JPH0689440B2 - Manufacturing method of high-strength conductive copper-based alloy with excellent press formability - Google Patents

Manufacturing method of high-strength conductive copper-based alloy with excellent press formability

Info

Publication number
JPH0689440B2
JPH0689440B2 JP63140768A JP14076888A JPH0689440B2 JP H0689440 B2 JPH0689440 B2 JP H0689440B2 JP 63140768 A JP63140768 A JP 63140768A JP 14076888 A JP14076888 A JP 14076888A JP H0689440 B2 JPH0689440 B2 JP H0689440B2
Authority
JP
Japan
Prior art keywords
temperature
press formability
alloy
manufacturing
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63140768A
Other languages
Japanese (ja)
Other versions
JPH01309948A (en
Inventor
章 菅原
敏裕 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Yazaki Corp
Original Assignee
Yazaki Corp
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp, Dowa Mining Co Ltd filed Critical Yazaki Corp
Priority to JP63140768A priority Critical patent/JPH0689440B2/en
Publication of JPH01309948A publication Critical patent/JPH01309948A/en
Publication of JPH0689440B2 publication Critical patent/JPH0689440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔技術分野〕 本発明は,自動車部品の電装品に用いられるワイヤーハ
ーネスのターミナル用材料として好適な高強度導電性銅
基合金の製造法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a high-strength conductive copper-based alloy suitable as a material for a terminal of a wire harness used for electric components of automobile parts.

〔従来の技術〕[Conventional technology]

周知のとおり自動車産業は日本の基幹産業として大きな
役割を果たすに至っており,その生産台数の増加と近時
ではカーエレクトロニクスの発達により,これに使用さ
れる伸銅品材料がますます増加している。車の電装品の
一翼を担うワイヤーハーネスもこれに漏れず1台当り1k
mの長さ,20kgの重量が使用されるまでになった。そし
て,近時の自動車に対する軽量化,高信頼化,低コスト
化の要求はますます厳しいものになり,従ってワイヤー
ハーネスも軽量且つ高信頼性且つ低コストが要求される
ようになってきている。ここでワイヤーハーネスは電線
とターミナルが一体となったものであり軽量化と配電の
高密度化のためにはターミナル材料の材料特性および信
頼性の向上が必要不可欠となった。
As is well known, the automobile industry has come to play a major role as a key industry in Japan, and due to the increase in the number of production and the recent development of car electronics, the number of copper alloy products used for it has been increasing. . The wire harness that plays a role in the electric components of the car does not leak to this, and 1k per unit
A length of 20 m and a weight of 20 kg were used. Recently, demands for weight reduction, high reliability, and cost reduction for automobiles are becoming more and more severe. Therefore, wire harnesses are also required to be lightweight, highly reliable, and low cost. Here, the wire harness is an integrated wire and terminal, and it is essential to improve the material characteristics and reliability of the terminal material in order to reduce the weight and increase the density of power distribution.

このような背景のもとに,実際面ではターミナル材料は
薄肉化されまた複雑な形状にプレス成形されることか
ら,強度,弾性,導電性およびプレス成形性が良好なこ
とが必須となった。またさらに耐食性,耐応力腐食割れ
性が良好なことはもちろん,エンジンルーム周辺や排ガ
ス系周辺では熱的な負荷も加わることから耐応力緩和特
性にも優れていなければならない。
Against this background, in practice, the terminal material is thinned and pressed into a complicated shape, so good strength, elasticity, conductivity, and press formability are essential. In addition to good corrosion resistance and stress corrosion cracking resistance, it must also have excellent stress relaxation resistance because thermal loads are applied around the engine room and exhaust gas system.

このような要求に応えるべく本発明者らは特願昭62−10
6426号などにおいてワイヤーハーネスのターミナル用銅
合金およびその製造法を提案してきている。特願昭62-1
06426号に記載の発明はCuマトリックス中にNi-Ti系金属
間化合物を均一微細に析出させることによって優れた特
性を発現したものであるが,このようにCuマトリックス
中にNi-Ti系金属間化合物を析出させた銅基合金として
は特公昭34-1253号公報,特公昭62-8491号公報,特公昭
63-4890号公報,特公昭62-54048号公報等に記載のもの
が知られており,またその製造法としては例えば特開昭
62-50453号公報に記載された方法等が知られている。
In order to meet such demands, the present inventors have filed Japanese Patent Application No. 62-10.
No. 6426 has proposed copper alloys for wire harness terminals and methods of manufacturing the same. Japanese Patent Application Sho 62-1
The invention described in No. 06426 has exhibited excellent properties by uniformly and finely depositing Ni-Ti intermetallic compounds in a Cu matrix. As a copper-based alloy in which a compound is deposited, Japanese Patent Publication No. 34-1253, Japanese Patent Publication No. 62-8491, and Japanese Patent Publication No.
The ones described in JP-A-63-4890, JP-B-62-54048 and the like are known, and the manufacturing method thereof is, for example, JP-A
The method described in JP 62-50453 is known.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前記の公報等に開示されたCu-Ni-Ti系合金においては,
主に強度,導電率の向上に適した製造法を用いている場
合が多く,従ってこれらの従来の製造法では複雑な形状
にプレス成形することを目的としたCu-Ni-Ti系合金のワ
イヤーハーネスのターミナルを製造する場合には必ずし
も適していない場合が多い。
In the Cu-Ni-Ti alloys disclosed in the above publications,
In many cases, manufacturing methods suitable for improving strength and conductivity are mainly used. Therefore, in these conventional manufacturing methods, Cu-Ni-Ti alloy wire for press forming into complicated shapes is used. It is often not always suitable when manufacturing terminals for harnesses.

例えば特公昭34−1253号公報の実施例では「径5.2mm線
とした後,1000℃にて水焼入し,更に冷間加工して径1.6
mm線とし,最後に500℃で1時間焼戻して仕上線とし
た。」とある。これによって該発明合金(2)(Cu-2.3
Ni-0.7Ti合金)は抗張力71.0kgf/mm2,伸び3.5%,ビッ
カース硬度214,導電率60.6%の特性値が示されている。
だが,この方法にて得られた材料は,強度,導電率など
の材料特性値は優れているが,加工性には劣るという欠
点を持つ。従って,溶体化処理−急冷−強冷間加工−時
効処理という工程は,強度,導電率などの向上は有利で
あるが,加工性が極端に劣化してしまうという問題があ
る。
For example, in the example of Japanese Examined Patent Publication No. 341253, “a wire having a diameter of 5.2 mm, water quenched at 1000 ° C., and further cold worked to have a diameter of 1.6 mm.
mm wire and finally tempered at 500 ° C for 1 hour to obtain a finish wire. "a. As a result, the invention alloy (2) (Cu-2.3
Ni-0.7Ti alloy) has the following values: tensile strength 71.0 kgf / mm 2 , elongation 3.5%, Vickers hardness 214, conductivity 60.6%.
However, the material obtained by this method is excellent in material property values such as strength and conductivity, but has a drawback that it is inferior in workability. Therefore, the process of solution treatment-quenching-strong cold working-aging treatment is advantageous in improving strength and conductivity, but has a problem that workability is extremely deteriorated.

また,特開昭62-50453号公報に記載の方法は,該特公昭
34-1253号公報に記載のものよりも,より限定した熱処
理条件,冷却条件および冷間加工率を用いることにより
強度,導電率などを向上したものであるが,基本的な製
造法は溶体化処理−急冷−強冷間加工−時効処理の工程
であり特公昭34-1253号公報のものに準ずるものであ
る。従って強度,導電率などに対し加工性が悪いという
問題がある。
The method described in JP-A-62-50453 is disclosed in
Strength and conductivity are improved by using more restrictive heat treatment conditions, cooling conditions and cold working rate than those described in JP 34-1253, but the basic manufacturing method is solution treatment. It is a process of treatment-quenching-strong cold working-aging treatment and is similar to that of Japanese Patent Publication No. 34-1253. Therefore, there is a problem in that workability is poor with respect to strength and conductivity.

これに対し,特公昭62-8491号公報,特公昭63-4890号公
報,特開昭62-54048号公報の場合には軟化焼鈍と冷間圧
延を繰返し,また場合によっては最終冷間圧延後に時効
処理を行って,強度,導電率などを向上させている。し
かし,このような製造法によれば,強度,弾性を向上さ
せようとすれば軟化焼鈍後の冷間加工率を比較的大きく
とる必要があり,この場合プレス成形性が大きく低下し
てしまう。そして更に溶体化処理,急冷工程を用いて製
造した材料より,弾性が低く且つ耐応力緩和特性にも劣
る。
On the other hand, in JP-B-62-8491, JP-B-63-4890, and JP-A-62-54048, soft annealing and cold rolling are repeated, and in some cases after the final cold rolling. Aging treatment is applied to improve strength and conductivity. However, according to such a manufacturing method, in order to improve the strength and elasticity, it is necessary to make the cold working rate after the softening annealing relatively large, and in this case, the press formability is greatly reduced. Further, it has lower elasticity and inferior stress relaxation resistance as compared with the material manufactured by the solution treatment and the quenching process.

このようなことから,本発明者らは先に特願昭62-10642
6号において,強度,弾性,導電性,プレス成形性,耐
応力緩和特性を向上させる方法を提案したが,この製造
方法は,溶体化処理−急冷−冷間加工−時効処理−冷間
加工−時効処理に代表される工程で,加工,熱処理条件
を厳しく限定することによって特性を発現させたもので
ある。しかし,このような製造法によっては溶体化処理
後,製品を得るまでの工程数が多く経済性に欠けるとい
う問題があった。
Therefore, the present inventors have previously proposed Japanese Patent Application No. 62-10642.
In No. 6, we proposed a method to improve strength, elasticity, conductivity, press formability, and stress relaxation resistance property. This manufacturing method is solution treatment-quenching-cold working-aging treatment-cold working- In the process represented by aging treatment, the characteristics are expressed by strictly limiting the processing and heat treatment conditions. However, such a manufacturing method has a problem in that the number of steps required to obtain a product after solution treatment is large and the economy is low.

したがって,本発明の目的とするところは,プレス成形
性に優れ且つ強度,弾性,導電性,耐応力緩和特性にも
優れたワイヤーハーネスのターミナル材料に好適な銅基
合金を低コストで製造することにある。
Therefore, an object of the present invention is to produce at low cost a copper-based alloy suitable for a terminal material of a wire harness, which is excellent in press formability, strength, elasticity, conductivity, and stress relaxation resistance. It is in.

〔問題点を解決する手段〕[Means for solving problems]

前記の目的を達成せんとする本発明の要旨とするところ
は,重量%において,Ni;1.0〜3.0%,Ti;0.1〜1.5%,た
だしNi/Tiの重量百分率の比率が1〜10の範囲,酸素;50
ppm以下,さらに必要に応じてZn,Mg,Ca,Be,Zr,Crからな
る群より選択された1種または2種以上の元素を総量で
0.01〜1.0%含み、残部がCuおよび不可避的不純物から
なる銅基合金を、800〜970℃の温度に加熱後、400〜650
℃の温度まで10℃/sec以上の冷却速度で冷却し,400〜65
0℃の温度で5〜360分間加熱保持したあと常温まで冷却
すること、さらに場合によっては加工率3%以内の冷間
加工を施したうえ400〜600℃の温度で1〜360分間加熱
すること,を特徴とするプレス成形性に優れた高強度導
電性銅基合金の製造法である。
The gist of the present invention to achieve the above-mentioned object is that, in weight%, Ni; 1.0 to 3.0%, Ti; 0.1 to 1.5%, provided that the weight percentage ratio of Ni / Ti is in the range of 1 to 10. , Oxygen; 50
ppm or less, and if necessary, the total amount of one or more elements selected from the group consisting of Zn, Mg, Ca, Be, Zr and Cr.
After heating a copper-based alloy containing 0.01 to 1.0% and the balance Cu and unavoidable impurities to a temperature of 800 to 970 ℃, 400 to 650
400 to 65 at a cooling rate of 10 ° C / sec or more to a temperature of ° C.
Heat and hold at 0 ℃ for 5 to 360 minutes, then cool to room temperature, and if necessary, cold work within 3% and heat at 400 to 600 ℃ for 1 to 360 minutes. , Is a method for producing a high-strength conductive copper-based alloy with excellent press formability.

以下に本発明の内容を具体的に説明する。The contents of the present invention will be specifically described below.

〔発明の詳述〕[Detailed Description of the Invention]

(1)本発明合金の成分組成について, 本発明の銅基合金はNi-Ti系金属間化合物による析出強
化および分散強化を図った点に基本的な特徴があり,こ
のためNiとTiは本発明合金において不可欠の元素であ
る。
(1) Concerning the composition of the alloy of the present invention, the copper-based alloy of the present invention has a basic feature in that precipitation strengthening and dispersion strengthening by Ni-Ti intermetallic compounds are aimed at. It is an essential element in invention alloys.

Niは,Tiと化合物を形成した強度,弾性,耐熱性および
耐応力緩和特性などの特性の向上に寄与する元素であ
る。また鋳造組織および熱間組織を微細にし且つ溶体化
処理時の結晶粒粗大化を防止する効果がある。このよう
な効果を発揮するには1.0%(重量%、以下同じ)以上
の含有が必要であるが、3.0%を超えて含有すると電気
伝導性の低下が顕著となり,且つ溶体化処理温度が高温
になり製造上不利になり,また経済性のうえからも好ま
しくない。したがってNi含有量は1.0〜3.0%の範囲とす
る。
Ni is an element that contributes to the improvement of properties such as strength, elasticity, heat resistance, and stress relaxation resistance when a compound is formed with Ti. Further, it has the effect of making the cast structure and the hot structure fine and preventing the crystal grains from becoming coarse during the solution treatment. To achieve this effect, the content must be 1.0% (weight%, the same applies below) or more, but if it exceeds 3.0%, the electrical conductivity will be significantly reduced and the solution treatment temperature will be high. It is disadvantageous in manufacturing, and is not preferable in terms of economy. Therefore, the Ni content is set to the range of 1.0 to 3.0%.

Ti含有量は0.1%未満ではNiとの共存下でも,強度,弾
性,耐熱性,耐応力緩和特性などの向上効果が少ない。
一方、Ti含有量が1.5%を超えると電気伝導率が低下す
るとともにプレス成形性が極端に低下してくる。また鋳
造性などの製造性が低下してくるので,Ti含有量は0.1〜
1.5%の範囲とする。
When the Ti content is less than 0.1%, the effect of improving strength, elasticity, heat resistance, stress relaxation resistance, etc. is small even when coexisting with Ni.
On the other hand, when the Ti content exceeds 1.5%, the electrical conductivity is lowered and the press formability is extremely lowered. In addition, since the manufacturability such as castability decreases, the Ti content is 0.1-
The range is 1.5%.

また、NiとTiは、Ni-Ti系金属間化合物として析出する
ときに本発明の目的が有利に達成される。このNi-Ti系
金属間化合物による強化を十分に発揮するには,Ni/Tiの
重量百分率による比率を1〜10の範囲にすることが必要
である。Ni/Ti比が1より小さい場合には、TiとCuの化
合物であるTi-Ni系金属間化合物が時効析出する。このT
i-Cu系金属間化合物が析出しても、強度,弾性の向上は
期待できるものの,電気伝導性の向上は少なく,また,
溶体化処理時に結晶粒が粗大化し易く、従ってプレス成
形時に曲げ面に肌荒れを生じ易くなる。このようなこと
からNi/Ti比は1以上とする必要がある。他方Ni/Ti比が
10より大きい場合には,マトリックスに残留するNi量が
多くなり電気伝導性を低下させる。このような理由から
本発明の特性を十分に発揮するためにはNi/Ti比を1〜1
0の範囲にすることが必要である。
Further, the objects of the present invention are advantageously achieved when Ni and Ti are precipitated as Ni—Ti based intermetallic compounds. In order to fully exert the strengthening by this Ni-Ti intermetallic compound, it is necessary to set the ratio by weight percentage of Ni / Ti within the range of 1-10. When the Ni / Ti ratio is less than 1, the Ti-Ni based intermetallic compound which is a compound of Ti and Cu is aged and precipitated. This T
Even if the i-Cu intermetallic compound is deposited, the improvement in strength and elasticity can be expected, but the improvement in electrical conductivity is small, and
The crystal grains are likely to become coarse during the solution heat treatment, and thus the bent surface is likely to be roughened during press forming. Therefore, the Ni / Ti ratio needs to be 1 or more. On the other hand, the Ni / Ti ratio is
If it is more than 10, the amount of Ni remaining in the matrix increases and the electrical conductivity decreases. For this reason, the Ni / Ti ratio is 1 to 1 in order to sufficiently exhibit the characteristics of the present invention.
Must be in the 0 range.

Znは本発明合金のメッキ信頼性を向上させる。具体的に
はSnメッキやSn-Pbメッキのメッキ付性た耐熱密着性を
向上させる。ワイヤーハーネスのターミナルはSnメッキ
やSn-Pbメッキが施される場合があるが、これが通電や
エンジン系統の熱によって長時間加熱されると環境の影
響も加わって添加元素であるNi,Tiがメッキ界面に拡散
し,Snと反応拡散層を形成する。この反応拡散層は脆弱
であり,メッキが剥離し易くなり,メッキ信頼性を低下
させる。Znを添加するとNiやTiのCu中での拡散が抑制さ
れ界面の反応拡散層の形成を効率良く防止することがで
きる。またZnは脱酸作用があり,溶湯の脱酸剤にもな
り,さらに湯流れ性を良くするので鋳造性も向上させ
る。このような効果を発揮するためには0.1%以上のZn
の含有を必要とするが,1.0%を超えて含有すると電気伝
導性の低下が顕著となるので好ましくはZn含有量を0.1
〜1.0%の範囲とすることが必要である。
Zn improves the plating reliability of the alloy of the present invention. Specifically, it improves the heat-resistant adhesion of Sn plating and Sn-Pb plating. The terminal of the wire harness may be Sn-plated or Sn-Pb-plated, but if it is heated for a long time by electricity or heat of the engine system, the effect of the environment is added and the additive elements Ni and Ti are plated. It diffuses to the interface and forms a reaction diffusion layer with Sn. This reaction diffusion layer is fragile, and the plating is easily peeled off, which lowers the plating reliability. When Zn is added, the diffusion of Ni or Ti in Cu is suppressed, and the formation of the reaction diffusion layer at the interface can be efficiently prevented. In addition, Zn has a deoxidizing effect, acts as a deoxidizing agent for the molten metal, and improves the flowability of the molten metal, thus improving the castability. In order to exert such effect, 0.1% or more of Zn
However, if the content exceeds 1.0%, the electrical conductivity will be significantly reduced.
It is necessary to be in the range of ~ 1.0%.

Mg,CaもZnと同様にメッキ信頼性の向上と脱酸作用に寄
与する元素である。また,合金の弾性を向上させる効果
を持つ。このような効果を発揮するためには,0.01%以
上含有することが必要であるが,0.5%を超えて含有する
と合金の電気伝導性およびプレス成形性の低下が著しく
なり,また経済的に不利となる,従って,Mg,Caの含有量
は好ましくは0.01〜0.5%の範囲とする。
Like Zn, Mg and Ca are elements that contribute to the improvement of plating reliability and deoxidation. It also has the effect of improving the elasticity of the alloy. In order to exert such effects, it is necessary to contain 0.01% or more, but if it exceeds 0.5%, the electrical conductivity and press formability of the alloy will be significantly reduced, and it is economically disadvantageous. Therefore, the Mg and Ca contents are preferably in the range of 0.01 to 0.5%.

Beは本合金の強度,弾性,耐応力緩和特性をさらに向上
させる元素である。また脱酸作用もあり溶湯の脱酸剤に
もなる。このような効果を発揮するためには0.01%以上
含有することが必要であるが,0.5%を超えて含有すると
合金の電気伝導性およびプレス成形性の低下が著しくな
り,また経済的にも不利となる。従ってBe含有量は好ま
しくは0.01〜0.5%の範囲となる。
Be is an element that further improves the strength, elasticity, and stress relaxation resistance of this alloy. It also has a deoxidizing effect and also serves as a deoxidizing agent for the molten metal. In order to exert such effects, it is necessary to contain 0.01% or more, but if it exceeds 0.5%, the electrical conductivity and press formability of the alloy will be significantly reduced, and it is also economically disadvantageous. Becomes Therefore, the Be content is preferably in the range of 0.01 to 0.5%.

Zr,CrもBeと同様に強度,弾性,耐応力緩和特性の向上
と脱酸作用に寄与する元素である。このような効果を発
揮するためには,0.01%以上含有することが必要である
が,0.5%を超えて含有すると電気伝導性およびプレス成
形性の低下が著しくなり,また経済的にも不利となる。
従ってZr,Crの含有量は好ましくは0.01〜0.5%の範囲と
する。
Similar to Be, Zr and Cr are elements that contribute to the improvement of strength, elasticity, stress relaxation resistance and deoxidation. In order to exert such effects, it is necessary to contain 0.01% or more, but if it exceeds 0.5%, the electrical conductivity and press formability will be significantly reduced, and it will be economically disadvantageous. Become.
Therefore, the Zr and Cr contents are preferably in the range of 0.01 to 0.5%.

なおZn,Mg,Ca,Be,Zr,Crは2種以上を総量で1.0%まで含
有することができる。1.0%を超えて含有すると電気伝
導性およびプレス成形性の低下が顕著になるとともに経
済的にも不利となる。したがってZn,Mg,Ca,Be,Zr,Crの
群より選択された1種または2種以上を総量で0.01〜1.
0%の範囲で添加することができる。
In addition, Zn, Mg, Ca, Be, Zr, and Cr can contain two or more kinds in total up to 1.0%. If the content exceeds 1.0%, the electrical conductivity and the press formability are significantly deteriorated and it is economically disadvantageous. Therefore, the total amount of one or more selected from the group of Zn, Mg, Ca, Be, Zr, Cr is 0.01-1.
It can be added in the range of 0%.

酸素含有量については,50ppmより多量に合金中に含有す
る析出したNi-Ti系金属間化合物が酸素と三元の化合物
をつくってNi-Ti-O系の化合物となり,強度,弾性,プ
レス成形性などの材料特性やメッキ信頼性などを低下さ
せる。また酸素含有量が多いと合金の製造過程でH2ガス
を用いる場合には,表面および内部に水素脆化が起きる
こともある。したがって酸素含有量は50ppm以下の範囲
とする。
Regarding the oxygen content, the precipitated Ni-Ti-based intermetallic compound contained in the alloy in an amount of more than 50 ppm forms a ternary compound with oxygen to become a Ni-Ti-O-based compound, and the strength, elasticity, press forming It reduces the material properties such as conductivity and plating reliability. Also, if the oxygen content is high, hydrogen embrittlement may occur on the surface and inside when H 2 gas is used in the alloy manufacturing process. Therefore, the oxygen content should be 50 ppm or less.

(2)本発明合金の製造条件について。(2) Regarding manufacturing conditions of the alloy of the present invention.

前記のように成分組成に調整した本発明の銅基合金はNi
-Ti系金属間化合物を均一微細に分散析出させることに
よって近時のワイヤーハーネスのターミナルに要求され
る諸特性を具備した材料とすることができる。このよう
な諸特性は特に熱処理を適切にコントロールした製造法
によって有利に発現させることができる。以下にその製
造法の詳細を説明する。
The copper-based alloy of the present invention adjusted to the component composition as described above is Ni
By uniformly and finely dispersing and precipitating the Ti-based intermetallic compound, it is possible to obtain a material having various characteristics required for the terminal of the recent wire harness. Such various characteristics can be advantageously exhibited especially by a production method in which heat treatment is appropriately controlled. The details of the manufacturing method will be described below.

まず,前記の成分組成となるように合金成分および酸素
含有量を調整した銅基合金の鋳片を溶解鋳造して製造す
る。この溶解鋳造は不活性ガスあるいは還元ガス雰囲気
中で行うのが望ましい。また,鋳造時の冷却速度はでき
るだけ速い方が好ましい。次いで鋳片を熱間圧延あるい
は均質化焼鈍後冷間圧延を行い板厚減少を施す。その
後,必要に同じて中間焼鈍,酸洗を挟んだ冷間圧延によ
って仕上げ前の板厚とする。
First, a slab of a copper-based alloy in which the alloy composition and the oxygen content are adjusted to have the above-described composition is melt-cast and manufactured. It is desirable that this melting and casting be performed in an inert gas or reducing gas atmosphere. Further, it is preferable that the cooling rate during casting is as high as possible. Then, the slab is subjected to hot rolling or homogenization annealing and then cold rolling to reduce the plate thickness. Then, if necessary, cold rolling with intermediate annealing and pickling is performed to obtain the plate thickness before finishing.

次いで,得られた素材品を800〜970℃の温度に加熱し,
溶体化処理を行う。この溶体化処理の温度が800℃未満
であると十分に溶体化せず,したがって,鋳造,熱延,
焼鈍の工程で生じた粗大な析出物が十分に消失しないの
で,特性の向上が計れない。また,800℃未満の温度では
結晶粒の調整も難しい。しかし970℃を超える温度では
短時間のうちに結晶粒が粗大化するので好ましくない。
したがって,本発明においては溶体化処理の温度範囲は
800〜970℃とする。
Then, the obtained raw material is heated to a temperature of 800 to 970 ° C,
Perform solution treatment. If the temperature of this solution heat treatment is less than 800 ° C, the solution will not be sufficiently solutionized, and therefore casting, hot rolling,
Coarse precipitates generated in the annealing process do not disappear sufficiently, so the characteristics cannot be improved. Also, it is difficult to control the crystal grains at temperatures below 800 ° C. However, if the temperature exceeds 970 ° C., the crystal grains become coarse in a short time, which is not preferable.
Therefore, in the present invention, the temperature range of solution treatment is
Set to 800-970 ℃.

溶体化処理後は10℃/sec以上の冷却速度,好ましくは50
℃/sec以上の冷却速度で400〜650℃まで冷却する。10℃
/sec未満の冷却速度では冷却の過程で析出が生じ,この
段階で生じる析出物は強化にはあまり寄与しない。冷却
する温度域は溶体化処理温度から400〜650℃の温度まで
で十分である。650℃を超える温度では析出物が成長し
粗大化するため特性の一層の向上が計れない。なお引き
続いて行う本発明の時効処理の温度範囲が400〜650℃で
あり,溶体化処理温度から400〜650℃まで急冷し,引き
続きこの温度で時効処理することによって時効のための
再加熱が不要となり経済的に有利となる。
After solution treatment, cooling rate is 10 ℃ / sec or more, preferably 50
Cool to 400-650 ℃ at a cooling rate of ℃ / sec or more. 10 ° C
When the cooling rate is less than / sec, precipitation occurs during the cooling process, and the precipitate generated at this stage does not contribute much to strengthening. The temperature range for cooling is sufficient from the solution treatment temperature to a temperature of 400 to 650 ° C. If the temperature exceeds 650 ° C, the precipitate will grow and become coarse, and the characteristics cannot be further improved. The temperature range of the subsequent aging treatment of the present invention is 400 to 650 ° C., and reheating for aging is not required by rapidly cooling from the solution treatment temperature to 400 to 650 ° C. and subsequently performing aging treatment at this temperature. Will be economically advantageous.

時効処理は400〜650℃の温度で5〜360分間加熱保持す
る。この工程はNi-Ti系金属間化合物を均一微細に析出
せしめるものであるが,400℃未満の温度では析出の要す
る時間が長時間となり,一方,650℃の温度を超える温度
では析出物が成長して粗大化し特性の一層の向上が期待
できなくなる。したがって時効温度は400〜650℃の範囲
とする。時効時間は5分未満では析出物の形成が不十分
であり,360分を超えるような長時間では析出物の成長の
うえからもまた経済性のうえからも好ましくない。
The aging treatment is performed by heating at a temperature of 400 to 650 ° C for 5 to 360 minutes. In this process, the Ni-Ti intermetallic compound is uniformly and finely precipitated. At temperatures below 400 ° C, the time required for precipitation is long, while at temperatures above 650 ° C, precipitates grow. As a result, the particles become coarse, and further improvement in characteristics cannot be expected. Therefore, the aging temperature should be in the range of 400-650 ° C. If the aging time is less than 5 minutes, the formation of precipitates is insufficient, and if the aging time is longer than 360 minutes, it is not preferable in terms of growth of the precipitates and economical efficiency.

以上の諸工程によって得られた板材は非常に優れたプレ
ス成形性を有し,且つ,強度,弾性,導電率,耐応力緩
和特性のバランスに優れている。
The plate material obtained by the above-mentioned steps has excellent press formability and also has an excellent balance of strength, elasticity, conductivity, and stress relaxation resistance.

この処理を行った板材に,さらに加工率30%以内の冷間
圧延を行い,400〜600℃の温度で1〜360分間加熱する
と,材料特性を一層向上させることができる。30%を超
える冷間加工率ではプレス成形性が極端に低下するため
冷間加工率は30%以内とすることが必要である。この冷
間加工と最終時効処理によって与えられる内部ひずみの
増加により,合金の強度,弾性,導電性,耐応力緩和特
性が一層向上するのであるが,この最終時効処理の温度
が400℃未満であると弾性の向上効果が少なく,また600
℃を超える温度では過時効になり材料特性が低下する。
保持時間は1分未満では弾性の向上効果が少なく,360分
を超えるような長時間では析出物の成長のうえからも経
済性のうえからも好ましくない。
The material properties can be further improved by cold-rolling the plate material that has undergone this treatment at a working rate of 30% or less and heating it at a temperature of 400 to 600 ° C for 1 to 360 minutes. If the cold working rate exceeds 30%, the press formability is extremely reduced, so it is necessary to keep the cold working rate within 30%. The strength, elasticity, conductivity, and stress relaxation resistance of the alloy are further improved by the increase of internal strain given by this cold working and final aging treatment, but the temperature of this final aging treatment is less than 400 ° C. And the effect of improving elasticity is small, and 600
If the temperature exceeds ℃, it will be over-aged and the material properties will deteriorate.
If the holding time is less than 1 minute, the effect of improving elasticity is small, and if the holding time is more than 360 minutes, it is not preferable in terms of growth of precipitates and economy.

以上の工程を経ることによってNi-Ti系金属間化合物がC
uマトリックス中に均一微細に分散析出した組織の銅基
合金を薄板が製造でき,これは後記の実施例に示すよう
に,強度,弾性,導電性,耐応力緩和特性をはじめ,プ
レス成形性に優れるので近年のワイヤーハーネスのター
ミナル材料に要求される特性を満たすことができる。
Through the above steps, the Ni-Ti-based intermetallic compound becomes C
A thin plate can be manufactured from a copper-based alloy having a structure in which it is uniformly and finely dispersed and precipitated in a u matrix. This can be used for strength, elasticity, conductivity, stress relaxation resistance, and press formability, as shown in Examples below. Since it is excellent, it can satisfy the characteristics required for the terminal material of the recent wire harness.

以下に代表的な本発明の実施例を挙げて本発明合金の特
性を具体的に示す。
The characteristics of the alloy of the present invention will be specifically shown below with reference to representative examples of the present invention.

〔実施例1〕 第1表に科学成分値(重量%)を示す銅基合金No.1を高
周波誘導溶解炉を用いて溶製し,15mm×50mm×300mmの鋳
塊に鋳造した。溶解鋳造雰囲気は完全に不活性ガスでシ
ールドした。この鋳塊を15mm×50mm×200mmに切断後,90
0℃で熱間圧延し厚さ5mmとしたのち,面削を施し厚さ4.
2mmとした。これを,厚さが2mmと1mmの状態にあるとき
に中間焼鈍(700℃×1hr)を行った冷間圧延工程によっ
て厚さ0.5mmまで冷間圧延した。この板材に第2表に示
す条件の熱処理を施して試験材を製造した。
[Example 1] Copper-based alloy No. 1 having the chemical composition values (% by weight) shown in Table 1 was melted using a high frequency induction melting furnace and cast into a 15 mm x 50 mm x 300 mm ingot. The melting and casting atmosphere was completely shielded with an inert gas. After cutting this ingot into 15 mm × 50 mm × 200 mm, 90
After hot rolling at 0 ° C to a thickness of 5 mm, it was chamfered to a thickness of 4.
It was set to 2 mm. This was cold-rolled to a thickness of 0.5 mm by a cold-rolling process in which intermediate annealing (700 ° C x 1 hr) was performed when the thickness was 2 mm and 1 mm. This plate material was heat-treated under the conditions shown in Table 2 to produce a test material.

これらの熱処理は不活性ガス中で行い,急冷用ガスは冷
却したArガスを用いた。また,冷却速度は溶体化処理温
度から引き続く時効処理温度までの平均冷却速度とし
た。
These heat treatments were performed in an inert gas, and the quenching gas used was cooled Ar gas. The cooling rate was the average cooling rate from the solution heat treatment temperature to the subsequent aging treatment temperature.

得られた試験材の硬度,引張強さ,伸び,導電率,プレ
ス成形性を調べた結果を第2表に併記した。硬度,引張
強さと伸び,導電率の測定はそれぞれJIS Z 2244,JIS Z
2241,JIS H 0505に従って行った。プレス成形性は圧延
方向に平行および垂直な軸で内径半径0で直角曲げを行
い,曲げ面およびその断面を拡大観察し,割れの無いも
のを○,割れの発生したものを×として評価した。
Table 2 also shows the results of examining the hardness, tensile strength, elongation, conductivity, and press formability of the obtained test materials. Hardness, tensile strength and elongation, and conductivity are measured according to JIS Z 2244 and JIS Z, respectively.
2241, JIS H 0505. Press formability was evaluated by bending at right angles with an inner radius of 0 on axes parallel and perpendicular to the rolling direction and observing the bent surface and its cross-section in a magnified manner.

第2表の結果から次のことが明らかである。 The following is clear from the results in Table 2.

本発明法に従って製造した(1)および(2)の合金は
硬度,引張強さ,伸び,導電率のバランスに優れ且つプ
レス成形性が良好である。したがって本発明法によって
製造した板材は,良好な材料特性と非常に優れたプレス
成形性とを併せ持ち,複雑な形状を有したワイヤーハー
ネスのターミナル材料としても好適であることがわか
る。
The alloys (1) and (2) produced according to the method of the present invention have an excellent balance of hardness, tensile strength, elongation and conductivity and good press formability. Therefore, it can be seen that the plate material manufactured by the method of the present invention has good material properties and excellent press formability, and is also suitable as a terminal material for a wire harness having a complicated shape.

これに対し溶体化処理温度の低い比較例(3)は,硬
度,引張強さ,伸びが低く,他方溶体化処理温度の高い
比較例(4)はプレス成形性に劣っている。また平均冷
却速度が遅い比較例(5)は硬度,引張強さが低く,時
効処理温度の低い比較例(6)は導電率が低く,そして
時効処理温度の高い比較例(7)は硬度,引張強さが低
くなっている。
On the other hand, Comparative Example (3) having a low solution treatment temperature has low hardness, tensile strength, and elongation, while Comparative Example (4) having a high solution treatment temperature is inferior in press formability. The comparative example (5) having a slow average cooling rate has low hardness and tensile strength, the comparative example (6) having a low aging temperature has low conductivity, and the comparative example (7) having a high aging temperature has a hardness of The tensile strength is low.

〔実施例2〕 実施例1の第1表に示す成分の合金を実施例1と同様な
中間工程を用い厚さ2mmの板材を得た。これに700℃×60
分間の焼鈍を施したうえ,以下の製造法の素材板とし
た。
Example 2 An alloy having the components shown in Table 1 of Example 1 was subjected to the same intermediate step as in Example 1 to obtain a plate material having a thickness of 2 mm. 700 ℃ × 60
After annealing for 1 minute, it was used as the material plate of the following manufacturing method.

〔製造法1〕 前記の素材板を厚さ1mmまで冷間圧延した後,700℃×60
分間焼鈍を行った。その後,厚さ0.45mmまで冷間圧延し
たうえ,950℃×2分の溶体化処理し,平均冷却速度が60
℃/secにて550℃まで冷却し,そのままこの温度で60分
間の時効処理を行なって室温まで冷却した。得られた時
効処理材を0.4mmまで冷間圧延し,480℃の温度で60分間
の最終時効処理を行った。
[Manufacturing method 1] After cold rolling the above material plate to a thickness of 1 mm, 700 ° C x 60
Annealing was performed for a minute. Then, after cold rolling to a thickness of 0.45 mm, solution heat treatment was performed for 2 minutes at 950 ° C, and the average cooling rate was 60
The sample was cooled to 550 ° C at ℃ / sec, then subjected to an aging treatment at this temperature for 60 minutes and cooled to room temperature. The obtained aging-treated material was cold-rolled to 0.4 mm and subjected to a final aging treatment at a temperature of 480 ° C for 60 minutes.

〔製造法2〕 前記の素材板を厚さ0.8mmまで冷間圧延した。これを950
℃×2分の溶体化処理後,平均冷却速度が60℃/secにて
550℃まで冷却し,そのままこの温度で60分間の時効処
理を行って室温まで冷却した。得られた時効処理材を0.
4mmまで冷間圧延し,480℃×60分の最終時効処理を行っ
た。
[Manufacturing Method 2] The material plate was cold-rolled to a thickness of 0.8 mm. 950 this
After solution treatment at ℃ × 2 minutes, the average cooling rate is 60 ℃ / sec
After cooling to 550 ° C, aging treatment was performed at this temperature for 60 minutes, and the temperature was cooled to room temperature. The obtained aging treated material is 0.
It was cold-rolled to 4 mm and subjected to a final aging treatment at 480 ℃ x 60 minutes.

〔製造法3〕 前記の素材板を厚さ1mmまで冷間圧延した。これを950℃
×2分の溶体化処理後,水急冷した。その後0.4mmまで
冷間圧延後,500℃×60分間の時効処理を行った。
[Manufacturing Method 3] The material plate was cold-rolled to a thickness of 1 mm. 950 ° C
After the solution treatment for 2 minutes, it was quenched with water. Then, after cold rolling to 0.4 mm, aging treatment was performed at 500 ° C for 60 minutes.

上記の3製造法の条件は第3表にも記載したように,1は
本発明で規制する条件範囲内の例,2および3は該条件を
外れる比較例である。
As shown in Table 3, 1 is an example within the range of conditions regulated by the present invention, and 2 and 3 are comparative examples that deviate from the above conditions.

各法によって得られた材料の硬度,引張強さ,伸び,ば
ね限界値,導電率,応力緩和率,プレス成形性を測定し
た結果を第4表に示した。硬度,引張強さ,伸び,導電
率の測定は実施例1と同様である。ばね限界はJIS H 31
30に基づいて行った。応力緩和率は試験片の中央部の応
力が40kgf/mm2になるようにU字曲げを行い,150℃の温
度で500時間保持後の曲げぐせを応力緩和率として次式
により算出した。
Table 4 shows the results obtained by measuring the hardness, tensile strength, elongation, spring limit value, conductivity, stress relaxation rate and press formability of the materials obtained by each method. The measurement of hardness, tensile strength, elongation, and conductivity is the same as in Example 1. Spring limit is JIS H 31
Made on the basis of 30. The stress relaxation rate was calculated by the following equation as the stress relaxation rate, which was the bending behavior after 500-hour holding at 150 ° C by U-bending so that the stress at the center of the test piece was 40 kgf / mm 2 .

応力緩和率(%)=〔(L1-L2)/(L1-L0)〕×100 ただし,L0;冶具の長さ(mm) L1;開始時の試料長さ(mm) L2;処理後の試料端間水平距離(mm) また,プレス成形性については,90°w曲げ試験(CES-M
OOO2-6,R=0.2mm圧延方向および垂直方向)を行い中央
部山表面およびその断面を拡大観察し,割れのないもの
を○,割れが発生したものを×として評価した。
Stress relaxation rate (%) = [(L 1 -L 2 ) / (L 1 -L 0 )] × 100 where L 0 is the length of the jig (mm) L 1 is the length of the sample at the start (mm) L 2 : Horizontal distance between sample ends after processing (mm) For press formability, 90 ° w bending test (CES-M
OOO2-6, R = 0.2mm rolling direction and vertical direction) were observed by magnifying and observing the central mountain surface and its cross section, and those without cracks were evaluated as ○, and those with cracks were evaluated as ×.

第4表の結果から明らかなように,本発明にしたがう製
造方法(1)の合金は硬度,引張強さ,伸び,ばね限界
値,導電率,耐応力緩和特性に優れ且つプレス成形性に
優れており,ワイヤーハーネスのターミナル材料として
非常に優れた特性を有する合金であることがわかる。
As is clear from the results in Table 4, the alloy of the production method (1) according to the present invention is excellent in hardness, tensile strength, elongation, spring limit value, conductivity, stress relaxation resistance and press formability. Therefore, it can be seen that it is an alloy with excellent properties as a terminal material for wire harnesses.

これに対し,冷間加工率が本発明法で規定する範囲より
高い比較法(2)の合金はプレス成形性が劣り,また比
較法(3)のように溶体化処理−急冷−強冷間加工−時
効処理という従来の工程を用いた合金は材料特性が本発
明法(1)によって得られた合金よりも全般に劣り,且
つプレス成形性も悪い。
On the other hand, the alloy of the comparative method (2) having a cold working ratio higher than the range specified by the method of the present invention is inferior in press formability, and as in the comparative method (3), the solution treatment-quick cooling-strong cold working is performed. The alloy using the conventional process of working-aging treatment is generally inferior in material properties to the alloy obtained by the method (1) of the present invention and also has poor press formability.

〔実施例5〕 第5表に化学成分値(重量%)示した銅基合金No.1〜N
o.12をいずれも前記実施例2の製造法(1)に従って製
造した。得られた材料の硬度,引張強さ,伸び,導電
率,プレス成形性を測定し,その結果を第6表に示し
た。なお,これらの特性の測定方法は実施例2と同様に
行った。
[Example 5] Copper-based alloys No. 1 to N whose chemical composition values (% by weight) are shown in Table 5
All o.12 were produced according to the production method (1) of Example 2 above. The hardness, tensile strength, elongation, conductivity and press formability of the obtained material were measured, and the results are shown in Table 6. The method of measuring these characteristics was the same as in Example 2.

第6表より,本発明法によって得られた合金は硬度,引
張強さ,伸び,ばね限界値,導電率に優れ且つプレス成
形性に優れていることがわかる。
From Table 6, it can be seen that the alloy obtained by the method of the present invention is excellent in hardness, tensile strength, elongation, spring limit value, conductivity and press formability.

以上のように本発明によると,強度,弾性,導電性,耐
応力緩和特性に優れ,且つプレス成形性に優れたワイヤ
ーハーネスのターミナル用銅合金が経済的に製造でき,
近年の自動車電装品の小型軽量化,配線の高密度化に十
分対応できるターミナル材料を提供するものである。
As described above, according to the present invention, a copper alloy for a terminal of a wire harness, which is excellent in strength, elasticity, conductivity, stress relaxation resistance, and press formability, can be economically manufactured,
The purpose of the present invention is to provide a terminal material that can sufficiently cope with the recent reduction in size and weight of automobile electrical components and the increase in wiring density.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%において,Ni;1.0〜3.0%,Ti;0.1〜
1.5%,ただしNi/Tiの重量百分率の比率が1〜10の範
囲,酸素;50ppm以下,さらに必要に応じてZn,Mg,Ca,Be,
Zr,Crからなる群より選択された1種または2種以上の
元素を総量で0.01〜1.0%含み,残部がCuおよび不可避
的不純物からなる銅基合金を、800〜970℃の温度に加熱
後,400〜650℃の温度まで10℃/sec以上の冷却速度で冷
却し、400〜650℃の温度で5〜360分間加熱保持したあ
と常温まで冷却することを特徴とするプレス成形性に優
れた高強度導電性銅基合金の製造法。
1. In weight%, Ni; 1.0-3.0%, Ti; 0.1-
1.5%, but the weight percentage ratio of Ni / Ti is in the range of 1 to 10, oxygen; 50 ppm or less, and if necessary Zn, Mg, Ca, Be,
After heating a copper-based alloy containing one or more elements selected from the group consisting of Zr and Cr in a total amount of 0.01 to 1.0% and the balance of Cu and inevitable impurities to a temperature of 800 to 970 ° C. Excellent in press formability, characterized by cooling to a temperature of 400 to 650 ℃ at a cooling rate of 10 ℃ / sec or more, heating and holding at a temperature of 400 to 650 ℃ for 5 to 360 minutes, and then cooling to room temperature. Manufacturing method of high strength conductive copper base alloy.
【請求項2】重量%において,Ni;1.0〜3.0%,Ti;0.1〜
1.5%,ただしNi/Tiの重量百分率の比率が1〜10の範
囲,酸素;50ppm以下,さらに必要に応じてZn,Mg,Ca,Be,
Zr,Crからなる群より選択された1種または2種以上の
元素を総量で0.01〜1.0%含み、残部がCuおよび不可避
的不純物からなる銅基合金を,800〜970℃の温度に加熱
後,400〜650℃の温度まで10℃/sec以上の冷却速度で冷
却し,400〜650℃の温度で5〜360分間加熱保持したあと
常温まで冷却し、次いで加工率30%以内の冷間加工を施
したうえ,400〜600℃の温度で1〜360分間加熱すること
を特徴とするプレス成形性に優れた高強度導電性銅基合
金の製造法。
2. In weight%, Ni; 1.0-3.0%, Ti; 0.1-
1.5%, but the weight percentage ratio of Ni / Ti is in the range of 1 to 10, oxygen; 50 ppm or less, and if necessary Zn, Mg, Ca, Be,
After heating a copper-based alloy containing one or more elements selected from the group consisting of Zr and Cr in a total amount of 0.01 to 1.0% and the balance of Cu and inevitable impurities to a temperature of 800 to 970 ° C. Cooling to a temperature of 400 to 650 ℃ at a cooling rate of 10 ℃ / sec or more, heating and holding at a temperature of 400 to 650 ℃ for 5 to 360 minutes, then cooling to room temperature, and then cold working within a working rate of 30% The method for producing a high-strength conductive copper-based alloy with excellent press formability, which comprises heating at 400 to 600 ° C for 1 to 360 minutes.
JP63140768A 1988-06-08 1988-06-08 Manufacturing method of high-strength conductive copper-based alloy with excellent press formability Expired - Lifetime JPH0689440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140768A JPH0689440B2 (en) 1988-06-08 1988-06-08 Manufacturing method of high-strength conductive copper-based alloy with excellent press formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140768A JPH0689440B2 (en) 1988-06-08 1988-06-08 Manufacturing method of high-strength conductive copper-based alloy with excellent press formability

Publications (2)

Publication Number Publication Date
JPH01309948A JPH01309948A (en) 1989-12-14
JPH0689440B2 true JPH0689440B2 (en) 1994-11-09

Family

ID=15276296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140768A Expired - Lifetime JPH0689440B2 (en) 1988-06-08 1988-06-08 Manufacturing method of high-strength conductive copper-based alloy with excellent press formability

Country Status (1)

Country Link
JP (1) JPH0689440B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001196A (en) * 1996-10-28 1999-12-14 Brush Wellman, Inc. Lean, high conductivity, relaxation-resistant beryllium-nickel-copper alloys
EP0854200A1 (en) * 1996-10-28 1998-07-22 BRUSH WELLMAN Inc. Copper-beryllium alloy
KR100676668B1 (en) * 2003-11-28 2007-01-31 닛코킨조쿠 가부시키가이샤 Materials for electronic parts with superior press punching properties

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831123A (en) * 1971-08-27 1973-04-24
JPS6314832A (en) * 1986-07-04 1988-01-22 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment and its production
JPS63134640A (en) * 1986-11-22 1988-06-07 Dowa Mining Co Ltd High-strength copper alloy for spring and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831123A (en) * 1971-08-27 1973-04-24
JPS6314832A (en) * 1986-07-04 1988-01-22 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment and its production
JPS63134640A (en) * 1986-11-22 1988-06-07 Dowa Mining Co Ltd High-strength copper alloy for spring and its production

Also Published As

Publication number Publication date
JPH01309948A (en) 1989-12-14

Similar Documents

Publication Publication Date Title
JPH0841612A (en) Copper alloy and its preparation
JPH09104956A (en) Production of high strength and high electric conductivity copper alloy
JP4129807B2 (en) Copper alloy for connector and manufacturing method thereof
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
CN1086207C (en) Grain refined tin brass
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP2000256814A (en) Manufacture of copper-based alloy bar for terminal
JP2515127B2 (en) Method for producing alloy of copper, chromium, titanium and silicon
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
US5882442A (en) Iron modified phosphor-bronze
JP5207927B2 (en) Copper alloy with high strength and high conductivity
JP4186095B2 (en) Copper alloy for connector and its manufacturing method
JP2009013499A (en) Copper alloy for connector
US4871399A (en) Copper alloy for use as wiring harness terminal material and process for producing the same
JPH0987814A (en) Production of copper alloy for electronic equipment
JPH0689440B2 (en) Manufacturing method of high-strength conductive copper-based alloy with excellent press formability
JP3733548B2 (en) Method for producing a copper-based alloy having excellent stress relaxation resistance
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JPH0266131A (en) High-strength and high-conductivity copper-base alloy
JPH05311298A (en) Copper base alloy for connector and its manufacture
JPS63128158A (en) Manufacture of high strength copper alloy having high electrical conductivity
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JPH0355532B2 (en)
JP2000273561A (en) Copper base alloy for terminal and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071109

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071109

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 14