JPH0684892A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0684892A
JPH0684892A JP23712492A JP23712492A JPH0684892A JP H0684892 A JPH0684892 A JP H0684892A JP 23712492 A JP23712492 A JP 23712492A JP 23712492 A JP23712492 A JP 23712492A JP H0684892 A JPH0684892 A JP H0684892A
Authority
JP
Japan
Prior art keywords
film
wiring layer
sin
oxide film
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23712492A
Other languages
Japanese (ja)
Inventor
Masaaki Shimokawa
公明 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP23712492A priority Critical patent/JPH0684892A/en
Publication of JPH0684892A publication Critical patent/JPH0684892A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To eliminate a problem that film quality is adversely affected by a step of a wiring layer of a lower layer of a final protection film in a semiconductor element regarding a formation method of the protection film. CONSTITUTION:After a final wiring layer 2 is formed, a plasma CVD silicon oxide film 3 is formed. Thereafter, a plasma chemical vapor growth silicon nitride film or a silicon nitride oxide film 4 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体素子の製造方
法、中でも特に最終保護膜の形成方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a final protective film.

【0002】[0002]

【従来の技術】まず、本発明の技術を説明するに当た
り、参考にした文献をあげておく。
2. Description of the Related Art First of all, reference will be made to the description of the technology of the present invention.

【0003】文献1:第3回ドライプロセス シンポジ
ウム論文集 IV−2(1981)(日本)p.135
−141 文献2:沖電気研究開発、55[1](昭63−1)
p.69−74 文献3:IEDM88 Tech.Dijest、(1
988)IEEE p.22−25 文献4:Japanese Journal of A
pplied Physics、27[10](198
8−8)p.1962−1965 文献5:Japanese Journal of A
pplied Physics、25[9](1986
−9)p.764−766 以下、文中で上記文献をあげる場合は上記符号で示す。
Reference 1: Proceedings of the 3rd Dry Process Symposium IV-2 (1981) (Japan) p. 135
-141 Reference 2: Oki Electric Research and Development, 55 [1] (Sho 63-1)
p. 69-74 Document 3: IEDM88 Tech. Digest, (1
988) IEEE p. 22-25 Document 4: Japanese Journal of A
Applied Physics, 27 [10] (198)
8-8) p. 1962-1965 Reference 5: Japanese Journal of A
Applied Physics, 25 [9] (1986)
-9) p. 764 to 766 In the following, when the above documents are mentioned in the text, they are indicated by the above symbols.

【0004】従来、半導体素子の最終保護膜としては、
プラズマ化学気相成長シリコン窒化膜(以下P−SiN
と記す)が広く用いられている。
Conventionally, as a final protective film of a semiconductor device,
Plasma chemical vapor deposition silicon nitride film (hereinafter P-SiN
Is used widely.

【0005】その形成方法を図2に示し、以下に説明す
る。半導体基板(図示省略)上に形成された絶縁膜11
の上に、Al合金系材料例えばAl−1%Si−0.5
%Cuなどをスパッタリングにより8000Åの厚さ成
長させ、その後、ホトリソ(ホトリソグラフィ)パター
ニング,エッチングにより最終配線層12を形成する。
この後に、プラズマ化学気相成長(以下プラズマCV
D)SiH4 とNH3 又はSiH4 ,NH3 とN2 を原
料ガスとしてP−SiN13を8000Å成長させる。
すると図2(a)のような構造となる。最終配線層12
を形成した後、P−SiN13を成長させる前に図2
(b)のように酸化膜系の薄膜14を成長させる場合も
ある。この薄膜14は常圧化学気相成長によるリンシリ
コン酸化膜(PSG)又はプラズマCVDシリコン酸化
膜(以下P−SiOと記す)の場合が多い。PSGは前
記文献2に示されるように最終保護膜全体(すなわちP
SG+P−SiN)としての膜応力を低下させ、最終配
線層12の信頼性を高めることを目的としており、P−
SiOは前記文献3に示されるようにMOSFETの寿
命がP−SiNにより劣化するのを防ぐことを目的とし
て成長させられている。
The forming method is shown in FIG. 2 and will be described below. Insulating film 11 formed on a semiconductor substrate (not shown)
On top of the Al alloy-based material such as Al-1% Si-0.5
% Cu or the like is grown to a thickness of 8000 Å by sputtering, and then the final wiring layer 12 is formed by photolithography (photolithography) patterning and etching.
After this, plasma chemical vapor deposition (hereinafter referred to as plasma CV
D) SiH 4 and NH 3 or SiH 4, NH 3 and N 2 to be 8000Å grow P-SiN13 as a source gas.
Then, a structure as shown in FIG. Final wiring layer 12
2 after the formation of P-SiN13 before the growth of P-SiN13.
The oxide thin film 14 may be grown as in (b). The thin film 14 is often a phosphorus silicon oxide film (PSG) formed by atmospheric pressure chemical vapor deposition or a plasma CVD silicon oxide film (hereinafter referred to as P-SiO). PSG is the entire final protective film (that is, P
SG + P-SiN) is used for the purpose of reducing the film stress and increasing the reliability of the final wiring layer 12.
SiO is grown for the purpose of preventing the lifetime of the MOSFET from being deteriorated by P-SiN as shown in the above-mentioned reference 3.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記の最
終保護膜の形成方法では、前記文献1に示されるように
段差側壁部つまり図2(a)の2A部,2B部のP−S
iN13の膜質が悪くなり、P−SiNの重要な機能で
ある耐湿性を損う。
However, in the above-mentioned method of forming the final protective film, as shown in the above-mentioned reference 1, the step side wall portion, that is, PS of 2A portion and 2B portion of FIG.
The film quality of iN13 deteriorates, and the moisture resistance, which is an important function of P-SiN, is impaired.

【0007】また上記2A部,2B部の膜質が悪くなる
程度は段差間の幅と高さ、すなわち図2(a)の2Cと
配線膜厚に依存する。たとえば、あるP−SiNでは図
2(a)2D部の5%フッ酸エッチングレートは160
Å/min.であるが、段差の高さ8000Åで段差間
の幅が4μmである2A部の5%フッ酸エッチングレー
トは360Å/min、段差間の幅が9000Åである
2B部の5%フッ酸エッチングレートは800Å/mi
n.である。このように段差間の幅4μmの2A部で
は、平坦部の約2〜3倍、幅9000Åである2B部で
は平坦部の約5倍のエッチングレートを示し、それだけ
P−SiN膜質が悪くなっているのがわかる。このよう
に膜質の悪さは段差間の幅が狭い場所ほど悪く、半導体
素子の最終配線層による段差間の最も狭い場所で最終保
護膜P−SiN13の膜質は最も悪くなり、そこで半導
体素子の耐湿性能力を決定づけてしまう。つまり、ホト
リソパターニング,エッチング技術が発達して最終配線
層の微細化が可能になっても最終保護膜P−SiN13
の耐湿性確保の要請から、図2(a)2Cの最小幅には
制限が加わることになり、微細化の制限要因となってし
まうのである。
Further, the extent to which the film quality of the 2A and 2B portions deteriorates depends on the width and height between the steps, that is, 2C in FIG. 2A and the wiring film thickness. For example, in a certain P-SiN, the 5% hydrofluoric acid etching rate of the 2D portion in FIG.
Å / min. However, the 5% hydrofluoric acid etching rate of the 2A part where the step height is 8000Å and the width between steps is 4 μm is 360Å / min, and the 5% hydrofluoric acid etching rate of the 2B part where the step width is 9000Å is 800Å / mi
n. Is. As described above, the 2A portion having a width of 4 μm between steps has an etching rate about 2 to 3 times that of the flat portion and the 2B portion having a width of 9000 Å shows about 5 times the etching rate of the flat portion, and the P-SiN film quality deteriorates accordingly. I can see that As described above, the poorer the film quality is, the more narrow the space between the steps is, and the film quality of the final protective film P-SiN13 is the poorest in the narrowest space between the steps due to the final wiring layer of the semiconductor element, where the moisture resistance of the semiconductor element is. It determines your ability. In other words, even if the photolithographic patterning and etching techniques are developed and the final wiring layer can be miniaturized, the final protective film P-SiN13
2A, the minimum width of FIG. 2A is limited, which becomes a limiting factor for miniaturization.

【0008】以上のことは、P−SiNがプラズマCV
Dシリコン窒化酸化膜(以下P−SiON)でも同様で
ある。
The above is the fact that P-SiN is plasma CV.
The same applies to the D silicon oxynitride film (hereinafter P-SiON).

【0009】この発明は、以上述べた最終保護膜P−S
iNが段差側壁部で膜質が悪くなり、かつその弱さは段
差間の幅が狭いほど弱くなるため、段差間の幅が最も狭
い箇所で最も弱くなり、この箇所が耐湿性能力を決定づ
けてしまい、制限要因となってしまうという問題点を除
去するため、最終配線層が形成された後に、ウェハサセ
プタ側に電圧を加えた(以下バイアス電圧印加と記す)
プラズマ系CVD(化学的気相成長)(プラズマCV
D,ECR(Electron Cyclotron
Resonance)プラズマCVD)によりシリコン
酸化膜を成長させ、狭い段差部分を埋めた後にP−Si
Nを成長することにより、P−SiNにとって狭く急峻
な段差がないようにして、膜質が弱い部分がなく耐湿性
能力が高い半導体素子を提供することを目的とする。
The present invention is based on the above-mentioned final protective film PS.
The film quality of iN deteriorates at the side wall of the step, and its weakness becomes weaker as the width between the steps becomes narrower. Therefore, the iN becomes weakest at the portion where the width between the steps is narrow, and this portion determines the moisture resistance ability. In order to eliminate the problem of becoming a limiting factor, a voltage was applied to the wafer susceptor side after the final wiring layer was formed (hereinafter referred to as bias voltage application).
Plasma-based CVD (Chemical Vapor Deposition) (Plasma CV
D, ECR (Electron Cyclotron
(Resonance) plasma CVD) to grow a silicon oxide film and fill a narrow step portion, and then P-Si
It is an object of the present invention to provide a semiconductor element having a high moisture resistance without a portion having a weak film quality by growing N so that P-SiN does not have a narrow and steep step.

【0010】[0010]

【課題を解決するための手段】この発明は前記目的のた
め、半導体素子の最終保護膜形成において、最終配線層
が形成された後、P−SiNを成長させる前に、前述し
たプラズマ系CVDシリコン酸化膜を成長させることに
よって、P−SiNにとって急峻な狭い段差がないよう
にしてP−SiNを成長させるようにしたものである。
In order to achieve the above object, the present invention is directed to the above-mentioned plasma CVD silicon after the final wiring layer is formed and before P-SiN is grown in the final protective film formation of a semiconductor device. By growing an oxide film, P-SiN is grown so that there is no steep narrow step for P-SiN.

【0011】[0011]

【作用】以上述べたように本発明は、最終配線層を形成
した後にすでにP−SiNを成長させるのではなく、ウ
ェハサセプタ側にバイアス電圧を印加したプラズマ系C
VD絶縁膜を成長させて、最終配線層で形成された急峻
で狭い段差を埋め込むようにしたので、段差側壁部でP
−SiNの膜質が弱くなり、耐湿性能力がそこで決って
しまうという問題を回避できる。
As described above, according to the present invention, the plasma system C in which the bias voltage is applied to the wafer susceptor side is not used, but P-SiN is already grown after the final wiring layer is formed.
Since the VD insulating film is grown to fill the steep and narrow step formed in the final wiring layer, P at the step side wall portion is formed.
It is possible to avoid the problem that the film quality of SiN becomes weak and the moisture resistance ability is determined there.

【0012】[0012]

【実施例】図1にこの発明の実施例の工程断面図を示
し、以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a process sectional view of an embodiment of the present invention, which will be described below.

【0013】図1(a)において、半導体基板(図示省
略)上に形成された絶縁膜1上に最終配線層2が形成さ
れるまでは従来と同じである。この後、CVD装置のウ
ェハサセプタ(載置台)にウェハ(基板)を載せ、その
ウェハサセプタ側にバイアス電圧を印加して、プラズマ
系CVDシリコン酸化膜3を12000Å成長させると
図1(a)に示すように前記シリコン酸化膜3が配線層
2の段差Aを埋め込む。このように最終配線層2の段差
Aをシリコン酸化膜3が埋め込んでしまうのは、前記文
献5に示されるように、原料ガスのSfの一部がエッチ
ング種として働き、かつ、そのエッチング速度のエッチ
ング表面依存性があるからである。本実施例ではシリコ
ン酸化膜3の成膜に文献4に示されるようなウェハサセ
プタ側にバイアス電圧を印加できるECR(Elect
ron Cyclotron Resonance)プ
ラズマCVD装置を用いた。その成長条件は、ECRプ
ラズマ電源として2.45GHzのマイクロ波電源を用
い、その出力は2.3KW,バイアス電圧としては1
3.56MHzのRF(高周波)電源で1.2KW出力
させて電圧を加えた。原料ガスとしてはSiH4 =42
sccm,O2 =110sccm,Ar=140scc
mであり、Arは主にエッチング種として働く。反応圧
力は3.2×10-3Torrである。シリコン酸化膜3
を成長させた後に、P−SiN4を7000Å成長させ
ると図1(b)のようになる。図1(b)からわかるよ
うに、P−SiN4は急峻な段差上に成長しないので、
従来技術の図2における2A,2B部のように膜が弱く
なる箇所はない。せいぜい図1(b)Bのように突起部
の上に成長するだけであり、この箇所の膜質の弱くなり
方は非常に少い。また、シリコン酸化膜3の突起Cは、
Dに示される部分のエッチング量によってその幅が決定
される。例えば、成長条件のAr流量を増加させたり、
バイアス電圧であるRFPowerを増加させることに
より、D部を大きくしてCの突起をなくすことができる
が、シリコン酸化膜3の成長速度が遅くなるので、量産
性を考えて前記のような成長条件を用いた。また本実施
例ではシリコン酸化膜3を成長させたが、必らずしもシ
リコン酸化膜ではなくても良く、例えば、原料ガスにP
3 ,B2 6 を加えてリンホウ素シリコン酸化膜やリ
ンシリコン酸化膜、ホウ素シリコン酸化膜を成長させて
も良い。即ち、絶縁膜であれば本発明の効果は影響を受
けない。無論、原料ガスは各種使用でき、例えばTEO
S(テトラエトキシラン/O2 /Arでも良い。
In FIG. 1A, the process is the same as the conventional process until the final wiring layer 2 is formed on the insulating film 1 formed on the semiconductor substrate (not shown). After that, a wafer (substrate) is placed on the wafer susceptor (mounting table) of the CVD device, and a bias voltage is applied to the wafer susceptor side to grow the plasma CVD silicon oxide film 3 by 12000Å. As shown, the silicon oxide film 3 fills the step A of the wiring layer 2. The reason why the silicon oxide film 3 fills the step A of the final wiring layer 2 as described above is that a part of Sf of the raw material gas acts as an etching species and the etching rate is This is because there is etching surface dependency. In this embodiment, an ECR (Elect) capable of applying a bias voltage to the wafer susceptor side as shown in Reference 4 for forming the silicon oxide film 3.
ron Cyclotron Resonance) plasma CVD apparatus was used. The growth condition is that a microwave power source of 2.45 GHz is used as an ECR plasma power source, the output thereof is 2.3 KW, and the bias voltage is 1
A voltage of 1.2 kW was output with an RF (radio frequency) power source of 3.56 MHz. SiH 4 = 42 as source gas
sccm, O 2 = 110 sccm, Ar = 140 scc
m, and Ar mainly acts as an etching species. The reaction pressure is 3.2 × 10 −3 Torr. Silicon oxide film 3
When P-SiN4 is grown to 7,000 Å after growing Pt, the result is as shown in FIG. 1 (b). As can be seen from FIG. 1 (b), since P-SiN4 does not grow on a steep step,
There is no portion where the film becomes weak unlike the portions 2A and 2B in FIG. 2 of the conventional technique. At best, it only grows on the protrusion as shown in FIG. 1 (b) B, and the film quality at this portion is extremely weak. The protrusion C of the silicon oxide film 3 is
The width is determined by the etching amount of the portion indicated by D. For example, increasing the Ar flow rate under growth conditions,
By increasing the RF power, which is the bias voltage, the D portion can be enlarged to eliminate the protrusion of C, but the growth rate of the silicon oxide film 3 becomes slower. Was used. Further, although the silicon oxide film 3 is grown in the present embodiment, it may not necessarily be the silicon oxide film.
H 3 and B 2 H 6 may be added to grow a phosphorus boron silicon oxide film, a phosphorus silicon oxide film, or a boron silicon oxide film. That is, the effect of the present invention is not affected as long as it is an insulating film. Of course, various source gases can be used, such as TEO.
It may be S (tetraethoxylane / O 2 / Ar).

【0014】また、SiH4 /NH3 /N2 O/Ar又
はSiH4 /NH3 /N2 /N2 O/Arを用いてSi
ON膜(シリコン窒化酸化膜)を成長させても良いし、
SiH4 /NH3 /Ar又はSiH4 /N2 /Arを用
いてSiN膜(シリコン窒化膜)を成長させても良い。
SiH 4 / NH 3 / N 2 O / Ar or SiH 4 / NH 3 / N 2 / N 2 O / Ar is used to produce Si.
An ON film (silicon oxynitride film) may be grown,
A SiN film (silicon nitride film) may be grown using SiH 4 / NH 3 / Ar or SiH 4 / N 2 / Ar.

【0015】また、本実施例では最終配線層2を形成し
た後、すぐにシリコン酸化膜3を成長したが、シリコン
酸化膜を成長する前に文献2、3が示すようにPSGや
P−SiOを500〜1000Å程度成長させても良
い。シリコン酸化膜3の成長条件によってはPSGもP
−SiOも必要ないが、たとえ成長させても本発明の効
果には影響を与えない。
Further, in this embodiment, the silicon oxide film 3 was grown immediately after the final wiring layer 2 was formed. However, as shown in References 2 and 3, PSG and P-SiO are grown before the silicon oxide film is grown. May be grown to about 500 to 1000Å. Depending on the growth conditions of the silicon oxide film 3, PSG and P
-SiO is not necessary either, but even if grown, it does not affect the effect of the present invention.

【0016】このように多くの成長条件や膜の種類を考
えなくてはならないのは以下の理由による。
The reason why various growth conditions and types of films must be considered in this way is as follows.

【0017】膜成長条件又は膜の種類が変わると、当然
膜特性は変化し、段差埋め込み特性、膜応力、膜成長速
度、耐湿性などが変る。
When the film growth condition or the film type changes, the film characteristics naturally change, and the step filling property, the film stress, the film growth rate, the moisture resistance and the like also change.

【0018】すなわち、半導体素子の最終配線層が形成
された時点での段差形状を考慮して段差埋め込み特性
を、又、文献2に示されるように、配線信頼性を考慮し
て膜応力を、又、量産性を考慮して膜成長速度をそれぞ
れ考えて膜成長条件、膜の種類を決定し段差埋め込みを
行う。
That is, the step embedding characteristics are taken into consideration in consideration of the step shape at the time when the final wiring layer of the semiconductor element is formed, and the film stress is taken into consideration in consideration of the wiring reliability as shown in Document 2. Further, in consideration of mass productivity, film growth conditions and film types are determined in consideration of the film growth rate, and step filling is performed.

【0019】次に成長させる膜は、量産性から膜成長速
度を、素子耐湿性から耐湿性を考慮して成長条件と膜の
種類を決定するのである。実施例はP−SiN,P−S
iON程度の耐湿性を目指しての製造であるので、当然
後の方に成長させる膜はP−SiN又はP−SiONに
限られる。
For the film to be grown next, the growth condition and the type of film are determined in consideration of the film growth rate from the viewpoint of mass productivity and the moisture resistance from the element moisture resistance. Examples are P-SiN, P-S
Since the manufacturing is aimed at moisture resistance of about iON, the film to be grown later is naturally limited to P-SiN or P-SiON.

【0020】[0020]

【発明の効果】以上述べたように、本発明は半導体素子
の最終保護膜の形成として、最終配線層を形成した後に
すぐにP−SiNを成長するのではなく、ウェハサセプ
タ側にバイアス電圧を印加したプラズマ系CVD絶縁膜
を成長させて、最終配線層で形成された急峻で狭い段差
を埋め込むようにしたので、段差側壁部でP−SiNの
膜質が弱くなり、耐湿性能力がそこで決ってしまうとい
う問題を回避できる。なおかつ、最終配線層の微細化に
P−SiNからの制限要因が加わらなくなるため、今後
の半導体素子の微細化に伴い本発明は一層有効となる。
As described above, according to the present invention, as a final protective film for a semiconductor device, a bias voltage is applied to the wafer susceptor side instead of growing P-SiN immediately after forming a final wiring layer. Since the applied plasma-based CVD insulating film is grown so as to fill the steep and narrow step formed in the final wiring layer, the film quality of P-SiN becomes weak at the step side wall portion, and the moisture resistance ability is determined there. It is possible to avoid the problem of being lost. Moreover, since the limiting factor from P-SiN is not added to the miniaturization of the final wiring layer, the present invention becomes more effective as the semiconductor element is miniaturized in the future.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例FIG. 1 Example of the present invention

【図2】従来例FIG. 2 Conventional example

【符号の説明】[Explanation of symbols]

1 絶縁膜 2 配線層 3 シリコン酸化膜 4 P−SiN 1 Insulating film 2 Wiring layer 3 Silicon oxide film 4 P-SiN

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (a)半導体基板上に最終配線層が形成
された後、その上に、プラズマCVD法またはECRプ
ラズマCVD法による絶縁膜を形成する工程、 (b)前記絶縁膜上に、プラズマ化学気相成長シリコン
窒化膜またはプラズマ化学気相成長シリコン窒化酸化膜
を形成する工程、以上の工程を含むことを特徴とする半
導体素子の製造方法。
1. (a) a step of forming an insulating film by a plasma CVD method or an ECR plasma CVD method on a final wiring layer formed on a semiconductor substrate, and (b) on the insulating film, A method of manufacturing a semiconductor device, comprising the steps of forming a plasma-enhanced chemical vapor deposition silicon nitride film or a plasma-enhanced chemical vapor deposition silicon oxynitride film, and the above steps.
JP23712492A 1992-09-04 1992-09-04 Manufacture of semiconductor device Pending JPH0684892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23712492A JPH0684892A (en) 1992-09-04 1992-09-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23712492A JPH0684892A (en) 1992-09-04 1992-09-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0684892A true JPH0684892A (en) 1994-03-25

Family

ID=17010771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23712492A Pending JPH0684892A (en) 1992-09-04 1992-09-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0684892A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087509A (en) * 2013-10-30 2015-05-07 日本電信電話株式会社 Optical waveguide manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087509A (en) * 2013-10-30 2015-05-07 日本電信電話株式会社 Optical waveguide manufacturing method

Similar Documents

Publication Publication Date Title
JP3330554B2 (en) Etching method
JPH1022457A (en) Capacitance device and semiconductor device, and manufacture thereof
JPH07161703A (en) Manufacture of semiconductor device
GB2376564A (en) Deposition of silicon nitride layer on semiconductor wafer at pressure of over 10000 Pa
KR101086896B1 (en) Strained semiconductor substrate and processes therefor
KR20030011667A (en) Semiconductor device and manufacturing method thereof
US4678539A (en) Dry-etching method
US4908333A (en) Process for manufacturing a semiconductor device having a contact window defined by an inclined surface of a composite film
US5217567A (en) Selective etching process for boron nitride films
US5821603A (en) Method for depositing double nitride layer in semiconductor processing
US20040038463A1 (en) Semiconductor device and method of manufacturing the same
US6103639A (en) Method of reducing pin holes in a nitride passivation layer
JPH0684892A (en) Manufacture of semiconductor device
JP3125869B2 (en) Method for manufacturing semiconductor device
US6790766B2 (en) Method of fabricating semiconductor device having low dielectric constant insulator film
JPH0878408A (en) Manufacture of semiconductor device
US6204547B1 (en) Modified poly-buffered isolation
KR100203896B1 (en) Manufacturing method of the gate electrode
JPH0547753A (en) Method of forming protective film of semiconductor element
US6828186B2 (en) Vertical sidewall profile spacer layer and method for fabrication thereof
US6261965B1 (en) Effective removal of undesirably formed silicon carbide during the manufacture of semiconductor device
JPH0428231A (en) Manufacture of semiconductor device
JP3399494B2 (en) Low gas pressure plasma etching method for WSiN
JP2002075991A (en) Method of forming thin film and method of manufacturing semiconductor device
US7241703B2 (en) Film forming method for semiconductor device