at least one of tungsten and molybdenum by high frequency glow discharge applying high frequency power to the non-magnetic support,
A magnetic recording medium having excellent weather resistance and durability can be formed.

〔実施例〕〔Example〕

以下、第1図を参照して、本発明の第1実施例による磁
気記録媒体の製造方法について説明する。
Hereinafter, a method of manufacturing a magnetic recording medium according to the first embodiment of the present invention will be described with reference to FIG.

先ず、ドーナッツ板状に研削加工したソーダライムガラ
スの両主表面を高精度研摩して非磁性支持体6(寸法:
外径160mm,内径40mm,厚み1.9mm)を製作する。次に、こ
の非磁性支持体6をイソプロピルアルコール,純水等を
用いて洗浄する。
First, both main surfaces of soda lime glass ground into a donut plate shape were highly precisely polished to obtain a non-magnetic support 6 (dimensions:
The outer diameter is 160mm, the inner diameter is 40mm, and the thickness is 1.9mm. Next, the non-magnetic support 6 is washed with isopropyl alcohol, pure water or the like.

次に、非磁性支持体6を金属製の基板保持具(図示せ
ず。)によって保持しマグネトロンスパッタリング装置
の処理室内に配置する。次いで、この処理室内を真空ポ
ンプによって1×10-6Torrの真空度にする。
Next, the non-magnetic support 6 is held by a metal substrate holder (not shown) and placed in the processing chamber of the magnetron sputtering apparatus. Then, the inside of this processing chamber is made to have a vacuum degree of 1 × 10 −6 Torr by a vacuum pump.

次いで、表1に示す条件下で、非磁性支持体6の主表面
上にスパッタリング法により、クロムからなる下地層7
(膜厚:2000Å),コバルトとニッケルとクロムとから
なる磁性層8(膜厚:700Å),タングステンからなる中
間層9(膜厚:100Å)を順次積層した。なお、下地層7
の成膜時にはクロムからなるターゲットを、磁性層8の
成膜時にはコバルトとニッケルとクロムとの合金からな
るターゲットを、中間層9の成膜時にはタングステンか
らなるターゲットをそれぞれ用いた。
Then, under the conditions shown in Table 1, the underlayer 7 made of chromium was sputtered on the main surface of the non-magnetic support 6.
(Film thickness: 2000Å), magnetic layer 8 (film thickness: 700Å) made of cobalt, nickel and chromium, and intermediate layer 9 (film thickness: 100Å) made of tungsten were sequentially laminated. The base layer 7
A target made of chromium was used at the time of forming the film, a target made of an alloy of cobalt, nickel and chromium was used at the time of forming the magnetic layer 8, and a target made of tungsten was used at the time of forming the intermediate layer 9.

引き続いて、アルゴンガスを排出した前記装置の処理室
内にメタンガスを導入し、前記した基板保持具をカソー
ド(バイアス側)としその基板保持具を通して、下地層
7,磁性層8及び中間層9を積層した非磁性支持体6に高
周波電力(周波数:13.56MHz)を印加するグロー放電法
により、中間層9上に炭素を含有してなる保護層10(膜
厚:250Å)を成膜して磁気記録媒体11を製造した。な
お、保護層10の成膜条件は、メタンガス流量50SCCM,処
理室内圧力5×10-3Torr,高周波電力密度0.2W/cm2であ
る。
Subsequently, methane gas was introduced into the processing chamber of the apparatus from which argon gas had been discharged, and the substrate holder was used as a cathode (bias side) and passed through the substrate holder to form an underlayer.
7, a protective layer 10 (carbon film) containing carbon on the intermediate layer 9 by a glow discharge method in which high frequency power (frequency: 13.56 MHz) is applied to the non-magnetic support 6 having the magnetic layer 8 and the intermediate layer 9 laminated. A magnetic recording medium 11 was manufactured by forming a film having a thickness of 250Å). The conditions for forming the protective layer 10 were a methane gas flow rate of 50 SCCM, a processing chamber pressure of 5 × 10 −3 Torr, and a high frequency power density of 0.2 W / cm 2 .

次に、第2図を参照して、本発明の第2実施例による磁
気記録媒体の製造方法について説明する。
Next, a method of manufacturing a magnetic recording medium according to the second embodiment of the present invention will be described with reference to FIG.

先ず、前記実施例と同様に、非磁性支持体6をマグネト
ロンスパッタリング装置の処理室内に配置し、処理室内
を1×10-6Torrの真空度にする。
First, as in the above-mentioned embodiment, the non-magnetic support 6 is placed in the processing chamber of the magnetron sputtering apparatus, and the inside of the processing chamber is set to a vacuum degree of 1 × 10 −6 Torr.

次いで、表2に示す条件下で、非磁性支持体6の主表面
上にスパッタリング法により、クロムからなる下地層12
(膜厚:3000Å),コバルトとニッケルとクロムとから
なる磁性層13(膜厚:500Å),モリブデンからなる中間
層14(膜厚:150Å)を順次積層した。なお、下地層12の
成膜時及び磁性層13の成膜時には前記実施例中に記した
と同様なターゲットを、中間層14の成膜時にはモリブデ
ンからなるターゲットをそれぞれ用いた。
Then, under the conditions shown in Table 2, the underlayer 12 made of chromium was formed on the main surface of the non-magnetic support 6 by the sputtering method.
(Thickness: 3000Å), magnetic layer 13 (thickness: 500Å) made of cobalt, nickel and chromium, and intermediate layer 14 (thickness: 150Å) made of molybdenum were sequentially laminated. A target similar to that described in the above example was used when forming the underlayer 12 and the magnetic layer 13, and a target made of molybdenum was used when forming the intermediate layer 14.

引き続いて、アルゴンガスを排出した前記装置の処理室
内にエタンガスを導入し、前記した基板保持具をカソー
ドとしその基板保持具を通して、下地層12,磁性層13及
び中間層14を積層した非磁性支持体6に高周波電力(周
波数:13.56MHz)を印加するグロー放電法により、中間
層14上に炭素を含有してなる保護層15(膜厚:200Åを成
膜して磁気記録媒体16を製造した。なお、保護層15の成
膜条件はエタンガス流量50 SCCH,処理室内圧力1×10-2
Torr,高周波電力密度0.1W/cm2である。
Subsequently, ethane gas was introduced into the processing chamber of the apparatus from which argon gas had been discharged, and the substrate holder described above was used as a cathode, and the substrate holder was passed through the substrate holder, and a non-magnetic support in which an underlayer 12, a magnetic layer 13 and an intermediate layer 14 were laminated. A magnetic recording medium 16 was manufactured by forming a protective layer 15 containing carbon (film thickness: 200Å) on the intermediate layer 14 by a glow discharge method of applying high frequency power (frequency: 13.56 MHz) to the body 6. The conditions for forming the protective layer 15 are as follows: ethane gas flow rate 50 SCCH, process chamber pressure 1 × 10 -2
Torr, high frequency power density is 0.1 W / cm 2 .

次に、比較例として第3図に示すような磁気記録媒体17
を製造した。
Next, as a comparative example, a magnetic recording medium 17 as shown in FIG.
Was manufactured.

この磁気記録媒体17は、上記第2実施例中で製造した磁
気記録媒体16の中間層14の成膜を省略して,非磁性支持
体6の主表面上に下地層12,磁性層13及び保護層15を順
次積層したものである。
In this magnetic recording medium 17, the formation of the intermediate layer 14 of the magnetic recording medium 16 manufactured in the second embodiment is omitted, and the underlayer 12, the magnetic layer 13 and the magnetic layer 13 are formed on the main surface of the non-magnetic support 6. The protective layer 15 is sequentially laminated.

ここで、上記したようにしてそれぞれ製造した磁気記録
媒体11,16及び17の性能を評価するために、以下に記す
ように、情報を書き込んだトラックにおける欠陥発生ト
ラック数,静止摩擦係数及び耐久性の測定を行った。
Here, in order to evaluate the performance of the magnetic recording media 11, 16 and 17 manufactured as described above, respectively, as will be described below, the number of defect-occurring tracks, the static friction coefficient and the durability in the tracks in which information is written are as follows. Was measured.

ここで、情報を書き込んだトラックにおける欠陥の発生
とは、情報を書き込んだトラック(磁気記録媒体の情報
記録等)の情報信号が時間の経過に伴って消失してしま
うことをいう。
Here, the occurrence of a defect in a track in which information has been written means that the information signal of a track in which information has been written (such as information recording on a magnetic recording medium) disappears over time.

上記した欠陥発生トラック数を測定する為に、各磁気記
録媒体11,16及び17を温度80℃、湿度80%の高温多湿の
雰囲気中に所定期間放置した。その後、情報を書き込ん
だ全トラック数のうち600本のトラックを選択し、その
トラックにおいて情報信号の消失したトラック数(欠陥
トラック数)を、測定装置(例:アデルファイ社メディ
アサーティファイアRD008C)を用い測定した。表3にお
いて、放置期間と欠陥トラック数との関係を示す。
In order to measure the number of tracks in which the above defects were generated, each of the magnetic recording media 11, 16 and 17 was left in a hot and humid atmosphere having a temperature of 80 ° C. and a humidity of 80% for a predetermined period. After that, select 600 tracks out of the total number of written tracks, and measure the number of lost tracks (the number of defective tracks) of the information signal on that track with a measuring device (eg, Adelphi Media certifier RD008C). It was measured using. Table 3 shows the relationship between the leaving period and the number of defective tracks.

表3に示したように、本実施例(第1及び第2実施例)
によって製造した磁気記録媒体11及び16は、上気した高
温多湿の雰囲気中に長期間放置しても、欠陥トラックが
発生することはなかった。一方、比較例として製造した
磁気記録媒体17は、上記雰囲気中に放置する期間が長く
なる程、欠陥トラック数が著しく増加してしまう。この
ように磁気記録媒体11及び16において欠陥トラックの発
生が防止されているのは、該媒体11の中間層9及び保護
層10,該媒体16の中間層14及び保護層15が磁性層8及び1
3をそれぞれ有効に保護し、磁気記録媒体11及び16に高
い耐候性を有せしめているからである。
As shown in Table 3, this embodiment (first and second embodiments)
The magnetic recording media 11 and 16 manufactured by the method did not generate a defective track even when left for a long time in an atmosphere of high temperature and high humidity. On the other hand, in the magnetic recording medium 17 manufactured as a comparative example, the number of defective tracks increases remarkably as the period of time of being left in the atmosphere becomes longer. In this way, the generation of defective tracks is prevented in the magnetic recording media 11 and 16 because the intermediate layer 9 and the protective layer 10 of the medium 11 and the intermediate layer 14 and the protective layer 15 of the medium 16 are the magnetic layers 8 and 1
This is because 3 is effectively protected and the magnetic recording media 11 and 16 have high weather resistance.

次に、各磁気記録媒体11及び16の各保護層10及び15上
に、酸化アルミニウムと炭化チタンの混合焼結体からな
る磁気ヘッドスライダーを荷重10gで当接し、初期の静
止摩擦係数をそれぞれ測定した。なお、前記した初期の
静止摩擦係数とは、各保護層10及び15上に磁気ヘッドス
ライダーを当接して最初に測定した静止摩擦係数であ
る。このとき、各磁気記録媒体11及び16における初期静
止摩擦係数はいずれも0.2であった。
Next, on each protective layer 10 and 15 of each magnetic recording medium 11 and 16, a magnetic head slider made of a mixed sintered body of aluminum oxide and titanium carbide was brought into contact with a load of 10 g, and the initial static friction coefficient was measured, respectively. did. The initial coefficient of static friction mentioned above is the coefficient of static friction initially measured by contacting the magnetic head slider on each of the protective layers 10 and 15. At this time, the initial static friction coefficient in each of the magnetic recording media 11 and 16 was 0.2.

次に、各磁気記録媒体11及び16の各保護層10及び15上に
前記磁気ヘッドスライダーを静止させた状態で、各磁気
記録媒体11及び16の回転開始・回転停止を行うコンタク
トスタート/ストップ(以下、「CSS」という。)をそ
れぞれ1万回繰り返した後に、前記したと同様にして静
止摩擦係数をそれぞれ測定すると、その値は磁気記録媒
体11及び16共に0.5であった。
Next, contact start / stop for starting and stopping the rotation of each magnetic recording medium 11 and 16 with the magnetic head slider standing still on each protective layer 10 and 15 of each magnetic recording medium 11 and 16 ( (Hereinafter referred to as "CSS") 10,000 times each, and the static friction coefficient was measured in the same manner as described above, and the values were 0.5 for both the magnetic recording media 11 and 16.

以上のように、磁気記録媒体11及び16における初期静止
摩擦係数及び1万回CSS後の静止摩擦係数の値は共に、
実用に耐えうる充分に低い値であった。
As described above, the values of the initial static friction coefficient and the static friction coefficient after 10,000 times CSS in the magnetic recording media 11 and 16 are both
The value was low enough to be practically used.

また、磁気記録媒体11及び16において、それぞれ1万回
以上CSSを繰り返しても非磁性支持体6の主表面上に積
層した薄膜(例えば、保護層10及び15)に傷等が発生せ
ず、磁気記録媒体11及び16は好適な耐久性を有している
ことが確認された。
Further, in the magnetic recording media 11 and 16, even if CSS is repeated 10,000 times or more, the thin film (for example, the protective layers 10 and 15) laminated on the main surface of the non-magnetic support 6 is not scratched, It was confirmed that the magnetic recording media 11 and 16 have suitable durability.

以上のように、本実施例によって製造した磁気記録媒体
11及び16は、温度及び湿度条件に充分な耐性、すなわち
高い耐候性を有し、書き込まれた情報(情報信号)を長
期間確実に保持することができる。また、磁気記録媒体
11及び16における初期静止摩擦係数及び多数回のCSS後
の静止摩擦係数は、十分に低い値であり、さらに、磁気
記録媒体11及び16は好適な耐久性を有している。さら
に、同一の装置内で、下地層,磁性層,中間層及び保護
層を順次積層することができるので、非磁性支持体6等
に塵埃が付着することを防止し、かつ容易に磁気記録媒
体11及び16を製造することができる。
As described above, the magnetic recording medium manufactured according to this example.
11 and 16 have sufficient resistance to temperature and humidity conditions, that is, high weather resistance, and can reliably retain written information (information signal) for a long period of time. Also, magnetic recording media
The initial coefficient of static friction in 11 and 16 and the coefficient of static friction after many CSSs are sufficiently low values, and the magnetic recording media 11 and 16 have suitable durability. Further, since the underlayer, the magnetic layer, the intermediate layer and the protective layer can be sequentially laminated in the same device, it is possible to prevent dust from adhering to the non-magnetic support 6 and the like, and to easily carry out the magnetic recording medium. 11 and 16 can be produced.

本発明は、上気した実施例に限定されるものではない。The invention is not limited to the preferred embodiments.

保護層の成膜時に用いる反応ガスとして、保護層10の成
膜時にエタンを、保護層15の成膜時にメタンをそれぞれ
用いてもよく、さらにメタン及びエタン以外に、メチレ
ン,エチレン,アセチレン,アセトン等の炭化水素を含
有してなるガスを用いてもよい。さらに、炭化水素と水
素とを含有してなるガスを反応ガスとして用いてもよ
い。また、高周波グロー放電法による保護層の成膜時の
高周波電力,その周波数,ガス流量,処理室内圧力は適
宜選定してよい。
As the reaction gas used when forming the protective layer, ethane may be used when forming the protective layer 10 and methane may be used when forming the protective layer 15, and methylene, ethylene, acetylene, and acetone may be used in addition to methane and ethane. You may use the gas containing hydrocarbons, such as. Further, a gas containing hydrocarbon and hydrogen may be used as the reaction gas. Further, the high frequency power at the time of forming the protective layer by the high frequency glow discharge method, its frequency, the gas flow rate, and the processing chamber pressure may be appropriately selected.

また、中間層9はタングステン、中間層14はモリブデン
からそれぞれなったが、中間層9及び14はタングステン
とモリブデンとを含有してなってもよい。
Further, although the intermediate layer 9 is made of tungsten and the intermediate layer 14 is made of molybdenum, the intermediate layers 9 and 14 may contain tungsten and molybdenum.

下地層,磁性層及び中間層の成膜時に用いたアルゴンガ
スの代わりに、ネオンやキセノン等の不活性ガスを用い
てもよく、また、それらの成膜時のガス流量,処理室内
圧力,DC電力密度は適宜選定してよい。
An inert gas such as neon or xenon may be used in place of the argon gas used for forming the underlayer, the magnetic layer and the intermediate layer, and the gas flow rate, the pressure in the processing chamber, DC The power density may be appropriately selected.

下地層及び磁性層はスパッタリング法以外に、真空蒸着
法やCVD用やイオンプレーティング法等の成膜方法によ
って形成してもよい。
The underlayer and the magnetic layer may be formed by a film forming method such as a vacuum vapor deposition method, a CVD method, or an ion plating method other than the sputtering method.

下地層はクロム以外に、チタン,タンタル及びモリブデ
ン等の非磁性材料からなるようにしてもよく、また下地
層は省略してもよい。また、磁性層はコバルトとニッケ
ルとクロムとからなるもの以外に、コバルト、コバルト
とニッケル、コバルトとプラチナ、コバルトとニッケル
と鉄、及び酸化鉄等の任意の磁性材料からなるようにし
てもよい。さらに、下地層,磁性層,中間層及び保護層
の膜厚はそれぞれ適宜選定しうるが、高密度記録を行う
ためには中間層の膜厚は50〜200Å,保護層の膜厚は50
〜400Åであることが望ましい。
The underlayer may be made of a non-magnetic material such as titanium, tantalum and molybdenum in addition to chromium, and the underlayer may be omitted. Further, the magnetic layer may be made of any magnetic material such as cobalt, cobalt and nickel, cobalt and platinum, cobalt and nickel and iron, and iron oxide, in addition to those made of cobalt, nickel and chromium. Further, the thicknesses of the underlayer, magnetic layer, intermediate layer and protective layer can be appropriately selected, but in order to perform high density recording, the thickness of the intermediate layer is 50 to 200Å and the thickness of the protective layer is 50 to 200Å.
It is desirable to be ~ 400Å.

非磁性支持体はソーダライムガラス以外に、アルミノシ
リケートガラス,石英ガラス,アルミニウム,ポリエス
テル等の非磁性材料からなってよく、また、その形状は
ドーナッツ板状以外に、カード状,テープ状,ドラム状
等の任意の形状であってよい。
The non-magnetic support may be made of non-magnetic material such as aluminosilicate glass, quartz glass, aluminum, polyester, etc. in addition to soda lime glass, and its shape is not only a donut plate shape, but also a card shape, tape shape, drum shape. It may be any shape such as.

〔発明の効果〕 本発明の磁気記録媒体の製造方法によれば、高い耐候性
を有し、書き込まれた情報を長期間保持することができ
る優れた耐久性を有する磁気記録媒体を製造することが
できる。
EFFECTS OF THE INVENTION According to the method of manufacturing a magnetic recording medium of the present invention, it is possible to manufacture a magnetic recording medium having high weather resistance and excellent durability capable of holding written information for a long period of time. You can

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明の実施例によって製造した磁
気記録媒体を示す部分断面図、第3図は比較例として製
造した磁気記録媒体を示す部分断面図、及び第4図は従
来の磁気記録媒体を示す部分断面図である。 6……非磁性支持体、7,12……下地層、8,13……磁性
層、9,14……中間層、10,15……保護層、11,16……磁気
記録媒体。
1 and 2 are partial cross-sectional views showing a magnetic recording medium manufactured according to an embodiment of the present invention, FIG. 3 is a partial cross-sectional view showing a magnetic recording medium manufactured as a comparative example, and FIG. FIG. 3 is a partial cross-sectional view showing a magnetic recording medium. 6 ... Non-magnetic support, 7,12 ... Underlayer, 8,13 ... Magnetic layer, 9,14 ... Intermediate layer, 10,15 ... Protective layer, 11, 16 ... Magnetic recording medium.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非磁性支持体の主表面上に磁性層を形成
し、該磁性層上に高周波グロー放電法により原料ガスか
ら炭素を含有した保護層を形成する磁気記録媒体の製造
方法において、 磁性層と、炭素からなる保護層との間にスパッタリング
法によってタングステン及びモリブデンのうち少なくと
も一つを含む中間層を形成し、 前記高周波グロー放電法は、磁性層を形成した非磁性支
持体に高周波電力を印加して行うことを特徴とする磁気
記録媒体の製造方法。
1. A method for producing a magnetic recording medium, comprising forming a magnetic layer on the main surface of a non-magnetic support, and forming a protective layer containing carbon from a raw material gas on the magnetic layer by a high frequency glow discharge method. An intermediate layer containing at least one of tungsten and molybdenum is formed between a magnetic layer and a protective layer made of carbon by a sputtering method. A method of manufacturing a magnetic recording medium, which is characterized in that electric power is applied.
JP62136069A 1987-05-29 1987-05-29 Method of manufacturing magnetic recording medium Expired - Fee Related JPH0690790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62136069A JPH0690790B2 (en) 1987-05-29 1987-05-29 Method of manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62136069A JPH0690790B2 (en) 1987-05-29 1987-05-29 Method of manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS63300427A JPS63300427A (en) 1988-12-07
JPH0690790B2 true JPH0690790B2 (en) 1994-11-14

Family

ID=15166491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62136069A Expired - Fee Related JPH0690790B2 (en) 1987-05-29 1987-05-29 Method of manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0690790B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029936A (en) * 1983-07-29 1985-02-15 Denki Kagaku Kogyo Kk Magnetic recording medium and its production
JPS6154036A (en) * 1984-08-24 1986-03-18 Nec Corp Magnetic recording medium and its manufacture
JP2594534B2 (en) * 1984-11-13 1997-03-26 日本電気株式会社 Magnetic storage

Also Published As

Publication number Publication date
JPS63300427A (en) 1988-12-07

Similar Documents

Publication Publication Date Title
US6855232B2 (en) Magnetic disk comprising a first carbon overcoat having a high SP3 content and a second carbon overcoat having a low SP3 content
US5945191A (en) Multi-phase carbon overcoats for magnetic discs
US5679431A (en) Sputtered carbon overcoat in a thin-film medium and sputtering method
US4411963A (en) Thin film recording and method of making
US4778582A (en) Process for making a thin film metal alloy magnetic recording disk with a hydrogenated carbon overcoat
USRE32464E (en) Thin film recording and method of making
US4277540A (en) Thin film magnetic recording medium
US5981018A (en) Magnetic recording media used in a high-density hard disk drive
JPH0690790B2 (en) Method of manufacturing magnetic recording medium
JPH097174A (en) Production of magnetic recording medium and substrate holder
JP2000105916A (en) Magnetic recording medium and its production
JPH06248458A (en) Plasma treatment device and production of magnetic disk by using this device
JPH01271908A (en) Magnetic storage body and magnetic storage device and its manufacture
JPS61117727A (en) Magnetic storage body and its manufacture
JP2000268355A (en) Magnetic disk and its manufacture, and magnetic recording apparatus
JPH038119A (en) Production of magnetic recording medium
JPH05298689A (en) Formation of magnetic disk protective film
JP2004234746A (en) Manufacturing method of perpendicular magnetic recording medium
JP2751396B2 (en) Magnetic disk
JPH07320257A (en) Magnetic recording medium and its production
JPS63181113A (en) Magnetic recording medium and its production
JPH01251313A (en) Magnetic recording medium
JPH09279335A (en) Method for forming carbonaceous thin film
JP2007184099A (en) Magnetic disk
JPH01271915A (en) Magnetic storage body and magnetic storage device and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees