JPH0686614B2 - Method for producing high nitrogen content steel in bottom blown or top blown converter - Google Patents

Method for producing high nitrogen content steel in bottom blown or top blown converter

Info

Publication number
JPH0686614B2
JPH0686614B2 JP3159790A JP3159790A JPH0686614B2 JP H0686614 B2 JPH0686614 B2 JP H0686614B2 JP 3159790 A JP3159790 A JP 3159790A JP 3159790 A JP3159790 A JP 3159790A JP H0686614 B2 JPH0686614 B2 JP H0686614B2
Authority
JP
Japan
Prior art keywords
blown
steel
nitrogen
converter
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3159790A
Other languages
Japanese (ja)
Other versions
JPH03236412A (en
Inventor
和久 浜上
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP3159790A priority Critical patent/JPH0686614B2/en
Publication of JPH03236412A publication Critical patent/JPH03236412A/en
Publication of JPH0686614B2 publication Critical patent/JPH0686614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は底吹き又は上底吹き製鋼用転炉における60ppm
以上の含窒素鋼の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a bottom blowing or top bottom blowing steelmaking converter of 60 ppm.
The present invention relates to the method for producing nitrogen-containing steel described above.

<従来の技術> 一般に製鋼用精錬炉での含窒素鋼の製造方法としては、
特開昭53-128520号公報、特開昭54-125113号公報、特開
昭55-50415号公報、特開昭58-167708号公報、特開昭61-
243111号公報等に開示されているように、目標窒素濃度
を得るために必要な量の窒素ガスを吹錬中炉口又は出鋼
孔から上吹きするか、底吹きノズルから溶鋼中に吹き込
む方法が行われている。
<Prior Art> Generally, as a method for producing nitrogen-containing steel in a steelmaking refining furnace,
JP-A-53-128520, JP-A-54-125113, JP-A-55-50415, JP-A-58-167708, JP-A-61-
As disclosed in Japanese Patent No. 243111, etc., a method of blowing a required amount of nitrogen gas to obtain a target nitrogen concentration from a furnace opening or a tapping hole during blowing, or blowing it into molten steel from a bottom blowing nozzle. Is being done.

そこで、本出願人は、既に精錬中にCが1.0〜0.3%にな
った時点でコークスを投入し含窒素鋼を製造する方法を
特願昭63-234846号として提案している。因みに第1図
はそのときの投入コークス量と出鋼窒素含有量との関係
を示すものである。
Therefore, the present applicant has proposed a method for producing nitrogen-containing steel by adding coke at the time when C reaches 1.0 to 0.3% during refining, as Japanese Patent Application No. 63-234846. Incidentally, FIG. 1 shows the relationship between the input coke amount and the steel output nitrogen content at that time.

しかし、精錬中にコークスを投入する方法では、コーク
ス中のS(通常0.4〜0.8%含有される)が溶鋼の中に入
り、S濃度が上昇するという問題と、第1図からも分る
ようにコークス投入だけでは60ppm以上のN濃度を得る
ことが難しいという問題があった。
However, in the method of introducing coke during refining, the problem that S (usually 0.4-0.8% content) in the coke enters the molten steel and the S concentration increases, as can be seen from FIG. However, there was a problem that it was difficult to obtain N concentration of 60 ppm or more only by adding coke.

<発明が解決しようとする課題> 本発明の目的は、底吹き又は上底吹き転炉において、目
標濃度60ppm以上の高含窒素鋼を安定して経済的に得る
ことのできる方法を提案することである。
<Problems to be Solved by the Invention> An object of the present invention is to propose a method capable of stably and economically obtaining a high-nitrogen steel having a target concentration of 60 ppm or more in a bottom-blown or top-blown converter. Is.

しかし、溶鋼中に窒素ガスを上吹き又は底吹きする方法
では窒素歩留りが低く安定せず、目標とする終点窒素濃
度を正確に制御できないという問題があった。
However, the method of blowing nitrogen gas into the molten steel from the top or bottom has a problem that the nitrogen yield is low and unstable, and the target end point nitrogen concentration cannot be accurately controlled.

また、特に特開昭55-50415号公報に開示された方法で
は、窒素吹込みを一旦酸素吹錬を停止して行うため、精
錬時間の延長、溶鋼温度の低下、炉耐火物溶損の増加を
招くという問題があった。
Further, in particular, in the method disclosed in Japanese Patent Laid-Open No. 55-50415, since nitrogen blowing is carried out once oxygen blowing is stopped, refining time is extended, molten steel temperature is lowered, and furnace refractory melting loss is increased. There was a problem of inviting.

<課題解決のための手段> 本発明は、底吹き又は上底吹き製鋼用転炉で60ppm以上
の含窒素鋼を製造する際に、C含有量が1.0〜0.3重量%
になった時点でコークスを6〜8kg/ch・t溶鋼中に投入
し、次いで転炉未燃焼排ガス回収が終了した時点で精錬
に使用した焼石灰量に応じた量のN2ガスをボトムの羽口
より吹き込むことを特徴とする底吹き又は上底吹き転炉
での高含窒素鋼の製造方法である。
<Means for Solving the Problem> The present invention has a C content of 1.0 to 0.3 wt% when producing nitrogen-containing steel of 60 ppm or more in a bottom-blown or top-blown steelmaking converter.
At that time, coke was charged into the molten steel of 6 to 8 kg / ch · t, and then when the converter unburned exhaust gas recovery was completed, an amount of N 2 gas according to the amount of burnt lime used for refining was added to the bottom. A method for producing high nitrogen content steel in a bottom-blown or top-blown converter, which is characterized in that it is blown from the tuyere.

<作用> まず、転炉で精錬中にC含有量が1.0〜0.3wt%になった
時点でコークスを鋼中に投入する理由について説明す
る。
<Operation> First, the reason why the coke is added to the steel when the C content becomes 1.0 to 0.3 wt% during refining in the converter will be described.

コークスによる加窒はコークス中に含まれる約1%のN
を利用するのであるが溶鋼が脱炭最盛期にある時には、
鋼中Nは発生したCOガスにトラップされ脱窒されるので
コークスによる加窒を効率的に行うためには脱炭が低下
する吹錬末期にコークスを投入する必要がある。第2図
は種々の鋼中C含有量の時点で、一定量のコークスを添
加したときのコークス中のNの歩留りを示した実験結果
であるが、Cが1.0〜0.3wt%の時にコークス中のN歩留
りが高いことを見出した。
Nitrogenation by coke is about 1% N contained in coke
However, when molten steel is at the peak of decarburization,
Since N in steel is trapped in the generated CO gas and denitrified, it is necessary to add coke at the final stage of blowing, when decarburization is reduced, in order to efficiently perform nitrification by coke. Fig. 2 shows the experimental results showing the yield of N in the coke when a certain amount of coke was added at various C contents, but when C was 1.0 to 0.3 wt%, It was found that the yield of N was high.

次にコークス投入量を6〜8kg/ch・tに限定する理由を
説明する。
Next, the reason why the amount of coke charged is limited to 6 to 8 kg / ch · t will be described.

第1図からわかる様に出鋼窒素は8kg/ch・tのコークス
投入量まで直線的に上昇するが、それ以上ではバラツキ
も大きくなりかつ出鋼窒素が横ばいとなってしまう。従
ってコークス投入量の上限を8kg/ch・tとした。また歩
留が安定しかつその中で最大限のN濃度を得るためにコ
ークス投入量の下限を6kg/ch・tとした。
As can be seen from Fig. 1, the tapping nitrogen linearly rises up to the amount of coke input of 8 kg / ch · t, but above that, the variation becomes large and the tapping nitrogen levels off. Therefore, the upper limit of the amount of coke input was set to 8 kg / ch · t. Further, the lower limit of the amount of coke charged was set to 6 kg / ch · t in order to stabilize the yield and obtain the maximum N concentration in it.

次に転炉未燃焼排ガス回収が終了した時点で、N2ガスを
吹き込む理由は、コークス投入後転炉排ガス回収中にN2
ガスを吹き込むとすると、脱炭反応が一時的に中断され
るので、排ガス回収を中止しなくてはならずエネルギ回
収ロスが生じるからである。そこで本発明では転炉排ガ
ス回収に影響がなくかつその中でCが一番高い時期(転
炉排ガス回収終了時に相当)にN2ガスを吹き込むことと
した。
Then when the converter unburned gas recovery is completed, the reason for blowing N 2 gas, N 2 in the coke after turning BOF gas recovery
This is because if the gas is blown in, the decarburization reaction is temporarily interrupted, and the exhaust gas recovery must be stopped, which causes energy recovery loss. Therefore, in the present invention, N 2 gas is blown at a time when the converter exhaust gas recovery is not affected and C is the highest (corresponding to the completion of the converter exhaust gas recovery).

また次に精錬に使用した焼石灰量に応じたN2ガス量を吹
き込む理由について説明する。
Next, the reason why the amount of N 2 gas is blown according to the amount of calcined lime used for refining will be described.

ただ単にN2ガスを吹き込むだけだと窒素歩留りが安定し
ないという問題点があった。そこでいろいろと検討して
みた結果、第3図に示すように焼石灰の使用量に応じて
窒素歩留が異なることを発見した。
There was a problem that nitrogen yield was not stable if only N 2 gas was blown in. As a result of various studies, it was discovered that the nitrogen yield varies depending on the amount of burnt lime used, as shown in FIG.

本発明はこの発見に基づくものであり、N2ガスの吹き込
み量は目標とするN含有量及び精錬に使用した焼石灰量
により、第3図より決めればよい。
The present invention is based on this finding, and the blowing amount of N 2 gas may be determined from FIG. 3 depending on the target N content and the amount of calcined lime used for refining.

次に実施例に基づいて本発明をさらに詳細に説明する。Next, the present invention will be described in more detail based on examples.

<実施例> 鋼中C0.6〜0.8wt%でコークスを7kg/ch・t投入し、鋼
中C0.2〜0.3wt%でOGガス回収を中断する。それと同時
にそれまでに使用した焼石灰量に応じたN2ガスを底吹き
羽口より吹き込み、吹止めCは0.03〜0.05%、吹止め温
度は1590〜1610℃である。
<Example> Coke of 7 to 6 kg / ch · t is added at C of 0.6 to 0.8 wt% in steel, and OG gas recovery is interrupted at C of 0.2 to 0.3 wt% of steel. At the same time, N 2 gas corresponding to the amount of calcined lime used up to that time is blown from the bottom blowing tuyere, blowing stop C is 0.03 to 0.05%, and blowing stop temperature is 1590 to 1610 ° C.

出鋼N85ppm狙いで実施した時の窒素濃度のヒストグラフ
を第4図に示す。コークス投入法だけでは得られなかっ
た85ppmの高窒素鋼を製造することができた。
Fig. 4 shows a histograph of nitrogen concentration when the target was N85ppm for tapping. It was possible to produce 85ppm high nitrogen steel which could not be obtained by the coke charging method alone.

なお、目標窒素85ppm、コークス投入量7kg/ch・tの時
の石灰使用量とN2ガス吹込量は表1の関係で行った。
Note that the relationship between the amount of lime used and the amount of N 2 gas blown when the target nitrogen was 85 ppm and the coke amount was 7 kg / ch · t was as shown in Table 1.

<発明の効果> 従来、N60ppm以上の鋼は窒化Mn合金鉄を使用していた
が、本発明により窒化Mn合金鉄を使用せずに、安定した
高窒素鋼を経済的に製造する事が可能となった。
<Effects of the Invention> Conventionally, steel with N60 ppm or more used Mn alloy iron nitride, but according to the present invention, stable high nitrogen steel can be economically manufactured without using Mn alloy iron nitride. Became.

【図面の簡単な説明】[Brief description of drawings]

第1図はコークス投入量と出鋼窒素の関係を示すグラ
フ、第2図は鋼中Cと窒素歩留りの関係を示すグラフ、
第3図は焼石灰使用量と窒素歩留りとの関係を示すグラ
フ、第4図は出鋼窒素の度数を示すヒストグラフであ
る。
FIG. 1 is a graph showing the relationship between the amount of coke input and steel output nitrogen, and FIG. 2 is a graph showing the relationship between C in steel and nitrogen yield.
FIG. 3 is a graph showing the relationship between the amount of burnt lime used and the yield of nitrogen, and FIG. 4 is a histograph showing the frequency of discharged steel nitrogen.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】底吹き又は上底吹き製鋼用転炉で60ppm以
上の含窒素鋼を製造する際に、C含有量が1.0〜0.3重量
%になった時点でコークスを6〜8kg/ch・t溶鋼中に投
入し、次いで転炉未燃焼排ガス回収が終了した時点で精
錬に使用した焼石灰量に応じた量のN2ガスをボトムの羽
口より吹き込むことを特徴とする底吹き又は上底吹き転
炉での高含窒素鋼の製造方法。
1. When producing a nitrogen-containing steel of 60 ppm or more in a bottom-blown or top-blown steelmaking converter, when the C content reaches 1.0 to 0.3% by weight, the coke content is 6 to 8 kg / ch. t Bottom blowing or top blowing characterized by blowing N 2 gas into the molten steel from the tuyere of the bottom according to the amount of burnt lime used for refining when the converter unburned exhaust gas recovery is completed. Method for producing high nitrogen content steel in bottom blowing converter.
JP3159790A 1990-02-14 1990-02-14 Method for producing high nitrogen content steel in bottom blown or top blown converter Expired - Fee Related JPH0686614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3159790A JPH0686614B2 (en) 1990-02-14 1990-02-14 Method for producing high nitrogen content steel in bottom blown or top blown converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3159790A JPH0686614B2 (en) 1990-02-14 1990-02-14 Method for producing high nitrogen content steel in bottom blown or top blown converter

Publications (2)

Publication Number Publication Date
JPH03236412A JPH03236412A (en) 1991-10-22
JPH0686614B2 true JPH0686614B2 (en) 1994-11-02

Family

ID=12335607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3159790A Expired - Fee Related JPH0686614B2 (en) 1990-02-14 1990-02-14 Method for producing high nitrogen content steel in bottom blown or top blown converter

Country Status (1)

Country Link
JP (1) JPH0686614B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087705A (en) * 2014-07-23 2014-10-08 攀钢集团攀枝花钢钒有限公司 Method for controlling nitrogen content of high-nitrogen steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045792B (en) * 2013-01-08 2014-08-27 秦皇岛首秦金属材料有限公司 Smelting technology of low-sulfur steel for thick plates during whole-course bottom blowing nitrogen production of converter
WO2018107315A1 (en) * 2016-12-12 2018-06-21 孙瑞涛 Two-step method for smelting high-nitrogen steel at normal pressure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087705A (en) * 2014-07-23 2014-10-08 攀钢集团攀枝花钢钒有限公司 Method for controlling nitrogen content of high-nitrogen steel

Also Published As

Publication number Publication date
JPH03236412A (en) 1991-10-22

Similar Documents

Publication Publication Date Title
US4474605A (en) Process for refining high-chromium steels
JPH0686614B2 (en) Method for producing high nitrogen content steel in bottom blown or top blown converter
KR20000042510A (en) Method for refining electric furnace
JP2958848B2 (en) Hot metal dephosphorization method
JPH07310110A (en) Production of stainless steel
KR100946128B1 (en) Method for Refining Molten Steel Using Converter
JP2000109924A (en) Method for melting extra-low sulfur steel
JPH07179920A (en) Production of molten steel
JPS6358203B2 (en)
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
JP2607329B2 (en) Hot metal dephosphorization method
JP2587286B2 (en) Steelmaking method
JP3835190B2 (en) Melting method of high nitrogen steel
WO2022259805A1 (en) Molten steel denitrification method and steel production method
JP6691324B2 (en) Manufacturing method of low nitrogen steel
JP2000328123A (en) Converter refining method for adjusting silicon charging quality
JPH0617498B2 (en) High blowout Mn operating method in upper and lower blow converter
JP2626771B2 (en) Converter blowing method using pretreated hot metal
JPH08134528A (en) Production of extra low carbon steel
JPH05247511A (en) Method for dephosphorizing molten iron
JP2896838B2 (en) Molten steel manufacturing method
JPH111714A (en) Steelmaking method
SU1539210A1 (en) Method of melting steel from phosphorous iron
JP2003105421A (en) Method for removing vanadium in molten iron
SU1341212A1 (en) Method of treating and finishing steel outside furnace in ladle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees