JPH0688972A - Liquid crystal display device - Google Patents
Liquid crystal display deviceInfo
- Publication number
- JPH0688972A JPH0688972A JP26550392A JP26550392A JPH0688972A JP H0688972 A JPH0688972 A JP H0688972A JP 26550392 A JP26550392 A JP 26550392A JP 26550392 A JP26550392 A JP 26550392A JP H0688972 A JPH0688972 A JP H0688972A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- ldd
- impurity region
- liquid crystal
- tft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 30
- 230000002093 peripheral effect Effects 0.000 claims abstract description 77
- 239000012535 impurity Substances 0.000 claims abstract description 60
- 239000010409 thin film Substances 0.000 claims abstract description 42
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 239000011159 matrix material Substances 0.000 claims abstract description 19
- 239000010410 layer Substances 0.000 claims description 11
- 239000004065 semiconductor Substances 0.000 claims description 6
- 230000001629 suppression Effects 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 21
- 208000022010 Lhermitte-Duclos disease Diseases 0.000 description 65
- 239000010408 film Substances 0.000 description 49
- 238000000034 method Methods 0.000 description 17
- 239000011229 interlayer Substances 0.000 description 14
- 150000002500 ions Chemical class 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 230000007547 defect Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 101100214497 Solanum lycopersicum TFT5 gene Proteins 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000005224 laser annealing Methods 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Liquid Crystal (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はアクティブマトリクス型
液晶表示装置に関する。より詳しくは、表示画素部とこ
れを駆動する周辺回路部が同一基板上に形成されたモノ
リシックタイプにおける薄膜トランジスタの構造に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active matrix type liquid crystal display device. More specifically, the present invention relates to the structure of a monolithic type thin film transistor in which a display pixel section and a peripheral circuit section for driving the display pixel section are formed on the same substrate.
【0002】[0002]
【従来の技術】薄膜トランジスタ(TFT)はアクティ
ブマトリクス型液晶表示装置や密着型イメージセンサ等
に応用できる為近年その開発が盛んに行なわれている。
特に、薄膜材料として多結晶シリコン(poly−S
i)を用いたTFT(poly−Si TFT)を集積
回路デバイスとして組み込むと、周辺の駆動回路部もデ
ィスプレイ部やセンサ部と同一基板上に集積化できる為
注目を集めている。中でもTFTのドレイン不純物領域
端に、同一導電型で当該領域よりも薄い低濃度不純物領
域(LDD)を有する、所謂LDD構造のTFT(LD
D/TFT)は、ドレイン不純物領域端の電界集中を緩
和できる為多結晶シリコンの結晶粒界や欠陥準位を介し
たトランジスタリーク電流を減らせる事から、アクティ
ブマトリクス型液晶表示装置等に応用されている。LD
D構造のTFTは、例えば特公平3−38755号公報
に開示されている。2. Description of the Related Art A thin film transistor (TFT) has been actively developed in recent years because it can be applied to an active matrix type liquid crystal display device and a contact type image sensor.
In particular, polycrystalline silicon (poly-S) is used as a thin film material.
When a TFT (poly-Si TFT) using i) is incorporated as an integrated circuit device, the peripheral drive circuit unit can be integrated on the same substrate as the display unit and the sensor unit, and therefore, it is drawing attention. Above all, a so-called LDD structure TFT (LD) having a low-concentration impurity region (LDD) of the same conductivity type and thinner than the region at the drain impurity region end of the TFT
D / TFT) is applicable to an active matrix type liquid crystal display device, etc., because it can reduce the electric field concentration at the edge of the drain impurity region and reduce the transistor leak current through the crystal grain boundaries and defect levels of polycrystalline silicon. ing. LD
The D-structure TFT is disclosed, for example, in Japanese Patent Publication No. 3-38755.
【0003】本発明の背景を明らかにする為に、図8を
参照してLDD/TFTを採用した従来のモノリシック
型構造を簡潔に説明する。絶縁基板101の一主面には
周辺回路部102と表示画素部103が一体的に形成さ
れている。図では、模式的に周辺回路部102を構成す
る薄膜トランジスタ(周辺TFT)104と表示画素部
103に含まれる画素スイッチ用の薄膜トランジスタ
(画素TFT)105とを夫々1個ずつ示している。周
辺TFT104と画素TFT105を同一の絶縁基板1
01上に形成する事により、工程の大幅な簡略化及び短
縮化が実現でき、安価で高性能の小型液晶表示装置が得
られる。周辺TFT104は活性層となる多結晶シリコ
ン薄膜106を用いて構成されており、その上には絶縁
膜107を介してゲート電極108が設けられている。
この従来例では、多結晶シリコン薄膜106には通常の
ドレイン不純物領域D及びソース不純物領域Sが形成さ
れている。さらに、第1層間絶縁膜109を介して金属
配線層110がパタニング形成されており周辺回路部1
02を構成する。In order to clarify the background of the present invention, a conventional monolithic structure using an LDD / TFT will be briefly described with reference to FIG. A peripheral circuit portion 102 and a display pixel portion 103 are integrally formed on one main surface of the insulating substrate 101. In the figure, one thin film transistor (peripheral TFT) 104 that constitutes the peripheral circuit portion 102 and one thin film transistor (pixel TFT) 105 for a pixel switch included in the display pixel portion 103 are schematically shown. The peripheral TFT 104 and the pixel TFT 105 are the same insulating substrate 1
When it is formed on the liquid crystal display device 01, the process can be greatly simplified and shortened, and an inexpensive and high-performance small liquid crystal display device can be obtained. The peripheral TFT 104 is configured by using a polycrystalline silicon thin film 106 that becomes an active layer, and a gate electrode 108 is provided on the peripheral TFT 104 with an insulating film 107 interposed therebetween.
In this conventional example, a normal drain impurity region D and a source impurity region S are formed in the polycrystalline silicon thin film 106. Further, the metal wiring layer 110 is formed by patterning via the first interlayer insulating film 109, and the peripheral circuit portion 1 is formed.
02.
【0004】一方、画素TFT105も同一の多結晶シ
リコン薄膜106から構成されており、その上には絶縁
膜107を介してゲート電極111がパタニング形成さ
れている。画素TFT105のソース不純物領域Sには
第1層間絶縁膜109を介して金属配線110が電気接
続されている。ドレイン不純物領域Dには第1層間絶縁
膜109及び第2層間絶縁膜112を介して画素電極1
13が電気接続されている。さらに、ドレイン不純物領
域Dの端部及びソース不純物領域Sの端部には同一導電
型の低濃度不純物領域即ちLDD領域が設けられてい
る。On the other hand, the pixel TFT 105 is also composed of the same polycrystalline silicon thin film 106, on which a gate electrode 111 is patterned through an insulating film 107. A metal wiring 110 is electrically connected to the source impurity region S of the pixel TFT 105 via a first interlayer insulating film 109. The pixel electrode 1 is formed in the drain impurity region D via the first interlayer insulating film 109 and the second interlayer insulating film 112.
13 is electrically connected. Further, at the end of the drain impurity region D and the end of the source impurity region S, low-concentration impurity regions of the same conductivity type, that is, LDD regions are provided.
【0005】上述した従来例では画素TFTのみがLD
D構造を有し周辺TFTは通常の構造である。近年、周
辺TFTの動作特性改善を図る為周辺回路部102にお
いてもLDD構造を採用する事も提案されている。この
場合、工程上の簡便さから、画素TFT105及び周辺
TFT104はともに同一のLDD長さ寸法及びLDD
不純物濃度に設定されていた。In the above-mentioned conventional example, only the pixel TFT is LD
The peripheral TFT having a D structure has a normal structure. In recent years, it has been proposed to employ an LDD structure also in the peripheral circuit section 102 in order to improve the operation characteristics of the peripheral TFT. In this case, the pixel TFT 105 and the peripheral TFT 104 have the same LDD length dimension and LDD for the sake of simplicity of the process.
It was set to the impurity concentration.
【0006】[0006]
【発明が解決しようとする課題】表示画素の輝点欠陥を
防止する為に、画素TFTは十分に低いオフ電流特性あ
るいはリーク電流特性が要求される。これに対し、周辺
TFTでは周辺回路部に含まれる走査回路等を高速駆動
させる為に十分に大きいドレイン電流特性あるいはオン
電流特性が要求される。この様に、画素TFTと周辺T
FTとでは要求される特性が夫々異なっている。In order to prevent the bright spot defect of the display pixel, the pixel TFT is required to have a sufficiently low off current characteristic or leakage current characteristic. On the other hand, the peripheral TFT is required to have a sufficiently large drain current characteristic or ON current characteristic in order to drive the scanning circuit and the like included in the peripheral circuit portion at high speed. In this way, the pixel TFT and the peripheral T
The required characteristics are different from those of FT.
【0007】一方、アクティブマトリクス型液晶表示装
置の高精細化が進むにつれ、集積形成されるTFTのチ
ャネル長を短縮化する必要があり、チャネル長が5μm
以下のpoly−Si TFTが形成される様になって
きている。チャネル長を短縮化すると、リーク電流を低
いレベルに抑制し且つ十分大きいオン電流特性を得る事
が困難になる。特に周辺TFTでは仮にLDD構造とし
ない場合、チャネル長を5μm以下に短縮化するとトラ
ンジスタ閾値電圧がデプレッション方向にシフトし正常
な特性のTFTが得られなくなる。閾値電圧シフトを防
ぐ為にはLDD構造が有効であり、微細化を進める上に
当って採用される様になってきている。On the other hand, as the definition of the active matrix type liquid crystal display device becomes higher, it is necessary to shorten the channel length of the TFT formed integrally, and the channel length is 5 μm.
The following poly-Si TFTs are being formed. If the channel length is shortened, it becomes difficult to suppress the leak current to a low level and obtain a sufficiently large on-current characteristic. In particular, if the peripheral TFT is not provided with the LDD structure, if the channel length is shortened to 5 μm or less, the transistor threshold voltage shifts in the depletion direction, and a TFT having normal characteristics cannot be obtained. The LDD structure is effective for preventing the threshold voltage shift, and has been adopted in advancing miniaturization.
【0008】しかしながら、前述した様に画素TFTと
周辺TFTを同時にLDD構造とした場合、工程の簡便
化を図る為同一のLDD長さ寸法及び同一のLDD不純
物濃度に設定していた。しかしながら、周辺TFTのリ
ーク電流抑制を優先させる為LDD不純物濃度を低くし
且つLDD長さ寸法を大きくとると、周辺TFTのオン
電流が低下するので走査回路が動作しなくなるという課
題がある。逆に、周辺TFTの動作安定化を優先して、
LDD不純物濃度を高くしLDD長さ寸法を短かくする
と十分なオン電流を確保する事ができるが、逆に画素T
FTのリーク電流が増大し画素輝点欠陥等が生ずるとい
う課題がある。However, as described above, when the pixel TFT and the peripheral TFT have the LDD structure at the same time, the same LDD length dimension and the same LDD impurity concentration are set in order to simplify the process. However, if the LDD impurity concentration is made low and the LDD length dimension is made large in order to prioritize the suppression of the leak current of the peripheral TFT, there is a problem that the on-current of the peripheral TFT decreases and the scanning circuit does not operate. On the contrary, giving priority to the operation stabilization of the peripheral TFT,
A sufficient on-current can be secured by increasing the LDD impurity concentration and shortening the LDD length dimension, but conversely, the pixel T
There is a problem that the leak current of the FT increases and a pixel bright spot defect or the like occurs.
【0009】なお、LDD構造とは別にTFT回路の高
速化を目的とする技術が特公平2−61032号公報に
開示されている。周辺駆動回路内蔵タイプで、周辺駆動
回路領域をレーザーアニール加工しTFTの移動度を高
める技術である。しかしながら、このレーザーアニール
加工はレーザービームのスキャニングが必要となりスル
ープットが低く、トランジスタの動作特性にもばらつき
が生じる。従って、この技術を用いて微細化を行なう事
は実際には困難である。In addition to the LDD structure, Japanese Patent Publication No. 2-61032 discloses a technique for increasing the speed of a TFT circuit. This is a technology with a built-in peripheral drive circuit that enhances the mobility of TFTs by laser annealing the peripheral drive circuit area. However, this laser annealing process requires scanning with a laser beam, and thus the throughput is low and the operating characteristics of the transistors also vary. Therefore, it is actually difficult to perform miniaturization using this technique.
【0010】[0010]
【課題を解決するための手段】上述した従来の技術の課
題に鑑み、本発明はLDD構造を有効に活用して、表示
画素部及び周辺回路部を同一基板上に形成したモノリシ
ック型アクティブマトリクス液晶表示装置の高精細化を
図る事を目的とする。かかる目的を達成する為に以下の
手段を講じた。即ち、一主面上に形成された複数個の第
1の薄膜トランジスタ(画素TFT)を含む表示画素部
と、この表示画素部の周辺に配置され且つ複数個の第2
の薄膜トランジスタ(周辺TFT)から構成された周辺
回路部を有する一方の基板と、対向電極を有し前記一方
の基板に対向配置された他方の基板と、両方の基板間に
保持された液晶層とを備えたアクティブマトリクス型液
晶表示装置において、画素TFT及び周辺TFTがとも
にソース不純物領域及びドレイン不純物領域とチャネル
領域との間の少なくとも一方に前記不純物領域と同一導
電型の低濃度不純物領域を備えた非単結晶半導体層(例
えば多結晶シリコン半導体層)を有するとともに、画素
TFT及び周辺TFTの低濃度不純物領域即ちLDD領
域の長さ寸法及び不純物濃度の少なくとも一方が互いに
異なる事を特徴とする。具体的には、周辺TFTのLD
D長さ寸法又はLDD不純物濃度はトランジスタオン電
流の増大を優先して設定され、画素TFTのLDD長さ
寸法又はLDD不純物濃度はトランジスタオフ電流の抑
制を優先して設定されている。好ましくは、周辺TFT
はドレイン不純物領域側のみにLDD領域が形成されて
いる。In view of the above-mentioned problems of the prior art, the present invention effectively utilizes the LDD structure to form a display pixel portion and a peripheral circuit portion on the same substrate in a monolithic active matrix liquid crystal. The purpose is to increase the definition of the display device. The following measures have been taken in order to achieve this object. That is, a display pixel portion including a plurality of first thin film transistors (pixel TFTs) formed on one main surface, and a plurality of second pixel portions arranged around the display pixel portion.
One substrate having a peripheral circuit portion composed of thin film transistors (peripheral TFTs), another substrate having a counter electrode and arranged to face the one substrate, and a liquid crystal layer held between the both substrates. In the active matrix type liquid crystal display device including the above, both the pixel TFT and the peripheral TFT have a low concentration impurity region of the same conductivity type as the impurity region in at least one of the source impurity region, the drain impurity region and the channel region. It is characterized in that it has a non-single-crystal semiconductor layer (for example, a polycrystalline silicon semiconductor layer), and at least one of the length dimension and the impurity concentration of the low-concentration impurity regions of the pixel TFT and the peripheral TFT, that is, the LDD region, is different from each other. Specifically, LD of peripheral TFT
The D length dimension or the LDD impurity concentration is set with priority given to the increase in the transistor on-current, and the LDD length dimension or the LDD impurity concentration of the pixel TFT is set with priority given to the suppression of the transistor off current. Peripheral TFT is preferable
The LDD region is formed only on the drain impurity region side.
【0011】[0011]
【作用】LDD長さ寸法及びLDD不純物濃度を画素T
FTと周辺TFTで互いに異ならせる事により、夫々の
動作特性を互いに独立的に最適化できLDD構造の利点
を最大限に活用できる。この結果、周辺TFT及び画素
TFTのチャネル長を効率的に短縮化でき、高解像度且
つ高精細なアクティブマトリクス型液晶表示装置を実現
できる。Function: The LDD length dimension and the LDD impurity concentration are set to the pixel T.
By making the FT and the peripheral TFT different from each other, the respective operating characteristics can be optimized independently of each other, and the advantages of the LDD structure can be maximized. As a result, the channel lengths of the peripheral TFTs and the pixel TFTs can be effectively shortened, and a high resolution and high definition active matrix type liquid crystal display device can be realized.
【0012】[0012]
【実施例】以下図面を参照して本発明の好適な実施例を
詳細に説明する。図1は本発明にかかるアクティブマト
リクス型液晶表示装置の基本的な構造を示す模式的な断
面図である。図示する様に、石英等からなる絶縁基板1
の主面上には周辺回路部2と表示画素部3とが一体的に
形成されている。図示を簡略化する為に、表示画素部3
には1個のスイッチング用画素TFT4が示されてお
り、周辺回路部2には駆動用の周辺TFT5が1個のみ
示されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic sectional view showing a basic structure of an active matrix type liquid crystal display device according to the present invention. As shown, an insulating substrate 1 made of quartz or the like
The peripheral circuit section 2 and the display pixel section 3 are integrally formed on the main surface of the. In order to simplify the illustration, the display pixel unit 3
Shows one switching pixel TFT 4, and the peripheral circuit section 2 shows only one driving peripheral TFT 5.
【0013】画素TFT4は活性層として非単結晶シリ
コン薄膜例えば多結晶シリコン薄膜6を用いて構成され
ており、その上には絶縁膜7を介してゲート電極8がパ
タニング形成されている。このゲート電極8はゲート線
に接続されており周辺回路部2から選択信号の供給を受
ける。画素TFT4の上には第1層間絶縁膜9を介して
金属配線10がパタニング形成されている。この金属配
線10は信号線を構成しており、周辺回路部2から画像
信号の供給を受ける。当該金属配線10はコンタクトホ
ールを介して画素TFT4のソース不純物領域Sに電気
接続されている。第1層間絶縁膜9の上にはさらに第2
層間絶縁膜11が設けられている。この上には画素電極
12がパタニング形成されており、コンタクトホールを
介して画素TFT4のドレイン不純物領域Dに電気接続
されている。これらソース領域S及びドレイン領域Dの
両端部には所定の長さ寸法及び不純物濃度を有するLD
D領域が設けられている。The pixel TFT 4 is formed by using a non-single crystal silicon thin film, for example, a polycrystalline silicon thin film 6 as an active layer, and a gate electrode 8 is patterned on the insulating film 7 via an insulating film 7. The gate electrode 8 is connected to the gate line and receives a selection signal from the peripheral circuit section 2. A metal wiring 10 is patterned on the pixel TFT 4 via a first interlayer insulating film 9. The metal wiring 10 constitutes a signal line and receives an image signal supplied from the peripheral circuit section 2. The metal wiring 10 is electrically connected to the source impurity region S of the pixel TFT 4 via the contact hole. A second layer is formed on the first interlayer insulating film 9.
An interlayer insulating film 11 is provided. A pixel electrode 12 is patterned on this, and is electrically connected to the drain impurity region D of the pixel TFT 4 through a contact hole. An LD having a predetermined length dimension and impurity concentration is provided at both ends of the source region S and the drain region D.
A D area is provided.
【0014】一方周辺回路部2に含まれる周辺TFT5
も同一の多結晶シリコン薄膜6により構成されており、
その上にはやはり絶縁膜7を介してゲート電極13がパ
タニング形成されている。周辺TFT5のソース領域S
及びドレイン領域Dは夫々コンタクトホールを介して金
属配線10に電気接続されており垂直走査回路や水平走
査回路等の周辺回路部2を構成する。又、周辺TFT5
においても、ソース領域Sとドレイン電極Dの両端部に
夫々所定の長さ寸法及び不純物濃度を有するLDD領域
が設けられている。なお、図示しないが周辺回路部2及
び表示画素部3の形成された絶縁基板1に対して、所定
の間隙を介し対向電極の形成された対向基板が所定の間
隙を介して貼り合わされている。両基板の間隙内には液
晶層が封入充填される。On the other hand, the peripheral TFT 5 included in the peripheral circuit section 2
Is also composed of the same polycrystalline silicon thin film 6,
A gate electrode 13 is also pattern-formed on the insulating film 7 via the insulating film 7. Source region S of peripheral TFT5
The drain region D and the drain region D are electrically connected to the metal wiring 10 through the contact holes, respectively, and constitute the peripheral circuit section 2 such as the vertical scanning circuit or the horizontal scanning circuit. Also, the peripheral TFT5
Also in the above, LDD regions having predetermined length dimensions and impurity concentrations are provided at both ends of the source region S and the drain electrode D, respectively. Although not shown, the counter substrate having counter electrodes formed thereon is bonded to the insulating substrate 1 having the peripheral circuit section 2 and the display pixel section 3 formed thereon with a predetermined gap. A liquid crystal layer is enclosed and filled in the gap between the two substrates.
【0015】本発明の特徴事項として、画素TFT4及
び周辺TFT5のLDD長さ寸法及びLDD不純物濃度
の少なくとも一方は互いに異なる様に設定されている。
具体的には、周辺TFT5のLDD長さ寸法又はLDD
不純物濃度はトランジスタオン電流の増大を優先して設
定され、画素TFT4のLDD長さ寸法又はLDD不純
物濃度はトランジスタオフ電流の抑制を優先して設定さ
れている。さらに具体的には、周辺TFT5のLDD長
さ寸法は画素TFT4のLDD長さ寸法よりも短かく設
定されている。あるいは、周辺TFT5のLDD不純物
濃度は画素TFT4のLDD不純物濃度に比べて高く設
定されている。かかる構造により周辺TFT5の駆動能
力を十分確保できるとともに、画素TFT4のリーク電
流を低く抑制できる。この様にLDD構造を夫々最適化
して採用する事によりTFTのチャネル長を短縮化でき
る。As a feature of the present invention, at least one of the LDD length dimension and the LDD impurity concentration of the pixel TFT 4 and the peripheral TFT 5 is set to be different from each other.
Specifically, the LDD length dimension or LDD of the peripheral TFT 5
The impurity concentration is set with priority given to the increase in transistor on-current, and the LDD length dimension or the LDD impurity concentration of the pixel TFT 4 is set with priority given to suppression of transistor off-current. More specifically, the LDD length dimension of the peripheral TFT 5 is set shorter than the LDD length dimension of the pixel TFT 4. Alternatively, the LDD impurity concentration of the peripheral TFT 5 is set higher than the LDD impurity concentration of the pixel TFT 4. With such a structure, the driving capability of the peripheral TFT 5 can be sufficiently ensured, and the leak current of the pixel TFT 4 can be suppressed low. In this way, the channel length of the TFT can be shortened by optimizing and adopting the LDD structure.
【0016】図2は、TFTのLDD長さ寸法とトラン
ジスタオフ電流(リーク電流)の関係を示す。縦軸はリ
ーク電流を対数メモリでとってあり、パラメータとして
3種類のドレイン電圧(Vds)を設定している。この
TFTはソース領域端及びドレイン領域端に夫々LDD
領域を有しているとともに、チャネル長Lは3μmであ
り、チャネル幅Wは30μmである。又、LDD不純物
濃度はドーズ量で1×1013cm-2に設定されている。図
2のグラフから明らかな様に、LDD長さ寸法を大きく
する事によりリーク電流を抑制できる。例えば、LDD
長さ寸法を1μmに設定した場合、リーク電流はVds
=15Vでも1×10-10 A以下と低く抑える事ができ
る。一方トランジスタオン電流は数百μA以上確保でき
るのでチャネル幅Wを3μmに狭くしても書き込み不足
の惧れはなく、画素TFTとして好適である。FIG. 2 shows the relationship between the LDD length of the TFT and the transistor off current (leakage current). The vertical axis represents the leak current in a logarithmic memory, and three types of drain voltages (Vds) are set as parameters. This TFT has LDDs at the end of the source region and the end of the drain region, respectively.
While having a region, the channel length L is 3 μm and the channel width W is 30 μm. The LDD impurity concentration is set to 1 × 10 13 cm -2 as a dose amount. As is clear from the graph of FIG. 2, the leak current can be suppressed by increasing the LDD length dimension. For example, LDD
When the length dimension is set to 1 μm, the leak current is Vds
Even at 15 V, it can be kept as low as 1 × 10 −10 A or less. On the other hand, since the transistor on-state current can be secured at several hundred μA or more, there is no fear of insufficient writing even if the channel width W is narrowed to 3 μm, which is suitable as a pixel TFT.
【0017】図3はTFTのLDDドーズ量とトランジ
スタオン電流の関係を示すグラフである。このTFTは
チャネル長Lが5μmに設定されチャネル幅Wが3μm
に設定されている。グラフから明らかな様に、ドーズ量
が増大するに従ってトランジスタオン電流も増加する。
但し、ドーズ量が1×1013cm-2以上になるとオン電流
の増加傾向は比較的緩やかになる。FIG. 3 is a graph showing the relationship between the LDD dose of the TFT and the transistor on-current. This TFT has a channel length L set to 5 μm and a channel width W of 3 μm.
Is set to. As is clear from the graph, the transistor on-current also increases as the dose amount increases.
However, when the dose amount becomes 1 × 10 13 cm -2 or more, the increasing tendency of the on-current becomes relatively gentle.
【0018】次に図4及び図5を参照して本発明にかか
るアクティブマトリクス型液晶表示装置の製造方法を詳
細に説明する。先ず工程Aにおいて石英基板51上にL
PCVD法でpoly−Si薄膜52を約75nmの膜厚
で成膜する。この後必要ならば、Si+ イオンをイオン
インプランテーションにより照射してpoly−Si薄
膜52を非晶質化し、続いて600℃程度の温度で炉ア
ニールする事によりシリコン多結晶を大粒径化する。あ
るいは、予めプラズマ化学気相成長法(PCVD法)を
用いて150〜250℃程度の温度で非晶質シリコン薄
膜を成膜し、アニールを加える事により大粒径化を図っ
ても良い。Next, a method of manufacturing the active matrix type liquid crystal display device according to the present invention will be described in detail with reference to FIGS. First, in step A, L is placed on the quartz substrate 51.
A poly-Si thin film 52 is formed with a film thickness of about 75 nm by the PCVD method. After that, if necessary, Si + ions are irradiated by ion implantation to amorphize the poly-Si thin film 52, and subsequently, furnace annealing is performed at a temperature of about 600 ° C. to increase the grain size of the polycrystalline silicon. . Alternatively, the grain size may be increased by previously forming an amorphous silicon thin film at a temperature of about 150 to 250 ° C. by using a plasma chemical vapor deposition method (PCVD method) and then annealing it.
【0019】次に工程Bにおいてpoly−Si薄膜を
パタニングし周辺TFT用の半導体領域53と画素TF
T用の半導体領域54を夫々島状に形成する。続いてこ
れら半導体領域表面を酸化しゲート酸化膜を約60nmの
膜厚で形成する。さらにこのゲート酸化膜上にLPCV
D法で窒化シリコン膜(Si3 N4 膜)を約10〜20
nmの膜厚で成膜する。場合によってはこのSi3 N4 膜
を表面酸化しSiO2膜を約1〜2nmの膜厚で形成す
る。この様にして形成したゲート絶縁膜55は、SiO
2 /Si3 N4 /SiO2 の積層となる為ONO構造と
呼ばれている。この積層構造を採用する事によりゲート
耐圧を十分確保でき信頼性を改善可能とする。この後、
TFTの閾値電圧Vthを制御する為、必要ならばB+
イオンを1〜8×1012cm-2程度のドーズ量で打ち込
む。Next, in step B, the poly-Si thin film is patterned to form the semiconductor region 53 for the peripheral TFT and the pixel TF.
The semiconductor regions 54 for T are formed in island shapes, respectively. Subsequently, the surfaces of these semiconductor regions are oxidized to form a gate oxide film with a thickness of about 60 nm. Furthermore, LPCV is formed on this gate oxide film.
About 10-20 silicon nitride film (Si 3 N 4 film) by D method
The film is formed with a film thickness of nm. In some cases, the surface of this Si 3 N 4 film is oxidized to form a SiO 2 film with a film thickness of about 1 to 2 nm. The gate insulating film 55 thus formed is made of SiO 2.
It is called an ONO structure because it is a stack of 2 / Si 3 N 4 / SiO 2 . By adopting this laminated structure, the gate breakdown voltage can be sufficiently secured and the reliability can be improved. After this,
To control the threshold voltage Vth of the TFT, if necessary, B +
Ions are implanted with a dose amount of about 1 to 8 × 10 12 cm -2 .
【0020】工程Cにおいて、ゲート絶縁膜55上に燐
をドープした低抵抗多結晶シリコン膜を約350nmの膜
厚で成膜した後パタニングする事によりゲート電極5
6,57を形成する。ゲート電極用低抵抗多結晶シリコ
ンの成膜方法としては、ノンドープ多結晶シリコン薄膜
を形成した後POCl3 ガスを用いて燐を拡散させる方
法や、POCl3 ガスの代わりにPSG膜を用いて燐拡
散を行なう方法や、LPCVD法によりSiH4 ガスと
PH3 ガスの混合気体を熱分解しドープトpoly−S
i薄膜を成膜する方法等がある。何れの方法を用いても
良いが、本実施例では第1の方法を採用した。なおこの
実施例では、TFTのチャネル長L及びチャネル幅W
が、L/W=3μm/30μm,5μm/3μmの2種
類を作成した。In step C, a low resistance polycrystalline silicon film doped with phosphorus is formed on the gate insulating film 55 to a film thickness of about 350 nm and then patterned to form the gate electrode 5.
6, 57 are formed. The low resistance polycrystalline silicon film for the gate electrode may be formed by forming a non-doped polycrystalline silicon thin film and then diffusing phosphorus by using POCl 3 gas, or by using a PSG film instead of POCl 3 gas. Method or a LPCVD method to thermally decompose a mixed gas of SiH 4 gas and PH 3 gas to obtain a doped poly-S.
There is a method of forming an i thin film. Although either method may be used, the first method is adopted in this embodiment. In this embodiment, the channel length L and the channel width W of the TFT are
, Two types of L / W = 3 μm / 30 μm and 5 μm / 3 μm were prepared.
【0021】次に工程DにおいてLDD領域を形成す
る。ゲート電極56,57を形成した後、周辺回路部を
形成する部分をレジスト58で被覆する。nチャネル型
の画素TFTを形成する場合、As+ 又はP+ イオンを
表示画素部だけに0.1〜1.5×1013cm-2のドーズ
量で打ち込む。pチャネル型の画素TFTを形成する場
合には、As+ 又はP+ イオンの代わりにB+ イオンを
0.1〜2.0×1013cm-2のドーズ量で同様に打ち込
めば良い。次に工程Eにおいて、レジスト58を剥離し
た後、表示画素部を新たにレジスト59で選択的に被覆
する。露出した周辺回路部に対してnチャネル型の周辺
TFTを形成する場合にはAs+ 又はP+イオンを0.
2×1013〜2.0×1014cm-2程度のドーズ量で打ち
込む。Pチャネル型の周辺TFTを形成する場合にはB
+ イオンを0.1〜4.0×1013cm-2程度のドーズ量
で打ち込む。例えばドーズ量は画素TFTで0.5×1
013cm-2に設定し周辺TFTで1×1013cm-2程度に設
定する事が望ましい。イオン打ち込み終了後にレジスト
59を剥離する。但し、画素TFTと周辺TFTのLD
D不純物濃度を等しく設定する場合には、レジスト58
及びレジスト59の2枚のマスクを用いたイオン打分け
は必要ない。Next, in step D, an LDD region is formed. After forming the gate electrodes 56 and 57, the portion forming the peripheral circuit portion is covered with a resist 58. When forming an n-channel type pixel TFT, As + or P + ions are implanted only in the display pixel portion at a dose amount of 0.1 to 1.5 × 10 13 cm -2 . In the case of forming a p-channel type pixel TFT, B + ions may be similarly implanted with a dose amount of 0.1 to 2.0 × 10 13 cm −2 instead of As + or P + ions. Next, in step E, after removing the resist 58, the display pixel portion is newly covered with the resist 59 selectively. When forming an n-channel type peripheral TFT for the exposed peripheral circuit portion, As + or P + ions are added to 0.
Implant with a dose amount of about 2 × 10 13 to 2.0 × 10 14 cm -2 . B when forming a P-channel type peripheral TFT
+ Ions are implanted with a dose amount of about 0.1 to 4.0 × 10 13 cm -2 . For example, the dose is 0.5 x 1 for pixel TFT
It is desirable to set it to 0 13 cm -2 and set it to about 1 × 10 13 cm -2 in the peripheral TFT. After the ion implantation is completed, the resist 59 is peeled off. However, LD of pixel TFT and peripheral TFT
When the D impurity concentration is set to be equal, the resist 58
The ion implantation using the two masks of the resist 59 and the resist 59 is not necessary.
【0022】続いて図5に示す工程Fにおいて、ソース
領域及びドレイン領域を形成する。ゲート電極56,5
7の夫々両側面から、画素TFTの場合は0.1〜1.
5μm、周辺TFTの場合は0.05〜1.5μmの長
さ寸法をLDD領域60として残す様にレジスト61を
パタニング形成する。画素TFTの場合、LDD領域6
0の長さ寸法を0.1μm以下にするとリーク電流が増
大し画素輝点欠陥の原因となる。又、長さ寸法を1.5
μm以上に設定するとLDD領域60の抵抗が大きくな
り画素に対する画像信号の書き込み不足の原因となる。
周辺TFTの場合、LDD領域60を0.05μm以下
にするとリーク電流が大きくなりオン/オフ比が十分と
れなくなってくる。又、1.5μm以上に設定するとオ
ン電流が十分大きくとれない為走査回路として不適とな
る。本実施例では画素TFTのLDD長さ寸法を1μm
に設定し、周辺TFTのLDD長さ寸法を0.5μmに
設定している。レジスト61をパタニング形成した状態
でAs+ 又はP+ イオンを1〜3×1015cm-2のドーズ
量で打ち込みnチャネル型TFTのソース領域61及び
ドレイン領域62を形成する。なおpチャネル型のTF
Tを形成する場合にはAs+ 又はP+ イオンに代えてB
+ イオンを打ち込む。Then, in step F shown in FIG. 5, a source region and a drain region are formed. Gate electrode 56,5
7 from both sides, in the case of a pixel TFT, 0.1 to 1.
A resist 61 is patterned so that the LDD region 60 has a length dimension of 5 μm and a peripheral TFT of 0.05 to 1.5 μm. In the case of pixel TFT, LDD region 6
When the length dimension of 0 is 0.1 μm or less, the leak current increases and causes a pixel bright spot defect. Also, the length dimension is 1.5
If the thickness is set to more than μm, the resistance of the LDD region 60 becomes large, which causes insufficient writing of image signals to the pixels.
In the case of the peripheral TFT, if the LDD region 60 is set to 0.05 μm or less, the leak current becomes large and the on / off ratio becomes insufficient. On the other hand, if the thickness is set to 1.5 μm or more, the ON current cannot be sufficiently large, which is not suitable for the scanning circuit. In this embodiment, the LDD length of the pixel TFT is 1 μm.
And the LDD length dimension of the peripheral TFT is set to 0.5 μm. With the resist 61 patterned, As + or P + ions are implanted at a dose of 1 to 3 × 10 15 cm -2 to form a source region 61 and a drain region 62 of the n-channel TFT. In addition, p-channel type TF
When forming T, B is replaced with As + or P + ion.
+ Implant ions.
【0023】次に工程Gにおいて、LPCVD法により
PSGからなる第1層間絶縁膜63を約600nmの膜厚
で形成する。続いて窒素ガス雰囲気中で1000℃及び
10〜30分間のアニールを行ない、ソース領域、ドレ
イン領域、LDD領域を活性化させる。Next, in step G, a first interlayer insulating film 63 made of PSG is formed by LPCVD to a film thickness of about 600 nm. Subsequently, annealing is performed at 1000 ° C. for 10 to 30 minutes in a nitrogen gas atmosphere to activate the source region, the drain region, and the LDD region.
【0024】最後に工程Hにおいて第1層間絶縁膜63
にコンタクトホールをあけ、金属配線64となるアルミ
ニウムを約600nmの膜厚で成膜しパタニングする。こ
の上に、さらにPSGからなる第2層間絶縁膜65を約
400nmの膜厚で形成する。続いてPCVD法により窒
化シリコン膜(P−SiNx膜)を約100nmの膜厚で
形成する。図示しないが、このP−SiNx膜は水素を
多量に含む為、成膜後アニールを行なう事によりTFT
の水素化を効果的に実施できる。水素化により多結晶シ
リコンの欠陥密度を減少させ、欠陥に起因するTFTの
リーク電流を抑制する事ができる。水素化処理後P−S
iNx膜はエッチングにより全面的に除去される。この
後、図示しないが第2層間絶縁膜65及び第1層間絶縁
膜63をエッチングで開口した後、ITO等の透明導電
膜を例えば140nmの膜厚で成膜し、エッチングにより
パタニングして画素電極を形成する。この様にして製造
された集積回路基板の完成状態は、既に図1に示した通
りである。Finally, in step H, the first interlayer insulating film 63 is formed.
A contact hole is formed in the substrate, aluminum to be the metal wiring 64 is formed in a film thickness of about 600 nm, and patterning is performed. A second interlayer insulating film 65 made of PSG is further formed thereon with a film thickness of about 400 nm. Then, a silicon nitride film (P-SiNx film) is formed with a film thickness of about 100 nm by the PCVD method. Although not shown, since this P-SiNx film contains a large amount of hydrogen, it is necessary to anneal it after forming it to form a TFT.
Can be effectively hydrogenated. Hydrogenation can reduce the defect density of polycrystalline silicon and suppress the leak current of TFT due to the defects. After hydrogenation P-S
The iNx film is entirely removed by etching. After that, although not shown, the second interlayer insulating film 65 and the first interlayer insulating film 63 are opened by etching, and then a transparent conductive film such as ITO is formed with a film thickness of, for example, 140 nm and patterned by etching to form pixel electrodes. To form. The completed state of the integrated circuit board manufactured in this way is as already shown in FIG.
【0025】図6は、本発明にかかるアクティブマトリ
クス型液晶表示装置の他の実施例を示す。基本的に、図
1に示した実施例と同一の構成を有しており、対応する
部分には対応する参照番号あるいは参照符号を付して理
解を容易にしている。異なる点は、周辺TFT5のLD
D領域をドレイン領域D側のみに作成した事である。画
素TFT4の場合には液晶層(図示せず)を交流駆動す
る為にソース側とドレイン側は交互に入れ替わるので、
LDD領域をソース領域端とドレイン領域端の両側に設
ける必要がある。一方周辺TFT5の場合少なくともド
レイン側のみにLDD領域を設ければ良い。周辺TFT
のLDD領域をレジストマスクで作成する時、ドレイン
側のみをレジストマスクで被覆する様にすれば選択的に
LDD領域ができる。ソース及びドレインの両側にLD
D領域を形成する場合に比べて、LDD抵抗を低減する
事ができるので、トランジスタオン電流を十分大きくと
れる。かかる構造にすれば周辺TFTと画素TFTの要
求仕様を同時に満足するLDD長さ寸法及びLDD不純
物濃度を決定する事がより容易になる。なお、リーク電
流はソース及びドレインの両端部にLDD領域を設けた
場合よりも上昇するが、周辺TFTの場合には実際上問
題は生じないレベルである。FIG. 6 shows another embodiment of the active matrix type liquid crystal display device according to the present invention. Basically, the structure is the same as that of the embodiment shown in FIG. 1, and corresponding parts are designated by corresponding reference numerals or reference symbols to facilitate understanding. The difference is that LD of peripheral TFT5
That is, the D region is formed only on the drain region D side. In the case of the pixel TFT 4, since the liquid crystal layer (not shown) is AC-driven, the source side and the drain side are alternately switched.
It is necessary to provide the LDD regions on both sides of the end of the source region and the end of the drain region. On the other hand, in the case of the peripheral TFT 5, the LDD region may be provided at least only on the drain side. Peripheral TFT
When the LDD region is formed with a resist mask, the LDD region can be selectively formed by covering only the drain side with the resist mask. LD on both sides of the source and drain
Since the LDD resistance can be reduced as compared with the case where the D region is formed, the transistor on-current can be made sufficiently large. With such a structure, it becomes easier to determine the LDD length dimension and the LDD impurity concentration that simultaneously satisfy the required specifications of the peripheral TFT and the pixel TFT. The leakage current is higher than that in the case where the LDD regions are provided at both ends of the source and the drain, but in the case of the peripheral TFT, there is practically no problem.
【0026】図7は、ドレイン端のみにLDD領域を設
けたTFT(片側LDD)と、ソース及びドレインの両
端にLDDを設けたTFT(両側LDD)の両者につい
て、LDD長さ寸法とトランジスタオン電流の関係を示
すグラフである。なおTFTのチャネル長Lは3μmに
設定しチャネル幅Wは30μmに設定した。又、ドレイ
ン電圧は15Vに設定されている。このグラフから明ら
かな様に、例えばLDD長さ寸法を0.5μに設定した
場合、片側LDDは両側LDDに比べて3倍以上のオン
電流を得る事ができ、周辺駆動回路をより高速に動作さ
せる事が可能になる。FIG. 7 shows the LDD length dimension and the transistor on-current of both the TFT having the LDD region only at the drain end (one side LDD) and the TFT having the LDD provided at both ends of the source and the drain (both sides LDD). It is a graph which shows the relationship of. The channel length L of the TFT was set to 3 μm and the channel width W was set to 30 μm. The drain voltage is set to 15V. As is clear from this graph, when the LDD length dimension is set to 0.5 μ, for example, one side LDD can obtain an ON current that is three times or more that of both sides LDD, and the peripheral drive circuit operates at higher speed. It will be possible to do.
【0027】上述した実施例では、TFTのゲート電極
として多結晶シリコンを用い、ゲート絶縁膜としてON
O構造を採用し、金属配線材料としてアルミニウムを用
いているが、本発明はこれに限られるものではない。ゲ
ート電極としては、例えばシリサイドやポリサイドを用
いる事もできる。あるいは金属ゲート電極としてTa,
Al,Cr,Mo,Ni、及びこれらの合金等を用いて
も良い。ゲート絶縁膜としては、例えば窒化シリコン
や、酸化タンタル等を用いる事ができる。又、配線材料
としては、Ta,Cr,Mo,Ni、及びこれらの合金
等を用いる事もできる。なお、本発明はプレーナ型、正
スタガ型又は逆スタガ型の何れの薄膜トランジスタに対
しても適用可能である事は言うまでもない。In the above-described embodiment, polycrystalline silicon is used as the gate electrode of the TFT and ON is used as the gate insulating film.
Although the O structure is adopted and aluminum is used as the metal wiring material, the present invention is not limited to this. As the gate electrode, for example, silicide or polycide can be used. Alternatively, Ta as a metal gate electrode,
You may use Al, Cr, Mo, Ni, these alloys, etc. As the gate insulating film, for example, silicon nitride or tantalum oxide can be used. Further, as the wiring material, Ta, Cr, Mo, Ni, alloys thereof, or the like can be used. It is needless to say that the present invention can be applied to any of planar type, normal stagger type and reverse stagger type thin film transistors.
【0028】[0028]
【発明の効果】以上説明した様に、本発明によれば、周
辺TFTと画素TFTとでLDD長さ寸法及びLDD不
純物濃度に夫々異なった値を設定する事により、要求特
性の異なるTFTを最適設計する事ができる。この結
果、チャネル長が3μm以下の微細化TFTを実現する
事が可能になった。従って、本発明によりアクティブマ
トリクス型液晶表示装置の高解像度化及び高精細化が可
能になり、その効果は絶大なものがある。As described above, according to the present invention, by setting different values for the LDD length dimension and the LDD impurity concentration between the peripheral TFT and the pixel TFT, the TFTs having different required characteristics can be optimized. Can be designed. As a result, it has become possible to realize a miniaturized TFT having a channel length of 3 μm or less. Therefore, the present invention enables higher resolution and higher definition of the active matrix type liquid crystal display device, and its effect is great.
【図1】本発明にかかるアクティブマトリクス型液晶表
示装置の基本的な構成を示す断面図である。FIG. 1 is a sectional view showing a basic configuration of an active matrix type liquid crystal display device according to the present invention.
【図2】本発明にかかる薄膜トランジスタのLDD長さ
寸法とリーク電流との関係を示すグラフである。FIG. 2 is a graph showing a relationship between an LDD length dimension and a leak current of a thin film transistor according to the present invention.
【図3】本発明にかかる薄膜トランジスタのLDDドー
ズ量とトランジスタオン電流の関係を示すグラフであ
る。FIG. 3 is a graph showing the relationship between the LDD dose amount and the transistor on-current of the thin film transistor according to the present invention.
【図4】本発明にかかるアクティブマトリクス型液晶表
示装置の製造方法を示す工程図である。FIG. 4 is a process drawing showing the manufacturing method of the active matrix liquid crystal display device according to the present invention.
【図5】同じく製造工程図である。FIG. 5 is also a manufacturing process drawing.
【図6】本発明にかかるアクティブマトリクス型液晶表
示装置の他の実施例を示す模式的な断面図である。FIG. 6 is a schematic cross-sectional view showing another embodiment of the active matrix type liquid crystal display device according to the present invention.
【図7】本発明にかかる薄膜トランジスタのLDD長さ
寸法とトランジスタオン電流の関係を示すグラフであ
る。FIG. 7 is a graph showing the relationship between the LDD length dimension of a thin film transistor and the transistor on-current according to the present invention.
【図8】従来のアクティブマトリクス型液晶表示装置の
一例を示す断面図である。FIG. 8 is a cross-sectional view showing an example of a conventional active matrix type liquid crystal display device.
1 絶縁基板 2 周辺回路部 3 表示画素部 4 画素TFT 5 周辺TFT 6 多結晶シリコン薄膜 7 ゲート絶縁膜 8 ゲート電極 9 第1層間絶縁膜 10 金属配線 11 第2層間絶縁膜 12 画素電極 13 ゲート電極 D ドレイン領域 S ソース領域 LDD 低濃度不純物領域 DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Peripheral circuit part 3 Display pixel part 4 Pixel TFT 5 Peripheral TFT 6 Polycrystalline silicon thin film 7 Gate insulating film 8 Gate electrode 9 First interlayer insulating film 10 Metal wiring 11 Second interlayer insulating film 12 Pixel electrode 13 Gate electrode D drain region S source region LDD low concentration impurity region
Claims (5)
膜トランジスタを含む表示画素部と、この表示画素部の
周辺に配置され且つ複数個の第2の薄膜トランジスタか
ら構成された周辺回路部を有する一方の基板と、対向電
極を有し前記一方の基板に対向配置された他方の基板
と、両方の基板間に保持された液晶層とを備えた液晶表
示装置において、 前記第1及び第2の薄膜トランジスタが、ソース不純物
領域及びドレイン不純物領域とチャネル領域との間の少
なくとも一方に前記不純物領域と同一導電型の低濃度不
純物領域を備えた非単結晶半導体層を有するとともに、
第1及び第2の薄膜トランジスタの低濃度不純物領域の
長さ寸法及び不純物濃度の少なくとも一方が互いに異な
る事を特徴とする液晶表示装置。1. A peripheral circuit comprising a plurality of first thin film transistors formed on one main surface and a plurality of second thin film transistors arranged around the display pixel portion. A liquid crystal display device comprising: one substrate having a portion; another substrate having a counter electrode, which is opposed to the one substrate; and a liquid crystal layer held between the two substrates. The second thin film transistor has a non-single-crystal semiconductor layer having a low-concentration impurity region of the same conductivity type as the impurity region in at least one of a source impurity region and a drain impurity region, and a channel region,
A liquid crystal display device, wherein at least one of a length dimension and an impurity concentration of low-concentration impurity regions of the first and second thin film transistors is different from each other.
ン不純物領域側のみに低濃度不純物領域が形成されてい
る事を特徴とする請求項1記載の液晶表示装置。2. The liquid crystal display device according to claim 1, wherein the second thin film transistor has a low concentration impurity region formed only on the drain impurity region side.
純物領域の長さ寸法又は不純物濃度はトランジスタオン
電流の増大を優先して設定され、前記第1の薄膜トラン
ジスタの低濃度不純物領域の長さ寸法又は不純物濃度は
トランジスタオフ電流の抑制を優先して設定されている
事を特徴とする請求項1記載の液晶表示装置。3. The length dimension or impurity concentration of the low-concentration impurity region of the second thin film transistor is set by giving priority to an increase in transistor on-current, and the length dimension of the low-concentration impurity region of the first thin film transistor or 2. The liquid crystal display device according to claim 1, wherein the impurity concentration is set by giving priority to suppression of transistor off current.
信号線と、これらの各交点に配置されたスイッチング薄
膜トランジスタと、このスイッチング薄膜トランジスタ
に接続された液晶画素電極を集積配置してアクティブマ
トリクス表示画素部を形成し、このアクティブマトリク
ス表示画素部に接続され前記ゲート線及び信号線に夫々
選択信号及び画像信号を供給する周辺回路部を有する液
晶表示装置において、 前記周辺回路部中の薄膜トランジスタ及び前記スイッチ
ング薄膜トランジスタの活性層はLDD低濃度不純物領
域を有する非単結晶シリコン薄膜からなるとともに、周
辺回路部中の薄膜トランジスタの低濃度不純物領域の長
さ寸法及び不純物濃度の少なくとも何れかは前記スイッ
チング薄膜トランジスタの低濃度不純物領域と異なる様
に構成した事を特徴とする液晶表示装置。4. An active matrix display pixel unit in which gate lines and signal lines arranged in a matrix, switching thin film transistors arranged at respective intersections thereof, and liquid crystal pixel electrodes connected to the switching thin film transistors are integratedly arranged. And a thin film transistor in the peripheral circuit part and the switching thin film transistor connected to the active matrix display pixel part and having a peripheral circuit part for supplying a selection signal and an image signal to the gate line and the signal line, respectively. Is composed of a non-single-crystal silicon thin film having an LDD low-concentration impurity region, and at least one of the length dimension and the impurity concentration of the low-concentration impurity region of the thin film transistor in the peripheral circuit portion is the low-concentration impurity region of the switching thin film transistor. Different from the area The liquid crystal display device, characterized in that it was constructed as.
低濃度不純物領域の長さ寸法又は不純物濃度はトランジ
スタオン電流の増大を優先して設定され、前記スイッチ
ング薄膜トランジスタの低濃度不純物領域の長さ寸法又
は不純物濃度はトランジスタオフ電流の抑制を優先して
設定されている事を特徴とする請求項4記載の液晶表示
装置。5. The length dimension or the impurity concentration of the low concentration impurity region of the thin film transistor in the peripheral circuit portion is set by giving priority to the increase of the transistor on-current, and the length dimension of the low concentration impurity region of the switching thin film transistor or 5. The liquid crystal display device according to claim 4, wherein the impurity concentration is set with priority given to suppression of transistor off current.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26550392A JP3338481B2 (en) | 1992-09-08 | 1992-09-08 | Liquid crystal display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26550392A JP3338481B2 (en) | 1992-09-08 | 1992-09-08 | Liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0688972A true JPH0688972A (en) | 1994-03-29 |
JP3338481B2 JP3338481B2 (en) | 2002-10-28 |
Family
ID=17418076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26550392A Expired - Lifetime JP3338481B2 (en) | 1992-09-08 | 1992-09-08 | Liquid crystal display |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3338481B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1096956A (en) * | 1996-09-24 | 1998-04-14 | Toshiba Corp | Liquid crystal display device and its production |
WO2000054339A1 (en) * | 1999-03-10 | 2000-09-14 | Matsushita Electric Industrial Co., Ltd. | Thin-film transistor, panel, and methods for producing them |
JP2000349298A (en) * | 1999-03-26 | 2000-12-15 | Semiconductor Energy Lab Co Ltd | Electrooptic device and manufacture thereof |
JP2001209068A (en) * | 2000-01-26 | 2001-08-03 | Mitsubishi Electric Corp | Method of producing liquid crystal display device and liquid crystal display device |
JP2001222240A (en) * | 1999-11-29 | 2001-08-17 | Semiconductor Energy Lab Co Ltd | El displayer and electric apparatus |
US6777763B1 (en) | 1993-10-01 | 2004-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for fabricating the same |
KR100569735B1 (en) * | 1998-12-04 | 2006-09-22 | 삼성전자주식회사 | Liquid Crystal Display and Manufacturing Method Thereof |
JP2008028399A (en) * | 2006-07-21 | 2008-02-07 | Toppoly Optoelectronics Corp | Display with thin film transistor device having different electrical characteristics in pixel and driving regions, and method for fabricating the same |
JPWO2005104239A1 (en) * | 2004-04-23 | 2008-03-13 | 株式会社アルバック | Thin film transistor and manufacturing method thereof |
US7371623B2 (en) | 1998-07-16 | 2008-05-13 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device with semiconductor circuit comprising semiconductor units, and method for fabricating it |
JP2008165028A (en) * | 2006-12-28 | 2008-07-17 | Toshiba Matsushita Display Technology Co Ltd | Liquid crystal display |
US7414288B2 (en) | 1996-06-04 | 2008-08-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having display device |
JP2009048144A (en) * | 2007-08-23 | 2009-03-05 | Seiko Epson Corp | Electro-optical device and electronic equipment |
US7858451B2 (en) | 2005-02-03 | 2010-12-28 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device, semiconductor device and manufacturing method thereof |
JP2011008283A (en) * | 1999-02-24 | 2011-01-13 | Semiconductor Energy Lab Co Ltd | Display device |
WO2011145362A1 (en) * | 2010-05-18 | 2011-11-24 | シャープ株式会社 | Semiconductor device, and method for producing same |
US9035314B2 (en) | 1999-03-26 | 2015-05-19 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing an electrooptical device |
US9768281B2 (en) | 2009-03-12 | 2017-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US10095071B2 (en) | 2008-12-03 | 2018-10-09 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device including transistor which includes oxide semiconductor |
US10304962B2 (en) | 2005-09-29 | 2019-05-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
-
1992
- 1992-09-08 JP JP26550392A patent/JP3338481B2/en not_active Expired - Lifetime
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6777763B1 (en) | 1993-10-01 | 2004-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for fabricating the same |
US7414288B2 (en) | 1996-06-04 | 2008-08-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having display device |
US8405149B2 (en) | 1996-06-04 | 2013-03-26 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having display device |
US8928081B2 (en) | 1996-06-04 | 2015-01-06 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having display device |
JPH1096956A (en) * | 1996-09-24 | 1998-04-14 | Toshiba Corp | Liquid crystal display device and its production |
US7371623B2 (en) | 1998-07-16 | 2008-05-13 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device with semiconductor circuit comprising semiconductor units, and method for fabricating it |
KR100569735B1 (en) * | 1998-12-04 | 2006-09-22 | 삼성전자주식회사 | Liquid Crystal Display and Manufacturing Method Thereof |
JP2011008283A (en) * | 1999-02-24 | 2011-01-13 | Semiconductor Energy Lab Co Ltd | Display device |
GB2354882B (en) * | 1999-03-10 | 2004-06-02 | Matsushita Electric Ind Co Ltd | Thin film transistor panel and their manufacturing method |
GB2354882A (en) * | 1999-03-10 | 2001-04-04 | Matsushita Electric Ind Co Ltd | Thin-film transistor,panel and methods for producing them |
WO2000054339A1 (en) * | 1999-03-10 | 2000-09-14 | Matsushita Electric Industrial Co., Ltd. | Thin-film transistor, panel, and methods for producing them |
US9035314B2 (en) | 1999-03-26 | 2015-05-19 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing an electrooptical device |
JP2000349298A (en) * | 1999-03-26 | 2000-12-15 | Semiconductor Energy Lab Co Ltd | Electrooptic device and manufacture thereof |
JP2001222240A (en) * | 1999-11-29 | 2001-08-17 | Semiconductor Energy Lab Co Ltd | El displayer and electric apparatus |
JP4727029B2 (en) * | 1999-11-29 | 2011-07-20 | 株式会社半導体エネルギー研究所 | EL display device, electric appliance, and semiconductor element substrate for EL display device |
JP2001209068A (en) * | 2000-01-26 | 2001-08-03 | Mitsubishi Electric Corp | Method of producing liquid crystal display device and liquid crystal display device |
JP5066361B2 (en) * | 2004-04-23 | 2012-11-07 | 株式会社アルバック | Thin film transistor and manufacturing method thereof |
JPWO2005104239A1 (en) * | 2004-04-23 | 2008-03-13 | 株式会社アルバック | Thin film transistor and manufacturing method thereof |
US7858451B2 (en) | 2005-02-03 | 2010-12-28 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device, semiconductor device and manufacturing method thereof |
KR101138858B1 (en) * | 2005-02-03 | 2012-05-14 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device |
US7939822B2 (en) | 2005-02-03 | 2011-05-10 | Semiconductor Energy Laboratory Co., Ltd. | Active matrix display device |
US10304962B2 (en) | 2005-09-29 | 2019-05-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
JP2008028399A (en) * | 2006-07-21 | 2008-02-07 | Toppoly Optoelectronics Corp | Display with thin film transistor device having different electrical characteristics in pixel and driving regions, and method for fabricating the same |
JP2008165028A (en) * | 2006-12-28 | 2008-07-17 | Toshiba Matsushita Display Technology Co Ltd | Liquid crystal display |
JP2009048144A (en) * | 2007-08-23 | 2009-03-05 | Seiko Epson Corp | Electro-optical device and electronic equipment |
US11175542B2 (en) | 2008-12-03 | 2021-11-16 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device |
US10838264B2 (en) | 2008-12-03 | 2020-11-17 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device |
US10095071B2 (en) | 2008-12-03 | 2018-10-09 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device including transistor which includes oxide semiconductor |
US9768281B2 (en) | 2009-03-12 | 2017-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US8754418B2 (en) | 2010-05-18 | 2014-06-17 | Sharp Kabushiki Kaisha | Semiconductor device, and method for producing same |
WO2011145362A1 (en) * | 2010-05-18 | 2011-11-24 | シャープ株式会社 | Semiconductor device, and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP3338481B2 (en) | 2002-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3338481B2 (en) | Liquid crystal display | |
JP2666103B2 (en) | Thin film semiconductor device | |
KR100292767B1 (en) | LCD Display | |
US5712495A (en) | Semiconductor device including active matrix circuit | |
KR100509662B1 (en) | Active matrix display device, manufacturing method thereof and semiconductor device manufacturing method | |
US7700495B2 (en) | Thin film transistor device and method of manufacturing the same, and liquid crystal display device | |
US20040087067A1 (en) | Thin film transistor and active matrix type display unit production methods therefor | |
JPH05142577A (en) | Matrix circuit driving device | |
JPH06148685A (en) | Liquid crystal display device | |
KR100831881B1 (en) | Thin-film semiconductor device | |
JP2002185010A (en) | Thin-film transistor, its manufacturing method and liquid crystal display device | |
US5879976A (en) | Thin film transistor and method for producing the same | |
JPH07263705A (en) | Thin film transistor | |
JP2001085695A (en) | Method for manufacturing semiconductor device, manufacture of active matrix substrate and electro- optical device | |
JPH10256554A (en) | Thin film transistor and manufacture thereof | |
JPH0722627A (en) | Thin film semiconductor device and active matrix liquid crystal display device | |
JPH10268254A (en) | Liquid crystal display device | |
JP3128939B2 (en) | Thin film transistor | |
JPH08116067A (en) | Semiconductor device, display device and manufacture of display device | |
JPH098314A (en) | Thin film transistor | |
JPH0864830A (en) | Active matrix substrate and method of fabrication thereof | |
JPH0697441A (en) | Manufacture of thin film transistor | |
JP3647384B2 (en) | Thin film semiconductor device, manufacturing method thereof, and display panel | |
JP3481902B2 (en) | Method for manufacturing TFT array | |
JPH10200121A (en) | Manufacture of thin-film transistor substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080809 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090809 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100809 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110809 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120809 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130809 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130809 Year of fee payment: 11 |