JPH0684214A - Production of magneto-optical recording medium - Google Patents

Production of magneto-optical recording medium

Info

Publication number
JPH0684214A
JPH0684214A JP1924193A JP1924193A JPH0684214A JP H0684214 A JPH0684214 A JP H0684214A JP 1924193 A JP1924193 A JP 1924193A JP 1924193 A JP1924193 A JP 1924193A JP H0684214 A JPH0684214 A JP H0684214A
Authority
JP
Japan
Prior art keywords
magnetic layer
magnetic
magneto
recording medium
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1924193A
Other languages
Japanese (ja)
Other versions
JPH06101152B2 (en
Inventor
Yoichi Osato
陽一 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1924193A priority Critical patent/JPH06101152B2/en
Publication of JPH0684214A publication Critical patent/JPH0684214A/en
Publication of JPH06101152B2 publication Critical patent/JPH06101152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the process for production of the magneto-optical recording medium with which overwriting can be executed in the same manner as for a magnetic recording medium simply by adding a magnetic field generating means of a simple construction to the conventional device constitution. CONSTITUTION:The Curie temps. of a first magnetic layer 1, a second magnetic layer 2 and a third magnetic layer 3 are respectively designated as TH1, TL2, TH3, the coercive forces thereof respectively as HL1, HH2, HL3, the film thicknesses as h1, h2, h3, and the saturation magnetizations as MS1, MS2, MS3, the magnetic wall energy between the first and second magnetic layers 1 and 2 is designated as sigmaW12 and the magnetic wall energy between the second and third magnetic layers 2 and 3 as sigmaW23. At this time, TH1>TL2, TL2<TH3, HL1<HH2, HH2>HL3 hold at this time and (sigmaW12/2MS1h1)>HL1, (sigmaW23/2MS3h3)< HL3 hold at this time. The exchange bonding force between the second and third magnetic layers 2 and 3 is adjusted by adjusting the time before the third magnetic layer is formed after the formation of the first and second magnetic layers 1, 2 on the substrate B in this method for production of the magneto- optical recording medium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気カー効果を利用し
て読出しができるキュリー点書込みタイプの新規な光磁
気記録媒体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a novel Curie point write type magneto-optical recording medium capable of reading by utilizing the magnetic Kerr effect.

【0002】[0002]

【従来の技術】消去可能な光ディスクメモリとして光磁
気ディスクが知られている。光磁気ディスクは、従来の
磁気ヘッドを使った磁気記録媒体と比べて高密度記録、
非接触での記録再生などが可能であるという長所がある
反面、記録前に一度記録部分を消去しなければならない
(一方向に着磁しなければならない)という問題点があ
った。この問題点を補う為に、記録再生用ヘッドと消去
用ヘッドを別々に設ける方法、あるいは、レーザーの連
続ビームを照射しながら、同時に印加する磁場を変調し
つつ記録する方法などが提案されている。
2. Description of the Related Art A magneto-optical disk is known as an erasable optical disk memory. Magneto-optical discs have higher density recording than magnetic recording media using conventional magnetic heads.
On the other hand, there is an advantage that recording and reproduction can be performed in a non-contact manner, but on the other hand, there is a problem that the recorded portion must be erased once before recording (it must be magnetized in one direction). In order to compensate for this problem, a method of separately providing a recording / reproducing head and an erasing head, or a method of irradiating a continuous laser beam and recording while modulating a magnetic field applied at the same time has been proposed. .

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの方法
は、装置が大がかりとなり、コスト高になる問題点ある
いは高速の変調が出来ないなどの問題点を有する。
However, these methods have problems that the device becomes large and the cost is high, or high-speed modulation cannot be performed.

【0004】本発明は上述従来例の問題点を除去するた
めになされたものであり、従来の装置構成に簡易な構造
の磁界発生手段を付設するだけで、磁気記録媒体と同様
に重ね書き(オーバーライト)が可能となる光磁気記録
媒体の製造方法を提供することを目的とする。
The present invention has been made in order to eliminate the above-mentioned problems of the conventional example, and only by adding a magnetic field generating means of a simple structure to the conventional apparatus configuration, overwriting (as in the case of a magnetic recording medium). It is an object of the present invention to provide a method of manufacturing a magneto-optical recording medium capable of overwriting.

【0005】[0005]

【課題を解決するための手段】上記の目的は以下の本発
明によって達成できる。即ち、高いキュリー点TH1と低
い保磁力HL1を有する第1磁性層と、この第1磁性層に
比べて相対的に低いキュリー点TL2と高い保磁力HH2
有する第2磁性層と、この第2磁性層に比べて相対的に
高いキュリー点TH3と低い保磁力HL3を有する第3磁性
層とからなる三層構造の垂直磁化膜を少なくとも基板上
に有し、 (σW12/2MS11)>HL1,(σW23/2MS33)<
L3 {第1磁性層と第2磁性層の磁壁エネルギーをσW12
第2磁性層と第3磁性層の磁壁エネルギーをσW23
し、第1磁性層、第2磁性層、第3磁性層の膜厚を順に
1,h2,h3とし、これらの層の飽和磁化の大きさを順
にMS1,MS2,MS3とする。}以上の条件を満足する光磁
気記録媒体の製造方法であって、前記基板上に第1磁性
層及び第2磁性層成膜後、第3磁性層を成膜するまでの
時間を調整することにより前記第2磁性層と第3磁性層
間の交換結合力を調整することを特徴とする光磁気記録
媒体の製造方法である。
The above object can be achieved by the present invention described below. That is, a first magnetic layer having a high Curie point T H1 and a low coercive force H L1 and a second magnetic layer having a Curie point T L2 and a high coercive force H H2 relatively lower than the first magnetic layer. , At least on the substrate, a three-layered perpendicular magnetization film composed of a third magnetic layer having a Curie point T H3 and a low coercive force H L3 relatively higher than that of the second magnetic layer, (σ W12 / 2M S1 h 1 )> H L1 , (σ W23 / 2M S3 h 3 ) <
H L3 {the domain wall energies of the first magnetic layer and the second magnetic layer are σ W12 ,
The domain wall energies of the second magnetic layer and the third magnetic layer are σ W23, and the film thicknesses of the first magnetic layer, the second magnetic layer, and the third magnetic layer are h 1 , h 2 , and h 3 in this order. The magnitude of the saturation magnetization is sequentially set to M S1 , M S2 , and M S3 . A method for manufacturing a magneto-optical recording medium satisfying the above conditions, wherein the time until the third magnetic layer is formed after the first magnetic layer and the second magnetic layer are formed on the substrate is adjusted. Is used to adjust the exchange coupling force between the second magnetic layer and the third magnetic layer.

【0006】以下、図面を参照して本発明を詳細に説明
する。
The present invention will be described in detail below with reference to the drawings.

【0007】図1(a),(b)は各々本発明の方法で製造さ
れる光磁気記録媒体の一実施例を示す模式断面図であ
る。図1(a)の光磁気記録媒体は、プリグルーブが設け
られた透光性の基板B上に、第1磁性層1と第2磁性層
2と第3磁性層3とが積層されたものである。第1磁性
層1は高いキュリー点(TH1)と低い保磁力(HL1)を有
し、第2磁性層2は低いキュリー点(TL2)と高い保磁力
(HH2)を有し、第3磁性層3は、高いキュリー点(TH3)
と低い保磁力(HL3)を有する。ここで「高い」、「低
い」とは第1・第3磁性層と第2磁性層とを比較した場
合の相対的な関係を表わす(保磁力は室温における比
較)。
FIGS. 1A and 1B are schematic sectional views showing an embodiment of a magneto-optical recording medium manufactured by the method of the present invention. The magneto-optical recording medium of FIG. 1 (a) has a first magnetic layer 1, a second magnetic layer 2 and a third magnetic layer 3 laminated on a transparent substrate B having a pre-groove. Is. The first magnetic layer 1 has a high Curie point (T H1 ) and a low coercive force (H L1 ), and the second magnetic layer 2 has a low Curie point (T L2 ) and a high coercive force.
(H H2 ), and the third magnetic layer 3 has a high Curie point (T H3 ).
And a low coercive force ( HL3 ). Here, “high” and “low” represent relative relationships when the first and third magnetic layers and the second magnetic layer are compared (coercive force at room temperature).

【0008】さらにこの光磁気記録媒体では、第1磁性
層1と第2磁性層2の磁壁エネルギーをσW12、第2磁
性層2と第3磁性層3の磁壁エネルギーをσW23とし、
第1磁性層1,第2磁性層2,第3磁性層3の膜厚を順
にh1,h2,h3とし、これらの層の飽和磁化の大きさを
順にMS1,MS2,MS3とすると、上記3つの磁性層が次の
式を満たすように結合している。
Further, in this magneto-optical recording medium, the domain wall energy of the first magnetic layer 1 and the second magnetic layer 2 is σ W12 , and the domain wall energy of the second magnetic layer 2 and the third magnetic layer 3 is σ W23 .
The film thicknesses of the first magnetic layer 1, the second magnetic layer 2, and the third magnetic layer 3 are sequentially set to h 1 , h 2 , and h 3, and the magnitudes of the saturation magnetizations of these layers are sequentially set to M S1 , M S2 , and M. If S3 , the above three magnetic layers are coupled so as to satisfy the following equation.

【0009】[0009]

【数1】 この式を満たすべき理由については後述する。[Equation 1] The reason why this expression should be satisfied will be described later.

【0010】第1磁性層1と第3磁性層3の間で特にキ
ュリー点、保磁力の関係は限定されないが、好ましくは
H1≧TH3、HL1≦HL3である。
The relationship between the Curie point and the coercive force between the first magnetic layer 1 and the third magnetic layer 3 is not particularly limited, but T H1 ≧ T H3 and H L1 ≦ H L3 are preferable.

【0011】ただし、通常は第1磁性層1のTH1は15
0〜400℃、HL1は0.1〜1KOe、第2磁性層2
のTL2は70〜200℃、HH2は2〜10KOe、第3
磁性層3のTH3は100〜250℃、HL3は0.5〜4
KOe程度の範囲内にするとよい。
However, normally, T H1 of the first magnetic layer 1 is 15
0 to 400 ° C., H L1 is 0.1 to 1 KOe, second magnetic layer 2
T L2 is 70 to 200 ° C., H H2 is 2 to 10 KOe, and the third
The magnetic layer 3 has T H3 of 100 to 250 ° C. and H L3 of 0.5 to 4
It is preferable to set it within the range of about KOe.

【0012】本発明の方法で製造される光磁気記録媒体
の、隣接する磁性層は交換力で結合しており第1磁性層
1と第2磁性層2は相対的に強く結合しており、第2磁
性層2と第3磁性層3は相対的に弱く結合している。
In the magneto-optical recording medium manufactured by the method of the present invention, the adjacent magnetic layers are coupled by exchange force, and the first magnetic layer 1 and the second magnetic layer 2 are relatively strongly coupled, The second magnetic layer 2 and the third magnetic layer 3 are relatively weakly coupled.

【0013】3つの磁性層1,2,3は、最終的に記録さ
れた2種のビットの磁化状態(図2(f)に示す状態)が
安定に存在出来る様に、即ち上記の関係式を満たすよう
に各層の膜厚、保磁力、飽和磁化の大きさ、磁壁エネル
ギーなどを設定すればよい。
The three magnetic layers 1, 2 and 3 allow the magnetization states of the finally recorded two kinds of bits (states shown in FIG. 2 (f)) to exist stably, that is, the above relational expressions. The film thickness of each layer, the coercive force, the magnitude of the saturation magnetization, the domain wall energy, etc. may be set so as to satisfy the above.

【0014】各磁性層の材料には、垂直磁気異方性を示
し且つ磁気光学効果を呈するものが利用できるが、Gd
Co,GdFe,TbFe,DyFe,GdTbFe,
TbDyFe,GdFeCo,TbFeCo,GdTb
Co等の希土類元素と遷移金属元素との非晶質磁性合金
が好ましい。
As a material for each magnetic layer, a material exhibiting perpendicular magnetic anisotropy and exhibiting a magneto-optical effect can be used.
Co, GdFe, TbFe, DyFe, GdTbFe,
TbDyFe, GdFeCo, TbFeCo, GdTb
An amorphous magnetic alloy of a rare earth element such as Co and a transition metal element is preferable.

【0015】本発明の製造方法による光磁気記録媒体の
他の例である図1(b)において、4,5は3つの磁性層
1,2,3の耐久性を向上させるためのあるいは光磁気効
果を向上させるための保護膜である。
In FIG. 1 (b) which is another example of the magneto-optical recording medium according to the manufacturing method of the present invention, numerals 4 and 5 are for improving the durability of the three magnetic layers 1, 2 and 3, or are magneto-optical. It is a protective film for improving the effect.

【0016】6は、貼り合わせ用基板7を貼り合わすた
めの接着層である。貼り合わせ用基板7にも、2から6
までの層を積層し、これを接着すれば表裏で記録・再生
が可能となる。
Reference numeral 6 is an adhesive layer for bonding the bonding substrate 7. The bonding substrate 7 also has 2 to 6
By stacking the layers up to and adhering them, recording and playback can be performed on the front and back.

【0017】以下、図2〜図4を用いて本発明の製造方
法による光磁気記録媒体への記録の過程を示す。記録
前、磁性層1,2の磁化の向きと磁性層3の磁化の向き
とは、平行で安定状態であっても良いし、反平行で安定
状態であっても良い。
The process of recording on the magneto-optical recording medium by the manufacturing method of the present invention will be described below with reference to FIGS. Before recording, the magnetization directions of the magnetic layers 1 and 2 may be parallel and stable, or may be antiparallel and stable.

【0018】図3の35は、上述したような構成を有す
る光磁気ディスクである。例えば、この磁性層のある一
部の磁化状態が初め図2(a)のようになっていたとす
る。即ち、図2では、記録前、第1、第2磁性層1,2
と第3磁性層3との磁化の向きが平行なときに安定であ
る場合について説明する。光磁気ディスク35はスピン
ドルモータにより回転して、磁界発生部34を通過す
る。このとき、磁界発生部34の磁界の大きさを第2磁
性層2と第3磁性層3の保磁力の間の値に設定すると
(磁界の向きは本実施例では上向き)、図2(b)に示す
様に第3磁性層3は一様な方向に磁化され、一方、第2
磁性層2の磁化は初めのままである。また、第2磁性層
と強く結合している第1磁性層1の磁化も初めのままで
ある。
Reference numeral 35 in FIG. 3 is a magneto-optical disk having the above-described structure. For example, assume that a part of the magnetization state of the magnetic layer is initially as shown in FIG. That is, in FIG. 2, before recording, the first and second magnetic layers 1 and 2 are recorded.
A case will be described in which it is stable when the magnetization directions of the third magnetic layer 3 and the third magnetic layer 3 are parallel. The magneto-optical disk 35 is rotated by the spindle motor and passes through the magnetic field generator 34. At this time, if the magnitude of the magnetic field of the magnetic field generator 34 is set to a value between the coercive forces of the second magnetic layer 2 and the third magnetic layer 3 (the direction of the magnetic field is upward in this embodiment), FIG. ), The third magnetic layer 3 is magnetized in a uniform direction, while
The magnetization of the magnetic layer 2 remains unchanged. In addition, the magnetization of the first magnetic layer 1 that is strongly coupled to the second magnetic layer remains unchanged.

【0019】次に光磁気ディスク35が回転して記録・
再生ヘッド31を通過するときに、2種(第1種と第2
種)のレーザーパワー値を持つレーザービームを、記録
信号発生器32からの信号に従って、そのどちらかのパ
ワーでもって、ディスク面に照射する。第1種のレーザ
ーパワーは該ディスクを第2磁性層2のキュリー点付近
まで昇温するだけのパワーであり、第2種のレーザーパ
ワーは該ディスクを第3磁性層3のキュリー点付近まで
昇温可能なパワーである。即ち、両磁性層2,3の保磁
力と温度との関係の概略を示した図4において、第1種
のレーザーパワーはTL2付近、第2種のレーザーパワー
はTH3付近までディスクの温度を上昇できる。
Next, the magneto-optical disk 35 rotates to record / record.
When passing through the reproducing head 31, there are two types (first type and second type).
A laser beam having a laser power value of (seed) is applied to the disk surface with either power according to a signal from the recording signal generator 32. The laser power of the first type is power enough to raise the temperature of the disk to near the Curie point of the second magnetic layer 2, and the laser power of the second type raises the disk to the vicinity of the Curie point of the third magnetic layer 3. Power that can be warmed. That is, in FIG. 4 which shows the outline of the relationship between the coercive force of both magnetic layers 2 and 3 and the temperature, the laser power of the first type is close to T L2 and the laser power of the second type is close to T H3. Can rise.

【0020】第1種のレーザーパワーにより第2磁性層
2と第3磁性層3とは、第2磁性層2のキュリー点付近
まで昇温するが、第3磁性層3はこの温度でビットが安
定に存在する保磁力を有しているので、バイアス磁界を
適正に設定しておくことにより、図2(b)に示すどちら
の磁化状態からも、図2(c)の様な記録ビットが形成さ
れる(第1種の予備記録)。なお、第1磁性層1も、第
2磁性層2との交換結合により図のような磁化状態とな
るのである。
The second magnetic layer 2 and the third magnetic layer 3 are heated up to near the Curie point of the second magnetic layer 2 by the laser power of the first kind, but the third magnetic layer 3 has a bit at this temperature. Since it has a stable coercive force, by properly setting the bias magnetic field, the recording bit as shown in FIG. 2 (c) can be obtained from both magnetization states shown in FIG. 2 (b). Formed (first type of preliminary recording). The first magnetic layer 1 is also in the magnetized state as shown by the exchange coupling with the second magnetic layer 2.

【0021】ここで、バイアス磁界を適正に設定すると
は、次のような意味である。
The proper setting of the bias magnetic field has the following meaning.

【0022】第1種の予備記録では第3磁性層3の磁化
の向きに対して安定な向きに(ここでは同じ方向に)第
2磁性層2の磁化が配列する力(交換力)を受けるの
で、本来はバイアス磁界は必要でない。しかし、バイア
ス磁界は後述する第2種のレーザーパワーの予備記録で
は第3磁性層3の磁化反転を補助する向きに設定され
る。また、このバイアス磁界は、第1種、第2種どちら
のレーザーパワーの予備記録でも、大きさ、方向を同じ
状態に設定しておくことが好ましい。かかる観点からバ
イアス磁界の設定は次記に示す原理により第2種のレー
ザーパワーの予備記録に必要な最小限の大きさに設定し
ておくことが好ましい。
In the first type of preliminary recording, a force (exchange force) in which the magnetization of the second magnetic layer 2 is arranged in a stable direction (here, in the same direction) with respect to the magnetization direction of the third magnetic layer 3 is applied. Therefore, the bias magnetic field is not necessary originally. However, the bias magnetic field is set in such a direction as to assist the reversal of the magnetization of the third magnetic layer 3 in the prerecording with the second type laser power described later. Further, it is preferable that the bias magnetic field is set to have the same size and direction in the preliminary recording with the laser power of both the first type and the second type. From this point of view, it is preferable to set the bias magnetic field to the minimum level necessary for the preliminary recording of the second type laser power according to the principle described below.

【0023】一方、第2種のレーザーパワーにより、第
3磁性層3のキュリー点近くまでディスクを昇温させる
(第2種の予備記録)と、上記のバイアス磁界により第
3磁性層3の磁化の向きが反転する。続いて第2磁性層
2と第1磁性層1の磁化も第3磁性層3に対して安定な
向きに(ここでは同じ方向に)配列する。即ち、図2
(b)のどちらの磁化状態からも図2(d)のような記録ビッ
トが形成される。
On the other hand, when the temperature of the disk is raised to near the Curie point of the third magnetic layer 3 by the second type laser power (second type preliminary recording), the magnetization of the third magnetic layer 3 is caused by the above bias magnetic field. The direction of is reversed. Subsequently, the magnetizations of the second magnetic layer 2 and the first magnetic layer 1 are also arranged in the stable direction (here, in the same direction) with respect to the third magnetic layer 3. That is, FIG.
A recording bit as shown in FIG. 2D is formed from either of the magnetization states of (b).

【0024】このように、バイアス磁界と、信号に応じ
て変わる第1種及び第2種のレーザーパワーとによっ
て、光磁気ディスクの各箇所は図2(c)か(d)の状態に記
録されることになる。
As described above, each portion of the magneto-optical disk is recorded in the state shown in FIG. 2 (c) or (d) by the bias magnetic field and the first and second type laser powers which change according to the signal. Will be.

【0025】次に光磁気ディスク35を回転させ、記録
ビット(c),(d)が磁界発生部34を再び通過すると、磁
界発生部34は前述したように第2磁性層2と第3磁性
層3の間に設定されているので、記録ビット(c)は、変
化が起こらずに(e)の状態である。一方、記録ビット(d)
は第3磁性層3が磁化反転を起こして(f)の状態にな
る。
Next, when the magneto-optical disk 35 is rotated and the recording bits (c) and (d) again pass through the magnetic field generating section 34, the magnetic field generating section 34 causes the second magnetic layer 2 and the third magnetic layer 2 to return to each other as described above. Since it is set between layers 3, the recording bit (c) is in the state (e) without any change. On the other hand, recording bit (d)
Becomes the state of (f) because the third magnetic layer 3 causes magnetization reversal.

【0026】(f)の記録ビットの状態が安定に存在する
為には、前記したように
In order for the state of the recording bit of (f) to exist stably, as described above,

【0027】[0027]

【数2】 となっていることが必要である。これは次のような理由
による。
[Equation 2] It is necessary to be. This is for the following reasons.

【0028】σW12/2MS11は第1磁性層1に働く交
換力の強さを示す。つまりσW12/2MS11の大きさの
磁界で第1磁性層1の磁化の向きを、第2磁性層2の磁
化の向きに対して安定な方向へ(この場合は同じ方向
に)向けようとする。そこで第1磁性層1の磁化が常に
第2磁性層2の向きに対して安定な方向(この場合は同
じ方向に)に向いている為には、第1磁性層1の保磁力
L1が、この交換力より小さければよい。つまりσW12
/2MS11>HL1であればよい。
Σ W12 / 2M S1 h 1 represents the strength of the exchange force acting on the first magnetic layer 1. In other words, the direction of magnetization of the first magnetic layer 1 is oriented in a stable direction (in this case, the same direction) with respect to the direction of magnetization of the second magnetic layer 2 with a magnetic field of σ W12 / 2M S1 h 1. Try to. Therefore, since the magnetization of the first magnetic layer 1 is always oriented in a stable direction (in this case, the same direction) with respect to the direction of the second magnetic layer 2, the coercive force H L1 of the first magnetic layer 1 is , If it is smaller than this exchange power. So σ W12
/ 2M S1 h 1 > H L1 .

【0029】またσW23/2MS33は第3磁性層3に働
く交換力の強さを示す。つまりσW2 3/2MS33の大き
さの磁界で第3磁性層3の磁化の向きを第2磁性層2の
磁化の向きに対して安定な方向へ(この場合は同じ方向
へ)向けようとする。そこで第3磁性層3がこの磁界に
対して磁化が反転しない為には(図2(f)の記録ビット
が安定に存在する為には)、第3磁性層3の保磁力をH
L3としてσW23/2MS33<HL3であればよい。
Σ W23 / 2M S3 h 3 represents the strength of the exchange force acting on the third magnetic layer 3. That is, the direction of magnetization of the third magnetic layer 3 is directed to a stable direction (in this case, the same direction) with respect to the direction of magnetization of the second magnetic layer 2 with a magnetic field of σ W2 3 / 2M S3 h 3. Try to. Therefore, the coercive force of the third magnetic layer 3 is set to H in order that the magnetization of the third magnetic layer 3 is not reversed with respect to this magnetic field (in order for the recording bit of FIG. 2 (f) to exist stably).
L3 may be σ W23 / 2M S3 h 3 <H L3 .

【0030】上述したように本発明の方法で製造される
べき光磁気記録媒体では、第2磁性層2と第3磁性層3
とが、記録時に交換力による有効なバイアス磁界が働く
ように、交換結合をしていることが必要である。しか
し、この交換結合力がある程度以上大きい場合には、上
記式を満足しなくなる、すなわち、(f)の記録状態のビ
ットが安定に存在できなくなる。このため、上式を満た
すように、第3磁性層3の保磁力を磁界発生部での磁界
よりも小さい範囲で比較的大きな値に設定することが望
ましい。さらに、第2磁性層2と第3磁性層3との間の
交換結合の大きさを最適化する必要がある。
As described above, in the magneto-optical recording medium to be manufactured by the method of the present invention, the second magnetic layer 2 and the third magnetic layer 3 are used.
It is necessary that the and are exchange-coupled so that an effective bias magnetic field due to the exchange force works during recording. However, when the exchange coupling force is large to some extent or more, the above formula is not satisfied, that is, the bit in the recording state of (f) cannot exist stably. For this reason, it is desirable to set the coercive force of the third magnetic layer 3 to a relatively large value within a range smaller than the magnetic field in the magnetic field generation unit so as to satisfy the above expression. Furthermore, it is necessary to optimize the magnitude of exchange coupling between the second magnetic layer 2 and the third magnetic layer 3.

【0031】本発明では、 第2磁性層と第3磁性層の
交換力σW23/2MS33を調整するため、第2磁性層形
成後、第3磁性層を形成するまでの時間を変化させる。
一般的に、第2磁性層の成膜後、第3磁性層成膜までの
時間を長くすることにより、交換力σW23/2MS33
小さくなるから、前記時間を適切な値とすることによ
り、交換力の大きさを最適化することができる。
In the present invention, since the exchange force σ W23 / 2M S3 h 3 between the second magnetic layer and the third magnetic layer is adjusted, the time from the formation of the second magnetic layer to the formation of the third magnetic layer is changed. Let
Generally, the exchange force σ W23 / 2M S3 h 3 is reduced by prolonging the time from the formation of the second magnetic layer to the formation of the third magnetic layer. Therefore, the time is set to an appropriate value. As a result, the magnitude of the exchange force can be optimized.

【0032】本発明の製造方法による光磁気記録媒体に
対する上述の記録方法では、記録ビットの状態(e)と(f)
は、記録時のレーザーのパワーで制御され、記録前の状
態には依存しないので、重ね書き(オーバーライト)が
可能である。記録ビット(e)と(f)は、再生用のレーザー
ビームを照射し、再生光を記録信号再生器33で処理す
ることにより、再生できる。再生信号の大きさ(変調
度)は主として第1磁性層1の光磁気効果に依存する。
このことと、本発明の製造方法による光磁気記録媒体
の、再生光が入射する第1磁性層1にはキュリー温度の
高い材料(即ち、光磁気効果の大きな材料)を使用でき
ることから、本発明の製造方法による光磁気記録媒体で
は再生信号の大きい(変調度の大きい)記録が可能とな
る。
In the above-described recording method for the magneto-optical recording medium according to the manufacturing method of the present invention, the states (e) and (f) of the recording bits are recorded.
Is controlled by the power of the laser at the time of recording and does not depend on the state before recording, so that overwriting is possible. The recording bits (e) and (f) can be reproduced by irradiating a reproduction laser beam and processing the reproduction light in the recording signal regenerator 33. The magnitude of the reproduction signal (modulation degree) mainly depends on the magneto-optical effect of the first magnetic layer 1.
This and the fact that a material having a high Curie temperature (that is, a material having a large magneto-optical effect) can be used for the first magnetic layer 1 of the magneto-optical recording medium according to the manufacturing method of the present invention, on which the reproducing light is incident, can be used. With the magneto-optical recording medium manufactured by the method (1), recording with a large reproduced signal (large degree of modulation) becomes possible.

【0033】図2の説明では第1磁性層1・第2磁性層
2と第3磁性層3との磁化の向きが平行なときに安定な
例を示したが、これらの磁化の向きが反平行のときに安
定な磁性層についても同様に考えられる。図5(A),(B)
に、これらの場合の記録過程の磁化状態を図2に対応さ
せて示しておく。
In the description of FIG. 2, an example is shown in which the magnetization directions of the first magnetic layer 1, the second magnetic layer 2 and the third magnetic layer 3 are stable, but these magnetization directions are opposite. The same applies to a magnetic layer that is stable when parallel. Figure 5 (A), (B)
The magnetization states in the recording process in these cases are shown in correspondence with FIG.

【0034】[0034]

【実施例】4元のターゲット源を備えたスパッタ装置内
に、プリグルーブ、プリフォーマット信号の刻まれたポ
リカーボネート製のディスク状基板を、ターゲットとの
間の距離10cmの間隔にセットし、回転させた。
EXAMPLE A polycarbonate disc-shaped substrate with pregrooves and preformatted signals set in a sputtering device equipped with a quaternary target source at a distance of 10 cm from the target and rotated. It was

【0035】アルゴン中で、第1のターゲットより、ス
パッタ速度100Å/min、スパッタ圧5×10-3
orrでZnSを保護層として800Åの厚さに設け
た。
In argon, the sputtering rate was 100 Å / min and the sputtering pressure was 5 × 10 -3 T from the first target.
ZnS was provided at a thickness of 800 Å as a protective layer by orr.

【0036】次にアルゴン中で、第2のターゲットより
スパッタ速度100Å/min、スパッタ圧5×10-3
TorrでGdFeCo合金をスパッタし、膜厚400
Å、TH1=約350℃のGdFeCoの第1磁性層を形
成した。この第1磁性層自身のHL1は約500 Oe以
下であり、副格子磁化は遷移金属の方が大きかった。
Next, in argon, the sputtering rate from the second target was 100 Å / min, and the sputtering pressure was 5 × 10 -3.
GdFeCo alloy is sputtered with Torr and the film thickness is 400
Å, T H1 = about 350 ° C. The first magnetic layer of GdFeCo was formed. The H L1 of the first magnetic layer itself was about 500 Oe or less, and the sublattice magnetization was larger in the transition metal.

【0037】次に同様な条件で、第3のターゲットより
TbFe合金をスパッタし、膜厚400Å、TL2=約1
40℃のTbFeの第2磁性層を形成した。この第2磁
性層自身のHH2は約5000 Oe以上であり、副格子
磁化は遷移金属の方が大きかった。
Next, under the same conditions, a TbFe alloy was sputtered from a third target to a film thickness of 400 Å and T L2 = 1.
A second magnetic layer of TbFe at 40 ° C. was formed. The H H2 of the second magnetic layer itself was about 5000 Oe or more, and the sublattice magnetization was larger in the transition metal.

【0038】次に同様な条件で第4のターゲットよりG
dTbFeCo合金をスパッタし、膜厚300Å、TH3
=約260℃のGdTbFeCoの第3磁性層を形成し
た。この第3磁性層自身のHL3は約500〜1500
Oeであり、副格子磁化は希土類金属の方が大きかっ
た。
Next, under the same conditions, G from the fourth target
sputtered dTbFeCo alloy, thickness of 300Å, T H3
= A third magnetic layer of GdTbFeCo was formed at about 260 ° C. H L3 of the third magnetic layer itself is about 500 to 1500
Oe, and the sublattice magnetization was larger in the rare earth metal.

【0039】次に同条件で第1のターゲットより、Zn
Sをスパッタし、保護層として2000Åの厚さのZn
S層を設けた。
Next, under the same conditions, Zn was evaporated from the first target.
Sputtered S to form a protective layer with a thickness of 2000Å Zn
An S layer was provided.

【0040】次に上記の膜形成を終えた基板を、ホット
メルト接着剤を用いて、ポリカーボネートの貼り合わせ
用基板と貼り合わせ光磁気ディスクを作成した。この光
磁気ディスクを記録再生装置にセットし、2KOeの磁
界発生部を、線速度約7m/secで通過させつつ、約
1μmに集光した830nmの波長のレーザービームを
50%のデューティで2MHzで変調させながら、4m
Wと8mWの2値のレーザーパーワーで記録を行なっ
た。バイアス磁界は150 Oeであった。その後1m
Wのレーザービームを照射して再生を行なったところ、
2値の信号の再生ができた。
Next, the substrate on which the above-mentioned film formation was completed was bonded to a polycarbonate bonding substrate using a hot melt adhesive to form a magneto-optical disk. This magneto-optical disk was set in a recording / reproducing device, and while passing through a 2KOe magnetic field generating section at a linear velocity of about 7 m / sec, a laser beam with a wavelength of 830 nm focused on about 1 μm was 50% duty at 2 MHz. 4m while modulating
Recording was performed with a binary laser power of W and 8 mW. The bias magnetic field was 150 Oe. 1m after that
When it was reproduced by irradiating a W laser beam,
I was able to reproduce a binary signal.

【0041】次に、上記と同様の実験を、全面記録され
た後の光磁気ディスクについて行なった。この結果前に
記録された信号成分は検出されず、オーバーライトが可
能であることが確認された。
Next, the same experiment as described above was conducted on the magneto-optical disk after the entire surface was recorded. As a result, it was confirmed that the previously recorded signal component was not detected and overwriting was possible.

【0042】第2磁性層形成後、第3磁性層を形成する
までの時間を30秒、30分、3時間と変化させたとこ
ろ、σW23/2MS33の値はそれぞれ1.0KOe,0.
7KOe,0.4KOeと時間を長くするほど小さくす
ることができ、交換力σW23/2MS33の値を最適化す
ることができた。
After the formation of the second magnetic layer, the time until the formation of the third magnetic layer was changed to 30 seconds, 30 minutes and 3 hours. The values of σ W23 / 2M S3 h 3 were 1.0 KOe, respectively. 0.
As the time was increased to 7 KOe and 0.4 KOe, the value could be decreased, and the value of the exchange force σ W23 / 2M S3 h 3 could be optimized.

【0043】[0043]

【発明の効果】以上詳細に説明したように本発明の製造
方法によれば、高いキュリー点(TH1)と低い保磁力(H
L1)を有する第1磁性層と、この第1磁性層に比べて相
対的に低いキュリー点(TL2)と高い保磁力(HH2)を有す
る第2磁性層と、この第2磁性層に比べて相対的に高い
キュリー点(TH3)と低い保磁力(HL3)を有する第3磁性
層とからなる三層構造の磁性層を有し、第2磁性層と第
3磁性層との間の交換力が好適に制御された光磁気記録
媒体が得られる。この光磁気記録媒体を用いると記録時
に、記録ヘッドと別位置に磁界発生手段を設け、2値レ
ーザーパワーで記録することにより、重ね書き(オーバ
ーライト)が可能になった。
As described in detail above, according to the manufacturing method of the present invention, a high Curie point (T H1 ) and a low coercive force (H
A first magnetic layer having L1 ), a second magnetic layer having a Curie point (T L2 ) relatively low and a high coercive force (H H2 ) relatively to the first magnetic layer, and a second magnetic layer The magnetic layer has a three-layer structure including a third magnetic layer having a relatively high Curie point ( TH3 ) and a low coercive force ( HL3 ) as compared with the second magnetic layer and the third magnetic layer. It is possible to obtain a magneto-optical recording medium in which the exchange force between them is suitably controlled. When this magneto-optical recording medium is used, a magnetic field generating means is provided at a position different from the recording head at the time of recording and recording is performed with a binary laser power, thereby enabling overwriting.

【0044】また、本発明の方法で製造される光磁気記
録媒体の、主に再生に利用される磁性層は、光磁気効果
の大きい材料から選び得るので、結果として本発明の製
造方法による光磁気記録媒体に記録されたビットは再生
信号が大きいという利点がある。
The magnetic layer mainly used for reproduction of the magneto-optical recording medium manufactured by the method of the present invention can be selected from materials having a large magneto-optical effect, and as a result, the optical layer produced by the manufacturing method of the present invention can be used. The bit recorded on the magnetic recording medium has an advantage that a reproduction signal is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b)は各々本発明の方法で製造される光磁
気記録媒体の一例の構成を示す図である。
1A and 1B are diagrams showing an example of a structure of a magneto-optical recording medium manufactured by the method of the present invention.

【図2】本発明の製造方法による光磁気記録媒体に対す
る記録を実施中の、磁性層1,2,3の磁化の向きを示す
図である。
FIG. 2 is a diagram showing directions of magnetization of magnetic layers 1, 2, and 3 during recording on a magneto-optical recording medium by a manufacturing method of the present invention.

【図3】記録・再生装置の概念図である。FIG. 3 is a conceptual diagram of a recording / reproducing device.

【図4】第2磁性層2と第3磁性層3の保磁力と温度と
の関係を示す概略図である。
FIG. 4 is a schematic diagram showing the relationship between coercive force and temperature of the second magnetic layer 2 and the third magnetic layer 3.

【図5】(A),(B)はそれぞれ本発明の他の実施例におけ
る磁性層の磁化状態を示す図である。
5A and 5B are diagrams showing a magnetization state of a magnetic layer in another example of the present invention.

【符号の説明】[Explanation of symbols]

B プリグルーブ付の透光性基板 1,2,3 磁性層 4,5 保護層 6 接着層 7 貼り合わせ用基板 31 記録・再生用ヘッド 32 記録信号発生器 35 光磁気ディスク B Transparent substrate with pre-groove 1, 2, 3 Magnetic layer 4, 5 Protective layer 6 Adhesive layer 7 Laminating substrate 31 Recording / reproducing head 32 Recording signal generator 35 Magneto-optical disk

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高いキュリー点TH1と低い保磁力HL1
有する第1磁性層と、この第1磁性層に比べて相対的に
低いキュリー点TL2と高い保磁力HH2を有する第2磁性
層と、この第2磁性層に比べて相対的に高いキュリー点
H3と低い保磁力HL3を有する第3磁性層とからなる三
層構造の垂直磁化膜を少なくとも基板上に有し、 (σW12/2MS11)>HL1,(σW23/2MS33)<
L3 {第1磁性層と第2磁性層の磁壁エネルギーをσW12
第2磁性層と第3磁性層の磁壁エネルギーをσW23
し、第1磁性層、第2磁性層、第3磁性層の膜厚を順に
1,h2,h3とし、これらの層の飽和磁化の大きさを順
にMS1,MS2,MS3とする。}以上の条件を満足する光磁
気記録媒体の製造方法であって、 前記基板上に第1磁性層及び第2磁性層成膜後、第3磁
性層を成膜するまでの時間を調整することにより前記第
2磁性層と第3磁性層間の交換結合力を調整することを
特徴とする光磁気記録媒体の製造方法。
1. A first magnetic layer having a high Curie point T H1 and a low coercive force H L1, and a second magnetic layer having a relatively low Curie point T L2 and a high coercive force H H2 as compared with the first magnetic layer. At least a three-layered perpendicular magnetization film including a magnetic layer and a third magnetic layer having a Curie point T H3 and a low coercive force H L3 relatively higher than that of the second magnetic layer is provided on at least a substrate, (Σ W12 / 2M S1 h 1 )> H L1 , (σ W23 / 2M S3 h 3 ) <
H L3 {the domain wall energies of the first magnetic layer and the second magnetic layer are σ W12 ,
The domain wall energies of the second magnetic layer and the third magnetic layer are σ W23, and the film thicknesses of the first magnetic layer, the second magnetic layer, and the third magnetic layer are h 1 , h 2 , and h 3 in this order. The magnitude of the saturation magnetization is sequentially set to M S1 , M S2 , and M S3 . A method for manufacturing a magneto-optical recording medium satisfying the above conditions, wherein the time until the third magnetic layer is formed after the first magnetic layer and the second magnetic layer are formed on the substrate is adjusted. A method for manufacturing a magneto-optical recording medium is characterized in that the exchange coupling force between the second magnetic layer and the third magnetic layer is adjusted by.
JP1924193A 1993-01-12 1993-01-12 Method for manufacturing magneto-optical recording medium Expired - Lifetime JPH06101152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1924193A JPH06101152B2 (en) 1993-01-12 1993-01-12 Method for manufacturing magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1924193A JPH06101152B2 (en) 1993-01-12 1993-01-12 Method for manufacturing magneto-optical recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61191202A Division JPS6348637A (en) 1986-06-18 1986-08-16 Magneto-optical recording medium and magnet-optical recording method

Publications (2)

Publication Number Publication Date
JPH0684214A true JPH0684214A (en) 1994-03-25
JPH06101152B2 JPH06101152B2 (en) 1994-12-12

Family

ID=11993908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1924193A Expired - Lifetime JPH06101152B2 (en) 1993-01-12 1993-01-12 Method for manufacturing magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH06101152B2 (en)

Also Published As

Publication number Publication date
JPH06101152B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
JPH0535499B2 (en)
JP2703587B2 (en) Magneto-optical recording medium and recording method
US5487046A (en) Magneto-optical recording medium having two magnetic layers with the same curie temperature
JPH0542062B2 (en)
JPH0535494B2 (en)
JPH0395745A (en) Magneto-optical recording method and recording device
JPH0522301B2 (en)
JPH0535498B2 (en)
JPH0684214A (en) Production of magneto-optical recording medium
JPS63153752A (en) Magneto-optical recording medium and its recording method
JPH0535493B2 (en)
JP2555272B2 (en) Magneto-optical recording / reproducing method
JP2589453B2 (en) Magneto-optical recording method
JP2674815B2 (en) Magneto-optical recording method
JPS63133338A (en) Magneto-optical recording method
JP2589451B2 (en) Magneto-optical recording / reproducing device
JP3343617B2 (en) Magneto-optical recording method and magneto-optical recording medium
JPH0522302B2 (en)
JPH0535496B2 (en)
JPH0522300B2 (en)
JP3035629B2 (en) Magneto-optical recording medium and magneto-optical recording method
JPS63237242A (en) Magneto-optical recording system
JPH087884B2 (en) Magneto-optical recording method
JPH0535497B2 (en)
JPH0522306B2 (en)