JPH05247511A - Method for dephosphorizing molten iron - Google Patents

Method for dephosphorizing molten iron

Info

Publication number
JPH05247511A
JPH05247511A JP4728392A JP4728392A JPH05247511A JP H05247511 A JPH05247511 A JP H05247511A JP 4728392 A JP4728392 A JP 4728392A JP 4728392 A JP4728392 A JP 4728392A JP H05247511 A JPH05247511 A JP H05247511A
Authority
JP
Japan
Prior art keywords
converter
slag
dephosphorization
stage
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4728392A
Other languages
Japanese (ja)
Other versions
JP2607328B2 (en
Inventor
Yuji Ogawa
雄司 小川
Masataka Yano
正孝 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4728392A priority Critical patent/JP2607328B2/en
Publication of JPH05247511A publication Critical patent/JPH05247511A/en
Application granted granted Critical
Publication of JP2607328B2 publication Critical patent/JP2607328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To provide a process in which dephosphorizing is executed in a short time and successively decarburization is executed by using the same converter. CONSTITUTION:At the time of producing a molten steel by refining molten iron as a first stage, the molten iron is charged into the converter and as a second stage, by executing flux addition and oxygen top-blowing, the dephosphorizing refining is executed so as to reduce the phosphorus content in the molten iron to a prescribed level and as a third stage, the converter is tilted to discharge slag produced at the second stage. Thereafter, the decarburization is executed in the same converter, and the molten steel is tapped leaving the slag in the converter, and in the second stage recycling the slag to the first stage in the molten steel producing method, CaO/SiO2 in the slag is made to be 1.1-2.5 and the top blowing oxygen feeding rate is made to be >=2.5Nm<3>/min/t.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は転炉内での溶銑の脱りん
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dephosphorizing hot metal in a converter.

【0002】[0002]

【従来の技術】製鋼トータルコストのミニマム化や低り
ん鋼の安定溶銑に関して、従来溶銑の脱りん法として
(1)トーピードカー内の溶銑に脱りん用フラックスを
インジェクションして予備脱りんを行う方法、(2)取
鍋内の溶銑に脱りん用フラックスをインジェクションも
しくは吹き付けを行い、予備脱りんを行う方法、あるい
は(3)2基の転炉を用いて、一方で脱りんを行い、他
方で脱炭を行う方法(例えば、特開昭63−19521
0号公報)が用いられている。
2. Description of the Related Art For minimizing the total cost of steelmaking and stable hot metal for low phosphorus steel, the conventional hot metal dephosphorization method is as follows: (1) A method for injecting a flux for dephosphorization into hot metal in a torpedo car for preliminary dephosphorization, (2) A method of performing pre-phosphorization by injecting or spraying a flux for dephosphorization on the hot metal in the ladle, or (3) using two converters to perform dephosphorization on one side and dephosphorization on the other side. A method of performing charcoal (see, for example, JP-A-63-19521).
No. 0) is used.

【0003】しかしながら、上記(1),(2),
(3)のいずれの方法も脱りん工程から脱炭工程へ移る
際、溶銑の移し替えを必要とし、温度低下を余儀なくさ
れ、エネルギーロスが大きいという欠点がある。また、
(1)や(2)のプロセスにおいてはトーピードカーや
溶銑鍋を利用しているため、上吹き送酸速度を大きくし
て処理時間を短縮しようとすると、スラグの泡立ちによ
る操業上の障害が生じる。したがって、プロセス(1)
で約20分、プロセス(2)で約11分が脱りん工程の
最短処理時間であるのが現状であった。又、プロセス
(3)においても送酸速度は高々1.0Nm3 /min /t
で操業されており、処理時間も約10分を要していた。
However, the above (1), (2),
All of the methods (3) have the disadvantages that the hot metal needs to be transferred when the dephosphorization step moves to the decarburization step, the temperature must be lowered, and the energy loss is large. Also,
In the processes of (1) and (2), since a torpedo car and a hot metal ladle are used, if an attempt is made to increase the rate of top-blown acid feeding to shorten the processing time, foaming of the slag will cause operational problems. Therefore, process (1)
It was the current situation that the shortest treatment time of the dephosphorization step was about 20 minutes in the process and about 11 minutes in the process (2). Also, in the process (3), the acid transfer rate is 1.0 Nm 3 / min / t at most.
The operation time was about 10 minutes.

【0004】本出願人は特願平2−181989号明細
書において、従来多工程にわたる精錬機能を転炉に集約
し、溶銑のもつエネルギーロスを大幅に低減すると共
に、転炉前後工程の固定費(設備費、労務費)の大幅な
軽減を可能とする方法を提案した。
[0004] In the specification of Japanese Patent Application No. 2-181989, the present applicant concentrated the refining function over the conventional multi-steps in the converter to significantly reduce the energy loss of the hot metal and fixed costs before and after the converter. We have proposed a method that can significantly reduce (equipment costs, labor costs).

【0005】図2はこのフローを示しているが、第一工
程として、溶銑を転炉に装入し、第二工程として、フラ
ックス添加と、酸素上吹きとを行って脱りん・脱けい精
錬を施し、第三工程として、前記転炉を傾動して、第二
工程で生成したスラグを排滓し、第四工程として、フラ
ックス添加とO2 吹錬により所定のC含有量まで脱炭
し、第五工程として、第四工程で生成したスラグを該転
炉内に残したまま出鋼して再び第一工程へ戻り、前記第
五工程までを繰り返し実施する。
FIG. 2 shows this flow. As a first step, hot metal is charged into a converter, and as a second step, flux addition and oxygen top blowing are performed to perform dephosphorization / descaling refining. As a third step, the converter is tilted to remove the slag generated in the second step, and as a fourth step, decarburization is performed to a predetermined C content by adding flux and blowing O 2. As the fifth step, the slag produced in the fourth step is tapped while being left in the converter, the process is returned to the first step, and the steps up to the fifth step are repeated.

【0006】[0006]

【発明が解決しようとする課題】同一転炉を用いて脱り
ん、脱炭工程を続けて行うプロセスを用いると、脱りん
工程から脱炭工程へ移る際のエネルギーロスを少なくす
ることができるだけでなく、上部のフリーボードが大き
い転炉が使用できる。一方送酸速度の増大による脱りん
処理時間の短縮のニーズがある。本発明は脱りん処理時
間の短縮により生産性の向上を図る溶銑の脱りん方法を
提供するものである。
If a process of continuously performing the dephosphorization and decarburization steps using the same converter is used, it is possible to reduce the energy loss during the transfer from the dephosphorization step to the decarburization step. Instead, a converter with a large freeboard on the top can be used. On the other hand, there is a need to shorten the dephosphorization treatment time by increasing the acid transfer rate. The present invention provides a method for dephosphorizing hot metal, which improves productivity by shortening the dephosphorization treatment time.

【0007】[0007]

【課題を解決するための手段】本発明は溶銑を精錬して
溶鋼を製造する際に、第一工程として溶銑を転炉に装入
し、第二工程としてフラックス添加と酸素上吹きとを行
って脱りん精錬を施し、所定のりん含有量まで低減さ
せ、第三工程として前記転炉を傾動して第二工程で生成
したスラグを排出し、その後同一転炉により脱炭工程を
行い、スラグを転炉に残したまま出鋼し、該スラグを第
一工程にリサイクルする溶鋼製造法の第二工程におい
て、スラグ中のCaO/SiO2 が1.1以上2.5以
下であり、上吹き送酸速度が2.5Nm3 /min /t以上
であることを特徴とする溶銑の脱りん方法である。
In the present invention, when refining hot metal to produce molten steel, the hot metal is charged into a converter as a first step, and flux addition and oxygen top blowing are performed as a second step. Dephosphorization refining to reduce the phosphorus content to a specified level, tilt the converter as the third step to discharge the slag produced in the second step, and then perform the decarburization step in the same converter to remove the slag. In the second step of the molten steel manufacturing method, in which the slag is tapped while it is left in the converter, and the slag is recycled to the first step, CaO / SiO 2 in the slag is 1.1 or more and 2.5 or less, and top blowing It is a method for dephosphorizing hot metal, characterized in that the acid transfer rate is 2.5 Nm 3 / min / t or more.

【0008】以下本発明を詳述する。本発明は溶銑予備
処理と脱炭とを集約して同一転炉によって操業される。
即ち図2に示すように炉底に脱りん、脱炭用フラックス
を吹込むための1個ないし複数個の底吹き羽口と、出鋼
孔の対面炉腹にスラグフォーミング用ガス吹込みのため
の複数個の羽口を備えた上底吹き転炉に溶銑を装入し、
前述の底吹き羽口より生石灰粉をベースとしたフラック
スをN2 等の不活性ガスを搬送ガスとして吹込む。
The present invention will be described in detail below. The present invention integrates the hot metal pretreatment and decarburization and operates in the same converter.
That is, as shown in FIG. 2, one or a plurality of bottom blowing tuyere for blowing dephosphorization and decarburizing flux to the bottom of the furnace, and a plurality of blowing gas for slag foaming to the facing furnace side of the tapping hole. Charge the hot metal into the upper and lower blowing converter equipped with individual tuyere,
A flux based on quicklime powder is blown from the above-mentioned bottom blowing tuyere using an inert gas such as N 2 as a carrier gas.

【0009】この時、酸化鉄粉を生石灰粉に混合する
か、あるいは羽口を3重管構造とし、O2 ガスを同一羽
口を通して吹込むことにより、脱りん反応速度を高める
ことができる。もしくは、上吹きランスからO2 ガスを
吹付け、上方よりフラックスを投入、吹込み、吹付け等
の方法で添加して、生成スラグの〔Fe0%〕をコント
ロールすることによっても、脱りんを促進することがで
きる。所定のP,C含有量まで低下した時点で炉を反出
鋼側(排滓側)に傾動しスラグのみ排滓させる。
At this time, the dephosphorization reaction rate can be increased by mixing the iron oxide powder with the quicklime powder or by forming the tuyere with a triple tube structure and blowing O 2 gas through the same tuyere. Alternatively, the dephosphorization can be promoted by controlling the [Fe 0%] of the produced slag by spraying O 2 gas from the top-blown lance and adding flux from the above by adding, blowing, or spraying flux. can do. When the P and C contents are reduced to the predetermined values, the furnace is tilted to the side of the unextruded steel (slag side) and only the slag is discharged.

【0010】排滓終了と共に直ちに炉を正立させ、若干
量の副原料(耐火物保護、復P防止用の生石灰、ドロマ
イト、鉄鉱石など)を投入して通常の上底吹き脱炭精錬
を行う。吹止後、溶鋼は出鋼するが、スラグはそのまま
炉内に残し、次のチャージの溶銑予備処理滓として活用
する。
Immediately after the slag is exhausted, the furnace is immediately erected and a small amount of auxiliary raw materials (refractory protection, quick lime for preventing P recovery, dolomite, iron ore, etc.) are put in to carry out normal upper-bottom blown decarburization refining. To do. After the blowing is stopped, the molten steel is tapped, but the slag is left in the furnace as it is and used as the molten iron pretreatment slag for the next charge.

【0011】ところで同一転炉で脱りん、脱炭工程を続
けて行うと、脱りん工程から脱炭工程へ移る際のエネル
ギーロスを少なくすることができるだけでなく、上部の
フリーボードが大きい転炉を使用できるため、送酸速度
の増大による脱りん処理時間の短縮が可能となる。しか
しながら、これまでは、送酸速度をかなり高速にすると
脱りん酸素効率が低下し、脱りん速度の向上はそれほど
望めないと考えられていた。
By the way, if the dephosphorization and decarburization steps are continuously performed in the same converter, not only energy loss at the time of shifting from the dephosphorization step to the decarburization step can be reduced, but also a converter with a large upper freeboard. Since it can be used, it is possible to shorten the dephosphorization treatment time by increasing the acid transfer rate. However, until now, it was thought that when the rate of oxygen transfer was made considerably high, the efficiency of dephosphorization and oxygen reduction decreased, and the improvement of the dephosphorization rate could not be expected so much.

【0012】ここにいう脱りん酸素効率は一般に次の式
で表わされる。 脱りん酸素効率={脱りんに使われた酸素量(Nm3 /t)
/(全吹酸素量(送酸速度×時間)(Nm3 /t)+投入酸化
鉄中の酸素量(Nm3 /t))}×100(%) しかしながら本発明者らの実験によると、送酸速度が
2.5Nm3 /min /tを超える高送酸速度下で、脱りん
酸素効率の低下はさほど認められず、脱りん速度定数が
向上し、脱りん工程の処理時間の短縮が可能であること
が確認された。
The dephosphorization oxygen efficiency referred to herein is generally expressed by the following equation. Dephosphorization oxygen efficiency = {Amount of oxygen used for dephosphorization (Nm 3 / t)
/ (Total blown oxygen amount (acid transfer rate × time) (Nm 3 / t) + oxygen amount in fed iron oxide (Nm 3 / t))} × 100 (%) However, according to the experiments by the present inventors, At a high acid transfer rate of more than 2.5 Nm 3 / min / t, the dephosphorization oxygen efficiency was not significantly decreased, the dephosphorization rate constant was improved, and the processing time of the dephosphorization process was shortened. It was confirmed to be possible.

【0013】[0013]

【実施例】8t試験転炉を用いて、脱りん実験を実施し
た。4.5%のC、0.1%のP、0.3%のSiを含
む初期温度1300℃の溶銑を10分間精錬した。フラ
ックスとしてCaOを所定量投入し、送酸速度は2.5
〜3.6Nm3 /min /tとした。また、比較のため、送
酸速度1.1Nm3 /min /tでの実験も行った。図1に
それぞれの場合の溶銑中〔P〕濃度の経時変化を示す。
このときのCaO/SiO2 は1.1〜1.5とした。
送酸速度を2.5Nm3 /min /t以上とすることによ
り、送酸速度1.1Nm3 /min /tの場合よりも処理時
間を約4分短縮できた。
EXAMPLE A phosphorus removal experiment was carried out using an 8t test converter. Hot metal containing 4.5% C, 0.1% P and 0.3% Si and having an initial temperature of 1300 ° C. was smelted for 10 minutes. A predetermined amount of CaO was added as flux, and the acid transfer rate was 2.5.
˜3.6 Nm 3 / min / t. For comparison, an experiment was also conducted at an acid transfer rate of 1.1 Nm 3 / min / t. FIG. 1 shows changes with time in the [P] concentration in the hot metal in each case.
At this time, CaO / SiO 2 was set to 1.1 to 1.5.
By setting the acid transfer rate to 2.5 Nm 3 / min / t or more, the processing time could be shortened by about 4 minutes as compared with the case where the acid transfer rate was 1.1 Nm 3 / min / t.

【0014】図2は送酸速度と一次の脱りん速度定数
(K′p )の関係を実機での従来プロセス(1),
(2),(3)の値と併せて示す。精錬後のCaO/S
iO2 が0.6〜1.1の場合は、トーピードによる従
来プロセス(1)や取鍋による従来プロセス(2)と同
等の脱りん速度定数しか得られなかった。しかし、Ca
O/SiO2 を1.1以上2.5以下とすることで、従
来プロセス(3)の約2倍の脱りん速度定数を得ること
を確認できた。
FIG. 2 shows the relationship between the oxygen transfer rate and the first-order phosphorus removal rate constant (K ' p ) in the conventional process (1) in an actual machine,
It is shown together with the values of (2) and (3). CaO / S after refining
When iO 2 was 0.6 to 1.1, only the dephosphorization rate constant equivalent to that of the conventional process (1) using torpedo or the conventional process (2) using ladle was obtained. However, Ca
It was confirmed that the dephosphorization rate constant about twice that of the conventional process (3) was obtained by setting O / SiO 2 to 1.1 or more and 2.5 or less.

【0015】[0015]

【発明の効果】本発明により、従来の脱りん方法と比較
して、処理時間を短縮でき、生産性を向上することが可
能となった。
According to the present invention, the processing time can be shortened and the productivity can be improved as compared with the conventional dephosphorization method.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶銑中〔P〕濃度の経時変化を示す図表であ
る。
FIG. 1 is a chart showing changes with time of [P] concentration in hot metal.

【図2】一次の脱りん速度定数と送酸速度の関係を示す
図表である。
FIG. 2 is a chart showing the relationship between the primary dephosphorization rate constant and the acid transfer rate.

【図3】同一転炉による精錬プロセスの模式的説明図で
ある。
FIG. 3 is a schematic explanatory diagram of a refining process using the same converter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶銑を精錬して溶鋼を製造する際に、第
一工程として溶銑を転炉に装入し、第二工程としてフラ
ックス添加と酸素上吹きとを行って脱りん精錬を施し所
定のりん含有量まで低減させ、第三工程として前記転炉
を傾動して第二工程で生成したスラグを排出し、その後
同一転炉により脱炭工程を行い、スラグを転炉に残した
まま出鋼し、該スラグを第一工程にリサイクルする溶鋼
製造法の第二工程において、スラグ中のCaO/SiO
2 が1.1以上2.5以下であり、上吹き送酸速度が
2.5Nm3 /min /t以上であることを特徴とする溶銑
の脱りん方法。
1. When refining hot metal to produce molten steel, the hot metal is charged into a converter as a first step, and flux addition and oxygen top blowing are performed as a second step to perform dephosphorization refining. To the phosphorus content in the second step, tilt the converter as the third step to discharge the slag generated in the second step, then perform the decarburization step in the same converter, and leave the slag in the converter as it is. In the second step of the molten steel manufacturing method in which steel is recycled to the first step, CaO / SiO in the slag
2. The method for dephosphorizing hot metal, characterized in that 2 is 1.1 or more and 2.5 or less, and the rate of top-blown acid feeding is 2.5 Nm 3 / min / t or more.
JP4728392A 1992-03-04 1992-03-04 Hot metal dephosphorization method Expired - Lifetime JP2607328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4728392A JP2607328B2 (en) 1992-03-04 1992-03-04 Hot metal dephosphorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4728392A JP2607328B2 (en) 1992-03-04 1992-03-04 Hot metal dephosphorization method

Publications (2)

Publication Number Publication Date
JPH05247511A true JPH05247511A (en) 1993-09-24
JP2607328B2 JP2607328B2 (en) 1997-05-07

Family

ID=12770970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4728392A Expired - Lifetime JP2607328B2 (en) 1992-03-04 1992-03-04 Hot metal dephosphorization method

Country Status (1)

Country Link
JP (1) JP2607328B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247512A (en) * 1992-03-04 1993-09-24 Nippon Steel Corp Method for dephosphorizing molten iron
WO1995001458A1 (en) * 1993-06-30 1995-01-12 Nippon Steel Corporation Steel manufacturing method using converter
KR20190087515A (en) 2016-12-26 2019-07-24 닛폰세이테츠 가부시키가이샤 A preliminary treatment method of molten iron and a method of manufacturing ultra low tensile steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247512A (en) * 1992-03-04 1993-09-24 Nippon Steel Corp Method for dephosphorizing molten iron

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247512A (en) * 1992-03-04 1993-09-24 Nippon Steel Corp Method for dephosphorizing molten iron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247512A (en) * 1992-03-04 1993-09-24 Nippon Steel Corp Method for dephosphorizing molten iron
WO1995001458A1 (en) * 1993-06-30 1995-01-12 Nippon Steel Corporation Steel manufacturing method using converter
AU680268B2 (en) * 1993-06-30 1997-07-24 IKEMIZU, Keiko Steel manufacturing method using converter
KR20190087515A (en) 2016-12-26 2019-07-24 닛폰세이테츠 가부시키가이샤 A preliminary treatment method of molten iron and a method of manufacturing ultra low tensile steel

Also Published As

Publication number Publication date
JP2607328B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
JP2958848B2 (en) Hot metal dephosphorization method
JP2896839B2 (en) Molten steel manufacturing method
JP2607328B2 (en) Hot metal dephosphorization method
JP2607329B2 (en) Hot metal dephosphorization method
JPS59211519A (en) Production of low p-containing chromium steel
JPH07310110A (en) Production of stainless steel
JP3924059B2 (en) Steelmaking method using multiple converters
JP3486889B2 (en) Steelmaking method using two or more converters
JP4461495B2 (en) Dephosphorization method of hot metal
US4439234A (en) Method of increasing the cold material charging capacity in the top-blowing production of steel
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel
KR100946128B1 (en) Method for Refining Molten Steel Using Converter
JPH0718318A (en) Converter refining method
JPH08319506A (en) Method for dephosphorizing molten iron
JPH09256020A (en) Method for dehosphorize-refining of molten iron in converter type refining vessel.
JP3924058B2 (en) Converter steelmaking method using dephosphorized hot metal
JP4224910B2 (en) Hot treatment method for molten slag produced during hot metal decarburization treatment
JPH0718319A (en) Converter refining method
JPH0673424A (en) Method for efficiently refining stainless steel using decarburized slag
JP3486890B2 (en) Converter steelmaking method using dephosphorized hot metal
JPH06192716A (en) Production of low phosphorus molten iron utilizing scrap melting
JPH0526841B2 (en)
JPH0215602B2 (en)
JPH07316620A (en) Steelmaking method in converter
JPH06200311A (en) Method for dephosphorizing molten iron

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 16