JPH0686045U - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPH0686045U
JPH0686045U JP3157793U JP3157793U JPH0686045U JP H0686045 U JPH0686045 U JP H0686045U JP 3157793 U JP3157793 U JP 3157793U JP 3157793 U JP3157793 U JP 3157793U JP H0686045 U JPH0686045 U JP H0686045U
Authority
JP
Japan
Prior art keywords
gauge
line segments
differential pressure
semiconductor
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3157793U
Other languages
Japanese (ja)
Other versions
JP2573540Y2 (en
Inventor
圭三 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP1993031577U priority Critical patent/JP2573540Y2/en
Publication of JPH0686045U publication Critical patent/JPH0686045U/en
Application granted granted Critical
Publication of JP2573540Y2 publication Critical patent/JP2573540Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

(57)【要約】 【目的】 ゲージ部の各部における応力を略等しくする
ことができ、最大出力を得る。 【構成】 ダイヤフラム部2の外周寄りにそれぞれ2つ
ずつ配設される半径および接線方向の差圧検出用ゲージ
(ピエゾ抵抗素子)3A,3Bの各ゲージ部3aを4つ
の微少な線分30a〜30dにそれぞれ分離分割し、こ
れら線分30a〜30dをダイヤフラム部2の中心0か
ら略同一の半径R上に配列する。そして、、これら線分
3a〜3d間を連結部3bで接続する。
(57) [Summary] [Purpose] The stress in each part of the gauge part can be made almost equal and maximum output can be obtained. [Structure] Two gauges 3a of differential pressure detection gauges (piezoresistive elements) 3A and 3B arranged in two radii and tangential directions near the outer periphery of the diaphragm 2 are divided into four minute line segments 30a to 30a. 30d are separated and divided, and these line segments 30a to 30d are arranged on the substantially same radius R from the center 0 of the diaphragm portion 2. And these line segments 3a-3d are connected by the connection part 3b.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は差圧あるいは圧力を検出する半導体圧力センサに関する。 The present invention relates to a semiconductor pressure sensor that detects a differential pressure or pressure.

【0002】[0002]

【従来の技術】[Prior art]

従来、この種の半導体圧力センサとしてはSi(シリコン)半導体ダイヤフラ ムを利用したものが知られている。このSiダイヤフラム型半導体圧力センサは 、半導体結晶からなる基板(以下半導体基板という)の表面に不純物の拡散もし くはイオン打ち込み技術によりピエゾ抵抗領域として作用するゲージを形成する と共に、Alの蒸着等によりリードを形成し、裏面の一部をエッチングによって 除去することにより厚さ20μm〜50μm程度の薄肉部、すなわちダイヤフラ ム部を形成して構成したもので、ダイヤフラム部の表裏面に測定圧力をそれぞれ 加えると、ダイヤフラム部の変形に伴いゲージの比抵抗が変化し、この時の抵抗 変化に伴う出力電圧を検出し、差圧または圧力を測定するものである。 Conventionally, as this type of semiconductor pressure sensor, one using a Si (silicon) semiconductor diaphragm is known. This Si diaphragm type semiconductor pressure sensor forms a gauge acting as a piezoresistive region on the surface of a substrate made of a semiconductor crystal (hereinafter referred to as a semiconductor substrate) by an impurity diffusion or ion implantation technique, and also by vapor deposition of Al or the like. It is configured by forming a lead and removing a part of the back surface by etching to form a thin portion with a thickness of about 20 μm to 50 μm, that is, a diaphragm portion, and applies a measurement pressure to the front and back surfaces of the diaphragm portion, respectively. When the diaphragm is deformed, the specific resistance of the gauge changes, and the output voltage accompanying the resistance change at this time is detected to measure the differential pressure or pressure.

【0003】 図2および図3はこのような半導体圧力センサの従来例を示す平面図および断 面図で、半導体基板1は(100)面のn型単結晶Siからなり、エッチングに よりその裏面中央部を除去されることにより差圧または圧力に感応する薄肉円板 状の感圧ダイヤフラム部2を備え、またこのダイヤフラム部2の表面側にピエゾ 領域として作用し差圧または圧力を検出する差圧検出用ゲージ3(3A,3B) が設けられ、バックプレート4上に静電接合されている。バックプレート4は、 半導体基板1と熱膨張係数が近似したパイレックスガラス、セラミックス等によ って形成され、中央には前記半導体基板1の裏面に形成された凹陥部5を介して ダイヤフラム部2の裏面側に測定すべき圧力P1 ,P2 のうちの一方(P1 )を 導く貫通孔6が形成されている。2 and 3 are a plan view and a cross-sectional view showing a conventional example of such a semiconductor pressure sensor. The semiconductor substrate 1 is made of n-type single crystal Si of (100) plane, and its back surface is formed by etching. It is equipped with a thin disk-shaped pressure sensitive diaphragm part 2 which is sensitive to differential pressure or pressure by removing the central part, and which acts as a piezo region on the surface side of this diaphragm part 2 to detect differential pressure or pressure. Pressure detecting gauges 3 (3A, 3B) are provided and electrostatically bonded onto the back plate 4. The back plate 4 is formed of Pyrex glass, ceramics, or the like having a thermal expansion coefficient similar to that of the semiconductor substrate 1, and the back plate 4 has a recessed portion 5 formed on the back surface of the semiconductor substrate 1 in the center thereof. A through hole 6 for guiding one of the pressures P1 and P2 (P1) to be measured is formed on the back surface side.

【0004】 前記差圧検出用ゲージ3は、前記感圧ダイヤフラム部2の表面で差圧または圧 力の印加時にダイヤフラム部2に発生する半径方向と周方向の応力が最大となる 周縁部寄りに拡散またはイオン打ち込み法によって4つ形成されており、ホイー ルストーンブリッジに結線されることでダイヤフラム部2の表裏面に加えられた 測定すべき圧力P1 ,P2 の差圧信号を差動的に出力する。測定差圧または圧力 はそれぞれ最大140Kgf/cm2 ,420Kgf/cm2 程度である。 また、4つの差圧検出用ゲージ3のうち半径方向の2つの差圧検出用ゲージ3 Aは、折り返しゲージを形成することで、低濃度(1019 個/cm3 )で所定 のシート抵抗を有し、結晶面方位(100)においてピエゾ抵抗係数が最大とな る<110>の結晶軸方向と平行な2つのゲージ部3a,3aと、ゲージ部3a ,3aの一端を互いに連結する連結部3bと、ゲージ部3a,3aの他端にそれ ぞれ接続された2つのリードアウト部3c,3cとからなり、連結部3bとリー ドアウト部3c,3cがゲージ部3a,3aに対するこれらの影響を除くため一 般に高濃度(1021 個/cm3 )の導電型(p+ 型)半導体物質領域を形成し ている。一方、接線方向の2つの差圧検出用ゲージ3Bは、折り返しゲージを形 成せず、低濃度(1019 個/cm3 )で所定のシート抵抗を有し、結晶面方位 (100)においてピエゾ抵抗係数が最大となる<110>の結晶軸方向と平行 な1つのゲージ部3aと、ゲージ部3aの端部にそれぞれ接続され高濃度(10 21 個/cm3 )の導電型(p+ 型)半導体物質領域を形成する2つのリードア ウト部3c,3cとで構成されている。The differential pressure detecting gauge 3 is located near the peripheral portion where the radial and circumferential stresses generated in the diaphragm portion 2 when the differential pressure or the pressure is applied are maximized on the surface of the pressure sensitive diaphragm portion 2. Four are formed by the diffusion or ion implantation method, and by connecting to the Wheelstone bridge, the differential pressure signals of the pressures P1 and P2 to be measured applied to the front and back surfaces of the diaphragm part 2 are output differentially. To do. Maximum measured differential pressure or pressure is 140 kgf / cm2 , 420 Kgf / cm2 It is a degree. Further, of the four differential pressure detection gauges 3, the two radial differential pressure detection gauges 3A form a folded-back gauge, so that the low concentration (1019 Pieces / cm3 ) Has a predetermined sheet resistance, and the two gauge parts 3a, 3a parallel to the <110> crystal axis direction having the maximum piezoresistance coefficient in the crystal plane orientation (100) and the gauge parts 3a, 3a. It is composed of a connecting portion 3b that connects one end to each other and two lead-out portions 3c and 3c that are connected to the other ends of the gauge portions 3a and 3a, respectively. The connecting portion 3b and the lead-out portions 3c and 3c are the gauge portion. In order to eliminate these effects on 3a and 3a, high concentrations (10twenty one Pieces / cm3 ) Conductivity type (p+ (Type) semiconductor material region is formed. On the other hand, the two tangential direction differential pressure detection gauges 3B do not form a turnback gauge, and the low concentration (1019 Pieces / cm3 ) Has a predetermined sheet resistance and is connected to one gauge part 3a parallel to the crystal axis direction of <110> that has the maximum piezoresistive coefficient in the crystal plane orientation (100) and the end part of the gauge part 3a. High concentration (10 twenty one Pieces / cm3 ) Conductivity type (p+ (Type) two lead-out portions 3c, 3c forming a semiconductor material region.

【0005】 差圧検出用ゲージ3のピエゾ抵抗係数はp型、n型共に半導体基板1への不純 物のドーピング量が多くなるにつれて低下する。このため、差圧検出用ゲージ3 の比抵抗の変化率を大きくして、圧力に対する感度を上げ大きな出力電圧を得る には不純物濃度を低く設定する。また、ピエゾ抵抗係数は、p型と,n型で異な り、p型のほうがより大きく、このためn型半導体上にp型抵抗層を設けるのが 一般的である。The piezoresistive coefficient of the differential pressure detection gauge 3 decreases as the doping amount of impurities into the semiconductor substrate 1 increases for both p-type and n-type. Therefore, the impurity concentration is set low in order to increase the rate of change of the specific resistance of the differential pressure detection gauge 3 to increase the sensitivity to pressure and obtain a large output voltage. Further, the piezoresistance coefficient differs between p-type and n-type, and the p-type is larger. Therefore, it is general to provide a p-type resistance layer on an n-type semiconductor.

【0006】 差圧検出用ゲージ3の出力電圧は、ダイヤフラム部2の形状、肉厚、差圧検出 用ゲージ3の形成位置、ゲージ自体の向き等によっても異なる。例えば、向きに ついていえば、結晶面方位(001)のSi上にゲージを設ける場合、ピエゾ抵 抗係数が最大になる向きは<110>の結晶軸方向であるため、この方向に差圧 検出用ゲージ3を形成することが望ましい。 但し、接線方向の差圧検出用ゲージ3Bについてみれば、1本の細長い帯状体 に形成されているので、図2から明らかなようにダイヤフラム部2の中心0から ゲージ部中央までの半径Rと、ゲージ部端までの半径R1 とでは異なり(R1 > R)、そのため半径R1 とRの位置ではゲージ部3aに加わる応力も異なってい る。 なお、半径方向の差圧検出用ゲージ3Aについても前記中心0から各端部まで の距離が異なるので、接線方向のゲージ3Bと全く同様である。The output voltage of the differential pressure detection gauge 3 varies depending on the shape and thickness of the diaphragm portion 2, the formation position of the differential pressure detection gauge 3, the orientation of the gauge itself, and the like. For example, regarding the orientation, when a gauge is provided on Si with a crystal plane orientation (001), the direction in which the piezoresistive coefficient becomes maximum is the <110> crystal axis direction, so differential pressure detection is performed in this direction. It is desirable to form a working gauge 3. However, regarding the tangential differential pressure detecting gauge 3B, since it is formed in one elongated strip, as shown in FIG. 2, the radius R from the center 0 of the diaphragm portion 2 to the center of the gauge portion is , The radius R1 to the end of the gauge portion is different (R1> R), and therefore the stress applied to the gauge portion 3a is different at the positions of the radius R1 and R. The radial pressure difference detecting gauge 3A is also the same as the tangential gauge 3B because the distance from the center 0 to each end is different.

【0007】 図4は接線方向の差圧検出用ゲージ3の応力分布を示す図で、σr は半径方向 の応力、σθは円周方向の応力である。この図からも明らかなようにゲージ部中 央とゲージ部端に加わる応力は異なり、応力分布に広がりをもっている。出力電 圧は応力の差|σr −σθ|に比例し、応力分布の広がりが小さい程大出力が得 られる。FIG. 4 is a diagram showing the stress distribution of the differential pressure detecting gauge 3 in the tangential direction, where σr is the radial stress and σθ is the circumferential stress. As is clear from this figure, the stress applied to the center of the gauge section and the stress applied to the end of the gauge section are different, and the stress distribution is broad. The output voltage is proportional to the stress difference | σr−σθ |, and the smaller the stress distribution spreads, the larger the output.

【0008】 なお、図1において7a,7bは蒸着によって形成されたアルミニウムからな るリードで、これらリード7a,7bの一端は各リードアウト部3c,3cにそ れぞれ接続されている。8は差圧信号取出し用端子部、9は差圧検出用電源端子 部である。In FIG. 1, 7a and 7b are leads made of aluminum formed by vapor deposition, and one ends of these leads 7a and 7b are connected to the lead-out portions 3c and 3c, respectively. Reference numeral 8 is a terminal portion for extracting the differential pressure signal, and 9 is a power source terminal portion for detecting the differential pressure.

【0009】[0009]

【考案が解決しようとする課題】[Problems to be solved by the device]

上記した従来の半導体圧力センサにおいて、差圧検出用ゲージ3は圧力に感応 するよう結晶面方位(001)におけるピエゾ抵抗係数が最大となる結晶軸方向 (<110>)に揃えて形成されている。しかしながら、ダイヤフラム部2の中 心0から差圧検出用ゲージ3のゲージ部中央までの半径Rと、ゲージ部端までの 半径R1 とでは異なる(R1 >R)ので、応力が広い範囲にわたって分布し、最 大出力を得ることができないという不都合があった。 In the above-described conventional semiconductor pressure sensor, the differential pressure detection gauge 3 is formed in alignment with the crystal axis direction (<110>) that maximizes the piezoresistance coefficient in the crystal plane orientation (001) so as to be sensitive to pressure. . However, since the radius R from the center 0 of the diaphragm part 2 to the center of the gauge part of the differential pressure detection gauge 3 and the radius R1 to the end of the gauge part are different (R1> R), the stress is distributed over a wide range. However, there was an inconvenience that the maximum output could not be obtained.

【0010】 したがって、本考案は上記したような従来の問題点に鑑みてなされたもので、 その目的とするところは、ゲージ部の各部における応力を略等しくすることがで き、最大出力を得ることができるようにした半導体圧力センサを提供することに ある。Therefore, the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to make stresses in respective portions of a gauge portion substantially equal to obtain a maximum output. Another object of the present invention is to provide a semiconductor pressure sensor that can be used.

【0011】[0011]

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を解決するため本考案は、半導体結晶からなる基板の裏面に凹陥部を 形成することにより薄肉部を形成し、この薄肉部の主面に半径方向および接線方 向にそれぞれ一対のピエゾ抵抗素子を設けた半導体圧力センサにおいて、前記ピ エゾ抵抗素子の夫々を複数の微少な線分に分割し、これら線分を前記薄肉部を中 心とする略同一半径上に配列したものである。 In order to solve the above-mentioned object, the present invention forms a thin portion by forming a concave portion on the back surface of a substrate made of a semiconductor crystal, and a pair of piezoresistors is formed on the main surface of the thin portion in the radial direction and the tangential direction, respectively. In a semiconductor pressure sensor provided with an element, each of the piezoresistive elements is divided into a plurality of minute line segments, and these line segments are arranged on substantially the same radius with the thin portion as the center.

【0012】[0012]

【作用】[Action]

ピエゾ抵抗素子を形成する複数の微少な線分は、応力が生じるとそれに応じた 出力信号を生じる。これら線分に加わる応力は、これら線分が薄肉部を中心とす る略同一半径上に配列されていることから略等しく、したがって、略等しい出力 信号を生じ、結果として最大出力を得ることができる。 A plurality of minute line segments forming the piezoresistive element generate an output signal in response to stress. The stresses applied to these line segments are almost equal because they are arranged on the same radius centered on the thin portion, so that almost equal output signals can be generated and, as a result, maximum output can be obtained. it can.

【0013】[0013]

【実施例】【Example】

以下、本考案を図面に示す実施例に基づいて詳細に説明する。 図1は本考案に係る半導体圧力センサの一実施例を示す平面図である。なお、 図2および図3と同一構成部材のものに対しては同一符号をもって示し、その説 明を省略する。本実施例はダイヤフラム部2の外周寄りにそれぞれ2つずつ配設 される半径および接線方向の差圧検出用ゲージ(ピエゾ抵抗素子)3A,3Bの 各ゲージ部3aを複数、例えば4つの微少な線分30a〜30dにそれぞれ分離 分割し、これら線分30a〜30dをダイヤフラム部2の中心0から略同一の半 径R上に配列すると共に、これら線分間を連結部3bで接続して構成したもので ある。線分30a〜30dの向きは、結晶面方位(001)のSi上に差圧検出 用ゲージ3A,3Bを設ける場合、ピエゾ抵抗係数が最大になる向き、すなわち <110>の結晶軸方向と全て一致している。各線分30a〜30dの長さは、 略等しいことが望ましいが、かならずしもこれに限定されるものではなく、これ ら線分30a〜30dの全長が図2に示した従来のゲージにおけるゲージ部の全 長と略等しいものであればよい。 なお、その他の構成は図2および図3に示した従来の半導体圧力センサと同様 である。 Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. FIG. 1 is a plan view showing an embodiment of a semiconductor pressure sensor according to the present invention. The same components as those in FIGS. 2 and 3 are designated by the same reference numerals, and the description thereof will be omitted. In the present embodiment, a plurality of gauge portions 3a, for example, four minute gauge portions 3a of the differential pressure detection gauges (piezoresistive elements) 3A and 3B, which are arranged near the outer periphery of the diaphragm portion 2 are provided in the radial direction and the tangential direction. Each of the line segments 30a to 30d is separated and divided, and these line segments 30a to 30d are arranged on the substantially same half radius R from the center 0 of the diaphragm portion 2, and these line segments are connected by the connecting portion 3b. It is a thing. When the differential pressure detection gauges 3A and 3B are provided on the crystal plane orientation (001) Si, the directions of the line segments 30a to 30d are the directions in which the piezoresistance coefficient is the maximum, that is, the crystal axis direction of <110> Match. It is desirable that the lengths of the line segments 30a to 30d are substantially equal, but the lengths of the line segments 30a to 30d are not limited to this, and the total length of the line segments 30a to 30d is the same as that of the conventional gauge shown in FIG. The length may be approximately equal to the length. The other structures are the same as those of the conventional semiconductor pressure sensor shown in FIGS. 2 and 3.

【0014】 このような構成からなる半導体圧力センサにおいて、各差圧検出用ゲージ3A ,3Bのゲージ部3aを形成する4つの線分30a〜30dは、応力が生じた場 合、それに応じて抵抗値が変化し出力信号をそれぞれ生じる。この場合、これら 線分30a〜30dの長さが全て等しいとすると、線分30a〜30dに加わる 応力は、これら線分がダイヤフラム部2の中心0から略同一半径R上に配列され ていることから全て等しく、したがって、等しい出力信号を生じ、結果として、 半径R上の圧力センサとして最大の出力を得ることができる。In the semiconductor pressure sensor having such a configuration, the four line segments 30a to 30d forming the gauge portion 3a of each of the differential pressure detecting gauges 3A and 3B have resistances corresponding to the stresses generated. The values change and each produces an output signal. In this case, assuming that the lengths of the line segments 30a to 30d are all equal, the stress applied to the line segments 30a to 30d is that these line segments are arranged on the substantially same radius R from the center 0 of the diaphragm portion 2. All yield equal and therefore equal output signals, resulting in maximum output as a pressure sensor on radius R.

【0015】 なお、上記実施例はゲージ部3aを4つの微少な線分30a〜30dに分割し た例を示したが、本考案はこれに何等特定されるものではなく、2つ、3つ、4 つ以上等適宜数に分割することが可能である。 また、上記実施例は半導体基板1をn型シリコン、ピエゾ抵抗領域であるゲー ジ部3aをp型シリコンによって構成した場合について説明したが、これはp型 シリコンからなるピエゾ抵抗体を用いた方が、n型に比較して圧力−抵抗のリニ アリティがよく、ピエゾ抵抗係数が最大となる(001)面、<110>結晶軸 方向において対称性の良好な正逆両方向の出力が取り出せるからであるが、本考 案はこれに何等特定されるものではなく、p型の基板にn型のピエゾ領域を形成 してもよいことは勿論である。Although the above embodiment has shown an example in which the gauge portion 3a is divided into four minute line segments 30a to 30d, the present invention is not limited to this, but two, three It is possible to divide into an appropriate number such as four or more. In the above-mentioned embodiment, the semiconductor substrate 1 is made of n-type silicon and the piezoresistive region, that is, the gate portion 3a is made of p-type silicon. However, this method uses a piezoresistor made of p-type silicon. However, the linearity of the pressure-resistance is better than that of the n-type, the (001) plane where the piezoresistance coefficient is maximum, and the output in both the forward and reverse directions with good symmetry in the <110> crystal axis direction can be taken out. However, the present invention is not limited to this, and it goes without saying that an n-type piezoelectric region may be formed on a p-type substrate.

【0016】[0016]

【考案の効果】[Effect of device]

以上説明したように本考案に係る半導体圧力センサは、ダイヤフラムを形成す る薄肉部の外周寄りに配設されるピエゾ抵抗素子の夫々を複数個の線分に分割し 、これら線分を前記薄肉部を中心とする略同一半径上に配列したので、各線分に 加わる応力を等しくすることができる。したがって、応力分布に広がりがなく、 最大出力を得ることができ、センサの検出感度を向上させることができる。 As described above, in the semiconductor pressure sensor according to the present invention, each of the piezoresistive elements arranged near the outer periphery of the thin portion forming the diaphragm is divided into a plurality of line segments, and these line segments are divided into the thin wall portions. Since they are arranged on substantially the same radius centered on the part, the stress applied to each line segment can be made equal. Therefore, the stress distribution does not spread, the maximum output can be obtained, and the detection sensitivity of the sensor can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案に係る半導体圧力センサの一実施例を示
す平面図である。
FIG. 1 is a plan view showing an embodiment of a semiconductor pressure sensor according to the present invention.

【図2】半導体圧力センサの従来例を示す平面図であ
る。
FIG. 2 is a plan view showing a conventional example of a semiconductor pressure sensor.

【図3】同センサの断面図である。FIG. 3 is a sectional view of the sensor.

【図4】ゲージ部の応力分布を示す図である。FIG. 4 is a diagram showing a stress distribution in a gauge section.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 ダイヤフラム部(薄肉部) 3A 半径方向の差圧検出用ゲージ 3B 接線方向の差圧検出用ゲージ 3a ゲージ部 3b 連結部 3c リードアウト部 4 バックプレート 5 凹陥部 30a〜30d 線分 DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Diaphragm part (thin part) 3A Radial differential pressure detection gauge 3B Tangent direction differential pressure detection gauge 3a Gauge part 3b Connecting part 3c Lead-out part 4 Back plate 5 Recessed part 30a-30d Line segment

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 半導体結晶からなる基板の裏面に凹陥部
を形成することにより薄肉部を形成し、この薄肉部の主
面に半径方向および接線方向にそれぞれ一対のピエゾ抵
抗素子を設けた半導体圧力センサにおいて、 前記ピエゾ抵抗素子の夫々を複数の微少な線分に分割
し、これら線分を前記薄肉部を中心とする略同一半径上
に配列したことを特徴とする半導体圧力センサ。
1. A semiconductor device comprising a substrate made of a semiconductor crystal, a recess formed on a back surface of the substrate to form a thin portion, and a main surface of the thin portion provided with a pair of piezoresistive elements in a radial direction and a tangential direction, respectively. In the sensor, a semiconductor pressure sensor characterized in that each of the piezoresistive elements is divided into a plurality of minute line segments, and these line segments are arranged on substantially the same radius centered on the thin portion.
JP1993031577U 1993-05-21 1993-05-21 Semiconductor pressure sensor Expired - Fee Related JP2573540Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993031577U JP2573540Y2 (en) 1993-05-21 1993-05-21 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993031577U JP2573540Y2 (en) 1993-05-21 1993-05-21 Semiconductor pressure sensor

Publications (2)

Publication Number Publication Date
JPH0686045U true JPH0686045U (en) 1994-12-13
JP2573540Y2 JP2573540Y2 (en) 1998-06-04

Family

ID=12335045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993031577U Expired - Fee Related JP2573540Y2 (en) 1993-05-21 1993-05-21 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JP2573540Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143713A (en) * 2015-04-27 2015-08-06 パナソニックIpマネジメント株式会社 semiconductor pressure sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143713A (en) * 2015-04-27 2015-08-06 パナソニックIpマネジメント株式会社 semiconductor pressure sensor

Also Published As

Publication number Publication date
JP2573540Y2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
US6006607A (en) Piezoresistive pressure sensor with sculpted diaphragm
EP0616688A1 (en) Piezoresistive silicon pressure sensor design.
JPH09232595A (en) Pressure detection device
KR20040079323A (en) Semiconductor pressure sensor having diaphragm
US5412993A (en) Pressure detection gage for semiconductor pressure sensor
US6838303B2 (en) Silicon pressure sensor and the manufacturing method thereof
EP0111640B1 (en) Pressure sensor with semi-conductor diaphragm
CN113218544B (en) Micro-pressure sensor chip with stress concentration structure and preparation method thereof
JP2895262B2 (en) Composite sensor
JPH04178533A (en) Semiconductor pressure sensor
JP2694593B2 (en) Semiconductor pressure sensor
JPH0686045U (en) Semiconductor pressure sensor
JPH0712940U (en) Semiconductor pressure sensor
JPH0755619A (en) Semiconductor pressure sensor
JP2573539Y2 (en) Semiconductor pressure sensor
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPH0875581A (en) Semiconductor pressure converter
JP2512220B2 (en) Multi-function sensor
JPH0712942U (en) Semiconductor pressure transducer
JPH06102128A (en) Semiconductor composite function sensor
JP2001124645A (en) Semiconductor pressure sensor
JPH03239938A (en) Capacity type pressure sensor
JPH0648421Y2 (en) Semiconductor acceleration sensor
JP3120388B2 (en) Semiconductor pressure transducer
JPH06207873A (en) Semiconductor pressure sensor and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees