JP2015143713A - semiconductor pressure sensor - Google Patents

semiconductor pressure sensor Download PDF

Info

Publication number
JP2015143713A
JP2015143713A JP2015090063A JP2015090063A JP2015143713A JP 2015143713 A JP2015143713 A JP 2015143713A JP 2015090063 A JP2015090063 A JP 2015090063A JP 2015090063 A JP2015090063 A JP 2015090063A JP 2015143713 A JP2015143713 A JP 2015143713A
Authority
JP
Japan
Prior art keywords
detection unit
pressure sensor
semiconductor pressure
parallel
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015090063A
Other languages
Japanese (ja)
Other versions
JP5866496B2 (en
Inventor
新村 雄一
Yuichi Niimura
雄一 新村
西川 英男
Hideo Nishikawa
英男 西川
史仁 加藤
Fumihito Kato
史仁 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015090063A priority Critical patent/JP5866496B2/en
Publication of JP2015143713A publication Critical patent/JP2015143713A/en
Application granted granted Critical
Publication of JP5866496B2 publication Critical patent/JP5866496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor pressure sensor capable of suppressing reduction in detection accuracy.SOLUTION: A semiconductor pressure sensor includes: a semiconductor substrate; a diaphragm part that is part of the semiconductor substrate and is obtained by thinning the semiconductor substrate; and first, second, third, and fourth detection units. Each of the first, second, third, and fourth detection units includes: a first end; a second end; a first part that extends in a first direction from the first end; a second part that extends in a second direction perpendicular to the first direction from the first part; a third part that extends in the first direction from the second part and has a part facing the first part in the first direction; a fourth part that extends in the second direction from the third part and has a part facing the second part in the first direction; and a fifth part that extends in the first direction from the fourth part to the second end in the first direction and has a part facing the first part in the second direction.

Description

本発明は、ダイヤフラム上に検出部を形成し、この検出部によりダイヤフラムに加えられた圧力を検出する半導体圧力センサに関する。   The present invention relates to a semiconductor pressure sensor in which a detection unit is formed on a diaphragm and the pressure applied to the diaphragm is detected by the detection unit.

従来より、ダイヤフラム上に形成された検出部によりダイヤフラムに加えられた圧力を検出する半導体圧力センサが知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a semiconductor pressure sensor that detects a pressure applied to a diaphragm by a detection unit formed on the diaphragm is known (see, for example, Patent Document 1).

特公平2−41183号公報Japanese Examined Patent Publication No. 2-41183

このような半導体圧力センサにおいては、検出精度が低下してしまうのを抑制できるようにするのが好ましい。   In such a semiconductor pressure sensor, it is preferable to be able to suppress a decrease in detection accuracy.

そこで、本発明は、検出精度が低下してしまうのを抑制することのできる半導体圧力センサを得ることを目的とする。   Then, an object of this invention is to obtain the semiconductor pressure sensor which can suppress that detection accuracy falls.

本発明は、半導体基板と、前記半導体基板の一部であって、前記半導体基板が薄肉化されたダイヤフラム部と、第1,第2,第3,第4の検出部と、を備える半導体圧力センサにおいて、前記第1,第2,第3,第4の検出部はそれぞれ、第1の端と、第2の端と、前記第1の端から第1の方向に延びる第1の部分と、前記第1の部分から前記第1の方向と垂直な第2の方向に延びる第2の部分と、前記第2の部分から前記第1の方向に延び、前記第1の部分と前記第2の方向に対向する部分を有する第3の部分と、前記第3の部分から前記第2の方向に延び、前記第2の部分と前記第1の方向に対向する部分を有する第4の部分と、前記第4の部分から前記第2の端まで前記第1の方向に延び、前記第1の部分と前記第2の方向に対向する部分を含む第5の部分と、を有する。   The present invention relates to a semiconductor pressure comprising: a semiconductor substrate; a diaphragm portion which is a part of the semiconductor substrate and in which the semiconductor substrate is thinned; and first, second, third and fourth detection portions. In the sensor, each of the first, second, third, and fourth detection units includes a first end, a second end, and a first portion that extends in the first direction from the first end. , A second portion extending in a second direction perpendicular to the first direction from the first portion, and extending in the first direction from the second portion, the first portion and the second A third portion having a portion facing the first direction, a fourth portion extending from the third portion in the second direction, and having a portion facing the second portion and the first direction; , Extending from the fourth portion to the second end in the first direction and facing the first portion in the second direction Has a fifth portion which includes the minutes, the.

また、前記ダイヤフラム部の上面視において、前記第2の部分は前記第4の部分より幅の広い部分を有し、前記幅の広い部分は前記第1の部分に接続してもよい。   Further, in the top view of the diaphragm part, the second part may have a part wider than the fourth part, and the wide part may be connected to the first part.

また、前記第1の検出部の第1の端と、前記第2の検出部の第2の端とを接続する第1の配線と、前記第2の検出部の第1の端と、前記第3の検出部の第2の端とを接続する第2の配線と、前記第3の検出部の第1の端と、前記第4の検出部の第2の端とを接続する第3の配線と、前記第4の検出部の第1の端と、前記第1の検出部の第2の端とを接続する第4の配線と、を更に備え、前記ダイヤフラム部は、上面視において、第1,第2,第3,第4の辺を有する四角形であり、前記第1の配線は、前記第1の辺に並行な部分と、前記第2の辺に並行な部分とを有し、前記第2の配線は、前記第2の辺に並行な部分と、前記第3の辺に並行な部分とを有し、前記第3の配線は、前記第3の辺に並行な部分と、前記第4の辺に並行な部分とを有し、前記第4の配線は、前記第4の辺に並行な部分と、前記第1の辺に並行な部分とを有してもよい。   A first wiring connecting a first end of the first detection unit and a second end of the second detection unit; a first end of the second detection unit; A third wiring connecting the second wiring connecting the second end of the third detection unit, the first end of the third detection unit, and the second end of the fourth detection unit. And a fourth wiring that connects a first end of the fourth detection unit and a second end of the first detection unit, and the diaphragm unit is a top view. , A quadrilateral having first, second, third, and fourth sides, and the first wiring has a portion parallel to the first side and a portion parallel to the second side. The second wiring has a portion parallel to the second side and a portion parallel to the third side, and the third wiring is a portion parallel to the third side. And a portion parallel to the fourth side And the fourth wiring, and parallel portion to the fourth side may have a parallel portion to the first side.

また、前記半導体基板と前記ダイヤフラム部とは上面視において四角形であってもよい。   Further, the semiconductor substrate and the diaphragm portion may be quadrangular in a top view.

また、前記第1,第2,第3,第4の検出部はそれぞれ、前記ダイヤフラム部の上に設けられていてもよい。   Further, each of the first, second, third, and fourth detection units may be provided on the diaphragm unit.

また、前記第1,第2,第3,第4の検出部はピエゾ抵抗であってもよい。   The first, second, third, and fourth detection units may be piezoresistors.

また、前記第1,第2,第3,第4の検出部がホイートストンブリッジ回路を構成してもよい。   The first, second, third and fourth detection units may constitute a Wheatstone bridge circuit.

また、前記ダイヤフラム部は、上面視において、第1,第2,第3,第4の辺を有する四角形であり、前記第1の検出部は前記第1の辺の近傍に設けられ、前記第1の検出部の第1の部分は前記第1の辺と垂直に伸び、前記第1の検出部の第5の部分は前記第1の辺と垂直に伸び、前記第2の検出部は前記第2の辺の近傍に設けられ、前記第2の検出部の第1の部分は前記第1の辺と平行に伸び、前記第2の検出部の第5の部分は前記第1の辺と平行に伸び、前記第3の検出部は前記第3の辺の近傍に設けられ、前記第3の検出部の第1の部分は前記第1の辺と垂直に伸び、前記第3の検出部の第5の部分は前記第1の辺と垂直に伸び、前記第4の検出部は前記第4の辺の近傍に設けられ、前記第4の検出部の第1の部分は前記第1の辺と垂直に伸び、前記第4の検出部の第5の部分は前記第1の辺と垂直に伸びていてもよい。   The diaphragm portion is a quadrangle having first, second, third, and fourth sides in a top view, and the first detection unit is provided in the vicinity of the first side. The first part of the first detection unit extends perpendicular to the first side, the fifth part of the first detection unit extends perpendicular to the first side, and the second detection unit Provided in the vicinity of the second side, the first part of the second detection unit extends parallel to the first side, and the fifth part of the second detection unit is connected to the first side. Extending in parallel, the third detection unit is provided in the vicinity of the third side, the first part of the third detection unit extends perpendicular to the first side, and the third detection unit The fifth part extends perpendicularly to the first side, the fourth detection part is provided in the vicinity of the fourth side, and the first part of the fourth detection part is the first part. Side and droop Elongation, fifth portion of the fourth detector may extend perpendicular to the first side.

本発明によれば、検出精度が低下してしまうのを抑制することのできる半導体圧力センサを得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor pressure sensor which can suppress that detection accuracy falls can be obtained.

本発明の実施形態1に係る半導体圧力センサの構成を示す図である。It is a figure which shows the structure of the semiconductor pressure sensor which concerns on Embodiment 1 of this invention. 半導体圧力センサのピエゾ抵抗素子が形成された部分の構成を示す図である。It is a figure which shows the structure of the part in which the piezoresistive element of the semiconductor pressure sensor was formed. ピエゾ抵抗素子で構成されたホイートストンブリッジ回路の構成を示す図である。It is a figure which shows the structure of the Wheatstone bridge circuit comprised by the piezoresistive element. 本発明の実施形態2に係る半導体圧力センサにおけるホイートストンブリッジ回路の構成を示す図である。It is a figure which shows the structure of the Wheatstone bridge circuit in the semiconductor pressure sensor which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る半導体圧力センサにおけるホイートストンブリッジ回路の構成を示す図である。It is a figure which shows the structure of the Wheatstone bridge circuit in the semiconductor pressure sensor which concerns on Embodiment 3 of this invention.

以下、図面を用いて本発明を実施するための実施形態を説明する。
(実施形態1)
図1は本発明の実施形態1に係る半導体圧力センサの構成を示す図であり、同図(a)は平面図、同図(b)は同図(a)のA−A線に沿った断面図である。図1において、本発明の実施形態1となる半導体圧力センサ11は、図1(a),(b)に示すように、矩形形状の薄肉化されたダイヤフラム部12が形成された、例えば単結晶のシリコン基板からなる半導体基板13と、ダイヤフラム部12の各辺内側の半導体基板13の表面領域に形成されたピエゾ抵抗素子R1〜R4とを備える。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
(Embodiment 1)
1A and 1B are diagrams showing a configuration of a semiconductor pressure sensor according to Embodiment 1 of the present invention, where FIG. 1A is a plan view, and FIG. 1B is taken along line AA in FIG. It is sectional drawing. In FIG. 1, a semiconductor pressure sensor 11 according to Embodiment 1 of the present invention includes, for example, a single crystal in which a thin diaphragm portion 12 having a rectangular shape is formed, as shown in FIGS. 1 (a) and 1 (b). And a piezoresistive element R <b> 1 to R <b> 4 formed in the surface region of the semiconductor substrate 13 inside each side of the diaphragm portion 12.

ピエゾ抵抗素子R1とピエゾ抵抗素子R2のそれぞれの一端は、例えば拡散配線を介して接続され、接続点は後述するホイートストンブリッジ回路の出力端子Vout1に接続されている。ピエゾ抵抗素子R1の他端は、ホイートストンブリッジ回路に印加するバイアス電圧を供給する高位電源Vddに接続されている。ピエゾ抵抗素子R2の他端は、低位電源となる接地電位(グランド電位)GNDに接続されている。   One end of each of the piezoresistive element R1 and the piezoresistive element R2 is connected through, for example, a diffusion wiring, and the connection point is connected to an output terminal Vout1 of a Wheatstone bridge circuit described later. The other end of the piezoresistive element R1 is connected to a high level power supply Vdd that supplies a bias voltage to be applied to the Wheatstone bridge circuit. The other end of the piezoresistive element R2 is connected to a ground potential (ground potential) GND serving as a low potential power source.

ピエゾ抵抗素子R3とピエゾ抵抗素子R4のそれぞれの一端は、例えば拡散配線を介して接続され、接続点は後述するホイートストンブリッジ回路の出力端子Vout2に接続されている。ピエゾ抵抗素子R3の他端は、高位電源Vddに接続されている。ピエゾ抵抗素子R4の他端は、接地電位GNDに接続されている。   One end of each of the piezoresistive element R3 and the piezoresistive element R4 is connected through, for example, a diffusion wiring, and the connection point is connected to an output terminal Vout2 of a Wheatstone bridge circuit described later. The other end of the piezoresistive element R3 is connected to the high level power supply Vdd. The other end of the piezoresistive element R4 is connected to the ground potential GND.

図2(a)は各ピエゾ抵抗素子R1〜R4が形成された部分(図1(a)の符号aで示す部分)を拡大した平面図であり、同図(b)は同図(a)のB−B線に沿った断面図である。図2において、ダイヤフラム部12の半導体基板13には、その表層部に例えば不純物を低濃度に選択的に拡散させて各ピエゾ抵抗素子R1〜R4が形成されている。各ピエゾ抵抗素子R1〜R4の上部には、例えば酸化膜などの絶縁体薄膜層21を介してそれぞれ独立して個別に導電性のシールド薄膜層22が形成されている。このシールド薄膜層22は、絶縁体薄膜層21によって各ピエゾ抵抗素子R1〜R4と絶縁されている。シールド薄膜層22は、ダイヤフラム部12と線膨張係数が近い例えば多結晶シリコンなどで構成される。   FIG. 2A is an enlarged plan view of a portion where each of the piezoresistive elements R1 to R4 is formed (portion indicated by reference numeral a in FIG. 1A), and FIG. It is sectional drawing along line BB. In FIG. 2, the semiconductor substrate 13 of the diaphragm portion 12 is formed with respective piezoresistive elements R1 to R4 in the surface layer portion by selectively diffusing impurities, for example, at a low concentration. On each of the piezoresistive elements R <b> 1 to R <b> 4, a conductive shield thin film layer 22 is independently formed via an insulating thin film layer 21 such as an oxide film. The shield thin film layer 22 is insulated from the piezoresistive elements R1 to R4 by the insulator thin film layer 21. The shield thin film layer 22 is made of, for example, polycrystalline silicon having a linear expansion coefficient close to that of the diaphragm portion 12.

各ピエゾ抵抗素子R1〜R4に対応した各シールド薄膜層22は、予め設定した所定の電位、例えば高位電源Vddや高位電源Vddと接地電位GNDとの間の中間電位を与えることで、電気シールドとして機能する。   Each shield thin film layer 22 corresponding to each of the piezoresistive elements R1 to R4 provides a predetermined potential, for example, a high potential power supply Vdd or an intermediate potential between the high potential power supply Vdd and the ground potential GND as an electric shield. Function.

このような構成を有する半導体圧力センサ11では、ピエゾ抵抗素子R1〜R4は図3に示すようなホイートストンブリッジ回路を構成している。ピエゾ抵抗素子R1は、その一端が高位電源Vddに接続され、他端がホイートストンブリッジ回路の出力端子Vout1に接続されている。ピエゾ抵抗素子R2は、その一端が接地電位GNDに接続され、他端がホイートストンブリッジ回路の出力端子Vout1に接続されている。ピエゾ抵抗素子R3は、その一端が高位電源Vddに接続され、他端がホイートストンブリッジ回路の出力端子Vout2に接続されている。ピエゾ抵抗素子R4は、その一端が接地電位GNDに接続され、他端がホイートストンブリッジ回路の出力端子Vout2に接続されている。   In the semiconductor pressure sensor 11 having such a configuration, the piezoresistive elements R1 to R4 form a Wheatstone bridge circuit as shown in FIG. One end of the piezoresistive element R1 is connected to the high level power supply Vdd, and the other end is connected to the output terminal Vout1 of the Wheatstone bridge circuit. One end of the piezoresistive element R2 is connected to the ground potential GND, and the other end is connected to the output terminal Vout1 of the Wheatstone bridge circuit. One end of the piezoresistive element R3 is connected to the high-level power supply Vdd, and the other end is connected to the output terminal Vout2 of the Wheatstone bridge circuit. The piezoresistive element R4 has one end connected to the ground potential GND and the other end connected to the output terminal Vout2 of the Wheatstone bridge circuit.

また、ピエゾ抵抗素子R1上に形成されたシールド薄膜層22と、ピエゾ抵抗素子R3上に形成されたシールド薄膜層22とは、拡散層もしくは金属などで構成された配線31により電気的に接続され、両者を予め設定した同一の電位に固定することが可能に構成されている。ピエゾ抵抗素子R2上に形成されたシールド薄膜層22と、ピエゾ抵抗素子R4上に形成されたシールド薄膜層22とは、拡散層もしくは金属などで構成された配線32により電気的に接続され、両者を予め設定した同一の電位に固定することが可能に構成されている。したがって、高位電源Vdd側に接続されたピエゾ抵抗素子R1,R3上に形成されたシールド薄膜層22に与えられる電位と、接地電位GND側に接続されたピエゾ抵抗素子R2,R4上に形成されたシールド薄膜層22に与えられる電位とが、異なる電位に設定できるように構成されている。なお、シールド薄膜層22に与える電位は、ピエゾ抵抗素子R1〜R4が受ける電気的な影響の度合いが概ね同程度になるように実機による実験などによって定めることができる。   The shield thin film layer 22 formed on the piezoresistive element R1 and the shield thin film layer 22 formed on the piezoresistive element R3 are electrically connected by a wiring 31 made of a diffusion layer or metal. Both can be fixed at the same potential set in advance. The shield thin film layer 22 formed on the piezoresistive element R2 and the shield thin film layer 22 formed on the piezoresistive element R4 are electrically connected by a wiring 32 made of a diffusion layer or metal, etc. Can be fixed at the same potential set in advance. Therefore, the potential applied to the shield thin film layer 22 formed on the piezoresistive elements R1 and R3 connected to the high potential power supply Vdd side and the piezoresistive elements R2 and R4 connected to the ground potential GND side are formed. The potential applied to the shield thin film layer 22 can be set to a different potential. Note that the potential applied to the shield thin film layer 22 can be determined by an experiment using an actual machine so that the degree of electrical influence received by the piezoresistive elements R1 to R4 is approximately the same.

このような構成を有する半導体圧力センサ11では、ダイヤフラム部12の一方の表面に圧力が加わると、ダイヤフラム部12の上面と下面との間に差圧が生じることによってダイヤフラム部12に撓みが生じ、この撓みによってピエゾ抵抗素子R1〜R4を形成する結晶が歪んで抵抗値が変化する。そして、ピエゾ抵抗素子R1〜R4の抵抗値の変化をホイートストンブリッジ回路を利用して高位電源Vddに対する電圧変化として出力端子Vout1,Vout2から検出する。これにより、半導体圧力センサ11に印加された圧力を電気信号に変換して取り出し、取り出した電気信号に基づいて圧力を検出する。   In the semiconductor pressure sensor 11 having such a configuration, when pressure is applied to one surface of the diaphragm portion 12, a differential pressure is generated between the upper surface and the lower surface of the diaphragm portion 12, thereby causing the diaphragm portion 12 to bend, Due to this bending, the crystals forming the piezoresistive elements R1 to R4 are distorted and the resistance value changes. And the change of the resistance value of piezoresistive element R1-R4 is detected from output terminal Vout1, Vout2 as a voltage change with respect to high level power supply Vdd using a Wheatstone bridge circuit. Thereby, the pressure applied to the semiconductor pressure sensor 11 is converted into an electric signal and taken out, and the pressure is detected based on the taken out electric signal.

このように、上記実施形態1では、高位電源Vdd側に接続されたピエゾ抵抗素子R1,R3上に形成されたシールド薄膜層22に与えられる電位と、接地電位GND側に接続されたピエゾ抵抗素子R2,R4上に形成されたシールド薄膜層22に与えられる電位とを、異なる電位に設定することが可能である。これにより、それぞれの電位を適切に設定することが可能となり、各ピエゾ抵抗素子R1〜R4は、対応したシールド薄膜層22から受ける電気的な影響の度合いを概ね同程度にすることが可能となる。この結果、ホイートストンブリッジ回路のオフセット電圧、ならびにオフセットドリフトを改善することができる。
(実施形態2)
図4は本発明の実施形態2に係る半導体圧力センサの構成を示す図であり、先の実施形態1の図3に対応した図である。なお、各ピエゾ抵抗素子R1〜R4の構造や配置は先の実施形態1の図1、図2と同様であるので、その説明は省略する。
As described above, in the first embodiment, the potential applied to the shield thin film layer 22 formed on the piezoresistive elements R1 and R3 connected to the high power supply Vdd side and the piezoresistive element connected to the ground potential GND side. The potential applied to the shield thin film layer 22 formed on R2 and R4 can be set to a different potential. Thereby, it becomes possible to set each electric potential appropriately, and it becomes possible for each piezoresistive element R1-R4 to make the degree of the electrical influence received from the corresponding shield thin film layer 22 substantially the same. . As a result, the offset voltage and offset drift of the Wheatstone bridge circuit can be improved.
(Embodiment 2)
FIG. 4 is a diagram showing the configuration of the semiconductor pressure sensor according to the second embodiment of the present invention, and corresponds to FIG. 3 of the first embodiment. The structure and arrangement of the piezoresistive elements R1 to R4 are the same as those shown in FIGS.

この実施形態2の特徴とするところは、先の実施形態1と対比して、高位電源Vdd側に接続されたピエゾ抵抗素子R1,R3上に形成された各シールド薄膜層22を高位電源Vddに共通接続し、接地電位GND側に接続されたピエゾ抵抗素子R2,R4上に形成された各シールド薄膜層22を出力端子Vout1に共通接続したことにある。   The feature of the second embodiment is that, in contrast to the first embodiment, each shield thin film layer 22 formed on the piezoresistive elements R1 and R3 connected to the higher power supply Vdd side is used as the higher power supply Vdd. Each shield thin film layer 22 formed on the piezoresistive elements R2 and R4 connected in common and connected to the ground potential GND side is commonly connected to the output terminal Vout1.

このような特徴を備えたことで、この実施形態2では、高位電源Vdd側に接続されたピエゾ抵抗素子R1,R3上に形成された各シールド薄膜層22に高位電源電位を与えて両者を同一電位に固定することができる。かつ、接地電位GND側に接続されたピエゾ抵抗素子R2,R4上に形成された各シールド薄膜層22に出力端子Vout1に出力される電位、すなわち高位電源Vddと接地電位GNDとの間の中間電位を与えて、両者を同一電位に固定することができる。これにより、各ピエゾ抵抗素子R1〜R4は、対応したシールド薄膜層22から受ける電気的な影響の度合いを概ね同程度にすることが可能となる。この結果、ホイートストンブリッジ回路のオフセット電圧、ならびにオフセットドリフトを改善することができる。
(実施形態3)
図5は本発明の実施形態3に係る半導体圧力センサの構成を示す図であり、先の実施形態1の図3に対応した図である。なお、各ピエゾ抵抗素子R1〜R4の構造や配置は先の実施形態1の図1、図2と同様であるので、その説明は省略する。
With this feature, in the second embodiment, a high power supply potential is applied to each shield thin film layer 22 formed on the piezoresistive elements R1 and R3 connected to the high power supply Vdd side so that they are the same. The potential can be fixed. In addition, the potential output to the output terminal Vout1 on each shield thin film layer 22 formed on the piezoresistive elements R2 and R4 connected to the ground potential GND side, that is, the intermediate potential between the high potential power supply Vdd and the ground potential GND. Can be fixed at the same potential. As a result, each of the piezoresistive elements R1 to R4 can have substantially the same degree of electrical influence received from the corresponding shield thin film layer 22. As a result, the offset voltage and offset drift of the Wheatstone bridge circuit can be improved.
(Embodiment 3)
FIG. 5 is a diagram showing a configuration of a semiconductor pressure sensor according to the third embodiment of the present invention, and corresponds to FIG. 3 of the first embodiment. The structure and arrangement of the piezoresistive elements R1 to R4 are the same as those shown in FIGS.

この実施形態3の特徴とするところは、先の実施形態2と対比して、出力端子Vout1で得られる中間電位に代えて、抵抗r1,r2によって得られる中間電位を接地電位GND側に接続されたピエゾ抵抗素子R2,R4上に形成された各シールド薄膜層22に与えたことにある。なお、高位電源Vdd側に接続されたピエゾ抵抗素子R1,R3上に形成された各シールド薄膜層22は、先の実施形態2と同様に高位電源Vddに接続されて、高位電源電位が与えられている。   In contrast to the second embodiment, the third embodiment is characterized in that the intermediate potential obtained by the resistors r1 and r2 is connected to the ground potential GND side instead of the intermediate potential obtained at the output terminal Vout1. In other words, the shield thin film layers 22 formed on the piezoresistive elements R2 and R4 are provided. Each shield thin film layer 22 formed on the piezoresistive elements R1 and R3 connected to the high-level power supply Vdd side is connected to the high-level power supply Vdd and given a high-level power supply potential as in the second embodiment. ing.

抵抗r1と抵抗r2とは、高位電源Vddと接地電位GNDとの間で直列接続され、その直列接続点S1は、接地電位GND側に接続されたピエゾ抵抗素子R2,R4上に形成されたシールド薄膜層22に接続されている。抵抗r1、r2の抵抗値は、それぞれ個別に独立して設定され、直列接続点S1で得られる電位は、高位電源Vddと接地電位GNDとの間の任意の中間電位に設定される。この中間電位は、ピエゾ抵抗素子R1〜R4が受ける電気的な影響の度合いが概ね同程度になるように実機による実験などによって定めることができる。   The resistors r1 and r2 are connected in series between the high-level power supply Vdd and the ground potential GND, and the series connection point S1 is a shield formed on the piezoresistive elements R2 and R4 connected to the ground potential GND side. Connected to the thin film layer 22. The resistance values of the resistors r1 and r2 are individually set independently, and the potential obtained at the series connection point S1 is set to an arbitrary intermediate potential between the high-level power supply Vdd and the ground potential GND. This intermediate potential can be determined by an experiment using an actual machine so that the degree of electrical influence received by the piezoresistive elements R1 to R4 is approximately the same.

このような特徴を備えたことで、この実施形態3では、高位電源Vdd側に接続されたピエゾ抵抗素子R1,R3上に形成された各シールド薄膜層22に高位電源電位を与えて両者を同一電位に固定することができる。かつ、接地電位GND側に接続されたピエゾ抵抗素子R2,R4上に形成された各シールド薄膜層22に、高位電源Vddと接地電位GNDとの間の中間電位を与えて、両者を同一電位に固定することができる。これにより、各ピエゾ抵抗素子R1〜R4は、対応したシールド薄膜層22から受ける電気的な影響の度合いを概ね同程度にすることが可能となる。この結果、ホイートストンブリッジ回路のオフセット電圧、ならびにオフセットドリフトを改善することができる。   With this feature, in the third embodiment, a high power supply potential is applied to each shield thin film layer 22 formed on the piezoresistive elements R1 and R3 connected to the high power supply Vdd side so that they are the same. The potential can be fixed. In addition, an intermediate potential between the high-level power supply Vdd and the ground potential GND is applied to each shield thin film layer 22 formed on the piezoresistive elements R2 and R4 connected to the ground potential GND side, so that both are made the same potential. Can be fixed. As a result, each of the piezoresistive elements R1 to R4 can have substantially the same degree of electrical influence received from the corresponding shield thin film layer 22. As a result, the offset voltage and offset drift of the Wheatstone bridge circuit can be improved.

11…半導体圧力センサ
12…ダイヤフラム部
13…半導体基板
21…絶縁体薄膜層
22…シールド薄膜層
31,32…配線
R1〜R4…ピエゾ抵抗素子
r1,r2…抵抗
DESCRIPTION OF SYMBOLS 11 ... Semiconductor pressure sensor 12 ... Diaphragm part 13 ... Semiconductor substrate 21 ... Insulator thin film layer 22 ... Shield thin film layer 31, 32 ... Wiring R1-R4 ... Piezoresistive element r1, r2 ... Resistance

Claims (8)

半導体基板と、
前記半導体基板の一部であって、前記半導体基板が薄肉化されたダイヤフラム部と、
第1,第2,第3,第4の検出部と、
を備える半導体圧力センサにおいて、
前記第1,第2,第3,第4の検出部はそれぞれ、
第1の端と、
第2の端と、
前記第1の端から第1の方向に延びる第1の部分と、
前記第1の部分から前記第1の方向と垂直な第2の方向に延びる第2の部分と、
前記第2の部分から前記第1の方向に延び、前記第1の部分と前記第2の方向に対向する部分を有する第3の部分と、
前記第3の部分から前記第2の方向に延び、前記第2の部分と前記第1の方向に対向する部分を有する第4の部分と、
前記第4の部分から前記第2の端まで前記第1の方向に延び、前記第1の部分と前記第2の方向に対向する部分を含む第5の部分と、
を有する半導体圧力センサ。
A semiconductor substrate;
A part of the semiconductor substrate, wherein the semiconductor substrate is thinned; and
First, second, third and fourth detectors;
In a semiconductor pressure sensor comprising:
The first, second, third and fourth detection units are respectively
A first end;
A second end;
A first portion extending in a first direction from the first end;
A second portion extending from the first portion in a second direction perpendicular to the first direction;
A third portion extending from the second portion in the first direction and having a portion facing the first portion and the second direction;
A fourth portion having a portion extending from the third portion in the second direction and facing the second portion in the first direction;
A fifth portion including a portion extending from the fourth portion to the second end in the first direction and facing the first portion in the second direction;
A semiconductor pressure sensor.
前記ダイヤフラム部の上面視において、前記第2の部分は前記第4の部分より幅の広い部分を有し、
前記幅の広い部分は前記第1の部分に接続する請求項1に記載の半導体圧力センサ。
In the top view of the diaphragm portion, the second portion has a portion wider than the fourth portion,
The semiconductor pressure sensor according to claim 1, wherein the wide portion is connected to the first portion.
前記第1の検出部の第1の端と、前記第2の検出部の第2の端とを接続する第1の配線と、
前記第2の検出部の第1の端と、前記第3の検出部の第2の端とを接続する第2の配線と、
前記第3の検出部の第1の端と、前記第4の検出部の第2の端とを接続する第3の配線と、
前記第4の検出部の第1の端と、前記第1の検出部の第2の端とを接続する第4の配線と、を更に備え、
前記ダイヤフラム部は、上面視において、第1,第2,第3,第4の辺を有する四角形であり、
前記第1の配線は、前記第1の辺に並行な部分と、前記第2の辺に並行な部分とを有し、
前記第2の配線は、前記第2の辺に並行な部分と、前記第3の辺に並行な部分とを有し、
前記第3の配線は、前記第3の辺に並行な部分と、前記第4の辺に並行な部分とを有し、
前記第4の配線は、前記第4の辺に並行な部分と、前記第1の辺に並行な部分とを有する請求項1または請求項2に記載の半導体圧力センサ。
A first wiring connecting a first end of the first detection unit and a second end of the second detection unit;
A second wiring connecting the first end of the second detection unit and the second end of the third detection unit;
A third wiring connecting the first end of the third detection unit and the second end of the fourth detection unit;
A fourth wiring connecting the first end of the fourth detection unit and the second end of the first detection unit;
The diaphragm portion is a quadrangle having first, second, third, and fourth sides in a top view,
The first wiring has a portion parallel to the first side and a portion parallel to the second side,
The second wiring has a portion parallel to the second side and a portion parallel to the third side,
The third wiring has a portion parallel to the third side and a portion parallel to the fourth side,
3. The semiconductor pressure sensor according to claim 1, wherein the fourth wiring includes a portion parallel to the fourth side and a portion parallel to the first side.
前記半導体基板と前記ダイヤフラム部とは上面視において四角形である請求項1〜3のうちいずれか1項に記載の半導体圧力センサ。   The semiconductor pressure sensor according to claim 1, wherein the semiconductor substrate and the diaphragm portion are quadrangular in a top view. 前記第1,第2,第3,第4の検出部はそれぞれ、前記ダイヤフラム部の上に設けられる請求項1〜4のうちいずれか1項に記載の半導体圧力センサ。   5. The semiconductor pressure sensor according to claim 1, wherein each of the first, second, third, and fourth detection units is provided on the diaphragm unit. 前記第1,第2,第3,第4の検出部はピエゾ抵抗である請求項1〜5のうちいずれか1項に記載の半導体圧力センサ。   The semiconductor pressure sensor according to claim 1, wherein the first, second, third, and fourth detection units are piezoresistors. 前記第1,第2,第3,第4の検出部がホイートストンブリッジ回路を構成する請求項1〜6のうちいずれか1項に記載の半導体圧力センサ。   The semiconductor pressure sensor according to any one of claims 1 to 6, wherein the first, second, third, and fourth detection units constitute a Wheatstone bridge circuit. 前記ダイヤフラム部は、上面視において、第1,第2,第3,第4の辺を有する四角形であり、
前記第1の検出部は前記第1の辺の近傍に設けられ、
前記第1の検出部の第1の部分は前記第1の辺と垂直に延び、
前記第1の検出部の第5の部分は前記第1の辺と垂直に延び、
前記第2の検出部は前記第2の辺の近傍に設けられ、
前記第2の検出部の第1の部分は前記第1の辺と平行に延び、
前記第2の検出部の第5の部分は前記第1の辺と平行に延び、
前記第3の検出部は前記第3の辺の近傍に設けられ、
前記第3の検出部の第1の部分は前記第1の辺と垂直に延び、
前記第3の検出部の第5の部分は前記第1の辺と垂直に延び、
前記第4の検出部は前記第4の辺の近傍に設けられ、
前記第4の検出部の第1の部分は前記第1の辺と垂直に延び、
前記第4の検出部の第5の部分は前記第1の辺と垂直に延びる請求項1に記載の半導体圧力センサ。
The diaphragm portion is a quadrangle having first, second, third, and fourth sides in a top view,
The first detection unit is provided in the vicinity of the first side,
A first portion of the first detector extending perpendicular to the first side;
A fifth portion of the first detection unit extends perpendicular to the first side;
The second detection unit is provided in the vicinity of the second side,
A first portion of the second detector extending parallel to the first side;
A fifth portion of the second detection unit extending in parallel with the first side;
The third detection unit is provided in the vicinity of the third side,
A first portion of the third detector extending perpendicular to the first side;
A fifth portion of the third detection unit extends perpendicular to the first side;
The fourth detection unit is provided in the vicinity of the fourth side,
A first portion of the fourth detection unit extending perpendicular to the first side;
The semiconductor pressure sensor according to claim 1, wherein the fifth portion of the fourth detection unit extends perpendicularly to the first side.
JP2015090063A 2015-04-27 2015-04-27 Semiconductor pressure sensor Expired - Fee Related JP5866496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015090063A JP5866496B2 (en) 2015-04-27 2015-04-27 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015090063A JP5866496B2 (en) 2015-04-27 2015-04-27 Semiconductor pressure sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010279314A Division JP5853169B2 (en) 2010-12-15 2010-12-15 Semiconductor pressure sensor

Publications (2)

Publication Number Publication Date
JP2015143713A true JP2015143713A (en) 2015-08-06
JP5866496B2 JP5866496B2 (en) 2016-02-17

Family

ID=53888814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015090063A Expired - Fee Related JP5866496B2 (en) 2015-04-27 2015-04-27 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JP5866496B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6293236B1 (en) * 2016-11-01 2018-03-14 三菱電機株式会社 Semiconductor differential pressure sensor and manufacturing method thereof
US10866203B2 (en) 2016-03-31 2020-12-15 Kyocera Corporation Stress sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7031320B2 (en) 2017-03-16 2022-03-08 富士電機株式会社 Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689939A (en) * 1992-09-09 1994-03-29 Mitsubishi Electric Corp Semiconductor pressure sensor and its manufacture
JPH0686045U (en) * 1993-05-21 1994-12-13 山武ハネウエル株式会社 Semiconductor pressure sensor
JP2002357497A (en) * 2001-05-31 2002-12-13 Unisia Jecs Corp Pressure sensor
JP2009300197A (en) * 2008-06-12 2009-12-24 Alps Electric Co Ltd Semiconductor pressure sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689939A (en) * 1992-09-09 1994-03-29 Mitsubishi Electric Corp Semiconductor pressure sensor and its manufacture
JPH0686045U (en) * 1993-05-21 1994-12-13 山武ハネウエル株式会社 Semiconductor pressure sensor
JP2002357497A (en) * 2001-05-31 2002-12-13 Unisia Jecs Corp Pressure sensor
JP2009300197A (en) * 2008-06-12 2009-12-24 Alps Electric Co Ltd Semiconductor pressure sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10866203B2 (en) 2016-03-31 2020-12-15 Kyocera Corporation Stress sensor
JP6293236B1 (en) * 2016-11-01 2018-03-14 三菱電機株式会社 Semiconductor differential pressure sensor and manufacturing method thereof
JP2018072229A (en) * 2016-11-01 2018-05-10 三菱電機株式会社 Semiconductor differential pressure sensor and method of manufacturing the same
US10260976B2 (en) 2016-11-01 2019-04-16 Mitsubishi Electric Corporation Semiconductor differential pressure sensor and manufacturing method of the same

Also Published As

Publication number Publication date
JP5866496B2 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
JP5853169B2 (en) Semiconductor pressure sensor
US8809975B2 (en) Semiconductor pressure sensor
JP5696045B2 (en) Semiconductor pressure sensor
JP2008008883A (en) Magnetometric sensor and sensor
EP2530444A1 (en) Pressure sensor
JP6474492B2 (en) Semiconductor pressure sensor
JP5866496B2 (en) Semiconductor pressure sensor
JP2015011013A (en) Physical quantity sensor
US11643324B2 (en) MEMS sensor
JPWO2015137160A1 (en) Pressure sensor
JP2012122924A (en) Pressure sensor
JP2010117179A (en) Force detecting element
US10527513B2 (en) Pressure sensor with resin portion and membrane having reduced temperature change distortion
JP5793700B2 (en) Semiconductor pressure sensor
JP2018021796A (en) Semiconductor strain gauge
JP5935333B2 (en) Semiconductor sensor
JP6115507B2 (en) Pressure sensor
JP2014016189A (en) Semiconductor sensor
JP2011027611A (en) Semiconductor pressure sensor, and method for manufacturing the same
JPS62160772A (en) Semiconductor pressure sensor and pressure measuring device
JP2016053508A (en) Pressure sensor
JP2009175089A (en) Signal processing circuit
JP2009257916A (en) Capacitive pressure sensor and method of providing capacitance compensation signal
JP2009175088A (en) Semiconductor pressure sensor
JP2014077745A (en) Semiconductor pressure sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150427

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150427

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150820

R151 Written notification of patent or utility model registration

Ref document number: 5866496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees